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Abstract. This paper is concerned with the numerical approximation of some linear stochastic
partial differential equations with additive noises. A special representation of the noise is consid-
ered, and it is compared with general representations of noises in the infinite dimensional setting.
Convergence analysis and error estimates are presented for the numerical solution based on the stan-
dard finite difference and finite element methods. The effects of the noises on the accuracy of the
approximations are illustrated. Results of the numerical experiments are provided.
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1. Introduction. In recent years, it has been increasingly acceptable to adopt
SDE models as an essential component in the analysis of complex phenomena such as
wave propagation [19], climate change [22], turbulence [21, 24], and phase transition
[9, 16, 18]. The initial value and boundary value problems of stochastic partial differ-
ential equations (SPDEs) have been studied theoretically in, for example, [5, 6, 8, 10,
33]. Various numerical methods and approximation schemes for SDEs have also been
developed, analyzed, and tested [1, 2, 4, 7, 12, 13, 14, 15, 20, 25, 27, 29, 28, 31, 34, 35].

For a given physical system, many different stochastic perturbations may be con-
sidered. Generically speaking, noise may enter the physical system either as temporal
fluctuations of internal degrees of freedom or as random variations of some external
control parameters; internal randomness often reflects itself in additive noise terms,
while external fluctuations gives rise to multiplicative noise terms [18]. The main aim
of this paper is to study the properties of some standard numerical approximations
to the linear SPDEs for the random field u = u(x, t) driven by an additive noise:

du = Audt+ dW, x ∈ Ω, t > 0.(1.1)

Here, Ω is a bounded spatial domain and A is a linear second order elliptic operator
with deterministic coefficients, which is defined on a space of functions satisfying
certain boundary conditions. W represents an infinite dimensional Brownian motion.
We also consider the related time-independent equation

−Au = g + Ẇ, x ∈ Ω,(1.2)

∗Received by the editors April 13, 2001; accepted for publication (in revised form) April 25, 2002;
published electronically October 23, 2002. This work was partially supported by the State Major
Basic Research Project G199903280 and by NSF grant DMS-0196522.

http://www.siam.org/journals/sinum/40-4/38795.html
†Department of Mathematics, Penn State University, University Park, PA 16802, and Department

of Mathematics, Hong Kong University of Science and Technology, Hong Kong (qdu@math.psu.edu).
‡Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong.

Current address: Department of Mathematics, University of Minnesota, Minneapolis, MN 55455
(tyzhang@math.umn.edu).

1421



1422 QIANG DU AND TIANYU ZHANG

where g is a given deterministic function and Ẇ denote a one-parameter family noise.
The additive noises may appear in various forms, ranging from the space time white
noise to colored noises generated by some infinite dimensional Brownian motion with
a prescribed covariance operator [6, 28]. Once the equation is reformulated into a
weak form [5], the usual Galerkin finite element methods can be constructed and
also analyzed using standard techniques. A priori error estimates of the numerical
solution depend on the regularity of the solutions of the original SPDE. Such regularity
results are often much harder to establish than their deterministic counterpart [5, 33].
In fact, if dW corresponds to the Brownian white noise, then the regularity estimates
are usually very weak, and they lead to very low order error estimates [1, 7, 13].
On the other hand, if the noise is more regular, then it becomes possible to get
higher order of error estimates for the numerical solution. In recent years, studies of
models with colored noises and their numerical approximation have started to receive
more attention; see [28] for an example of physical application and the recent works
[26, 14] for works related to stochastic ordinary differential equations (SODEs) and
the time discretization. In the present work, we provide the connections between the
discrete realizations of noises in different formulations of some SPDEs. Moreover, we
illustrate how the error analysis of the standard finite element and finite difference
approximations depends on the noises used in the model and the approximation. In
order to present a simple analysis, in this paper we focus on the case Ω = (0, 1)
and Au = uxx− bu with the homogeneous Dirichlet boundary condition and b being a
deterministic coefficient, though much of our results can be readily extended to higher
spatial dimensions and more general second order elliptic operators. For most of the
discussion, we also try to present our results in simple finite element terminology that
is familiar to people working on the numerical approximations of deterministic PDEs
so that it is easy to be understood even for readers who are not necessarily experts
on SDEs.

The paper is organized as follows. We first describe the various forms of the
noises and their discrete representations. Next, we discuss some convergence results
for standard finite element and finite difference approximations. The models used are
one dimensional linear stochastic elliptic and parabolic equations, and the results are
established for noises given in general forms, which include the spatial or space time
white noises as special cases. Then numerical results are presented to support the
theoretical analysis. Finally, some concluding remarks are given. The details of the
proofs are provided in the appendix.

2. The representation of random noises. To study the accuracy of the dis-
crete approximations, it is useful to first consider the properties of the noises which
drive the stochastic equations and the discrete representations of the noises.

Following [1], we regularize the noise through discretization. Let {xi = ih}n0 be
a partition of [0, 1] with h = 1/n. We begin with Ẇ (x) being the standard one-
parameter family Brownian white noise that satisfies

E(Ẇ (x) · Ẇ (x′)) = δ(x− x′),(2.1)

where δ denote the usual Dirac δ-function andE the expectation. A piecewise constant
approximation of the one-parameter white noise is given by [1]

dŴn(x)

dx
= cn

n∑
j=1

ηjχj(x),(2.2)
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Fig. 2.1. Piecewise constant approximation for the noise dŴn(x)/dx = (1/
√
h)
∑n

j=1 ηjχj(x).

where cn = h−1/2 =
√
n and, for j = 1, 2, . . . , N , ηj ∈ N(0, 1) is independently and

identically distributed (iid),

√
hηj =

∫ xj+1

xj

dW (x) , and χj(x) =

{
1, xj ≤ x < xj+1,

0 otherwise.

The discrete analogue of (2.1) for the piecewise constant approximation is given by

E

(
dŴn(x)

dx
· dŴn(x

′)
dx

)
=

{
h−1 if xj ≤ x, x′ < xj+1 for some j,

0 otherwise.

Hence,

lim
n→∞E

(
dŴn(x)

dx
· dŴn(x

′)
dx

)
= δ(x− x′).

In Figure 2.1, some sample realizations of the piecewise constant approximation
of one-parameter white noise are illustrated for various values of n. (The random
numbers are generated using MATLAB.) We note that similar discussions can be
easily generalized to the space time two-parameter family white noises.

2.1. Noises in abstract forms. The SPDEs driven by the white noise often
have poor regularity estimates. In the physical world, to take into account the short
and long range correlations of the stochastic effects, both white noise and colored
noises may be considered. There are many situations where colored noises model
the reality more closely, and there are also instances where the important stochastic
effects are the noises acting on a few selected frequencies.

In general, we may use an abstract formulation of the infinite dimensional noise:



1424 QIANG DU AND TIANYU ZHANG

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

1

2

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

0 0.2 0.4 0.6 0.8 1
0

1

2

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

n=4 n=8 

n=16 n=32 

n=64 n=128 

n=256 n=512 

0 0.2 0.4 0.6 0.8 1
0

1

2

3

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

0 0.2 0.4 0.6 0.8 1
0

2

4

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

n=4 n=8 

n=16 n=32 

n=64 n=128 

n=256 n=512 

Fig. 2.2. Noises by Fourier modes
∑n

k=1 σkηk
√
2 sin kπx with σk = 1

2k
(left) and σk = 1

k3/2

(right).

