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Abstract

In this dissertation, we consider the problem of simulation of stochastic differential

equations driven by pure jump Levy processes with infinite jump activity. Examples

include, the class of stochastic differential equations driven by stable and tempered

stable Levy processes, which are suited for modeling of a wide range of heavy tail

phenomena. We replace the small jump part of the driving Levy process by a suitable

Brownian motion, as proposed by Asmussen and Rosinski, which results in a jump-

diffusion equation. We obtain Lp [the space of measurable functions with a finite p-

norm], for p greater than or equal to 2, and weak error estimates for the error resulting

from this step. Combining this with numerical schemes for jump diffusion equations,

we provide a good approximation method for the original stochastic differential

equation that can also be implemented numerically. We complement these results

with concrete error estimates and simulation.
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Chapter 1

Introduction

1.1 Preview

Stochastic differential equation (SDE) models and in particular SDEs driven by Lévy

processes, play a prominent role in a wide range of applications, including biology for

modeling the spreading of diseases [19], in genetics [13], for the movement patterns

of various animals [30], for various phenomenons in physics [38] and in financial

mathematics [10].

Throughout this dissertation, (Ω,F ,F = (F)t≥0,P) will always denote a filtered

probability space satisfying the usual hypothesis of right-continuity and completeness.

Here, we are interested in the strong and weak numerical approximation of the

stochastic process {X(t) : t ∈ [0, T ]}, which is the solution to the SDE

X(t) = x+

∫ t

0

b(X(s))ds+

∫ t

0

σ(X(s))dW (s) +

∫ t

0

h(X(s−))dZ(s), t ∈ [0, T ],

(1.1)

where b : Rn → Rn, σ : Rn → Rn×d and h : Rn → Rn×d are Lipschitz functions,

Z is a d–dimensional pure jump Lévy process with infinite jump activity, which is
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independent of the d–dimensional Brownian motion W (see Chapter 2 for details on

(1.1)).

Given that only a small class of (1.1) admit closed form solutions, it is important to

construct its discrete time approximations. In this sequel, we consider the discrete

time approximation Y of X, the solution of (1.1) constructed on a time discretization

(t)∆ with maximum step size ∆ ∈ (0,∆0), where, ∆0 ∈ (0, 1). If the jump times of

the driving process Z are not included in the time discretization (t)∆ then such a

discretization is called regular. On the other hand, if the jump times are included in

the discretization, then resulting discretization is called jump-adapted. Consequently,

a discrete-time approximation constructed on a regular time discretization is called a

regular scheme while that constructed on jump-adapted time discretization is called

a jump-adapted scheme, (see Chapter 3 for a general overview of the different kinds

of time discretization).

For any numerical scheme, it is important to investigate the rate of convergence.

The two common modes of convergence that exists in literature are–strong and weak

convergence.

Definition 1.1.1. A discrete time approximation Y constructed on a time-discretization

(t)∆ with maximum step size ∆ > 0, converge with strong order γ at time T to the

solution X of a given SDE, if there exists a positive constant C, independent of ∆,

and a finite number ∆0 ∈ (0, 1), such that

E
[
‖X(T ))− Y (T )‖2] ≤ C∆2γ, (1.2)

for all ∆ ∈ (0,∆0).

Definition 1.1.2. A discrete-time approximation Y constructed on a time discretiza-

tion (t)∆ with maximum step size ∆ > 0, converge with weak order β at time T to the

solution X of a given SDE, if for a smooth enough function g, there exists a positive

2



constant C, independent of ∆, and a finite number ∆0 ∈ (0, 1), such that

|E [g(X(T ))− g(Y (T ))]| ≤ C∆β, (1.3)

for all ∆ ∈ (0,∆0).

When b = 0 and σ = 0, (1.1) reduces to

X(t) = x+

∫ t

0

h(X(s−))dZ(s), t ∈ [0, T ]. (1.4)

The most common numerical scheme for approximating (1.4) is the Euler scheme on

an equally spaced time discretization (t)∆: 0 = t0 < t1 < tN = T , of the interval

[0, T ], which is given by

Yn+1 = Yn + h(Yn) (Zn+1 − Zn) , (1.5)

where Yn
def
= Y (tn) and Zn

def
= Z(tn), n = 1, 2, 3, · · ·N , where, N is some positive

integer.

Remark 1.1.1. 1) When Z is a Brownian motion B in (1.5), the increments of B,

i.e., Bn+1−Bn are i.i.d. random variables that are normally distributed with mean

zero and variance tn+1 − tn. Thus one can simulate the increments exactly.

2) There is no closed formula for simulating the increments of Lévy processes in the

multi-dimensional setting, with the exception of the multivariate Brownian motion.

This makes it more difficult to simulate a path of X using (1.5). Thus ones should

employ approximate methods.
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1.2 Historicity

The case when Z in (1.4) is a Brownian motion, has been extensively studied in

literature. See e.g., [20] for a detailed treatment of numerical approximations of this

case. The literature on weak numerical approximations of (1.4) is sparse, and even

more scarce for strong numerical approximations. Protter and Talay in [27] were

one of the first to consider a discrete-time approximation of the solution of (1.4).

Under some smoothness conditions on h and the function g in (1.3), together with

the assumption that the increments of Z can be simulated exactly, they studied

the weak approximation of the Euler scheme. Jacod et al. in [16], considered the

approximate Euler method for (1.4). Approximate in the sense that the increments

of Z are approximated by i.i.d random variables. They studied the weak convergence

of their method.

Rubenthaler in [34] then went on to approximate Z with a suitable compound Poisson

process. By using the jump times of the compound Poisson process as discretization

points, he studied the weak approximation of (1.4). His approximation was very

“rough” when the driving process Z had a very strong jump activity. That is, when

the Lévy measure has a strong singularity at the origin.

Bruti and Platen in [26] via the stochastic Taylor expansion, developed strong and

weak numerical schemes of any desired order for the following SDE

X(t) = x+

∫ t

0

b(X(s))ds+

∫ t

0

σ(X(s))dB(s) +

∫ t

0

∫
E

G(X(s−), z)N(ds, dz),

(1.6)

where, x ∈ Rn, b and σ are as in (1.1), and, G : Rn×d → Rd is Lipschitz continuous

matrix-valued function. B is a standard Brownian motion which is independent of

the Poisson random measure N , and E ⊂ Rd
0, such that ν(E) < ∞. That is (1.6) is

an SDE driven by a Brownian motion and a compound Poisson process which we call

4



a jump-diffusion SDE. The authors of [8] have also constructed Runge-Kutta schemes

for (1.6), and have established the strong order of convergence of their schemes.

Mordecki et al. in [25] proposed and studied an adaptive (jump-adapted) method for

(1.6). They considered the weak approximation, and in order to control errors that

may arise from large jumps, they proposed to simulate all the jumps of the compound

Poisson process. Thus, their method cannot be extended to the case where Z has

infinite jump activity.

Kohatsu-Higa and Tankov in [21], in order to remedy the situation in [34] considered

(1.4) in the case when Z has infinite jump activity. They studied the weak

approximation of (1.4). They are the first to employ the idea of Asmussen and

Rosiński [3] (see also [9]), to replace small jumps of Z by a Brownian motion with

appropriate variance. Here, they proposed a jump-adapted approximation scheme

where at any time when there is a jump larger than ε, the jump size and the change

in the approximating system is computed. Between two jumps larger than ε, they

used the approximate solution of the continuous SDE driven by the approximating

Brownian motion. This approximation is constructed as a random perturbation of

the corresponding deterministic ODE, which is obtained by completely removing all

small jumps. In their one-dimensional approximation, they required that the function

1/h(x) be locally integrable which is not always the case, or the ODE could be

approximated using a Runge-Kutta type approach which generates another source of

error that needs to be analyzed. Their order of convergence of the weak approximation

is given in terms of the intensity of the jumps larger than ε in magnitude.

Other works in the area of strong approximations include [14] where, the strong

convergence of the Euler scheme for (1.4) in the one dimensional case is given in

terms of the Wasserstein distance. The authors in [39, 37, 11], have also considered

the weak approximation of (1.4).
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1.3 Motivation

As earlier mentioned, when one speaks of an SDE driven by a Lévy process, one is

generally referring to (1.1) when b = 0 and σ = 0, i.e., (1.4). This clearly, is not

the most general model. Most of the work in the numerical approximation of (1.4)

is on weak approximation of the Euler scheme. The literature on the strong (mean-

squared) approximation is still very scarce. Moreover, as mentioned before, much of

the work is limited to (1.4). With this in mind, I am motivated to consider (1.1) with,

b 6= 0, σ 6= 0 and h 6= 0, and develop both strong and weak numerical schemes for (1.1)

of any desired order in the light of [7, 26]. Thus, my interest is to extend the results

in [7, 26], to include a larger class of SDEs, i.e., SDEs driven by Lévy processes with

infinite jump activity. It is worth mentioning that the random perturbation method

employed in [21] no longer works when b 6= 0 and σ 6= 0.

That said, we use the idea of Asmussen and Rosiński [3] (see also [9]), and in the

spirit of Kuhatsu-Higa and Tankov [21], we approximate the small jumps of Z by an

appropriate Brownian motion which is independent of Z. We then obtain a jump-

diffusion SDE. The resulting SDE consists of a drift term, a Gaussian part and a

compound Poisson part. We show that the resulting jump-diffusion SDE is a good

approximation of the original SDE in the strong and weak sense, by giving Lp, p ≥ 2

error estimates and weak error estimates. With this kind of approximation, we are

able to give numerical approximations of (1.1) of any desired order.

The rest of this dissertation is organized as follow. In Chapter two, we give a general

overview of Lévy processes, followed by two methods of simulating Lévy processes,

namely, the random walk approximation and series representation, and finally, we give

an overview of SDEs driven by Lévy processes. Since we are interested in numerical

schemes of any desired order, in Chapter three, we give an overview of strong and

weak numerical schemes of (1.6). The main results in this dissertation are in Chapter

four. Here, we give the formulation of the model we are interested in, and then, state

6



and proof our main results. Finally, in Chapter five we give numerical experiments

to demonstrate our method with concluding remarks, and further directions.
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Chapter 2

An Overview of Lévy Processes

and SDEs Driven by Lévy

Processes

For a collection of unique knowledge on the subject of Lévy processes see [4]. This text

gives a survey on the theory and application Lévy processes. Texts that have given

a systematic exposition of this theory include Bertoin [5] and Sato [36]. A detailed

exposition of SDEs driven by Lévy process can be found in [1]. This chapter is

organized as follows. In the Section 2.1, we give a formal definition of Lévy processes.

Section 2.2 is concerned with an overview of two techniques of simulating Lévy

processes. These include, the Random walk approximation and series representation,

which gives us an intelligent way of simulating sample paths of a Lévy process. Finally,

in Section 2.3, we give an overview of stochastic differential equations driven by Lévy

processes.

8



2.1 Lévy Processes

2.1.1 Definition

Definition 2.1.1. A d-dimensional adapted stochastic process Z = {Z(t) : t ≥ 0} on

(Ω,F , (F)t≥0,P), is called a Lévy process if the following conditions are satisfied.

(1) Z(0) = 0 a.s.,

(2) Z is a.s. càdlàg (right-continuous with left limits),

(3) Z has independent increments, i.e., for all n ∈ N, and all sequences 0 = t0 ≤

t1 ≤ · · · ≤ tn <∞, Z(t1)− Z(t0), · · ·Z(tn)− Z(tn−1) are independent,

(4) Z has stationary increments, i.e., for all 0 ≤ s < t < ∞, Z(t) − Z(s) has the

same distribution as Z(t− s),

(5) Z is stochastically continuous, i.e., for all A > 0, lim
s→t

P(‖(Z(t)−Z(s)‖ > A) = 0.

2.1.2 Infinitely Divisible Distributions

The primary tool used in the analysis of distributions of Lévy processes is its

characteristic function (or Fourier transform).

Definition 2.1.2. The characteristic function µ̂(z) of a probability measure on Rd is

µ̂(z) =

∫
Rd
ei〈z,x〉µ(dx), z ∈ Rd. (2.1)

The characteristic function of the distribution PX of a random variable X on Rd is

denoted by P̂X(z). That is

P̂X(z) =

∫
Rd
ei〈z,x〉PX(dx) = E

[
ei〈z,X〉

]
. (2.2)

9



Another crucial notion in the study of Lévy processes is that of infinitely divisible

distributions. We denote by µn the n-fold convolution of a probability measure µ

with itself, i.e.,

µn = µ ? µ ? · · · ? µ, n times. (2.3)

Definition 2.1.3. A probability measure µ on Rd is infinitely divisible if for any

positive integer n, there is a probability measure µn on Rd such that µ = µnn.

Remark 2.1.1. Since the convolution is expressed by a the product of its character-

istic functions, µ is infinitely divisible if and only if, for each n, an nth root of the

characteristic function µ̂(z) can be chosen in such a way that it is the characteristic

function of some probability measure.

Example 2.1.1. If {Z(t) : t ≥ 0} is a Lévy process on Rd, then, for every t ≥ 0, the

distribution of Z(t) is infinitely divisible. Indeed, let tk = kt/n, k = 0, 1, · · · , n. Let

µ = PZ(t) and µn = PZ(tk)−Z(tk−1). Since

Z(t) = (Z(t1)− Z(t0)) + (Z(t2)− Z(t1)) + · · ·+ (Z(tn)− Z(tn−1)) (2.4)

is the sum of n independent and identically distributed random variables by property

three in Definition 2.1.1, it follows that µ = µnn.

This example shines some light on the close relationship between Lévy processes and

infinitely divisible distributions. The one-to-one correspondence between the two is

specified by the following result.

Theorem 2.1 ([36], Theorem 7.10, pp. 35). (i) If {Z(t) : t ≥ 0} is a Lévy process

in law on Rd, then, for t ≥ 0, PZ(t) is infinitely divisible and letting PZ(1) = µ

we have PZ(t) = µt.