Ẇ (x) =

∞∑
k=1

σkηkψk(x),(2.3)

where the random variable ηk ∼ N(0, 1) is iid for any k, the deterministic functions
{ψk(x)} form an orthonormal basis of L2(0, 1) or its subspace, and the coefficients
{σk} are to be chosen to ascertain the convergence of the series in the mean square
sense with respect to some suitable norms.

One of the examples is given by the Fourier modes ψk(x) =
√
2 sin kπx which

forms a basis of H1
0 (0, 1). According to the different decay rates of the coefficients,

the noises may display quite different pictures. The pictures in Figure 2.2 and the
left two columns of Figure 2.3 provide sample realizations of noises having forms
(2.3) in the Fourier basis with coefficients σk = 2−k, k−3/2, and k−1/2, respectively.
Clearly, the realizations give trajectories that look smoother than the ones for the
white noise. It can also be seen that the faster the coefficients σk decay, the smoother
the noise trajectory dWn/dx looks, which reflects stronger spatial correlation since
the noises are heavily concentrated near a few low frequencies. On the other hand,
if the coefficients decay sufficiently slowly, then the trajectory can clearly resemble
that of a white noise away from the boundary. In fact, it is well known that for
spatially uncorrelated white noises, their Fourier coefficients are independent of the
frequencies, and they stay at a constant value.

In the analysis and numerical examples given in later sections, the noises given
in terms of the Fourier modes are used. The Fourier modes provide one of many
possible representations of noises where the smoothness of the noise trajectories are
related to the decay of the coefficients in the representation. Another illustrative
example is to define the noise in terms of the lowest order wavelet basis. We include
the discussion here for comparison. Let ψ be the wavelet function and φ be the scaling
function [32]. Let j denote the dilation index and k denote the translation index, and
ψj,k(x) = 2j/2ψ(2jx−k). The discrete noise formulated in the wavelet basis is given as

ẆJ(x) = cγφ(x) +

J−1∑
j=0

2j−1∑
k=0

dj,kηjkψj,k(x).(2.4)

Here, J is the highest level to be considered, and γ, ηjk ∈ N(0, 1) are iid. In the
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Fig. 2.3. Noises by
∑n

k=1
1

k1/2 ηk
√
2 sin kπx (left) and γφ(x) +

∑J−1
j=0

∑2j−1
k=0

1
2j
ηjkψj,k(x) (right).

simplest case, we may take the Haar wavelet

ψ(x) =


1, 0 ≤ x < 1/2,

−1, 1/2 ≤ x < 1,

0 otherwise

and φ(x) =

{
1, 0 ≤ x < 1,

0 otherwise.

The right two columns of Figure 2.3 show sample realizations of noises taking the form

(2.4) with c = 1, dj,k = 2−j . The correlation of the noise (2.4) E(dWJ (x)
dx · dWJ (x′)

dx ) is
given by

E

(
dWJ(x)

dx
· dWJ(x

′)
dx

)
= c2φ(x)φ(x′) +

J−1∑
j=0

2j−1∑
k=0

d2
j,kψj,k(x)ψj,k(x

′) .(2.5)

If in (2.2) n = 2J and h = 2−J , then the piecewise constant approximation of the
white noise may also be represented using the wavelet Haar basis. In fact, let χk(x)
be characteristic function of interval [kh, (k + 1)h]; then

dŴn(x)

dx
=

1√
h

2J−1∑
k=0

ηkχk(x) = γφ(x) +

J−1∑
j=0

2j−1∑
l=0

γj,lψj,l(x).

Here, γ = 2−J/2
∑2J−1

k=0 ηk ∼ N(0, 1) and

γj,l = 2(j−J)/2

(l+1)2J−j−1∑
k=l2J−j

(−1)[k/2
J−j−1]ηk

 ∼ N(0, 1)

are iid. Corresponding to (2.5), c = dj,k = 1 so that (2.5) leads again to (2.1). Nat-
urally, when higher order wavelets are used [32, 30], we may expect to have discrete
noises that are smoother spatially than the ones represented by the Haar basis when
the high frequency coefficients enjoy fast decay properties. Comparing with Fourier
modes, wavelet functions may also have compact support; thus, on the one hand,
the noises in wavelet basis can closely resemble spatially uncorrelated white noises,
while on the other hand they can also be used conveniently to simulate noise more
concentrated on certain frequencies as well as certain spatial regions.
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In summary, different forms to represent the various noises are discussed in this
section. Similar discussion can be carried out in more than one space dimension
and for noises parameterized by both time and space variables. Such discussions are
relevant to the numerical study of SDEs as the solutions of the stochastic equations
that use noises with better regularity become more regular themselves and thus may
allow higher order numerical approximations.

3. Numerical method and error analysis. In [1], approximations of SPDEs
with the additive space time white noise term discretized by the piecewise constant
random process have been studied. Here, we follow roughly the same route, though
more general types of noises are used. We show how the accuracy is affected by the
correlation or the smoothness of the noises.

We divide the discussion into two parts, starting with the simplest one dimensional
elliptic equation (boundary value problem of a SODE) and then moving to a parabolic
equation in one space dimension and in time (initial boundary value problem of a
SPDE). In the set-up of the problems, noises represented in general basis are used,
but in the analysis we specialize in using the Fourier modes as the basis of choice to
simplify the discussion.

3.1. One dimensional elliptic equation with noise. We now consider the
SDE (1.2); that is,{

−∆u(x) + bu(x) = g(x) + Ẇ (x), 0 < x < 1,

u(0) = u(1) = 0,
(3.1)

where Ẇ (x) denotes the noise, g(x) is a given deterministic term, and b = b(x) is a
given deterministic coefficient.

As in [1], we may first replace Ẇ (x) by a finite dimensional noise Ẇn(x) and let un
denote the solution of the corresponding equation. We then numerically approximate
the equation associated with Ẇn(x) and let uhn denote the numerical solution.

If the noise Ẇ (x) in (3.1) is the white noise, Ẇn(x) is the piecewise constant
approximation (2.2), and the Galerkin finite element method with piecewise constant
basis is applied to (3.1), the error estimate is given by [1]

E‖u− un‖L2
≤ C h,

E‖un − uhn‖L2 ≤ C h3/2,

E‖u− uhn‖L2
≤ C h.

Due to the poor regularity of the solution, it is seen that, even with higher order
finite elements, the order of error estimates does not improve. With colored noises,
the order of approximation may increase with better regularity on the solution and
the use of higher order elements. As an illustration, we consider the following noise:

Ẇ (x) =

∞∑
k=1

σkηkψk(x),(3.2)

where {ηk} are random variables satisfying

ηk ∼ N(0, 1) and cov(ηk, ηl) = E(ηkηl) = qkl,

with {σk} to be chosen.
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Let {σn
k }∞k=1 approach {σk}∞k=1 as n → ∞ in some appropriate sense; then an

approximation of Ẇ (x) is

Ẇn(x) =

∞∑
k=1

√
2σn

k ηkψk(x) sin kπx.

The definition of noise term leads to the following stochastic integral for f ∈ L2(0, 1):

S =

∫ 1

0

f(x)dW (x) =

∞∑
k=1

σkfkηk,

Sn =

∫ 1

0

f(x)dWn(x) =

∞∑
k=1

σn
k fkηk,

where fk =
∫ 1

0
f(x)ψk(x)dx. That is, S and Sn are random variables having the

distribution

S ∼ N

(
0,

∞∑
k=1

∞∑
l=1

σkσlfkflqkl

)
,

Sn ∼ N

(
0,

∞∑
k=1

∞∑
l=1

σn
kσ

n
l fkflqkl

)
,

provided the double sum is convergent.
For convenience, we introduce the following notation:

−→
σn = (σn

1 , σ
n
2 , . . . , σ

n
k , . . . )

T ,

'σ = (σ1, σ2, . . . , σk, . . . )
T

are infinite column vectors. For two vectors
−→
σn and

−→
f , we use

−−→
σnf to denote the

componentwise product

−−→
σnf = (σn

1 f1, σ
n
2 f2, . . . , σ

n
k fk, . . . )

T .

Let Q be the covariance matrix of random fields {ηk}, namely, Q is the infinite
matrix (operator) with entries Q = (qkl)

∞
k,l=1. For an integer s, let Qs be the infinite

matrix with entries Qs = ((kl)sqkl)
∞
k,l=1. It is easy to see both Q and Qs are positive

semidefinite. Define the weighted semi-inner products of the vectors 'σ and 'δ as

〈'σ, 'δ〉Q = 'σT ·Q · 'δ =
∞∑
k=1

∞∑
l=1

σkδlqkl,

〈'σ, 'δ〉Qs = 'σT ·Qs · 'δ =
∞∑
k=1

∞∑
l=1

σkδl(kl)
sqkl.

The seminorms induced by the above semi-inner products are

‖'σ‖2
Q = 〈'σ, 'σ〉Q and ‖'σ‖2

Qs
= 〈'σ, 'σ〉Qs .
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Note that Q0 = Q. Using the above notation,

S ∼ N
(
0, ‖−→σf‖2

Q

)
, Sn ∼ N

(
0, ‖−−→σnf‖2

Q

)
.

The difference between S and Sn is given by

E|S − Sn|2 = E|
∞∑
k=1

(σn
k − σk)fkηk|2 =

∥∥∥−→σf −−−→
σnf
∥∥∥2
Q
.

Equation (3.1) can be written in a weak form or an integral form. Both forms
are equivalent as shown in [3]. In fact, the solution of (3.1) is a stochastic process
u = u(x) which satisfies the weak formulation

−
∫ 1

0

u(x)∆φ(x)dx+

∫ 1

0

bu(x)φ(x)dx =

∫ 1

0

g(x)φ(x)dx+

∫ 1

0

φ(x)dW (x)(3.3)

for φ ∈ C2(0, 1) ∩ C0(0, 1). The integral form is

u(x) +

∫ 1

0

b k(x, y)u(y)dy =

∫ 1

0

k(x, y)g(y)dy +

∫ 1

0

k(x, y)dW (y).(3.4)

Here, k(x, y) = x∧y−xy is the Green’s function associated with the elliptic equation

−∆v(x) = φ(x), v(0) = v(1) = 0 so that v(x) =
∫ 1

0
k(x, y)φ(y)dy. (x ∧ y means the

smaller one of x and y.) In the present investigation, it is assumed the coefficient b is

small enough so that λ2 =
∫ 1

0

∫ 1

0
b2k2(x, y)dxdy < 1. We note that this condition is

primarily needed in the case of b < 0; such a restriction can be lifted for b > 0, and
the conclusions given later remain valid.

We now substitute dW (y) by dWn(y) in (3.4) to obtain the following equation:

un(x) +

∫ 1

0

b k(x, y)un(y)dy =

∫ 1

0

k(x, y)g(y)dy +

∫ 1

0

k(x, y)dWn(y).(3.5)

Thus, un(x) satisfy the two-point boundary value problem

−∆un(x) + bun(x) = g(x) + Ẇn(x), un(0) = un(1) = 0.(3.6)

The following theorem shows that un indeed approximates u, the solution of
(3.4). In order to illustrate the higher order of convergence for more regular noises,
we specialize our discussion to the choice of {ψk(x) =

√
2 sin kπx}, that is, noises

represented by the Fourier modes.
Theorem 3.1. For Ẇn(x) =

∑∞
k=1 σ

n
k ηkψk(x) and ψk(x) =

√
2 sin kπx, if un

and u are the solutions of (3.5) and (3.4), respectively, then, for some constant C > 0,

E‖u− un‖L2 ≤ C

1− λ

∥∥∥−→σn − 'σ
∥∥∥
Q−1

,

where λ < 1 is defined as before.
Proof. Let en(x) = u(x)− un(x) and

F (x) =

∫ 1

0

k(x, y)dW (y)−
∫ 1

0

k(x, y)dWn(y).
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Subtracting (3.5) from (3.4), we have

en(x) = −
∫ 1

0

b k(x, y) en(y)dy + F (x).

By Hölder’s inequality, it is easy to show that∫ 1

0

e2n(x)dx ≤ λ2

∫ 1

0

e2n(y)dy + 2λ

(∫ 1

0

F 2(x)dx

)1/2(∫ 1

0

e2n(y)dy

)1/2

+

∫ 1

0

F 2(x)dx,

where λ2 =
∫ 1

0

∫ 1

0
b2k2(x, y)dxdy and it is assumed that λ < 1. Taking expectations

on both sides, letting ên = E(
∫ 1

0
e2n(x)dx) and Ĝn = E(

∫ 1

0
F 2(x)dx) and using the

Burkholder–Gundy-type inequality (EX)2 ≤ E(X2), we get

ên(1− λ2)− 2λ
√
ên

√
Ĝn − Ĝn ≤ 0.(3.7)

This implies √
ên ≤

√
Ĝn(1− λ).(3.8)

Now let us estimate Ĝn.

Ĝn = E

(∫ 1

0

F 2(x)dx

)
=

∫ 1

0

E

( ∞∑
k=1

(σn
k − σk)fk(x)ηk

)2

dx

=

∫ 1

0

∥∥∥−−−→σf(x)−−−−−→
σnf(x)

∥∥∥2
Q
dx,

where
−−→
f(x) = (f1(x), f2(x), . . . , fk(x), . . . )

T and fk(x) =
∫ 1

0
k(x, y)ψk(y)dy. Since

k(x, y) = x ∧ y − xy, direct calculation gives that, for any x ∈ [0, 1],

|fk(x)| =
∣∣∣∣∫ 1

0

k(x, y)ψk(y)dy

∣∣∣∣ = ∣∣∣∣∫ 1

0

k(x, y)
√
2 sin kπydy

∣∣∣∣ ≤ c

k
,

which implies that, for x ∈ [0, 1],∥∥∥−−−→σf(x)−−−−−→
σnf(x)

∥∥∥
Q
≤ C

∥∥∥−→σ −−→
σn
∥∥∥
Q−1

for some constant C > 0. Hence,

Ĝn ≤ C
∥∥∥'σ −−→

σn
∥∥∥2
Q−1

.

Combining the above inequality with (3.8), we get

E‖u− un‖L2
≤
√
E‖u− un‖2

L2
=
√
ên ≤ C

1− λ

∥∥∥−→σn − 'σ
∥∥∥
Q−1

.

This proves the theorem.
We now state a bound on Ẇn(x) in the following lemma.
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Lemma 3.1. For Ẇn(x) =
∑∞

k=1 σ
n
k ηkψk(x) and ψk(x) =

√
2 sin kπx, if s ≥ 0 is

an integer, then

E‖Ẇn‖Hs ≤ C

( ∞∑
k=1

(σn
kk

s)2

)1/2

,

provided that the right-hand side is convergent.
Proof. First,

ds

dxs

(
dWn

dx

)
=

∞∑
k=1

√
2σn

k ηk(kπ)
s sin
(
s
π

2
+ kπx

)
.