(ii) Conversely, if µ is an infinitely divisible distribution on Rd, then there is a Lévy

process in Law {Z(t) : t ≥ 0} such that PZ(1) = µ.

10



The following is the famous Lévy-Khintchine formula which gives a representation of

the characteristic function of all infinitely divisible random variables.

Theorem 2.2 ([36], Theorem 8.2, pp. 38). (i) If µ is an infinitely divisible distri-

bution on Rd, then

µ̂(z) = exp

[
1

2
〈z,Σz〉+ i〈a, z〉+

∫
Rd

(
ei〈z,x〉 − 1− i〈z, x〉1{‖x‖≤1}

)
ν(dz)

]
(2.5)

where Σ is a symmetric nonnegative definite d×d matrix, ν is a measure on Rd

satisfying

ν({0}) = 0 and

∫
Rd

min
(
1, ‖z‖2

)
ν(dz) <∞, (2.6)

and a ∈ Rd.

(ii) The representation of µ̂ in (2.5) by a,Σ and ν is unique.

(iii) Conversely, if Σ is a symmetric nonnegative definite d×d matrix, ν is a measure

satisfying (2.6), and a ∈ Rd, then there exists an infinitely divisible distribution

µ whose characteristic function is given by (2.5).

Definition 2.1.4. The triplet (a,Σ, ν) in Theorem 2.2 is called the generating triplet

or the Lévy triplet of µ. Σ and the ν are called, respectively, the Gaussian covariance

matrix and the Lévy measure of µ. When Σ = 0, µ is called purely non-Gaussian (or

a pure jump Lévy process).

The following proposition gives an explicit form of the characteristic function of the

law of a Lévy process.

Proposition 2.1.1 (Characteristic function of a Lévy process). For any Lévy process

{Z(t) : t ≥ 0} in Rd, there is a unique Lévy triplet (a,Σ, ν) such that for every t ≥ 0,

E
[
ei〈u,Z(t)〉] = exp(tC(u)), (2.7)

11



where

C(u) = i〈a, u〉 − 1

2
〈u,Σu〉+

∫
Rd

(
ei〈u,Z〉 − 1− i〈u, z〉1{‖z‖≤1}

)
ν(dz). (2.8)

2.1.3 The Lévy-Itô Decomposition

Here, we state the celebrated Lévy-Itô decomposition, which describes the structure

of the sample path of a Lévy process. It expresses the sample path of a Lévy process

as a sum of four independent parts—the drift, the Gaussian part, the “small jump”

part and the “large jump” part. In order to state this result, one needs the notion of

the Poisson random measure which we shall abbreviate PRM.

Definition 2.1.5. Let S ⊂ Rd be bounded, and B(S) = {B∩S : B ∈ B(Rd)}, and let

B0(S) denote all bounded sets in B(S). A stochastic process {N(A)}A∈B0(S) is said

to be a PRM on S with intensity measure m if

1. N(∅) = 0

2. For all pairwise disjoint sets {Ai} in B0(S), such that ∪Ai is bounded, {N(Ai), i =

1, 2, · · · } are independent and

N

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

N(Ai) a.s. (2.9)

3. For all A ∈ B0(S), N(A) has a Poisson distribution with parameter m(A). i.e.,

P(N(A) = k) =
m(A)k

k!
e−m(A), k = 0, 1, 2, · · · (2.10)

Definition 2.1.6. The compensated PRM denote by Ñ(A) is defined as Ñ(A) =

N(A)− E[N(A)].
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A PRM N is usually written as

N(A) =
∑
i

δVi(A) (2.11)

where δ denotes the Dirac measure and {Vi} is a sequence of random variables taking

values in S, i.e., Vi : Ω→ S, i ∈ N. In this case, N is written symbolically as

N =
∑
i

δVi , (2.12)

In such a situation, a PRM is called a Poisson Point Process (PPP). In this sequel,

we shall denote by

∆Z(t) = Z(t)− Z(t−), (2.13)

the jump of the Lévy process Z(t) at time t. Much of the analytic difficulty in dealing

with Lévy processes arise from the fact that, the number of jumps on a finite interval

can be infinite. That is,

∑
0≤s≤t

‖∆Z(s)‖ =∞ a.s.. (2.14)

This difficulty is overcome by making use of the fact that

∑
0≤s≤t

‖∆Z(s)‖2 <∞ a.s. (2.15)

Rather than examining ∆Z(t) itself, it is more profitable to count jumps of a specific

size. More precisely, let 0 ≤ t <∞ and for each A ∈ B([0,∞)× Rd
0), define
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N(A) = N(t, A) = #{0 ≤ s ≤ t :,∆Z(s) 6= 0, (s,∆Z(s)) ∈ A}

=
∑

0≤s≤t

1A(∆Z(s)) (2.16)

=
∑

{0≤s≤t, ∆Z(s)6=0}

δ(s, ∆Z(s))(A).

N(A) counts the number of jumps of a particular size that belong to the set A. Before

stating the Lévy-Itô decomposition of a Lévy process, we state the following result

concerning càdlàg functions.

Theorem 2.3 ([1], Theorem 2.9.1, pp. 140). If f : [0,∞) → Rd is càdlàg, then for

all ε and T > 0, the set

{t ∈ [0, T ] : ‖∆f(t)‖ > ε} (2.17)

is finite. Hence {t ∈ [0, T ] : ‖∆f(t)‖ 6= 0} is at most countable.

Theorem 2.4 (Lévy-Itô decomposition, [36], Theorem 19.2, pp.120). Let {Z(t) : t ≥

0} be a Lévy process with Lévy triplet (a,Σ, ν)

1. Let N(A) for every A ∈ B([0,∞)× Rd) be as in (2.16). Then N(A) is a Poisson

random measure on [0,∞)× Rd with intensity Leb⊗ ν.

2. The process {Z1(t) : t ≥ 0} defined by

Z1(t) = lim
ε↘0

∑
0≤s≤t

(
∆Z(s)1{‖∆Z(s)‖>ε} − t

∫
ε<x≤1

zν(dz)

)
(2.18)

is a Lévy process with Lévy triplet (a1, 0, ν), where

a1 =

∫
‖z‖>1

ν(dz). (2.19)

The limit on the right-hand side of (2.18) exists a.s.
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3. Z2(t) = Z(t)−Z1(t) is a Brownian motion with drift. Thus it has the Lévy triplet

(Σ, 0, a − a1). Moreover, the process {Z2(t) : t ≥ 0} is independent of the PRM

N .

4. The Lévy process {Z(t) : t ≥ 0} can be written as

Z(t) = Z2(t) +

∫ t

0

∫
0<‖z‖≤1

zÑ(dz, ds) +

∫ t

0

∫
‖z‖>1

zN(dz, ds), a.s., t ≥ 0. (2.20)

By this theorem, we can interpret a Lévy process as a Brownian motion with drift,

a “small jump” part given by the second integral in (2.20) and a “large jump” part

given by the last integral in (2.20).

2.1.4 Some Examples of Lévy Processes

Example 2.1.2 (Brownian motion). A stochastic process B = {B(t) : t ≥ 0} in R is

called a Brownian motion with variance σ2 if B(1) follows a normal distribution with

mean zero and variance σ2, and the sample paths of {B(t) : t ≥ 0} are continuous

a.s. In fact, this is the only Lévy process with continuous sample paths.

Example 2.1.3 (The Poisson process). The Poisson process of intensity λ > 0, is

a Lévy process {N(t) : t ≥ 0} taking values in N ∪ {0} where each N(t) follows a

Poisson distribution with parameter λt.

Example 2.1.4 (The compound Poisson process). Let {Y (n) : n ∈ N} be a sequence

of i.i.d. random variables in Rd with common distribution µY . Let N be the Poisson

process in Example 2.1.3 which is independent of all Y (n). The compound Poisson

process Z is defined as

Z(t) =

N(t)∑
k=1

Y (k) (2.21)

for each t ≥ 0.
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Example 2.1.5 (Jump-diffusion process). Let B be given by Example 2.1.2, and Z

by Example 2.1.4, then the process J = {J(t) : t ≥ 0} given by

J(t) = B(t) + Z(t) (2.22)

is Lévy process known as a jump-diffusion process.

Example 2.1.6 ( α-stable Lévy process). A Lévy process Z = {Z(t) : t ≥ 0} in Rd

with Lévy triplet (a, 0, ν) is said to be an α-stable process with 0 < α < 2 if there

exists a finite measure λ on S the unit sphere of Rd, such that

ν(A) =

∫
S

∫ ∞
0

1A(ru)r−α−1drλ(u).

The Lévy measure ν has an explicit form in the one dimensional case which is given

by

ν(z) = c1|z|−α−1
1{z<0} + c2z

−α−1
1{z>0}

where c1 and c2 are non-negative constants such that c1 +c2 > 0. For a comprehensive

introduction of the subject of stable processes, see [35]. For the simulation of these

processes, see [18].

Example 2.1.7 (Tempered α-stable process). A Lévy process {Z(t) : t ≥ 0} with

Lévy triplet (a, 0, ν) is said to be tempered α-stable if the Lévy measure ν is given by

ν(dz) = ‖z‖−α−1g(z)dz

where (−1)nDng(z) ≥ 0 for z > 0, (−1)nDng(z) ≥ 0 for z < 0, α ∈ (0, 2), n ∈ N∪{0}

and lim‖z‖→∞g(z)=0. Here, Dng(z) denotes the nth derivative of g. For a detailed

treatment of tempering stable processes, see [32].

16



2.2 An Overview on Simulation of Lévy Processes

Using Random Walks and Series Representa-

tions

The triumph of Lévy processes cannot be understood without the progress of

computers. The simulation of Brownian motion and compound Poisson processes are

discussed in many textbooks, see e.g., the monographs [10] and [2]. Unlike Brownian

motion, the simulation of general Lévy processes is not very straight forward. Let

Z = {Z(t) : t ≥ 0} be a Lévy process in Rd with characteristic triplet (a,Σ, ν). By

the Lévy-Itô decomposition (Theorem 2.4), the sample paths of Z can be decomposed

as follows:

Z(t) = at+BΣ(t) +

∫ t

0

∫
0<‖z‖≤1

zÑ(dz, ds) +

∫ t

0

∫
‖z‖>1

zN(dz, ds). (2.23)

Thus the problem of simulating a Lévy process boils down to that of simulation of a

Brownian motion with drift, the small jump part and the a compound Poisson process.

When the Lévy measure ν is finite, then one needs only simulate a jump-diffusion

process. The main difficulty in simulating the Lévy process is when ν is infinite.

In this case, the sample paths of Z = {Z(t) : t ≥ 0} has infinitely many jumps

in any finite interval [0, T ]. Thus exact simulation of such processes is impossible.

A process close to the original one is generated instead. Here, we examine two

methods of accomplishing this task, namely, the random walk approximation and

series approximation of Lévy processes.

2.2.1 Random Walk Approximation

Because of the property of stationary independent increments, the problem of

simulating a discrete skeleton {Zn}, where Zn
def
= Z(tn), tn = n∆, of a Lévy process
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is equivalent to the problem of a random variable generation from a specific infinitely

divisible distribution. Suppose {Z(t) : t ≥ 0} is a Lévy process determined by (2.23),

with Σ ≡ 0. On a fixed time interval [0, T ], with n ∈ N, put ∆ = T/n. Generate

the increments ∆Zj = Z(j∆)−Z((j − 1)∆) as i.i.d. random variables with common

distribution P∆(A) = P(Z(∆) ∈ A), j = 1, 2, · · · , n− 1. Let

Z∆(t) =


0 if 0 ≤ t < ∆
j∑

k=1

∆Zk if j∆ ≤ t < (j + 1)∆.
(2.24)

The process {Z∆(t) : t ≥ 0} is a random walk approximation to {Z(t) : t ≥ 0}.

Example 2.2.1 (Discretized trajectory for a symmetric α-stable process). Let Z =

{Z(t) : t ≥ 0} be a symmetric α-stable process with index of stability α ∈ (0, 2). Let

{ti}ni=1 be a discretization of the time interval [0, T ].We have the following algorithm

for simulating Z (see [10], Algorithm 6.6, pp. 180)

Algorithm 1

• Simulate n independent random variables γi, uniformly distributed on

(−π/2, π/2), and n independent standard exponential random variables Wi.

• Compute ∆Zi, for i = 1, 2, · · · , n using

∆Zi = (ti − ti−1)1/α sinαγi
(cos γi)1/α

(
cos((1− α)γi)

Wi

)(1−α)/α

(2.25)

with t0 = 0.

• The discretized trajectory of Z is given by Z(ti) =
j∑

k=1

∆Zi

See the graphs in Figures 2.1–2.3 for typical sample paths of a symmetric α-stable

process. Figure 2.1 resembles the graph of a compound Poisson process. When α is

large, the behavior of the sample path is determined by small jumps (see in Figure

2.3). In this case the sample path resembles that of a Brownian motion. Figure
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Figure 2.3: Simulated trajectory of an
α-stable process with α = 1.7.

2.2 corresponds to the graph of a Cauchy process which is between the two cases.

For more details on random walk approximation of Lévy process see Section 6.2 of

[10].

Remark 2.2.1. (1) We observe that in order to implement the random walk approx-

imation method of simulation, one needs to know the law of the increment of the

Lévy process. For most Lévy processes, the law of the increments is not known

explicitly.