Since {sin(sπ
2 + kπx)} are orthogonal on [0, 1], we have

E

∥∥∥∥ ds

dxs

(
dWn

dx

)∥∥∥∥2
L2

= E

∫ 1

0

( ∞∑
k=1

√
2σn

k ηk(kπ)
s sin
(
s
π

2
+ kπx

))2

dx

= E

∞∑
k=1

(σn
k )

2η2
k(kπ)

2s ≤ c

∞∑
k=1

(σn
k · ks)2

for some constant c > 0. The above inequality also implies that, for any r ≤ s,

E

∥∥∥∥ dr

dxr

(
dWn

dx

)∥∥∥∥2
L2

≤ E

∥∥∥∥ ds

dxs

(
dWn

dx

)∥∥∥∥2
L2

.

Hence,

E‖Ẇn‖Hs ≤
√
E‖Ẇn‖2

Hs ≤ C

( ∞∑
k=1

(σn
kk

s)2

)1/2

for some constant C > 0.
Concerning the above lemma, we note that similar lower bound can also be es-

tablished. Moreover, the results may be established for the case s < 0 as well.
We now consider a standard finite element approximation of un. From the weak

formulation (3.3), un satisfies∫ 1

0

u′nφ
′(x)dx+ b

∫ 1

0

un(x)φ(x)dx =

∫ 1

0

g(x)φ(x)dx+

∫ 1

0

φ(x)dWn(x)(3.9)

for φ(x) ∈ H1
0 (0, 1). By the Lax–Milgram theorem, there exists a unique solution

un ∈ H1
0 (0, 1) to (3.9). For convenience, we consider the same partition of [0, 1]:

0 = x1 < x2 < · · · < xn+1 = 1 with xi = (i−1)h and h = 1/n. If V h
0 (0, 1) denotes the

finite element subspace ofH1
0 (0, 1), and {φj(x)}Nj=1 forms a basis of V h

0 (0, 1), the finite

element solution of (3.9) is uhn ∈ V h
0 (0.1) that satisfies (3.9) for all φ(x) ∈ V h

0 (0, 1).

Thus, uhn(x) =
∑N

l=1 ulφl(x) satisfies the following linear system for j = 1, 2, . . . , N :

N∑
l=1

ul

∫ 1

0

φ′
l(x)φ

′
j(x) + b

N∑
l=1

ul

∫ 1

0

φl(x)φj(x)dx

=

∫ 1

0

g(x)φj(x)dx+

∞∑
k=1

σn
k ηk

∫ 1

0

φj(x)ψk(x)dx,(3.10)
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where ηk ∈ N(0, 1). The solution uhn is clearly well defined.
The following lemma gives the standard finite element error estimates of (3.9) in

the pathwise sense.
Lemma 3.2. If V h

0 (0, 1) contain all piecewise polynomials of degree r in H1
0 (0, 1),

and un ∈ H1
0 (0, 1) ∩Hr+1(0, 1), then

‖un − uhn‖L2 + h|un − uhn|H1 ≤ Chr+1‖un‖Hr+1 ≤ Chr+1‖g + Ẇn‖Hr−1(3.11)

for some constant C > 0.
Furthermore, combining Theorem 3.1 and Lemma 3.2, an estimate on E(‖u −

uhn‖L2) follows from the triangle inequality.
Theorem 3.2. Let u and uhn be the solution of (3.3) and (3.10), respectively; if

the hypothesis in Lemma 3.2 is satisfied, then the error estimate is

E‖u− uhn‖L2
≤ C

{∥∥∥−→σn − 'σ
∥∥∥
Q−1

+ hr+1‖g‖Hr−1 + hr+1E‖Ẇn‖Hr−1

}

≤ C

∥∥∥−→σn − 'σ
∥∥∥
Q−1

+ hr+1‖g‖Hr−1 + hr+1

[ ∞∑
k=1

(σn
kk

r−1)2

]1/2(3.12)

for some generic constant C > 0.
Numerical examples are given in a later section to provide an illustration of the

specific order of error estimates one can get based on the above theorem.
Remark 3.1. The same idea can be applied to two dimensional elliptic equations in

a rectangular domain, namely, by representing the two dimensional noise as the combi-
nations of the tensor products of ψk(x), similar to how Theorem 3.2 can be obtained.

3.2. Parabolic equation in one spatial dimension. Let ∂2W
∂t∂x denote a space

time noise term and g be a deterministic function; we now consider the linear stochas-
tic equations of the form

∂u
∂t (t, x)− ∂2u

∂x2 (t, x) + bu(t, x) = ∂2W
∂t∂x (t, x) + g(t, x), t > 0,

u(0, x) = u0(x), 0 ≤ x ≤ 1,

u(t, 0) = u(t, 1) = 0, t ≥ 0,

(3.13)

where the coefficient b, for simplicity, is assumed to be a constant.
The weak formulation of (3.13) is∫ 1

0

u(t, x)φ(x)dx−
∫ t

0

∫ 1

0

u(s, x)
d2φ

dx2
dxds+

∫ t

0

∫ 1

0

bu(s, x)φ(x)dxds

=

∫ 1

0

u0(x)φ(x)dx+

∫ t

0

∫ 1

0

φ(x)dW (s, x) +

∫ t

0

∫ 1

0

g(s, x)φ(x)dxds(3.14)

for φ ∈ C2[0, 1] ∩ C0[0, 1] . The integral formulation of (3.13) is

u(t, x) +

∫ t

0

∫ 1

0

Gt−s(x, y)bu(x, y)dyds =

∫ 1

0

Gt(x, y)u0(y)dy(3.15)

+

∫ t

0

∫ 1

0

Gt−s(x, y)dW (s, y) +

∫ t

0

∫ 1

0

Gt−s(x, y)g(s, y)dyds,
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where Gt(x, y) = 2
∑∞

m=1 sinmπx sinmπye−(mπ)2t is the fundamental solution of

vt(t, x)− vxx(t, x) = 0, v(0, x) = φ(x), v(t, 0) = v(t, 1) = 0,

so that v(t, x) =
∫ 1

0
Gt(x, y)φ(y)dy .

Using the same idea as that in the previous section, we represent the noise as

∂2W

∂t∂x
=

∞∑
k=1

σk(t)η̇k(t)ψk(x),(3.16)

where σk(t) is a continuous function, η̇k(t) is the derivative of standard Wiener
process, and ψk(x) =

√
2 sin kπx. Now define a partition of [0, T ] × [0, 1] by

rectangles [ti, ti+1] × [xj , xj+1] for i = 1, 2, . . . , I and j = 1, 2, . . . , n, where
ti = (i − 1)∆t, xj = (j − 1)h, ∆t = T/I, and h = 1/n. A sequence of noise which
approximates the noise is defined as

∂2Wn

∂t∂x
=

∞∑
k=1

σn
k (t)ψk(x)

I∑
i=1

1√
∆t

ηkiχi(t),(3.17)

where χi(t) is the characteristic function for the ith time subinterval and

ηki =
1√
∆t

∫ ti+1

ti

dηk(t) ∼ N(0, 1).

Replacing σk(t) by σn
k (t), we get the discretization in the x-direction, and replacing

η̇k(t) by
∑I

i=1
1√
∆t
ηkiχi(t) we get the discretization in the t-direction. Then ∂2Wn

∂t∂x is

substituted for ∂2W
∂t∂x in (3.15) to get the following equation:

un(t, x) +

∫ t

0

∫ 1

0

Gt−s(x, y)bun(s, y)dyds =

∫ 1

0

Gt(x, y)u0(y)dy(3.18)

+

∫ t

0

∫ 1

0

Gt−s(x, y)dWn(s, y) +

∫ t

0

∫ 1

0

Gt−s(x, y)g(s, y)dyds;

that is, un is the solution of the equation
∂un

∂t (t, x)− ∂2un

∂x2 (t, x) + bun(t, x) =
∂2Wn

∂t∂x (t, x) + g(t, x), t > 0,

un(0, x) = u0(x), 0 ≤ x ≤ 1,

un(t, 0) = un(t, 1) = 0, t ≥ 0.

(3.19)

Now we assume that∫ T

0

∫ 1

0

∫ t

0

∫ 1

0

G2
t−s(x, y)b

2dydsdxdt = λ̄2 < 1.

Then, under proper assumptions on {σk(t)} and {σn
k (t)}, un approximates u, the

solution of (3.15), as illustrated in the next theorem.
Theorem 3.3. Let {σk(t)} and its derivative be uniformly bounded by

|σk(t)| ≤ βk, |σ′
k(t)| ≤ γk ∀t ∈ [0, T ],
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and the coefficients {σn
k (t)} are constructed such that

|σk(t)− σn
k (t)| ≤ αn

k , |σn
k (t)| ≤ βn

k , |σn
k
′(t)| ≤ γnk ∀t ∈ [0, T ]

with positive sequences {αn
k} being arbitrarily chosen, {βn

k } and {γnk } being related to
{αn

k βk} and {γk}. Let un(t, x) and u(t, x) be the solution of (3.18) and (3.15),
respectively; then, for some constants C > 0, independent of ∆t and h,

E‖u− un‖2
L2

≤ C

(1− λ̄)2

∞∑
k=1

(
(αn

k )
2

2(kπ)2
+ [k4(βn

k )
2 + (γnk )

2](∆t)2
)
,(3.20)

provided that the infinite series are all convergent.
The proof of Theorem 3.3 is given in the appendix.
Remark 3.2. The assumption on λ̄ being small is not crucial; some generaliza-

tions can be made without this assumption, for example when b < 0.
Now we consider the approximation of un. In particular, we use a finite element

discretization with respect to the x variable and an implicit difference method in the
t variable. Since un satisfies the weak formulation,∫ 1

0

un(t, x)φ(x)dx+

∫ t

0

∫ 1

0

∂un
∂x

(s, x)
dφ

dx
(x)dxds+

∫ t

0

∫ 1

0

bun(s, x)φ(x)dxds

=

∫ 1

0

u0(x)φ(x)dx+

∫ t

0

∫ 1

0

φ(x)dWn(s, x) +

∫ t

0

∫ 1

0

g(s, x)φ(x)dxds(3.21)

for φ ∈ H1
0 (0, 1). Meanwhile, the semidiscretization in space leads only to the following

problem: find un(t, ·) ∈ H1
0 (0, 1), t ∈ (0, T ), such that∫ 1

0

∂un
∂t

φdx+

∫ 1

0

∂un
∂x

∂φ

∂x
dx+

∫ 1

0

bunφdx =

∫ 1

0

(
g +

∂2Wn

∂t∂x

)
φdx(3.22)

with ∫ 1

0

un(0, x)φ(x)dx =

∫ 1

0

u0(x)φ(x)dx

for all φ ∈ H1
0 (0, 1), t ∈ (0, T ).

The finite element discretization of (3.22) is to find ūhn(t, ·) ∈ V h
0 (0, 1), t ∈ (0, T ),

such that ∫ 1

0

∂ūhn
∂t

φdx+

∫ 1

0

∂ūhn
∂x

∂φ

∂x
dx+

∫ 1

0

būhnφdx =

∫ 1

0

(
g +

∂2Wn

∂t∂x

)
φdx(3.23)

with ∫ 1

0

ūhn(0, x)φ(x)dx =

∫ 1

0

u0(x)φ(x)dx

for all φ ∈ V h
0 (0, 1), t ∈ (0, T ). Here, V h

0 (0, 1) denote the finite element subspace of
H1

0 (0, 1). By using the expression

ūhn(t, x) =

n−1∑
l=1

ul(t)φl(x), t ∈ (0, T ),
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(3.23) leads to a system of ODEs for ul(t), l = 1, . . . , n−1. Using the backward-Euler
method to solve this ODE system yields the following numerical scheme:

n−1∑
l=1

(ui+1,l − ui,l)

∫ 1

0

φl(x)φj(x)dx+∆t

n−1∑
l=1

ui+1,l

∫ 1

0

φ′
l(x)φ

′
j(x)dx

+ b∆t

n−1∑
l=1

ui+1,l

∫ 1

0

φl(x)φj(x)dx

=

∫ ti+1

ti

∫ 1

0

g(s, x)φj(x)dxds+

∫ ti+1

ti

∫ 1

0

φj(x)dWn(s, x)(3.24)

for j = 1, 2, . . . , n− 1, i = 1, 2, . . . , I where ui,l ≈ ul(ti) . Let

uhn(ti, x) =

n−1∑
l=1

ui,lφl(x).

For simplicity, we now focus on the case of using the continuous piecewise linear finite
element in the spatial discretization. The following pathwise error estimate can be
found in Theorem 8.2 of [17]:

‖un(tm, ·)− uhn(tm, ·)‖L2(3.25)

≤ C

√
1 + log

tm
∆t

(
max
i≤m

∫ ti

ti−1

∥∥∥∥∂un∂t (τ, ·)
∥∥∥∥
L2

dτ +max
t≤tm

h2‖un(t, ·)‖H2

)
.

The following lemma gives estimates of the terms on the right-hand side of (3.25).
Lemma 3.3. Let un be the solution of (3.15) with g ∈ C2([0, T ] × [0, 1]), u0 ∈

C2[0, 1], and σn
k (t) has the bound given in Theorem 3.3. Let the constant b be suitably

small. Then, if δt ≤ 1/(2|b|), the following inequalities hold for some constant c,
independent of ∆t and h:

E

∫ ti

ti−1

∥∥∥∥∂un∂t (τ, ·)
∥∥∥∥
L2

dτ ≤ c

(
(∆t)2 +∆t

∑
k

k2(βn
k )

2 +
∑
k

(∆tβn
k )

2

)1/2

(3.26)

and

E‖un(t, ·)‖H2 ≤ c

(
1 +

1

∆t

∑
k

k2(βn
k )

2

)1/2

.(3.27)

The proof of Lemma 3.3 is given in the appendix.
Combining Lemma 3.3 and inequality (3.25), we have the following theorem.
Theorem 3.4. Assume that the conditions in Lemma 3.3 hold; then

E‖un(tm, ·)− uhn(tm, ·)‖L2
≤ c

(
1 + log

tm
∆t

)1/2

×
(
(∆t)2 +∆t

∑
k

k2(βn
k )

2 +
∑
k

(∆tβn
k )

2 +
h4

∆t

∑
k

k2(βn
k )

2

)1/2

for some constant c.
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The error E‖u(tm, ·) − uhn(tm, ·)‖L2
can be obtained by applying the triangle

inequality to the results of Theorems 3.3 and 3.4.
Remark 3.3. Note that when applied to the case of white noise, that is, σk(t) = 1

for all k, we may take βn
k = σn

k = 1, αn
k = 0 for k ≤ N , and βn

k = σn
k = 0, αn

k = 1
for k > N , where N → ∞ as n → ∞; then, after simplification, the estimates in the
above theorems give

E‖u(tm, ·)− uhn(tm, ·)‖L2 ≤ c

(
1 + log

tm
∆t

)1/2{
1

N1/2
+ (∆t)1/2N3/2 +

h2N3/2

(∆)1/2

}
so that h = O(∆t)1/2 and N = O(h−1/2) = O((∆t)−1/4) give a best order of (∆t)1/8

or h1/4, up to a logarithmic factor, for E‖u(tm, ·)−uhn(tm, ·)‖L2
. This is indeed a very

low order convergence estimate as was expected [1]. In the next section, however, we
present a few examples with colored noises for which the above theorems allow much
better estimates on the order of the approximations.