(2) Contrary to the one-dimensional case, no closed formulae are available for

simulating the increments of Lévy processes in the multi-dimensional setting, with

the exception of the multivariate Brownian motion. This makes it more difficult

to simulate a path of the general Lévy process. Thus one should use approximate

methods such as the series representations which we overview below.
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2.2.2 Series Representation

Here, we state a general result due to Rosiński [31], that allows one to construct series

representation of Lévy processes. It turns out that series representations is a more

intelligent way of approximating a Lévy process by compound Poisson process. Let

{Z(t) : t ≥ 0} be a pure jump Lévy process, i.e.,

Z(t) = at+

∫ t

0

∫
‖z‖≤1

zÑ(dz, ds) +

∫ t

0

∫
‖z‖>1

zN(dz, ds) (2.26)

where a ∈ Rd and N is a PRM on [0, 1] × Rd
0. Let {Vi}i≥1 be an i.i.d. sequence of

random elements in a measurable space S with common distribution F . Assume that

{Vi}i≥1 is independent of {Γi}i≥1 of partial sums of standard exponential random

variables. Let

H : (0,∞)× S → Rd (2.27)

be a measurable function such that for each v ∈ S

r → ‖H(r, v)‖, (2.28)

in noninecreasing. Let {Ui}i≥1 be denote i.i.d. sequence of uniform random variables

in [0, 1], which is independent of {Γi}i≥1 and {Vi}i≥1. Let B ∈ B(Rd), and define

measures on Rd by

σ(r, B) = P(H(r, Vi) ∈ B), r > 0, and ν(B) =

∫ ∞
0

σ(r, B)dr. (2.29)

Put

A(s) =

∫ s

0

∫
‖z‖≤1

zσ(r, dz)dr, s ≥ 0. (2.30)
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Theorem 2.5 (Rosiński, [31], Theorem 4.1). (A) The series
∑∞

i=1 H(Γi, Vi) converges

a.s. if and only if

(i) ν is a Lévy measure on Rd
0 and

(ii) a
def
= lim

s→∞
A(s) in Rd.

If (i) and (ii) are satisfied, the the law of
∑∞

i=1H(Γi, Vi) is infinitely divisible

with characteristic function φ(u) given by

φ(u) = exp

[
i〈a, u〉+

∫
Rd0

(
ei〈u,z〉 − 1− i〈u, z〉1‖z‖≤1

)
ν(dz)

]
. (2.31)

(B) If only (i) holds, then
∑∞

i=1 [H(Γi, Vi)− ci] converges a.s. for ci = A(i)−A(i−1).

In this case, the characteristic function of the law of
∑∞

i=1 [H(Γi, Vi)− ci] is given

by (2.31) with a = 0.

The series

at+
∞∑
i=1

[H(Γi, Vi)1Ui≤t − tci] (2.32)

converges a.s. uniformly on [0, 1] to a Lévy process {Z(t) : t ≥ 0} with Lévy triplet

(a, 0, ν), (see [31], Theorem 5.1).

Remark 2.2.2. The process

Y τ (t) =
∑
{i:Γi≤τ}

[H(Γi, Vi)1Ui≤t − tA(τ)] (2.33)

is a compound Poisson process with Lévy triplet (0, ντ , 0) where

ντ (B) =

∫ τ

0

σ(r, B)dr (2.34)

See the proof of Theorem 4.1 in [31]. Thus, series representations of Lévy processes

obtained using Theorem 2.5 can be viewed as compound Poisson approximations,

21



though, the transformations applied to the initial Lévy measure may be more complex

than simply deleting small jumps.

The following examples are series representation of the symmetric α-stable and

exponentially tempered α-stable processes respectively.

Example 2.2.2 (Symmetric α-stable process). Let {Vj}j≥1 be an i.i.d. sequence such

that P(Vj = ±1) = 1/2. Then

Z(t) = T 1/αcα

∞∑
j=1

VjΓ
−1/α
j 1{Uj≤t}, 0 ≤ t ≤ T, (2.35)

represents an α-stable process with Lévy triplet (0, ν, 0), where 0 < α < 2,

cα =

|Γ(1− α) cos πα
2
|−1/α when α 6= 1

c1 = π/2,

(2.36)

and

ν(dz) = (|z|−1−α
1{z<0} + z−1−α

1{z>0})dz. (2.37)

Next, we give a series representation of a tempered α-stable process. A detailed

treatment of series representation of tempered stable processes is due to Rosiński

[31], in particular, Theorem 5.1 and Theorem 5.3 of this reference. Here, we give an

example which is suitable for our purposes, (see Example 4.3 of [33]).

Example 2.2.3 (Exponentially tempered stable process). Suppose that

ν(dz) = κ(|z|−1−αe−λ|z|1{z<0} + z−1−αe−λz1{z>0})dz

where λ > 0. Let {Vj}, {ηj} and {ξj} be i.i.d sequences such that P(Vj = ±1) = 1/2,

ηj are exponentially distributed with rate one, and {ξj} are uniformly distributed on

(0, 1). Assume all random sequences {Γj}, {Uj}, {Vj}, {ηj} and {ξj} are independent
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of each other. Then

Z(t) =
∞∑
j=1

Vj

((
αΓj
2κT

)−1/α

∧ ηjξ1/α
j

)
1{Uj≤t}, 0 ≤ t ≤ T (2.38)

represents a tempered α-stable process with Lévy measure ν. From Remark 2.2.2,

Zτ (t) =
∑

{j:Γj≤τ}

Vj

((
αΓj
2κT

)−1/α

∧ ηjξ1/α
j

)
1{Uj≤t} (2.39)

is a compound Poisson process.

Example 2.2.4 (An algorithm for simulating a tempered α stable process using series

representation). Fix a number τ depending on the required precision. This number

is proportional to the average number of terms in the series and it determines the

truncation level i.e., jumps smaller than τ−1/α are truncated.

Algorithm 2: Simulating a tempered α-stable process

• Initialize j := 0

• REPEAT WHILE
j∑

n=1

Tn < τ

• Set j = j + 1

• Simulate Tj and ηj: standard exponential

• Simulate Uj and ξj: uniform on [0, 1]

• Simulate Vj taking values 1 or −1 with probability 1/2

The trajectory of {Z(t) : t ≥ 0} is given by

Z(t) =

j∑
n=1

Vj

((
αΓj
2κT

)−1/α

∧ ηjξ1/α
j

)
1{Uj≤t} where Γj =

j∑
k=1

Tk.
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Figure 2.4: Simulated trajectories of an α-stable and a tempered α-stable process
using series representation. Here, α = 1.3, and precision τ = 1000
and N=10,000 iterations.

2.3 SDEs Driven by Lévy Processes

In this section we give an overview of SDEs driven by Lévy processes. Let {B(t) : t ≥

0} be a d-dimensional Brownian motion, and N an independent PRM on R+×Rd
0 with

associated compensator Ñ , and intensity measure ν, a Lévy measure. We also assume

that B and N are independent. We consider the following stochastic differential

equation

X(t) = x+

∫ t

0

b(X(s−))ds+

∫ t

0

σ(X(s−))dB(s)

+

∫ t

0

∫
‖z‖≤c

F (X(s−), z)Ñ(ds, dz) (2.40)

+

∫ t

0

∫
‖z‖>c

G(X(s−), z)N(ds, dz)

where x ∈ Rn, b : Rn → Rn, σ : Rn → Rn×d, F : Rn×d → Rn and G : Rn×d → Rn. The

parameter c ∈ (0,∞) is known as the “cut-off” parameter and determines the “small”
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and “large” jumps. The solution to (2.40) when it exists, will be an n-dimensional

stochastic process X = {X(t) : t ≥ 0}.

Definition 2.3.1. By a solution of the equation (2.40), we mean an n-dimensional

cádlág, Ft-adapted stochastic process X = {X(t) : t ≥ 0} defined on (Ω,F ,P,F) such

that (2.40) is satisfied.

Since B and N are specified in advance, any solution of (2.40) is called a strong

solution in literature. There is also the notion of weak solution. Here, we are interested

in the strong solution. In addition, we require that the solution of (2.40) be unique.

There exists various notions of uniqueness available, the strongest of which is the

following.

Definition 2.3.2 (Path-wise uniqueness). The solution to (2.40) is said to be path-

wise unique if X1 = {X1(t) : t ≥ 0} and X2 = {X2(t) : t ≥ 0} are solutions to (2.40),

then P(X1(t) = X2(t) for all t ≥ 0) = 1.

The following conditions are imposed on the coefficient functions b, σ and F in order

to guarantee the existence of a unique solution to (2.40). We call them the “Growth”

and “Lipschitz” conditions respectively.

• Growth condition:

‖σ(x)‖2 + ‖b(x)‖2 +

∫
‖z‖≤c

‖F (x, z)‖2ν(dz) ≤ K(1 + ‖x‖2), x ∈ Rn, (2.41)

for some positive constant K.

• Lipschitz condition:

‖σ(x)− σ(y)‖2 + ‖b(x)− b(y)‖2 +

∫
‖z‖≤c

‖F (x, z)− F (y, z)‖2ν(dz) (2.42)

≤ K‖x− y‖2, x, y ∈ Rn,

for some positive constant K.
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Theorem 2.6 ([15], Theorem 9.1, pp. 230-231). If b, σ and F , satisfy conditions

(2.41) and (2.42), then there exists a unique n-dimensional càdlàg process X =

{X(t) : t ≥ 0} that satisfies equation (2.40).

Example 2.3.1. Let Z be a d-dimensional Lévy process with Lévy triplet (a, 0, ν).

Then Z has the following Lévy-Itô decomposition

Z(t) = at+

∫ t

0

∫
‖z‖≤1

zÑ(dz, ds) +

∫ t

0

∫
‖z‖>1

zN(dz, ds). (2.43)

Let x ∈ Rn, b : Rn → Rn a vector-valued Lipschitz continuous function, and h : Rn →

Rn×d a matrix-valued Lipschitz continuous function. Consider the SDE

X(t) = x+

∫ t

0

b(X(s))ds+

∫ t

0

h(X(s−))dZ(s), t ∈ [0, T ]. (2.44)

Equation (2.44) can formally be written in integral form as

X(t) = x+

∫ t

0

b(X(s))ds+

∫ t

0

h(X(s))ads+

∫ t

0

∫
‖z‖≤1

h(X(s−))zÑ(dz, ds) (2.45)

+

∫ t

0

∫
‖z‖>1

h(X(−s))zN(dz, ds).

Let b1(x) = b(x) + h(x)a. Then (2.45) can be rewritten as follows,

X(t) = x+

∫ t

0

b1(X(s))ds+

∫ t

0

∫
‖z‖≤1

h(X(s−))zÑ(dz, ds)

+

∫ t

0

∫
‖z‖>1

h(X(−s))zN(dz, ds). (2.46)

Remark 2.3.1. Observe that (2.46) is a particular case of (2.40) with c = 1, σ ≡ 0,

F (x, z) = h(x)z, ‖z‖ ≤ 1 and G(x, z) = h(x)z, ‖z‖ > 1. Also, since b and h are

Lipschitz continuous, it follows that b1 is Lipschitz continuous.

The following proposition guarantees the existence of a unique solution to equation

(2.46).
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Proposition 2.3.1. Let b and h be as in Example 2.3.1, then (2.46) has unique

solution.

Proof. We only need to verify condition (2.42). Indeed, let x, y ∈ Rn. Then, since b

and h are Lipschitz continuous and ν is a Lévy measure, it follows that

‖b1(x)− b1(y)‖2 +

∫
‖z‖≤1

‖h(x)z − h(y)z‖2ν(dz)

≤ K1‖x− y‖2 +K2‖x− y‖2

∫
‖z‖≤1

‖z‖2ν(dz) (2.47)

= K‖x− y‖2,

where K = K1 + K2

∫
‖z‖≤1

‖z‖2ν(dz). Thus, condition (2.42) is verified. Condition

(2.41) follows from (2.47), since, if we let x ∈ Rd, then we obtain

‖b1(x)‖2 +

∫
‖z‖≤1

‖h(x)z‖2ν(dz)

≤ ‖b1(x)− b1(0)‖2 +

∫
‖z‖≤1

‖(h(x)− h(0))z‖2ν(dz)

+ ‖b1(0)‖2 + ‖h(0)‖2

∫
‖z‖≤1

‖z‖2ν(dz) (2.48)

≤ K‖x‖2 + ‖b1(0)‖2 + ‖h(0)‖2

∫
‖z‖≤1

‖z‖2ν(dz)

≤ C
(
1 + ‖x‖2

)
where C = max

{
K, ‖b1(0)‖2 + ‖h(0)‖2

∫
‖z‖≤1

‖z‖2ν(dz)
}

.

Remark 2.3.2. (i) The equation (2.43) rarely admits a closed form solution.

Thus, the need for numerical simulations.

(ii) When b ≡ 0, we obtain

X(t) = x+

∫ t

0

h(X(s−))dZ(s), t ∈ [0, T ]. (2.49)
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We observe here that if Z has a jump size of z, then X(t) will have a jump

of size h(X(t−))z. In literature, when one talks of an SDE driven by a Lévy

process, generally, one is referring to (2.49).

(iii) Note, we write X(t−) instead of X(t) in order that the integrand be predictable,

so the integral is well defined as an Itô integral.

(iv) The solution X to equation (2.43), is a homogeneous Markov process. See

Theorem 6.4.6 of [1], pp. 388.

We now give an example of (2.40) with an exact solution.

Proposition 2.3.2 ([10], Proposition 8.21, pp. 284-285). Let Z = {Z(t) : t ≥ 0}

be a Lévy process in R with Lévy triplet (a, σ2, ν). Then there exists a unique càdlàg

process (X(t) : t ≥ 0) in R such that

X(t) = 1 +

∫ t

0

X(s−)dZ(s), (2.50)

given by

X(t) = exp

(
Z(t)− σ2

2
t

) ∏
0≤s≤t

(1 + ∆Z(s)) e−∆Z(s). (2.51)
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Chapter 3

Regular and Jump-Adapted

Approximation Schemes for

Jump-Diffusion SDEs–An

Overview

The deterministic Taylor expansion has proven to be an indispensable tool in both

theoretical and practical investigations. It allows one to approximate a sufficiently

smooth function in a neighborhood of a given point to any desired order of accuracy.

A similar expansion can be obtained in the stochastic case. The stochastic Taylor

expansion is a generalization of the deterministic Taylor formula. It permits one

to expand the increments of smooth functions of Itô processes in terms of multiple

stochastic integrals. It is the main tool for the construction of stochastic numerical

methods. For a detail treatment of this topic, see [26] and [24]. This chapter is

divide into two sections. In Section 3.1, we give an overview of the stochastic Taylor

expansion, and in Section 3.2, we review how the stochastic Taylor expansion is used

to construct numerical schemes for (1.6).
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3.1 Stochastic Taylor Expansion

It often imperative to be able to expand the increments of smooth functions of

solutions of SDEs. Therefore, a stochastic expansion with similar properties to the

deterministic Taylor formula can be extremely useful. This expansion is basically

obtain by a repeated application of Itô’s formula. Here, we consider the following

SDE

X(t) = x+

∫ t

0

b(X(s))ds+

∫ t

0

σ(X(s))dB(s) +

∫ t

0

∫
E

G(X(s−), z)N(ds, dz) (3.1)

where, x, b,G,B,N are as in (2.40) and E is a subset of Rd
0, such that ν(E) < ∞.

That is (3.1) is an SDE driven by a Brownian motion and a compound Poisson process

which we call a jump-diffusion SDE.

Remark 3.1.1. Observe that (3.1) is a special case of (2.40) with F ≡ 0 and a finite

Lévy measure ν.

We denote by p(t) = N(E × [0, t]), t ∈ [0, T ], the Poisson process which counts the

number jumps occurring in the time interval [0, t], for all t ≥ 0. Let

{τi, i = 1, 2, · · · , p(t)}, (3.2)

denote the jump times generated byN with corresponding jump sizes (or marks)

{Vi, i = 1, 2, · · · , p(t)} . (3.3)

With this notation, (3.1) can be written as follows

X(t) = x+

∫ t

0

b(X(s))ds+

∫ t

0

σ(X(s))dB(s) +

p(t)∑
i=1

G(Xτi , Vi). (3.4)
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Discrete time approximations of (3.1) are constructed using the stochastic Taylor

expansion of its solution. Smooth functions of (3.1) can be expanded in terms of

multiple stochastic integrals. In order to express this expansion, we introduce below

certain notations.

3.1.1 Multiple Stochastic Integrals

In order to describe the multiple stochastic integrals, we start by defining the notion

of a multi-index α.

Definition 3.1.1. A row vector α = (j1, j2, · · · , jl), where ji ∈ {−1, 0, 1, · · · , d} for

i ∈ {1, 2, · · · , l}, is called a multi-index of length l = l(α) ∈ N. Here, d represents the

number of components of B in (3.1).

For d ∈ N, the set of multi-indices α will be denoted by

M = {(j1, · · · , jl) : ji ∈ {−1, 0, 1, 2, · · · , d}, {i ∈ {1, 2, · · · , l}, l ∈ N} ∪ {v} (3.5)

where v denotes the void multi-index, i.e., v has zero length. A component j ∈

{1, 2, · · · , d} of the multi-index will denote a multiple stochastic integral with respect

to the jth Brownian motion, a component j = 0 will denote integration with respect

to time and finally, a component j = −1 will denote integration with respect to the

PRM N . In addition, n(α) will denote the number of components of α that are equal

to zero and s(α) the number of components of α that are equal to −1. We denote

by α− the multi-index obtained by deleting the last component of α and −α the

multi-index obtained by deleting the first component of α.
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Example 3.1.1. If we let d = 1, then we get the following

l((0, 1,−1)) = 3, n((0, 1,−1)) = 1

s((0,−1)) = 1, (0, 1,−1)− = (0, 1) (3.6)

−(0, 1,−1) = (1,−1).

In order to define multiple stochastic integrals, one needs to define sets of adapted

stochastic processes g = {g(t) : t ∈ [0, T ]} that will qualify as integrands for theses

multiple stochastic integrals in the stochastic Taylor expansion. These sets are defined

as follows:

Sv =

{
g : sup

0≤t≤T
E [‖g(t)‖] <∞

}
,

S(0) =

{
g : E

[∫ T

0

‖g(s)‖ds
]
<∞

}
, (3.7)

S(−1) =

{
g : E

[∫ T

0

∫
E

‖g(s, z)‖2ν(dz)ds

]
<∞

}
,

S(j) =

{
g : E

[∫ T

0

‖g(s)‖2ds

]
<∞

}
, j = 1, 2, · · · , d.

The set Sα for an arbitrary multi-index α ∈M with l(α) > 1, is defined below.

Definition 3.1.2. Let ρ and τ be two stooping times such that 0 ≤ ρ ≤ τ ≤ T almost

surely. For a multi-index α ∈ M and an adapted process g(.) ∈ Sα, the multiple

stochastic integral Iα[g(.)]ρ,τ is defined recursively as

Iα[g(.)]ρ,α =



g(τ), if α = v,∫ τ
ρ
Iα−[g(.)]ρ,udu, if l ≥ 1 and jl = 0,∫ τ

ρ
Iα−[g(.)]ρ,udW

jl
u , if l ≥ 1 and jl = 1, 2, · · · , d,∫ τ

ρ

∫
E
Iα−[g(.)]ρ,u−N(dzs(α), du) if l ≥ 1 and jl = −1,

(3.8)

where g(.) = g
(
., z1, · · · , zs(α)

)
and u− denotes the left hand limit of u.

32



In order to simplify notation, we will omit dependence of g on one or more of the

variables z1, · · · , zs(α) of the vector z expressing the jumps of the PRM.

Definition 3.1.3. For every multi-index α ∈ M with l(α) > 1, the sets Sα are

recursively defined as sets of adapted stochastic processes g = {g(t) : t ≥ 0} such that

the integral process {Iα−[g(.)]ρ,t, t ∈ [0, T ]} satisfies

Iα−[g(.)]ρ,. ∈ Sjl . (3.9)

Example 3.1.2. Assume d = 2.

1. Let α = (1, 0,−1), then

I(1,0,−1)[g(.)]ρ,τ =

∫ τ

ρ

∫
E

I(1,0)−[g(s, z)]ρ,u−N(dz, ds)

=

∫ τ

ρ

∫
E

∫ s−

ρ

I(1)−[g(s1, z)]ρ,sds1N(dz, ds) (3.10)

=

∫ τ

ρ

∫
E

∫ s

ρ

∫ s1

ρ

Iv[g(s2, z)]ρ,s2−dW
1
s2
ds1N(dz, ds)

2. Let α = (k, 0) k = 1, 2, · · · , d, then

I(2,0)[g(.)]ρ,τ =

∫ τ

ρ

I(2)−[g(s)]ds

=

∫ τ

ρ

∫ s

ρ

I(v)[g(s1)]dW k
s1
ds (3.11)

=

∫ τ

ρ

∫ s

ρ

g(s1)dW k
s1
ds

3.1.2 Coefficient Function

We now conider some sets of sufficiently smooth and integrable functions which will

qualify as coefficient functions in the stochastic expansion. Denote by L0 the set of
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functions f : [0, T ]× Rn × Es(α) → Rn for which

f(t, x+G(x, z), u)− f(t, x, u)−
n∑
i=1

Gi(x, z)
∂

∂xi
f(t, x, u) (3.12)

is ν–integrable for all t ∈ [0.T ], x ∈ Rn, u ∈ Es(α) and f(., ., u) ∈ C1,2. Next, we

denote by Lk, k = {1, 2, · · · , d} the set of functions f : [0, T ] × Rn × Es(α) → Rn

whose partial derivative ∂/∂xif(t, x, u), i = 1, 2, · · · , d exists. Finally, let L−1 be the

set of functions f : [0, T ]× Rn × Es(α) → Rn for which

‖f(t, x+G(x, z), u)− f(t, x, u)‖2 (3.13)

is ν–integrable for all t ∈ [0, T ], x ∈ Rn and u ∈ Es(α). We now define the following

operators for functions f(t, x, u) ∈ Lk

L0f(t, x, u) =
∂

∂t
f(t, x, u) +

n∑
i=1

bi(x)
∂

∂xi
f(t, x, u) (3.14)

+
1

2

n∑
i,l=1

m∑
j=1

σi,j(x)σl,j(x)
∂

∂xi∂xl
f(t, x, u)

Lkf(t, x, u) =
n∑
i=1

σi,k(x)
∂

∂xi
f(t, x, u), (3.15)

for k ∈ {1, 2, · · · , d}, and finally

L−1
v f(t, x, u) = f(t, x+G(x, z), u)− f(t, x, u), (3.16)

for all t ∈ [0, T ], x ∈ Rn and u ∈ Es(α). We employ the notation above to define the

coefficient functions fα, where α ∈M.
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Definition 3.1.4. For all α ∈ (j1, · · · , jl(α)) ∈ M and a function f : [0, T ] × Rn →

Rn, the Itô coefficient functions are recursively defined as follows

fα(t, x, u) =


f(t, x) for l(α) = 0,

Lj1f−α(t, x, u1, · · · , us(−α)), for l(α) ≥ 1, j1 ∈ {0, 1, · · · , d},

L−1
us(α)

f−(α)(u1, · · · , us(−α)), for l(α) ≥ 1, j1 = −1.

(3.17)

Remark 3.1.2. In Definition 3.1.4, it is assumed that the coefficients of the SDE

(3.1) and the function f satisfy the smoothness and integrality conditions needed for

the operators (3.14)–(3.16) to be well defined.

Example 3.1.3. Let f(t, x) = x, and let n = d = 1. Then we get the following

f(−1,0)(t, x, u) = L−1
us(−(1,0))

f−(−1,0)(t, x, u1, · · · , us(−(−1,0)))

= L−1
u f(0)(t, x, u) = L−1

u L0fv(t, x, u)

= L−1
u L0f(t, x) = L−1

u L0x (3.18)

= L−1
u L0b(x) = b(G(x, z))− b(x).

The stochastic Taylor expansion is defined on a special kind of set known as a

hierarchical set. This set plays an important role in the construction of numerical

schemes for (3.1), and also determines the order of convergence of the constructed

numerical scheme.

Definition 3.1.5. (i) A subset H ⊂ M is called a hierarchical set if H is

non-empty, the multi-indices in H are uniformly bounded in length, i.e.,

supα∈H l(α) <∞, and −α ∈ H for each α ∈ H \ {v}.

(ii) The remainder set R(H) of a hierarchical set H is defined as

R(H) = {α ∈M \H : −α ∈ H}. (3.19)
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The remainder set consist of all next following multi-indices with respect to the given

hierarchical set.

Example 3.1.4. Let d = 1 and consider the set H0.5 = {v, (−1), (0), (1)}. This set

corresponds to the Euler approximation of (3.1) as we will see later. Its corresponding

remainder set is

R(H0.5) = {(−1,−1), (−1, 0), (1,−1), (1, 0), (−1, 0), (0, 0), (−1, 1), (0, 1), (1, 1)}.

Theorem 3.1 ([26], Theorem 4.4.1, pp. 206). For two stopping times ρ and τ with

0 ≤ ρ ≤ τ ≤ T almost surely, a hierarchical set H ⊂ M, and a function f :

[0, T ]× Rn → Rn, we have the corresponding stochastic expansion

f(τ,X(τ)) =
∑
α∈H

Iα [fα(ρ,X(ρ)]ρ,τ +
∑

α∈R(H)

Iα [fα(., X(.)]ρ,τ , (3.20)

assuming that the function f and the coefficients of the SDE (3.1) are sufficiently

smooth and integrable such that the arising coefficient functions fα are well defined

and the corresponding multiple stochastic integrals exists.

Remark 3.1.3. Let f(t, x) = x. Then the solution X of (3.1) can be represented as

follows

X(τ) =
∑
α∈H

Iα [fα(ρ,X(ρ)]ρ,τ +
∑

α∈R(H)

Iα [fα(., X(.)]ρ,τ (3.21)

where ρ and τ are stopping times such that 0 ≤ ρ ≤ τ ≤ T .

Example 3.1.5. Consider the SDE (3.1) with d = 1 and G ≡ 0. Let ρ = 0 and τ = t,

and consider the hierarchical set H = {v}. Then the remainder set R(H) = {(0), (1)}.
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Then by (3.20) in Theorem 3.1 with f(t, x) = f(x) we obtain the following expansion

f(X(t)) = f(X(0)) + I(0)[f(0)(s,X(s)]0,t + I(1)[f(1)(s,X(s)]0,t

= f(X(0)) + I(0)[L
0f(X(s))]0,t + I(1)[L

1f(X(s))]0,t

= f(X(0)) +

∫ t

0

L0f(X(s))ds+

∫ t

0

L1f(X(s))dB(s) (3.22)

= f(X(0)) +

∫ t

0

(
b(X(s))f ′(X(s)) +

1

2
σ(X(s))f ′′(X(s))

)
ds

+

∫ t

0

σ(X(s))f ′(X(s))dB(s).

Remark 3.1.4. We observe from Example 3.1.5 that (3.20) is a generalization of the

well known Itô’s formula.

Example 3.1.6. Let H0.5 be the hierarchical set in Example 3.1.4 with d = 1. By

Theorem 3.1 and Remark 3.1.3 we obtain

X(τ) = Iv[fv(ρ,X(ρ)]ρ,τ + I(0)[f(0)(ρ,X(ρ)]ρ,τ + I(1)[f(1)(ρ,X(ρ)]ρ,τ

+ I(−1)[f(−1)(ρ,X(ρ)]ρ,τ +R (3.23)

= X(ρ) + b(X(ρ))(τ − ρ) +σ(X(ρ))(B(τ)−B(ρ)) +

∫ τ

ρ

∫
E

G(X(ρ), z)N(dz, ds) +R,

where R is the remainder given by

R =

∫ τ

ρ

∫ s

ρ

L0b(X(u))duds+

∫ τ

ρ

∫ s

ρ

L1b(X(u))dB(u)ds+

∫ τ

ρ

∫ s

ρ

L0b(X(u))dudB(s)

+

∫ τ

ρ

∫ s

ρ

∫
E

L−1
v b(X(u))N(du, dz)ds+

∫ τ

ρ

∫ s

ρ

L1b(X(u))dB(u)dB(s) (3.24)

+

∫ τ

ρ

∫ s

ρ

∫
E

L−1
v b(X(u))N(du, dz)dB(s) +

∫ τ

ρ

∫
E

∫ s

ρ

L0G(X(u), z)duN(dz, ds)

+

∫ τ

ρ

∫
E

∫ s

ρ

L1G(X(u), z)dB(u)N(dz, ds)

+

∫ τ

ρ

∫
E

∫ s

ρ

∫
E

L−1
v G(X(u), z)N(dz, du)N(du, ds)
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Remark 3.1.5. The most important property of the stochastic expansion is that, it

permits a function of a process to be expanded as finite sum of multiple stochastic

integrals with constant integrands. Just like the deterministic Taylor formula, it can

be conveniently used for approximating the increments of solution of SDEs on small

time intervals.