Remark 3.4. The estimate on the order of convergence in the time step size is seen
to be at best O(

√
∆t), which is largely due to the fact that we restricted our attention

to the case where {η̇k(t)} in (3.16) correspond to the derivatives of the Wiener process
with t being the parameter. In many physical applications, other processes may also
be used [11]. One may also naturally consider more general formulation for the noise
terms {η̇k(t)} like what is used for dW/dx in (3.2). In the case where {η̇k} are more
regular in time, better error estimates may be obtained using similar techniques.

Discussions and extensions to higher space dimensions can be found in [36].

4. Numerical results for some model equations.

4.1. One dimensional elliptic equation. We now study two cases of the one
dimensional elliptic equation with noise described in the previous section. We demon-
strate that for different forms of coefficient {σn

k }, different rates of convergence are to
be obtained.

Case 1. Let the random variables {ηk} be iid, namely,

qkl = E(ηkηl) = δkl =

{
1 if k = l,

0 if k �= l,
σk =

1

k3/2
, σn

k =

{
σk, k ≤ n,

0, k > n.

Then

∥∥∥−→σn − 'σ
∥∥∥
Q−1

=

( ∞∑
k=n+1

(
1

k3/2
· 1
k

)2
)1/2

≤ 1

n2
.

From Lemma 3.1, we have, for some generic constant C > 0,

E‖Ẇn‖L2
≤ C

( ∞∑
k=1

(σn
k )

2

)1/2

≤ C

( ∞∑
k=1

1

k3

)1/2

= C.

In other words, Ẇn ∈ L2(0, 1); this means that, in Theorem 3.2, r = 1. If the
piecewise linear finite element basis is used, and g ∈ L2(0, 1), the following error
estimate yields

E(‖u− uhn‖L2
) ≤ C(n−2 + h2‖g + Ẇn‖L2

) ≤ C h2 .
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Thus, asymptotically, we have a second order convergence rate in h for the expectation
of the L2 error.

Case 2. Now let us consider using different coefficients {σn
k } which yield high

order convergence results for high order finite element spaces. Still let

qkl = E(ηkηl) = δkl =

{
1 if k = l,

0 if k �= l,
σk =

1

k7/2
, σn

k =

{
σk, k ≤ n,

0, k > n.

Then ∥∥∥−→σn − 'σ
∥∥∥
Q−1

=

( ∞∑
k=n+1

(
1

k7/2
· 1
k

)2
)1/2

≤ 1

n4
.

From Lemma 3.1, we have

E‖Ẇn‖H2 ≤ C

( ∞∑
k=1

(σn
kk

2)2

)1/2

≤ C

( ∞∑
k=1

(
1

k7/2
k2

)2
)1/2

= C.

In other words, Ẇn ∈ H2(0, 1); this means that, in Theorem 3.2, r = 3. If we use
the cubic spline finite element basis, and assume that g is bounded in H2(0, 1), the
following error estimate yields

E(‖u− uhn‖L2) ≤ C(n−4 + h4‖g + Ẇn‖H2) ≤ C h4

for some constant C that depends only on g. Note that such a high order cannot be
achieved if we have adopted a white noise [1].

The finite element method (3.10) is implemented for (3.1) with g(x) = 2+bx−bx2

and the noise Ẇ as defined in section 3. The exact solution of (3.1) is given by
u = ud + us, where ud and us correspond to the deterministic and the stochastic
parts. Moreover, ud(x) = x(1− x) and

us(x) =

∞∑
k=1

√
2σk

b+ (kπ)2
ηk sin kπx .

The numerical solution is calculated for n = 4, 8, 16, 32, 64, 128 (h = 1/n being the
length of the subintervals). For each n, 10,000 runs are performed with different
samples of the noise, ‖u−uhn‖L2 is calculated for each sample, and the averaged value
E‖u− uhn‖L2 is calculated.

For Case 1, we let b = 0.5, σk = k−3/2, and we use the continuous piecewise
linear finite element space. The left picture in Figure 4.1 gives the decay of error.
The horizontal axis denotes log10 n, and the vertical axis denotes log10 E‖u− uhn‖L2 .
The slope of the error curve is nearly −2, in agreement with the theoretical result.

As for Case 2, we let b = 0.5, σk = k−7/2, and we use the finite element space
consisting of piecewise cubic splines. The right picture in Figure 4.1 gives the decay
of error. The slope of the error curve is now nearly −4, also in agreement with the
theoretical result.

4.2. Parabolic equation in one spatial dimension. Now consider a special
case of parabolic equation described in the previous section. Let

σk(t) =
cos t

k3
, σn

k (t) =

{
σk(t), k ≤ n,

0, k > n,
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Fig. 4.1. The error decay with σk = k−3/2 and k−7/2.

and the upper bounds αn
k , β

n
k , γ

n
k given in Theorem 3.3 can be chosen as

αn
k =

{
0, k ≤ n,
1
k3 , k > n,

βn
k = γnk =

1

k3
.

Backward-Euler in time with the piecewise linear finite element in space approxima-
tion (3.24) was tested for the numerical solution of problem (3.14) with

g(t, x) = 10(1 + b)x2(1− x)2et − 10(2− 12x+ 12x2)et .

We use b = 0.5 and T = 1 . In the absence of noise term, the exact solution is

u(t, x) = ud(t, x) = 10etx2(1− x)2 , with u0(x) = 10x2(1− x)2 .

The exact value of Eu(1, 0.5) is about 1.699.
In theory, using the above definitions, we have

∞∑
k=1

(αn
k )

2

2(kπ)2
≤

∞∑
k=n+1

1

k8
≤ 1

n7
= h7,(4.1)

∞∑
k=1

k4(βn
k )

2 + (γnk )
2) ≤

∞∑
k=1

(
1

k2
+

1

k3

)
≤ C,(4.2)

∞∑
k=1

(βn
k )

2 ≤
∞∑
k=1

(kβn
k )

2 ≤ C .(4.3)

From Theorems 3.3 and 3.4, we have

E‖u− un‖L2
≤ c(h7 + (∆t)2)1/2,

E‖un(tm, ·)− uhn(tm, ·)‖L2 ≤ c

(
1 + log

tm
∆t

)1/2(
(∆t)1/2 +

h2

(∆t)1/2

)
.