3.2 Stochastic Taylor Approximation

In this section, we give an overview of numerical approximation of the solution of

(3.4), which are constructed by truncating the stochastic Taylor expansion (3.21) to

include as many terms are desired. As mentioned in the introduction, there are two

kinds of approximations–regular approximations and jump-adapted approximations.

The names regular and jump-adapted arise from the method of discretization of the

time interval [0, T ] is discretized.

3.2.1 Regular Strong and Weak Taylor Approximations

Let 0 = t0 < t1 < · · · < tN = T be a partition of the time interval [0, T ] where N ∈ N.

For a given maximum step size ∆ ∈ (0, 1) time discretization

t∆ = {0 = t0 < t1 < · · · < tN = T}, (3.25)

is required to satisfy the following conditions:

P(tn+1 − tn ≤ ∆) = 1, (3.26)

where

tn+1 is Ftn−measurable, (3.27)
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for n ∈ {0, 1, · · · , N − 1} and,

nt = max{n ∈ N : tn ≤ t}, (3.28)

denotes the largest integer n such that tn ≤ t, for all t ∈ [0, T ]. This kind of

discretization is called a regular time discretization. An example, is an equidistant

time discretization where the nth discretization time tn = n∆, n = 0, 1, · · · , N , and

the time step size is ∆ = T/N . Discretization times can also be random as is needed

if there is the desires to control the step size. Conditions (3.26), (3.27) and (3.28)

imposes some restrictions on the choice of the random discretization times. Condition

(3.26) requires that the maximum step size in the discretization cannot be larger than

∆ ∈ (0, 1), (3.27) ensures the length ∆n = tn+1−tn of the next time step depends only

the information available at time tn, and finally (3.28) guarantees a finite number of

discretization points in any bounded interval [0, t].

For any approximation scheme, it is important to specify the mode of convergence.

We will consider two types of convergence, namely, “strong” and “weak” conver-

gence.

Definition 3.2.1. A numerical approximation {Y (t) : t ∈ [0, T ]} on a time

discretization (t)∆ of a stochastic process {X(t) : t ∈ [0, T ]} is said to converge

strongly to X with strong order of convergence γ > 0 if

E
[
‖Y (T )−X(T )‖2

]
≤ C∆2γ (3.29)

for some C > 0 which does not depend on ∆.

Definition 3.2.2. A numerical approximation {Y (t) : t ∈ [0, T ]} on a time

discretization (t)∆ of a stochastic process {X(t) : t ∈ [0, T ]} is said to converge weakly

to X with weak order of convergence β > 0 if for some smooth enough function g, we
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have that

|E [g(Y (T ))− g(X(T ))]| ≤ C∆β (3.30)

for some C > 0 which does not depend on ∆.

We now give a brief summary of strong and weak Taylor approximations of (3.1)

for a given strong order γ ∈ {0.5, 1, 1.5, · · · } and a given weak order β ∈ {1, 2, · · · }

respectively. The construction of these approximations is based on the stochastic

Taylor expansion (3.20) and the choice of the hierarchical set. For a given hierarchical

set, one obtains an approximation with a specific strong or weak order of convergence.

We begin with the strong approximation. The following hierarchical set is

Hγ =

{
α ∈M : l(α) + n(α) ≤ 2γ or l(α) = n(α) = γ +

1

2

}
. (3.31)

use to construct strong regular approximation. For a regular time discretization (t)∆

with a maximum step size ∆ ∈ (0, 1), the strong order γ approximation Y is defined

as follows

Yn+1 = Yn +
∑
α∈Hγ

Iα [fα (tn, Yn)]tn,tn+1
, (3.32)

for n = 0, 1, · · · , nT − 1, with f(t, x) = x.

The weak regular β approximation is constructed in a similarly using the hierarchical

set

Hβ = {α ∈M : l(α) ≤ β} . (3.33)
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In this case,

Yn+1 = Yn +
∑
α∈Hβ

Iα [fα (tn, Yn)]tn,tn+1
, (3.34)

The orders of convergence of (3.32) and (3.34), are accessed through specific

interpolation {Y (t) : t ∈ [0, T ]} given by

Y (t) =
∑
α∈Hγ

Iα [fα (tnt , Y (tnt))]tnt ,t
, (3.35)

and

Y (t) =
∑
α∈Hβ

Iα [fα (tnt , Y (tnt))]tnt ,t
, (3.36)

respectively, starting from x ∈ Rn. Note here that Yn
def
= Y (tn). Before stating

the main convergence theorems which enables one to construct strong and weak

approximation schemes to the solution X of the SDE (3.4), we give a an example of

the construction of a strong approximation using a particular hierarchical set.

Example 3.2.1 (The strong Taylor 1 approximation). Let n=d=1, and consider the

hierarchical set

H1 = {α ∈M : l(α) + n(α) ≤ 2} = {v, (0), (1), (−1), (1, 1), (1,−1), (−1, 1), (−1,−1)}
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The strong order 1 Taylor approximation is given by

Yn+1 = Yn +
∑
α∈H1

Iα [fα (tn, Yn)]tn,tn+1

= Yn + I(0)

[
f(0) (tn, Yn)

]
tn,tn+1

+ I(1)

[
f(1) (tn, Yn)

]
tn,tn+1

+ I(−1)

[
f(−1) (tn, Yn)

]
tn,tn+1

+ I(1,1)

[
f(1,1) (tn, Yn)

]
tn,tn+1

(3.37)

+ I(1,−1)

[
f(1,−1) (tn, Yn)

]
tn,tn+1

+ I(−1,1)

[
f(−1,1) (tn, Yn)

]
tn,tn+1

+ I(−1,−1)

[
f(−1,−1) (tn, Yn)

]
tn,tn+1

,

which simplifies to

Yn+1 = Yn + b(Yn)(tn+1 − tn) + σ(Yn)(B(tn+1)−B(tn))

+

∫ tn+1

tn

∫
E

G(Yn, z)N(dz, ds) + σ(Yn)σ′(Yn)

∫ tn+1

tn

∫ s

tn

dB(s1)dB(s)

+ σ(Yn)

∫ tn+1

tn

∫
E

∫ s

tn

G(Yn, z)dB(s1)N(dz, ds) (3.38)

+

∫ tn+1

tn

∫ s

tn

∫
E

{σ(Yn +G(Yn, z))− σ(Yn)}N(dz, ds1)dB(s)

+

∫ tn+1

tn

∫
E

∫ s

tn

∫
E

{G(Yn +G(Yn, z1), z)−G(Yn, z)}N(dz1, ds1)N(dz, ds)

Remark 3.2.1. In order to implement the scheme in Example 3.2.1, one needs a

method on of approximating multiple stochastic integrals in (3.38), which is usually

not an easy task.

Theorem 3.2 ([26], Theorem 6.4.2, pp. 291). For given γ ∈ {0.5, 1, 1.5, · · · }, let

Y = {Y (t) : t ∈ [0, T ]} be the strong order γ Taylor approximation defined in (3.32),

corresponding to a regular time discretization (t)∆ with a maximum step size ∆ ∈

(0, 1). Suppose that the coefficient functions fα satisfy the following conditions:
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(i) For α ∈ H, t ∈ [0, T ], u ∈ Es(α) and x, y ∈ Rn the coefficient function fα satisfies

the Lipschitz condition

‖fα(t, x, u)− fα(t, y, u)‖ ≤ K1(u)‖x− y‖, (3.39)

where K1(u)2 is ν(du1)× ν(dus(α))-integrable.

(ii) For all α ∈ Hγ ∪R (Hγ), we assume

f−α ∈ C1,2 and fα ∈ Sα, (3.40)

there exists a set G with Hγ−1 ⊂ G ⊂ Hγ, where for all α ∈ (G ∪R(G)) \ {v}:

f−α ∈ ∩dk=−1Lk, for all α ∈ G : fα(τn, xτn) ∈Ms(α), n = 0, 1, · · ·nT ,

(iii) and for all α ∈ R(G) : fα(., x.) ∈ Ms(α), and for all α ∈ Hγ ∪ R(Hγ), t ∈

[0, T ], u ∈ Es(α) and x ∈ Rn, we require

‖f(t, x, u‖2 ≤ K2(u)
(
1 + ‖x‖2

)
, (3.41)

where K1(u)2 is ν(du1)× ν(dus(α))-integrable. Then the estimate

E
[

sup
0≤s≤T

‖X(s)− Y (s)‖2

]
≤ K3h

2γ (3.42)

holds, where the constant K3 does not depend on h.

Remark 3.2.2 ([26], Remark 6.4.2, pp. 292). The conditions on the coefficients

b, σ and G of the SDE (3.4) which imply conditions (3.39)–(3.41) on the coefficient

functions fα is that bk, σk,j, Gk for k = 1, 2, · · · , n and j = 1, 2, · · · , d should be

2(γ+1) times continuously differentiable, uniformly bounded, with uniformly bounded

derivatives.

Theorem 3.3 ([26], Theorem 12.3.4, pp. 519 ). For a given β ∈ {1, 2, · · · },

let Y = {Y (t) : t ∈ [0, T ]} be the weak order β Taylor approximation defined in
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(3.34) corresponding to a regular time discretization (t)h with maximum step size

h ∈ (0, 1). We suppose that b, σ,G are Lipschitz continuous with components

bk, σk,j, Gk ∈ C
2(β+1)
P for all k ∈ {1, 2, · · · , n} and j ∈ {1, 2, · · ·m} and that the

coefficient functions fα with f(t, x) = x, satisfy the linear growth condition

‖fα(t, x)‖ ≤ K(1 + ‖x‖), (3.43)

with K <∞, for all t ∈ [0, T ], x ∈ Rn and α ∈ Γβ∪R (Γβ). Then for any g ∈ C2(β+1)
P ,

there exists a positive constant C, independent of h, such that

∣∣E [g(X(T ))− g(Y h(T ))
]∣∣ ≤ Chβ (3.44)

Remark 3.2.3 ([26], Remark 12.3.5, pp. 520). The linear growth condition (3.63)

on fα is satisfied when b, σ and G are uniformly bounded.

3.2.2 Jump-Adapted Strong and Weak Approximations

From Remark 3.2.1, we observe that the higher order schemes can become more

complex since they involve the approximation of mixed multiple stochastic integrals

involving a PRM. In order to avoid carrying out this tidiuos process, one can employ

jump-adapted approximations that significantly reduces the complexity of the scheme.

Here, we consider a jump-adapted time discretization 0 = t0 < t1 < · · · < tnT of the

interval [0, T ] on which a jump-adapted approximation Y = {Y (t) : t ∈ [0, T ]} of the

solution of (3.4) is constructed. As before, let

nt = max{n ∈ N ∪ {0} : tn ≤ t} <∞ (3.45)

The jump-adapted time discretization includes the jump times {τ1, · · · τp(t)}. More-

over, for any maximum step size ∆ ∈ (0, 1), we require the time jump-adapted

time discretization t∆ = {0 = t0 < t1 < · · · < tnT = T}, to satisfy condition
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(3.26), where tn+1 is Ftn − measurable, for n ∈ {0, 1, · · · , nT − 1} if it is not a

jump time. For example, we could construct a jump-adapted discretization (t)∆

by a superposition of the jump times {τ1, · · · τp(t)} and a deterministic equidistant

discretization 0 = T1 < · · · < TN = T , with step size ∆ = T/N of [0, T ]. In this case,

we obtain the discretization

{t1, · · · , tnT } = {τ1, · · · τp(t)} ∪ {T1, · · ·TN}

where nT = Card
(
{τ1, · · · τp(t)} ∪ {T1, · · ·TN}

)
. Since the jumps can only arise at

discretization times, the diffusive part of the dynamics of (3.1) is separated from the

jumps within this time grid. Thus, between the jump times, the diffusive part can be

approximated with a pure strong or weak scheme for the diffusion process. The effect

of the jump is then added when a jump time is encountered. In order to construct

the jump-adapted approximations, we consider the following hierarchical set

M̂ = {(j1, · · · , jl) : ji ∈ {1, 2, · · · ,m}, i ∈ {1, 2, · · · , l} for l ∈ N} ∪ {v}. (3.46)

Definition 3.2.3. For all α = (j1, · · · , jl(α)) ∈ M̂ and a function f : [0, T ] × Rn →

Rn, the Itô coefficient functions fα is defined as follows

fα(t, x) =

f(t, x) for l(α) = 0,

Lj1f−α(t, x) for l(α) ≥ 1,

(3.47)

assuming the coefficients of the SDE (3.4) are sufficiently smooth for the operator

Lj1 , j = 1, 2, · · · in (3.47) to be well defined.