Hence,

E‖u(tm, ·)− uhn(tm, ·)‖L2
≤ c

(
1 + log

tm
∆t

)1/2(
(∆t)1/2 +

h2

(∆t)1/2

)
.(4.4)
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Table 4.1
E(uhn(1, 0.5)) and E(uhn(1, 0.5))

2 by the backward-Euler finite element scheme.

h ∆t E(uhn(1, 0.5)) E(uhn(1, 0.5))
2 E(ηn/2,I) var(ηn/2,I)

.25 .25 1.5268 2.3495 .0061 .9830

.25 .125 1.6147 2.6301 -.0217 1.0141

.25 .0625 1.6599 2.7826 -.0166 1.0079

.25 .03125 1.6821 2.8586 .0083 .9908

.25 .01563 1.6976 2.9142 -.0086 .9750

.125 .25 1.5198 2.3283 .0045 .9697

.125 .125 1.6071 2.6059 -.0014 1.0097

.125 .0625 1.6529 2.7569 -.0238 .9780

.125 .03125 1.6777 2.8432 .0002 .9829

.125 .01563 1.6912 2.8910 .0006 .9687

.0625 .25 1.5193 2.3263 -.0006 1.0182

.0625 .125 1.6043 2.5963 -.0069 .9886

.0625 .0625 1.6519 2.7539 .0124 .9852

.0625 .03125 1.6758 2.8372 -.0110 .9908

.0625 .01563 1.6888 2.8825 .0069 .9962

.03125 .25 1.5198 2.3277 -.0163 .9650

.03125 .125 1.6044 2.5971 -.0217 .9527

.03125 .0625 1.6503 2.7497 -.0071 .9984

.03125 .03125 1.6731 2.8281 .0044 .9765

.03125 .01563 1.6855 2.8724 -.0101 1.0479

.01563 .25 1.5181 2.3230 -.0166 .9918

.01563 .125 1.6067 2.6041 -.0134 .9667

.01563 .0625 1.6500 2.7482 -.0114 1.0067

.01563 .03125 1.6749 2.8336 -.0170 1.0365

.01563 .01563 1.6851 2.8704 -.0067 .9872

In the actual implementation, different values of ∆t and h were used. For each pair
{∆t, h}, 10,000 runs are performed with different sample of noise, and the ensemble
averages are calculated. The numerical results of E(uhn(1, 0.5)) and E(uhn(1, 0.5))

2

are presented in Table 4.1.
The computational results converge as ∆t and h approach to 0. From the table,

it can be observed that, for fixed h, the results converge faster as ∆t decreases, but
for fixed ∆t the convergence is less transparent as h decreases. This can be explained
by the error estimate (4.4), which is bounded by (∆t)1/2 + h2(∆t)−1/2. If ∆t and h
are of the same order, the ∆t term dominates in the estimate.

The numerical accuracy is also affected by the random number generators used
in the different realizations. (The particular generator used in our implementation
is obtained using MATLAB.) For comparison, the last two columns of Table 4.1 list
the mean and variance of ηn/2,I . We see that, for the relatively larger magnitude of

E(ηn/2,I), the error of E(uhn(1, 0.5)) turns out to be larger as well.
Additional numerical examples can be found in [36].

5. Conclusion. In this paper, the numerical approximations of SDEs with dif-
ferent noise realizations are considered. In many instances of stochastic modeling, the
noises may indeed be represented in various forms, with some emphasis on the correla-
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tion in space and time, while others exhibit the correlation in frequency or spectrum.
Our study indicates that the accuracy of the numerical approximation depends on the
form of the underlying noise. Both rigorous error estimates and experimental results
are provided in our paper.

Throughout our discussion, simple linear equations in one space dimension are
used for the purpose of illustrations. We note that much of our consideration can be
generalized to stochastic elliptic and parabolic equations in higher space dimensions.
For the case of a simple two dimensional square domain, related discussions have been
provided in [36]. By confining the theoretical analysis to the one space dimension here,
some tedious technical details and complicated expressions are avoided.

Naturally, it will be very interesting to study the similar problems for nonlinear
SDEs, which actually motivated the present investigation. It is hopeful that such
studies may lead to a better understanding of the behaviors of the discretization error
and the modeling error in conducting numerical simulations of nonlinear stochastic
dynamics for practical problems [9, 18, 28].

Appendix.
Proof of Theorem 3.3.
Step 1. First, we verify the existence of such {σn

k (t)}. Since {σ′
k(t)} are continuous

on interval [0, T ], by the Weierstrass approximation theorem, for an arbitrary sequence
αn
k , where n is a fixed number, k = 1, 2, . . . , there exists a sequence of polynomial

{Pn
k (t)} such that

|σ′
k(t)− Pn

k (t)| ≤
αn
k

T
∀t ∈ [0, T ] .

Let

σn
k (t) =

∫ t

0

Pn
k (s)ds+ σk(0),

and we have

|σk(t)− σn
k (t)| =

∣∣∣∣∫ t

0

(σ′
k(s)− Pn

k (s))ds

∣∣∣∣ ≤ αn
k .

By the triangle inequality,

|σn
k (t)| ≤ |σk(t)|+ αn

k ≤ βk + αn
k = βn

k ,

|σn
k
′(t)| = |Pn

k (t)| ≤ |σ′
k(t)|+

αn
k

T
≤ γk +

αn
k

T
= γnk .

Step 2. Let ēn(t, x) = u(t, x)− un(t, x) and

F (t, x) =

∫ t

0

∫ 1

0

Gt−s(x, y)dW (s, y)−
∫ t

0

∫ 1

0

Gt−s(x, y)dWn(s, y),

ēn = E

∫ T

0

∫ 1

0

ē2n(t, x)dxdt,

F̄n = E

∫ T

0

∫ 1

0

F 2(t, x)dxdt.
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Subtracting (3.18) from (3.15), and applying similar manipulation as that in section
3, we get

E‖u− un‖2
L2

= ēn ≤ F̄n

(1− λ̄)2
.

To estimate F̄n, we introduce an intermediate noise form

∂2Wn

∂t∂x
=

∞∑
k=1

σn
k (t)η̇k(t)ψk(x),

that is, a noise discretized only in the x-direction. Let

F1(t, x) =

∫ t

0

∫ 1

0

Gt−s(x, y)dW (s, y)−
∫ t

0

∫ 1

0

Gt−s(x, y)dWn(s, y),

F2(t, x) =

∫ t

0

∫ 1

0

Gt−s(x, y)dWn(s, y)−
∫ t

0

∫ 1

0

Gt−s(x, y)dWn(s, y);

then

F (t, x) = F1(t, x) + F2(t, x),

F̄n = E

∫ T

0

∫ 1

0

F 2(t, x)dxdt ≤ 2

(
E

∫ T

0

∫ 1

0

F 2
1 (t, x)dxdt+ E

∫ T

0

∫ 1

0

F 2
2 (t, x)dxdt

)
.

Taking advantage of the orthogonality of {sin kπx} on the interval [0, 1], we have

F1(t, x) =

∞∑
k=1

√
2 sin kπxe−(kπ)2t

∫ t

0

(σk(s)− σn
k (s))e

(kπ)2sdηk(s).

Since ηk(t) is the standard Wiener process,

E

∫ T

0

∫ 1

0

F 2
1 (t, x)dxdt =

∞∑
k=1

∫ T

0

e−2(kπ)2t

(∫ t

0

e2(kπ)2s(σk(s)− σn
k (s))

2ds

)
dt

≤
∞∑
k=1

(αn
k )

2

∫ T

0

e−2(kπ)2t

(∫ t

0

e2(kπ)2sds

)
dt ≤ C1

∞∑
k=1

(αn
k )

2

2(kπ)2
.