In order to construct the jump-adapted approximations we start by denoting the

almost sure left-hand limit of Y at time tn+1 by

Y (tn+1−) = lim
s↑tn+1

Y (s).
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For the strong jump-adapted approximation with strong order of convergence γ, we

take f(t, x) = x, and consider the hierarchical set

Ĥγ =

{
α ∈ M̂ : l(α) + n(α) ≤ γ or l(α) = n(α) = γ +

1

2

}
. (3.48)

With this hierarchical set, one obtains the following scheme

Y (tn+1−) = Y (tn) +
∑

α∈Ĥ\{v}

Iα [fα(tn, Y (tn))]tn,tn+1
, (3.49)

and

Y (tn+1) = Y (tn+1−) +

∫
E

G(Y (tn+1−), z)N(dz, {tn+1}), (3.50)

for n ∈ {0, 1, · · · , nT − 1}. The order of strong convergence is accessed through the

interpolation

Y (tn+1−) =
∑

α∈Ĥγ\{v}

Iα [fα(tn, Y (tn))]tnt ,t
(3.51)

as there are no jumps between the jump times

We now state the convergence theorem for jump-adapted strong Taylor approxima-

tions.

Theorem 3.4 ([26], Theorem 8.7.1, pp. 364). For a given γ ∈ {0.5, 1, 1.5, · · · , },

let Y = {Y (t) : t ∈ [0, T ]} be the jump-adapted strong order γ Taylor approximation

corresponding to a jump-adapted time discretization with maximum step size ∆ ∈

(0, 1). Suppose that the coefficient functions fα satisfy the following conditions

(i) For α ∈ H, t ∈ [0, T ] and x, y ∈ Rn the coefficient function fα satisfies the

Lipschitz condition

‖fα(t, x)− fα(t, y)‖ ≤ K1‖x− y‖, (3.52)
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(ii) For all α ∈ Hγ ∪R (Hγ), we assume

f−α ∈ C1,2 and fα ∈ Sα, (3.53)

(iii) and for all α ∈ Ĥγ ∪R(Ĥγ), t ∈ [0, T ] and x ∈ Rn, we require

‖f(t, x)‖2 ≤ K2

(
1 + ‖x‖2

)
. (3.54)

Then the estimate

E
[

sup
0≤s≤T

‖X(s)− Y (s)‖2

]
≤ K3h

2γ (3.55)

holds, where the constant K3 does not depend on ∆.

The jump-adapted weak order β Taylor approximation is constructed similarly. Only

that in this case we consider the following hierarchical set

Γ̂β =
{
α ∈ M̂ : l(α) ≤ β

}
. (3.56)

The jump-adapted weak order β Taylor approximation is given by

Y (tn+1−) = Y (tn) +
∑

α∈Γ̂β\{v}

Iα [fα(tn, Y (tn))]tn,tn+1
(3.57)

and

Y (tn+1) = Y (tn+1−) +

∫
E

G(Y (tn+1−), z)N(dz, {tn+1})

=

Y (tn+1−) +G(Y (tn+1−), Vtn+1) if tn+1 if a jump time

Y (tn+1−) otherwise,

(3.58)
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for n ∈ {0, 1, · · · , nT − 1}. The order of weak convergence is accessed through the

interpolation

Y (tn+1−) =
∑

α∈Γ̂β\{v}

Iα [fα(tn, Y (tn))]tnt ,t
(3.59)

Before stating the result on weak convergence, we give an example of a weak order 1

jump-adapted approximation of the solution X of the SDE (3.1).

Example 3.2.2. Consider the hierarchical set

Γ̂1 = {α ∈ M̂ : l(α) ≤ 1} = {v, (0), (1)}. (3.60)

By (3.57), we get

Y (tn+1−) = Y (tn) + I(0)[f(0)(tn, Y (tn)]tn,tn+1 + I(1)[f(1)(tn, Y (tn)]tn,tn+1

= Y (tn) + b(Y (tn))(tn+1 − tn) + σ(Y (tn)) (B(tn+1)−B(tn)) (3.61)

The jump-correction is given by (3.58). Therefore,

Y (tn+1) =

Y (tn+1−) +G(Y (tn+1−), Vtn+1) if tn+1 if a jump time,

Y (tn+1−) otherwise.

(3.62)

Notice that (3.61) is the Euler scheme for (3.1) with G ≡ 0, which has a weak order

of convergence β = 1.

Theorem 3.5 ([26], Theorem 12.3.4, pp. 536). For a given β ∈ {1, 2, · · · }, let

Y = {Y (t) : t ∈ [0, T ]} be the weak order β Taylor approximation defined in (3.58)–

(3.59) corresponding to a jump-adapted time discretization (t)∆ with maximum step

size ∆ ∈ (0, 1). We suppose that b, σ,G are Lipschitz continuous with components

bk, σk,j, Gk ∈ C
2(β+1)
P for all k ∈ {1, 2, · · · , n} and j ∈ {1, 2, · · ·m} and that the
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coefficient functions fα with f(t, x) = x, satisfy the linear growth condition

‖fα(t, x)‖ ≤ K(1 + ‖x‖), (3.63)

with K < ∞, for all t ∈ [0, T ], x ∈ Rn and α ∈ Γ̂β ∪ R
(

Γ̂β

)
. Then for any

g ∈ C2(β+1)
P , there exists a positive constant C, independent of ∆, such that

|E [g(X(T ))− g(Y (T ))]| ≤ C∆β. (3.64)
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Chapter 4

Numerical Approximation of SDEs

Driven by Lévy Processes with

Infinite Jump Activity

This chapter and the next constitute the main work in this dissertation. The goal

here, is to give numerical approximations of the solution of (1.1), both strong and

weak of any desired order as oppose to just the Euler scheme. To this effect, we

construct a jump-diffusion SDE, which will serve as a good approximation to (1.1)

when Z has infinitely many jumps. This will be accomplished piecemeal. We combine

the ideas of Assmusen and Rosiński [2] (see also [9]) and in the spirit of [21], with

the numerical schemes developed by Bruti and Platen in [26] to construct numerical

approximations to the solution of (1.1). We will begin with a “simple” model and

then move to a more general model. This chapter consists of two sections. In Section

4.1 we formulate our model, i.e., the construction of the jump-diffusion SDE (4.27).

In Section 4.2, we state and proof the main results in this dissertation. Theorem 4.4

and Corollary 4.9.2, gives an Lp, p ≥ 2, error estimates for approximating (1.1) with

(4.27). In Theorem 4.7 and Corollary 4.9.2, we give a weak error estimate, for the
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same jump-diffusion approximation of (1.1). The proof technique here follows from

the ideas in [21]. Finally, in Theorem 4.8 and Theorem 4.9, we give error estimates

resulting from the numerical approximation of (1.1) using the schemes in [26].

4.1 Model Formulation

4.1.1 The Driving Lévy Process

Let Z = {Z(t) : t ≥ 0} on (Ω,F ,F,P), be a d-dimensional pure jump Lévy process,

i.e., Z has the following Lévy-Itô decomposition

Z(t) = at+

∫ t

0

∫
‖z‖≤1

zÑ(dz, ds) +

∫ t

0

∫
‖z‖>1

zN(dz, ds), (4.1)

where a ∈ Rd, N(dz, ds) is a Poisson random measure on Rd × [0,∞) with intensity

measure ν(dz)ds where ν is a Lévy measure, i.e.,

∫
Rd

min
(
1, ‖z‖2

)
ν(dz) <∞, (4.2)

and Ñ(dz, ds) is the compensated version of N(dz, ds). We further assume that

ν(Rd) =∞, i.e., Z has an infinite number of jumps on any interval of nonzero length

almost surely. Without loss of generality, we assume that

∫
Rd
‖z‖pν(dz) ≤ kp, where, p ≥ 2, and ‖a‖ ≤ k, (4.3)

for some positive constant k.

51



4.1.2 The SDE under Consideration

We consider the n-dimensional stochastic process X, the solution of the SDE

X(t) = x+

∫ t

0

b(X(s))ds+

∫ t

0

σ(X(s))dW (s) +

∫ t

0

h(X(s−))dZ(s), t ∈ [0, T ],

(4.4)

where, b : Rn → Rn is a Lipschitz function, σ, h : Rn → Rn×d are matrix-valued

Lipschitz functions, Z is as in (4.1), W is a Brownian motion which is independent

of Z, X(0) = x ∈ Rn is the initial value of X, and T <∞. We first consider the case

when σ = 0, i.e., X is the solution to the following SDE

X(t) = x+

∫ t

0

b(X(s))ds+

∫ t

0

h(X(s−))dZ(s), t ∈ [0, T ] (4.5)

with b and h as in (4.4). Note here that the second integral (Gaussian part) in (4.4)

is absent. Without loss of generality we assume that the coefficients b and h satisfy

the following inequalities

‖b(x1)− b(x2)‖ ≤ k1‖x1 − x2‖, ‖h(x1)− h(x2)‖ ≤ k1‖x1 − x2‖, x1, x2 ∈ Rn, (4.6)

for some positive constant k1. Condition (4.6) together with (4.3) clearly imply the

Growth and Lipschitz conditions (2.41) and (2.42) respectively. Therefore, it follows

from Theorem 2.6 and Proposition 2.3.1 that (4.4) has a unique solution.

Remark 4.1.1. When Z is a Brownian motion W , we obtain the classical SDE with

respect to W which is given by

X(t) = x+

∫ t

0

b(X(s))ds+

∫ t

0

h(X(s−))dW (s), t ∈ [0, T ]. (4.7)

As mentioned earlier in the introduction, there is an extensive amount of literature on

the simulation of this equation. See for example, the monographs [20] and [24]. But
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when Z is a pure jump Lévy process, for example an α-stable process or a tempered α-

stable process, the literature on the numerical approximation, in particular the strong

approximation of the corresponding SDE is still vey scarce.

4.1.3 Gaussian Approximation of Small Jumps

As noted in Remark 2.2.1 that the main difficulty in the simulation of a Lévy process

stems from the fact that there is no general algorithm for simulating its increments. In

Figure 2.3, we observed that for large values of α (the index of stability), the sample

path of an α-stable process resembles a Brownian motion. The graphs in Figures

2.1, 2.2 and 2.3 leads one to think that an α-stable process can be obtained from a

combination of a compound Poisson process and Brownian motion. This indeed is

the case for stable processes and other Lévy processes. Asmussen and Rosiński in

[3], established necessary and sufficient conditions under which the small jumps of

a one-dimensional Lévy process can be approximated by a Brownian motion. Their

result, which was later extended to the multidimensional case by Cohen and Rosiński

in [31], will be crucial to us in the construction of our jump-diffusion SDE. Let Z be

the Lévy process given in (4.1), and suppose that for every ε ∈ (0, 1], we have the

decomposition

ν = νε + νε, (4.8)

where

∫
Rd
‖z‖2νε(dz) <∞ and νε

(
Rd
)
<∞. (4.9)

An example of such a decomposition is when νε(dz) = 1{z:‖z‖>ε}ν(dz), i.e., the

truncation of jumps smaller than ε in magnitude. We shall denote by Nε and N ε

the PRMs with corresponding intensities measures νε and νε respectively, and, by Ñε
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and Ñ ε the compensated versions of Nε and N ε respectively. Let

Z = Rε + P ε + aε, (4.10)

be the corresponding decomposition of the Lévy process Z into a sum of independent

terms Rε, P
ε and aε. The process Rε = {Rε(t), t ≥ 0} is a Lévy process with

characteristic function

E
[
e〈z,Rε(t)〉

]
= exp

{
t

∫
Rd

[
ei〈z,x〉 − 1− i〈z, x〉

]
νε(dx)

}
. (4.11)

Therefore Rε has mean zero Lévy process and covariance matrix

E
[
Rε(t)Rε(t)

T
]

= tΣε, (4.12)

where,

Σε =

∫
Rd
zzTνε(dz) (4.13)

is a non-singular symmetric positive definite matrix. In one dimension, with νε(dz) =

1{z:|z|>ε}ν(dz), we get

σ(ε)2 = σ2
ε =

∫
|z|≤ε
|z|2ν(dz). (4.14)

We refer to Rε as the ‘small-jump’ part of Z, P ε = {P ε(t), t ≥ 0} is a compound

Poisson process with Lévy measure νε, and aε = {aεt, t ≥ 0} is a drift given by

aε = a+

∫
‖z‖>1

zνε(dz)−
∫
‖z‖≤1

zνε(dz). (4.15)

Denote by B = {B(t), t ≥ 0} a standard Brownian motion in Rd, and by “
d→ ” weak

convergence in the space D ([0,∞)) of càdlàg functions from [0,∞] into Rd equipped
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with the Skorohod topology (see Section 1 of [17], pp. 324–329, for details on the

Skorohod topology).

Theorem 4.1 (Theorem 2.2 of [31] ). With the above notation, suppose Σε is non-

singular for every ε ∈ (0, 1]. Then as ε→ 0,

Σ−1/2
ε Rε

d→ B (4.16)

if and only if for every κ > 0

∫
〈Σ−1

ε z,z〉>κ

〈
Σ−1
ε z, z

〉
νε(dz)→ 0. (4.17)

Theorem 4.1 is a generalization of the following result by Asmussen and Rosinski [3]

in the one dimensional setting.

Theorem 4.2 (Theorem 2.1 of [3]). σ(ε)−1Rε
d→ B as ε → 0 if and only if for each

κ > 0

σ(κσ(ε) ∧ ε) ∼ σ(ε), as ε→ 0. (4.18)

In practice, it is difficult to verify the conditions (4.17) and (4.18). For sufficient

conditions for (4.17) which are easier to verify, see Theorem 2.4 and Theorem 2.5

of [31]. For the one dimensional case, we have the following sufficient condition for

(4.18).

Proposition 4.1.1 (Proposition 2.1 of [3]). Condition (4.6) is implied by

lim
ε→0

σ(ε)

ε
=∞ (4.19)

Example 4.1.1. Let Z be a symmetric α-stable process with Lévy measure

ν(dz) =

(
c1

|z|1+α
1{z<0} +

c2

z1+α
1{z>0}

)
dz, (4.20)
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where, c1, c2 ≥ 0, α ∈ (0, 2), and c1 + c2 > 0. Then

σ(ε)2 = σ2
ε =

∫
|z|≤ε

z2ν(dz) =
c1 + c2

2− α
ε2−α, (4.21)

from which we obtain

σ(ε)

ε
=

(
c1 + c2

2− α

)1/2
1

εα/2
→∞, as ε→ 0. (4.22)

Thus, condition (4.19) is satisfied and the normal approximation holds.

Remark 4.1.2. If Theorem 4.1 applies, then Rε can be approximated by Σ
1/2
ε B, where

the Brownian motion B is independent of P ε. Consequently we get

Z
d
= aε + Σ1/2

ε B + P ε def= Zε. (4.23)

Σ
1/2
ε denotes the square root of Σε, i.e., there exists a unique positive definite matrix

Σ1
ε such that Σε = (Σ1

ε)
2.

Proposition 4.1.2. Let ε ∈ (0, 1], and let νε and Σε be given by (4.8) and (4.13)

respectively. Then,

∥∥Σ1/2
ε

∥∥2
=

∫
Rd
‖z‖2νεd(z) = trace(Σε). (4.24)

Proof. Let {e1, · · · , ed} be an orthonormal basis of Rd. Then by the Pythagorean

theorem and the fact that Σε is symmetric, it follows that

∥∥Σ1/2
ε

∥∥2
=

d∑
i=1

∥∥(Σ1/2
ε

)
i

∥∥2
=

d∑
i=1

〈
ei,
(
Σ1/2
ε

)T
Σ1/2
ε ei

〉
=

d∑
i=1

(Σε)ii

= trace(Σε) =
d∑
i=1

∫
Rd
ziziνε(dz) =

∫
Rd
‖z‖2νε(dz). (4.25)
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Remark 4.1.3. From Proposition 4.1.2 and (4.9), it follows that

sup
ε∈(0,1]

‖Σ1/2
ε ‖2 <∞. (4.26)

4.2 The Jump-Diffusion Approximation of an SDE

Driven by a Lévy Process with an Infinite Lévy

Measure

4.2.1 Construction of Jump-Diffusion SDE

In this section, we consider the solution Xε of a jump-diffusion SDE, and show that it

approximates the solution X of the SDE (4.4) in Lp, p ≥ 2 and in a weak sense. Let

ε ∈ (0, 1] be arbitrary, and consider the following stochastic differential equation

Xε(t) = x+

∫ t

0

b(Xε(s))ds+

∫ t

0

h(Xε(s))dZε(s), t ∈ [0, T ], (4.27)

where b and h are as in (4.4) and Zε is as in Remark 4.1.2. We further assume that

E[‖Z‖p] < ∞, for p ≥ 2. Then, we can rewrite X and Xε the solutions of (4.2) and

(4.27) respectively as follows

X(t) = x+

∫ t

0

b(X(s))ds+

∫ t

0

h(X(s))ãds+

∫ t

0

∫
Rd
h(X(s−))zÑ(dz, ds), (4.28)

and

Xε(t) = x+

∫ t

0

b(Xε(s))ds+

∫ t

0

h(Xε(s))ãds+

∫ t

0

h(Xε(s))Σ1/2
ε dB(s)

+

∫ t

0

∫
Rd
h(Xε(s−))zÑ ε(dz, ds), (4.29)
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where

ã = a+

∫
‖z‖>1

zν(dz). (4.30)

Without loss of generality, we assume that

‖ã‖ ≤M. (4.31)

If we let b1(y) = b(y) + h(y)ã, then it follows from(4.6) and (4.31) that

‖b1(y1)− b1(y2)‖ ≤ K1‖y1 − y2‖ (4.32)

for some positive constant K1. We show that there exists a unique solution to (4.27)

and then give moment estimates to the solutions of (4.4) and (4.27). In order to

accomplish this task, we will need an extension of the Burkholder inequality. We

assume that we are given a Brownian motion B = {B(t) : t ≥ 0} and a PRM N on

a measurable space Z. Consider a d-dimensional semimaritngale Y = {Y (t) : t ≥ 0}

represented by

Y (t) = x+

∫ t

0

b(s)ds+

∫ t

0

σ(s)dB(s) +

∫ t

0

∫
Z
G(z, s)Ñ(dz, ds) (4.33)

Theorem 4.3 ([29], Theorem 2.11, pp. 332). For any p ≥ 2, there exists a positive

constant Cp such that

E
[

sup
0≤s≤t

‖Y (s)‖p
]
≤ Cp

{
‖x‖p + E

[∫ t

0

‖b(s)‖pds
]

+ E

[(∫ t

0

‖σ(s)‖2ds

)p/2]

+ E

[(∫ t

0

∫
Z
‖G(z, s)‖2ν(dz)ds

)p/2]
+ E

[∫ t

0

∫
Z
‖G(z, s)‖pν(dz)ds

]}
(4.34)

holds for any semimartingale X represented by (4.33).
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A more general result can be found in [12] which involves an arbitrary martingale

M with an arbitrary stopping time T . See also [23] for an extension of this result to

Hilbert spaces. The main advantage of this inequality over the maximal inequalities

of Burkholder, Davis and Gundy is that the right-hand side is expressed in terms of

predictable “ingredients”, rather than in terms of the quadratic variation. We are

now in a position to establish the existence of a unique solution to (4.27)

Lemma 4.3.1. 1) Under the above setting, the SDE (4.27) has a unique solution.

Moreover, for each fixed ε ∈ (0, 1], it holds that

E
[

sup
0≤t≤T

‖Xε(t)‖p
]
≤ C1(1 + ‖x‖p), p ≥ 2 (4.35)

for some positive constant C1 which does not depend on ε.

2) The following estimate holds for the solution X of the SDE (4.6)

E
[

sup
0≤t≤T

‖X(t)‖p
]
≤ C2(1 + ‖x‖p), p ≥ 2 (4.36)

for some positive constant C2.

Proof. The existence of a unique solution to the SDE (4.27) follows from Theorem 2.6

due to the condition (4.6) imposed on the coefficient functions b and h. By Theorem

4.3, there exists a positive constant C (which changes from line to line) such that

E
[

sup
0≤s≤t

‖Xε(s)‖p
]
≤ CE

[
‖x‖p +

∫ t

0

‖b1(Xε(s))‖p ds

+

(∫ t

0

‖h(Xε(s))‖2
∥∥Σ1/2

ε

∥∥2
ds

)p/2
+

(∫ t

0

∫
Rd
‖h(Xε(s−))‖2 ‖z‖2νε(dz)ds

) p
2

(4.37)

+

∫ t

0

∫
Rd
‖h(Xε(s−))‖p ‖z‖pνε(dz)ds

]
.
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But

sup
ε∈(0,1]

∥∥Σ1/2
ε

∥∥2
<∞, and

∫
Rd
‖z‖pνε(dz) <∞. (4.38)

Therefore,

E
[

sup
0≤s≤t

‖Xε(s)‖p
]
≤ CE

[
‖x‖p +

∫ t

0

‖b1(Xε(s))‖p ds+

(∫ t

0

‖h(Xε(s))‖2 ds

) p
2

]
.

(4.39)

By Jensen’s inequality and the fact that b and h are Lipschitz continuous, we obtain

E
[

sup
0≤s≤t

‖Xε(s)‖p
]
≤ CE

[
1 + ‖x‖p +

∫ t

0

‖Xε(s))‖p ds
]
. (4.40)

Finally, by Gronwall’s inequality we get

E
[

sup
0≤s≤t

‖Xε(s)‖p
]
≤ CE [1 + ‖x‖p] (4.41)

Similarly, we obtain the estimate (4.36).

4.2.2 L2 Error Estimate

We start by giving an L2-error estimate, which we will then generalized to an Lp–error

estimates, with p ≥ 2. We assume here that E[‖Z‖2] < ∞, and then give an upper

bound for

E[ sup
0≤t≤T

‖X(s)−Xε(s)‖2]. (4.42)
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From (4.28) and (4.29), we have that

X(t)−Xε(t) =

∫ t

0

[b1(X(s))− b1(Xε(s))] ds

+

∫ t

0

∫
Rd

[h(X(s−))− h(Xε(s−))] zÑ(dz, ds) (4.43)

+

∫ t

0

∫
Rd
h(Xε(s−))zÑε(dz, ds)−

∫ t

0

h(Xε(s))Σ1/2
ε dB(s).

Let

e(t) = E
[

sup
0≤s≤t

‖X(s)−Xε(s)‖2

]
. (4.44)

It follows from the Cauchy-Schwartz inequality that

e(t) ≤ 4 (e1(t) + e3(t) + e4(t) + e5(t)) , (4.45)

where

e1(t) = E

[
sup

0≤s≤t

∥∥∥∥∫ s

0

[b1(X(u))− b1(Xε(u))] du

∥∥∥∥2
]

e2(t) = E

[
sup

0≤s≤t

∥∥∥∥∫ s

0

∫
Rd

[h(X(u−))− h(Xε(u−))] zÑ(dz, du)

∥∥∥∥2
]

(4.46)

e3(t) = E

[
sup

0≤s≤t

∥∥∥∥∫ s

0

∫
Rd
h(Xε(u−))zÑε(dz, du)

∥∥∥∥2
]

e4(t) = E

[
sup

0≤s≤t

∥∥∥∥∫ s

0

h(Xε(u))Σ1/2
ε dB(u)

∥∥∥∥2
]
.

Lemma 4.3.2. Let ej(t), j = 1, 2, 3, 4 be given by (4.46). Then the following

estimates hold

ej(t) ≤ Cj

∫ t

0

e(s)ds for, j = 1, 2,

ej(t) ≤ Cjtrace(Σε), for j = 3, 4, (4.47)
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for some positive constants Cj, j = 1, 2, 3, 4, where Cj, j = 3, 4 does not depend on ε.

Proof. By Cauchy-Schwarz inequality, (4.32), and Lemma 4.3.1, it follows that

e1(t) ≤ K1t

∫ t

0

E
[

sup
0≤u≤s

‖X(u)−Xε(u)‖2

]
ds ≤ C1

∫ t

0

e(s)ds. (4.48)

Now by Doob’s inequality, (4.3), (4.6) and by Lemma 4.3.1, it follows that

e2(t) ≤ C2E
[∫ t

0

‖X(s)−Xε(s)‖2ds

]
. (4.49)

for some positive constant C2. Therefore

e2(t) ≤ C2

∫ t

0

e(s)ds. (4.50)

Again by Doob’s inequality and Lemma 4.3.1, we get that

e3(t) ≤ k1E
[∫ t

0

∫
Rd
‖Xε(s)‖2‖z‖2νε(dz)ds

]
≤ k1

∫
Rd
‖z‖2νε(dz)

∫ t

0

E
[

sup
0≤u≤s

‖Xε(u)‖2

]
ds (4.51)

≤ Ck1trace (Σε) = C3trace (Σε)

Similarly,

e4(t) ≤ C4trace (Σε) . (4.52)

Therefore

ej(t) ≤ Cj

∫ t

0

e(s)ds, for j = 1, 2, (4.53)
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and

ej(t) ≤ Cjtrace (Σε) , for j = 3, 4. (4.54)

Proposition 4.2.1. Let X and Xε be the unique solutions of (4.4) and (4.27)

respectively. Then the following estimate holds

E
[

sup
0≤t≤T

‖X(t)−Xε(t)‖2

]
≤ Ctrace(Σε) (4.55)

for some positive constants C which does not depend on ε.

Proof. By (4.45 ), Lemma 4.3.2 and Proposition 4.1.2, it follows that

e(t) ≤ C4trace (Σε) + C3

∫ t

0

e(s)ds. (4.56)

Therefore by Gronwall’s inequality, we obtain e(T ) ≤ C4e
C3T trace(Σε) = Ctrace(Σε).

Corollary 4.3.1. For each T > 0, and A > 0,

lim
ε→0

P

(
sup
t∈[0,T ]

‖X(t)−Xε(t)‖ > A

)
= 0 (4.57)

Proof. Indeed, let A > 0. Then

P

(
sup
t∈[0,T ]

‖X(t)−Xε(t)‖ > A

)
≤ 1

A2
E
[

sup
0≤t≤T

‖X(t)−Xε(t)‖2

]
(4.58)

≤ C

A2
trace(Σε)→ 0 as ε→ 0.
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4.2.3 Lp Error Estimate

We will now generalize Proposition 4.2.1. To this effect, we assume that the driving

process Z has moments of order p ≥ 2, then give an upper bound for

E
[

sup
0≤t≤T

‖X(t)−Xε(t)‖p
]
. (4.59)

Proposition 4.2.1 will then become a special case of Theorem 4.4 with p = 2.

Theorem 4.4. Let X and Xε be the unique solutions of (4.4) and (4.27) respectively.

Then for p ≥ 2 the following estimate holds

E
[

sup
0≤t≤T

‖X(t)−Xε(t)‖p
]
≤ C

∫
Rd
‖z‖pνε(dz), (4.60)

for some positive constants C which does not depend on ε.