Using

ηki =
1√
∆t

∫ ti+1

ti

dηk(t),

we have

F2(t, x) =

∞∑
k=1

ψke
−(kπ)2t

[∫ t

0

e(kπ)2sσn
k (s)dηk(s)

−
∫ t

0

e(kπ)2sσn
k (s)

I∑
i=1

1√
∆t

ηkiχi(s)ds

]

=

∞∑
k=1

ψke
−(kπ)2t

[
It−1∑
i=1

∫ ti+1

ti

(
e(kπ)2sσn

k (s)−
1

∆t

∫ ti+1

ti

e(kπ)2s̃σn
k (s̃)ds̃

)
dηk(s)

+

∫ t

tIt

(
e(kπ)2sσn

k (s)−
1

t− tIt

∫ t

tIt

e(kπ)2s̃σn
k (s̃)ds̃

)
dηk(s)

]
,
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where It is the integer such that tIt < t ≤ tIt+1 . Then

E

∫ T

0

∫ 1

0

F 2
2 (t, x)dxdt

=

∞∑
k=1

∫ T

0

e−2(kπ)2t

(∆t)2

(
It−1∑
i=1

∫ ti+1

ti

(∫ ti+1

ti

(e(kπ)2sσn
k (s)− e(kπ)2s̃σn

k (s̃))ds̃

)2

ds

+

∫ t

tIt

(
∆t

t− tIt
)2
(∫ ti+1

ti

(e(kπ)2sσn
k (s)− e(kπ)2s̃σn

k (s̃))ds̃

)2

ds

)
dt.

For s, s̃ ∈ [ti, ti+1], using the smoothness assumption on σk(t), we get

|e(kπ)2sσn
k (s)− e(kπ)2s̃σn

k (s̃)|
≤ |e(kπ)2s − e(kπ)2s̃|σn

k (s) + e(kπ)2s̃|σn
k (s)− σn

k (s̃)|
≤ (kπ)2e(kπ)2ti+1σn

k (s)∆t+ e(kπ)2ti+1σn
k
′(ξi)∆t

≤ e(kπ)2ti+1((kπ)2βn
k + γnk )∆t.

Here, ti ≤ ξi ≤ ti+1. Without loss of generality, we assume t = tIt+1; then

E

∫ T

0

∫ 1

0

F 2
2 (t, x)dxdt

≤
∞∑
k=1

∫ T

0

e−2(kπ)2t

[
It∑
i=1

∫ ti+1

ti

1

(∆t)2
(e(kπ)2ti+1((kπ)2βn

k + γnk )(∆t)2)2ds

]
dt

≤ C
∞∑
k=1

∫ T

0

e−2(kπ)2t

[
It∑
i=1

∫ ti+1

ti

(e2(kπ)2ti+1((kπ)4(βn
k )

2 + (γnk )
2)(∆t)2ds

]
dt

≤ C
∞∑
k=1

It∑
i=1

∫ T

0

e−2(kπ)2te2(kπ)2ti+1dt(k4(βn
k )

2 + (γnk )
2)(∆t)3

≤ C

∞∑
k=1

It∑
i=1

(k4(βn
k )

2 + (γnk )
2)(∆t)3

≤ C

∞∑
k=1

(k4(βn
k )

2 + (γnk )
2)(∆t)2.

The last inequality comes from
∑It

i=1, 1 ≤ I = 1/∆t. The theorem is now
proved.

Proof of Lemma 3.3. In general, by applying the same technique as in the proof
of Theorem 3.1, we may first estimate

E

∫ t

0

∫ 1

0

u2
n(t, x)dxdt ≤

c

1− λ̄
E

∫ t

0

∫ 1

0

[(Gt(x, y)u0(y))
2 + (Gt−s(x, y)g(s, y))

2]dyds

+
c

1− λ̄
E

∫ t

0

∫ 1

0

(∫ t

0

∫ 1

0

Gt−s(x, y)dWn(s, y)

)2

dxdt.
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Next, one may differentiate (3.18) to get

∂un
∂t

(t, x) = −
∫ t

0

∫ 1

0

∂

∂t
Gt−s(x, y)bun(s, y)dyds+

∫ 1

0

∂

∂t
Gt(x, y)u0(y)dy

+

∫ t

0

∫ 1

0

∂

∂t
Gt−s(x, y)g(s, y)dyds+

∫ t

0

∫ 1

0

∂

∂t
Gt−s(x, y)dWn(s, y).

Then one may estimate E
∫ ti
ti−1

∫ 1

0
(∂un

∂t (t, x))2dxdt using the above equation. Simi-

larly, one may estimate E
∫ 1

0
(∂

2un

∂x2 (t, x))2dxdt.
Since we have assumed that b is a constant, we now provide a simpler estimate

which, in spirit, is similar to the estimate derived from the integral formulation.

Let g(t, x) =
∑

k gk(t)ψk(x), un(t, x) =
∑

k u
(n)
k (t)ψk(x), u0(x) =

∑
k ukψk(x);

then

∂

∂t
u

(n)
k (t) + (k2π2 + b)u

(n)
k (t) = gk(t) +

σn
k (t)√
∆t

∑
i

ηkiχi(t).

Thus, for t ∈ [ti−1, ti),

u
(n)
k (t) = e−((kπ)2+b)tuk +

∫ t

0

e−((kπ)2+b)(t−s)gk(s)ds

+

i∑
j=1

∫ t

0

e−((kπ)2+b)(t−s)σ
n
k (s)√
∆t

ηkjχj(s)ds.

This leads to

u
(n)
k (t) = e−((kπ)2+b)tuk +

∫ t

0

e−((kπ)2+b)(t−s)gk(s)ds

+

i∑
j=1

ηkj√
∆t

∫ t∗j

tj−1

e−((kπ)2+b)(t−s)σn
k (s)ds,

where t∗l = tl for l < i and t∗i = t. It follows that

E
[
u

(n)
k (t)

]2
≤ cu2

ke
−2((kπ)2+b)t + cT

∫ t

0

e−2((kπ)2+b)(t−s)g2
k(s)ds

+
c

∆t

i∑
j=1

(∫ t∗j

tj−1

e−((kπ)2+b)(t−s)σn
k (s)ds

)2

for some constant c.
Since u0 ∈ C2[0, 1] and g ∈ C2([0, T ]× [0, 1]), we have, for some constant c > 0,

∑
k

(kπ)4
{
u2
ke

−2((kπ)2+b)t +

∫ t

0

e−2((kπ)2+b)(t−s)g2
k(s)ds

}
≤ c.
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Using the bounds on σn
k and the fact that b is a small constant, we have

i∑
l=1

(∫ t∗l

tl−1

e−((kπ)2+b)(t−s)σn
k (s)ds

)2

≤ c(βn
k )

2

∫ t

0

e−2((kπ)2+b)(t−s)ds

≤ c(βn
k )

2

(kπ)2 + b
.

Thus, for small b, we have

E‖un(τ, ·)‖H2 ≤ ( E‖un(τ, ·)‖2
H2)1/2

≤ c

(
1 +

1

∆t

∑
k

k2(βn
k )

2

)1/2

for some constant c > 0. This proves the inequality (3.27).
For (3.26), we have

∂

∂t
u

(n)
k (t) = −((kπ)2 + b)u

(n)
k (t) + gk(t) +

σn
k (t)√
∆t

∑
i

ηkiχi(t).

So,

E

∫ ti

ti−1

(
∂

∂t
u

(n)
k (s)

)2

ds ≤ cE

∫ ti

ti−1

((k2π2+b)u
(n)
k (s))2ds+c

∫ ti

ti−1

[g2
k(s)+(σn

k (s))
2]ds.

Thus,

E

∫ ti

ti−1

∥∥∥∥∂un∂t (τ, ·)
∥∥∥∥
L2

dτ ≤
(
∆tE

∫ ti

ti−1

∥∥∥∥∂un∂t (τ, ·)
∥∥∥∥2
L2

dτ

)1/2

≤ c

(
(∆t)2 +∆t

∑
k

k2(βn
k )

2 +
∑
k

(∆tβn
k )

2

)1/2

.

This proves (3.26).
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