Proof. From (4.43) and Theorem 4.3 we have that

E
[

sup
0≤t≤T

‖X(t)−Xε(t)‖p
]
≤ E

[∫ t

0

‖b1(X(s))− b1(Xε(s))‖p ds
]

+ E

[(∫ t

0

∫
Rd
‖h(X(s))− h(Xε(s))‖2 ‖z‖2ν(dz)ds

)p/2]

+ E
[∫ t

0

∫
Rd
‖h(X(s))− h(Xε(s))‖p ‖z‖pν(dz)ds

]
(4.61)

+ E

[(∫ t

0

∫
Rd
‖h(Xε(s))‖2 ‖z‖2νε(dz)ds

)p/2]

+ E
[∫ t

0

∫
Rd
‖h(Xε(s))‖p ‖z‖pνε(dz)ds

]
+ E

[(∫ t

0

‖h(Xε(s))‖2 ‖Σ1/2
ε ‖2ds

)p/2]
.
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By Jensen’s inequality, conditions (4.3) and (4.6), it follows that

E
[

sup
0≤t≤T

‖X(t)−Xε(t)‖p
]
≤ C

(
E
[∫ t

0

‖X(s)−Xε(s)‖p
]

+

∫
Rd
‖z‖pνε(dz)E

[∫ t

0

(1 + ‖Xε(s)‖p ds
])

, (4.62)

for some positive constant C. By Lemma 4.3.1, we obtain

E
[

sup
0≤t≤T

‖X(t)−Xε(t)‖p
]
≤ C1

(
E
[∫ t

0

‖X(s)−Xε(s)‖p
]
ds (4.63)

+C1(1 + ‖x‖p)
∫
Rd
‖z‖pνε(dz)

)

for some positive constant C1. Finally, by Gronwall’s inequality we obtain

E
[

sup
0≤t≤T

‖X(t)−Xε(t)‖p
]
≤ C

∫
Rd
‖z‖pνε(dz) (4.64)

Corollary 4.4.1. Let f defined on Rn be Lipschitz continuous with Lipschitz constant

Lf . Then for some positive constant C

|E [f(X(s))− f(Xε(s))]| ≤ C

(∫
Rd
‖z‖pνε(dz)

)1/p

(4.65)

Proof. From the Lipschitz continuity of f , Holder’s inequality and Theorem 4.4, it

follows that

|E [f(X(T ))− f(Xε(T ))]| ≤ LfE [‖X(s)−Xε(s)‖p]1/p E[1q]1/q (4.66)

≤ C

(∫
Rd
‖z‖pνε(dz)

)1/p

where q is such that 1/p+ 1/q = 1, with p, q ≥ 2.
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4.2.4 Weak Approximation

Here, we show that Xε approximates X in a weak sense, i.e., for a sufficiently smooth

function g, E [g(X(T ))− g(Xε(T ))] is “small”. We will assume that E[‖Z‖3] < ∞.

Let X(t) = X(s,x)(t) be the solution of (4.4) starting from x at time s, let u be given

by

u(t, x)
def
= E [g(X(T )) | X(t) = x] = E

[
g(X(t,x)(T ))

]
, (4.67)

where X is the solution of (4.4) with initial value x ∈ Rn. Since X is a Markov

process (see Remark 2.3.2(iv)), it follows that X has an infinitesimal generator L1

given by

(L1f)(t, x) =
∂

∂t
f(t, x) +

n∑
i=1

∂

∂xi
f(t, x)

(
bi(x) +

d∑
j=1

hij(x)aj

)

+

∫
‖z‖>1

[f(t, x+ h(x)z)− f(t, x)]ν(dz) (4.68)

+

∫
‖z‖≤1

[
f(t, x+ h(x)z)− f(t, x)−

n∑
i=1

∂

∂xi
f(t, x)

(
d∑
j=1

hij(x)zj

)]
ν(dz),

where f ∈ C2
0(Rd) (see [1], Theorem 6.7.3, pp. 407). In Lemma 4.6.2, we show that

u satisfies the following backwards Kolmogorov equation

∂u

∂t
(t, x) + L1u(t, x) = 0

u(T, x) = g(x). (4.69)

We now state a version of Ito’s formula that will be useful to us in this sequel. Let

the n-dimensional stochastic process Y = {Y (t) : t ≥ 0} be a Lévy-type stochastic
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integral of the form

Y (t) = Y (0) +

∫ t

0

G(s)ds+

∫ t

0

F (s)dB(s)

+

∫ t

0

∫
‖z‖≤1

H(z, s)Ñ(dz, ds) +

∫ t

0

∫
‖z‖>1

K(z, s)N(dz, ds), (4.70)

where G,F,H and K are such that the integrals are well defined. Here B is a

d-dimensional standard Brownian motion which is independent of the PRM N on

Rd
0 × R+ with compensated version Ñ and intensity measure ν, which is a Lévy

measure. See Chapter 4 of [1], for a detailed treatment of integrals of the form

(4.70).

Theorem 4.5 ([1], Theorem 4.4.7, pp. 226). If Y is as in (4.70), then for each

f ∈ C2(Rd), t ≥ 0, with probability one, we have

f(Y (t))− f(Y (0)) =
n∑
i=1

∫ t

0

∂

∂yj
f(Y (s−))dY j

c (s)

+
1

2

n∑
i=1

n∑
j=1

∫ t

0

∂

∂yi∂yj
f(Y (s−))d[Y j

c , Y
i
c ](s)

+

∫ t

0

∫
‖z‖>1

[f(Y (s−) +K(z, s))− f(Y (s−))]N(dz, ds) (4.71)

+

∫ t

0

∫
‖z‖≤1

[f(Y (s−) +H(z, s))− f(Y (s−))] Ñ(dz, ds)

+

∫ t

0

∫
‖z‖≤1

[
f(Y (s−) +H(z, s))− f(Y (s−)) +

n∑
i=1

H i(z, s)
∂

∂yi
f(Y (s−))

]
ν(dz)ds,

where Y j
c (s) and [Y i

c , Y
j
c ](s) denotes the continuous parts of Y j and the quadratic

variation process [Y i, Y j](s) respectively.

Theorem 4.6 ( [22], Theorem 2.9 ). Let f ∈ C1,2(Rd) and let L1 be the generator of

X the solution to (4.4). Then the process {M(t), t ≥ 0} given by

M(t) = f(t,X(t))− f(0, X(0))−
∫ t

0

{
∂f

∂s
(s,X(s)) + L1f(s,X(s)

}
ds (4.72)
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is a martingale.

The following result gives us bounds on the flow of the solution of the SDE (4.4).

Lemma 4.6.1. Assume that b, σ and h are in Cn
b , and that Z has moments of order

p, with p ≥ 2. Then

E

[
sup
[0,T ]

∣∣∣∣ ∂α∂xαX(t,x)(T )

∣∣∣∣p
]
<∞, (4.73)

for any multi-index α such that 0 < |α| ≤ n.

Proof. The proof follows from [29], Theorem 3.3, pp. 342. Here, we need to verify that

the coefficients b, σ and h and their derivatives are bounded and Hölder continuous,

which clearly follows from the assumptions imposed on b, σ and h.

Lemma 4.6.2. Assume that h, g ∈ Cn
b ([0, T ]×Rd), and that E [‖Z‖3] <∞. Then u

satisfies (4.69), u ∈ C1,n([0, T ] × Rd), and ∂αu/∂xα(t, x) are uniformly bounded for

any multi-index α such that 1 ≤ |α| ≤ n.

Proof. By the stationarity property of Lévy processes, it follow that, for any fixed

time T , X(s,x)(t) = X(0,x)(t − s) for 0 ≤ s ≤ t ≤ T . By Lemma 4.6.1, we can

interchange of the derivative and the expected value to obtain

∂u

∂xk
(t, x) = E

[
∂g

∂xj
(X(t,x)(T ))

∂

∂xk
X

(t,x)
j (T )

]
, (4.74)

for k = 1, 2, · · · , n. The other derivatives with respect to x are obtained by successive

differentiation under the expected value. The uniform boundedness follows from the

boundedness of g and Lemma 4.6.1. Next, we apply Itô’s formula to g(X(t,x)(T )) in

order to verify differentiation of u with respect to the time variable t. We will proof

this only for the one dimensional case, as the generalization to multi-dimensional case
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is straight forward. By Itô’s formula (Theorem 4.5), we get that

g(X(t)) = g(x) +

∫ t

0

g′(X(s))dXc(s)

+

∫ t

0

∫
|z|>1

[g(X(s−) + h(X(s)z)− g(X(s−))]N(dz, ds)

+

∫ t

0

∫
|z|≤1

[g(X(s−) + h(X(s)z)− g(X(s−))] Ñ(dz, ds) (4.75)

+

∫ t

0

∫
|z|≤1

[g(X(s−) + h(X(s)z)− g(X(s−))− g′(X(s−))h(X(s))z] ν(dz)ds.

Replacing dXc(s) by its value and taking expectation we obtain

E [g(X(t))] = g(x) +

∫ t

0

E [g′(X(s))b1(X(s))] ds

+

∫ t

0

E
[∫
|z|>1

[g(X(s−) + h(X(s)z)− g(X(s−))] ν(dz)

]
ds (4.76)

+

∫ t

0

E
[∫
|z|≤1

[g(X(s−) + h(X(s)z)− g(X(s−))− g′(X(s−))h(X(s))z] ν(dz)

]
ds.

Taking derivatives with respect to t obtain

∂E [g(X(t))]

∂t

= E [g′(X(t))b1(X(t))] + E
[∫
|z|>1

[g(X(t−) + h(X(t)z)− g(X(t−))] ν(dz)

]
+ E

[∫
|z|≤1

[g(X(t−) + h(X(t)z)− g(X(t−))− g′(X(t−))h(X(t))z] ν(dz)

]
= E

[
g′(X(t))b1(X(t)) +

∫
|z|>1

g′(X(t−))h(X(t))zν(dz)

]
(4.77)

+ E
[∫

R
[g(X(t−) + h(X(t)z)− g(X(t−))− g′(X(t−))h(X(t))z] ν(dz)

]
= E [g′(X(t))b1(X(t)) + ν{|z| > 1}g′(X(t−))h(X(t))]

+ E
[∫

R
[g(X(t−) + h(X(t)z)− g(X(t−))− g′(X(t−))h(X(t))z] ν(dz)

]
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By Taylor’s expansion, it follows that

∂E [g(X(t))]

∂t

= E [g′(X(t))b1(X(t)) + ν{|z| > 1}g′(X(t−))h(X(t))]

+ E
[∫

R

[∫ 1

0

(1− u)(h(X(t))z)2g′′(X(t−) + uh(X(t)))du

]
ν(dz)

]
(4.78)

Since b1 and h are Lipchitz g′′ is bounded, it follows that∣∣∣∣∂E [g(X(t))]

∂t

∣∣∣∣ ≤ C
(
E [1 + |X(t)|] + E

[
1 + |X(t)|2

])
(4.79)

for some positive constant C. The boundedness of ∂E [g(X(t))] /∂t follows from

Lemma 4.3.1. Next, we verify that (4.69) holds. This follows from an application of

Theorem 4.5 on the function u(t,X(t)).

Corollary 4.6.1. Let g and u be as in (4.67). Then,

E [u(T,X(T ))− u(0, X(0))] = 0. (4.80)

Proof. The proof follows from Theorem 4.6 and Lemma 4.6.2. Indeed, let u(t, x) =

f(t, x) in Theorem 4.6. Then we have that

M(T ) = u(T,X(T ))− u(0, x)−
∫ T

0

{
∂f

∂s
(s,X(s)) + L1f(s,X(s)

}
ds. (4.81)

Taking the expected value of both sides and applying Lemma 4.6.2 we obtain

E [M(T )] = E [u(T,X(T ))− u(0, X(0))]− E
[∫ T

0

∂u

∂s
(s,X(s)) + L1u(s,X(s)ds

]
= E [u(T,X(T ))− u(0, X(0))]−

∫ T

0

E
[
∂u

∂s
(s,X(s)) + L1u(s,X(s)ds

]
= E [u(T,X(T ))− u(0, X(0))]
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But E [M(T )] = E [M(0)] = 0 since M is a martingale, and the result follows.

Lemma 4.6.3. Let g, h ∈ C3
b (Rn). and assume that E [‖Z‖3] <∞. Let u be defined

as in (4.67). Then the following estimate holds,

|E [u(t,Xε(t))− u(0, X(0))]| ≤ C

∫
Rd
‖z‖3νε(dz) (4.82)

for some positive constant C which does not depend on ε.

Proof. In the proof, we will omit the summation sign to simplify notation. We are

going to divide the proof into seven parts.

Step 1: By Theorem 4.5, Lemmas 4.3.1 and Lemma 4.6.2, we have that

u(t,Xε(t))− u(0, Xε(0)) =

∫ t

0

∂u

∂s
(s,Xε(s))ds+

∫ t

0

∂u

∂xi
(s,Xε(s))bi(Xε(s))ds

+

∫ t

0

∂u

∂xi
(s,Xε(s))hij(X

ε(s))ajεds

+

∫ t

0

∂u

∂xi
(s,Xε(s))hik(X

ε(s))
(

Σ
1
2
ε

)
kj
dBj(s) (4.83)

+
1

2

∫ t

0

∂2u

∂xixj
(s,Xε(s))hik(X

ε(s)) (Σε)kl hjl(X
ε(s))ds

+

∫ t

0

∫
Rd
u(s,Xε(s−) + h(Xε(s))z)− u(s,Xε(s−))N ε(dz, ds)
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Step 2: By Lemma 4.6.2 and the martingale property of Brownian integrals, we take

the expected value of both sides in Step 1 to obtain

E [u(t,Xε(t))− u(0, Xε(t))]

= E
[∫ t

0

∂u

∂s
(s,Xε(s))ds

]
+ E

[∫ t

0

∂u

∂xi
(s,Xε(s))hij(X

ε(s))ajεds

]
(4.84)

+ E
[∫ t

0

∂u

∂xi
(s,Xε(s))bi(Xε(s))ds

]
+ E

[
1

2

∫ t

0

∂2u

∂xixj
(s,Xε(s))hik(X

ε(s)) (Σε)kl hjl(X
ε(s))ds

]
+ E

[∫ t

0

∫
Rd
u(s,Xε(s−) + h(Xε(s))z)− u(s,Xε(s−))νε(dz)ds

]

Step 3: Recall, the expression for aε in (4.15):

ajε = aj +

∫
‖z‖>1

zjνε(dz)−
∫
‖z‖≤1

zjνε(dz). (4.85)

We can then rewrite

E
[∫ t

0

∂u

∂xi
(s,Xε(s))hij(X

ε(s))ajεds

]
(4.86)

the second expectation after the equal sign in (4.84) as follows

E
[∫ t

0

∂u

∂xi
(s,Xε(s))hij(X

ε(s))ajεds

]
= E

[∫ t

0

∂u

∂xi
(s,Xε(s))hij(X

ε(s))ajds

]
(4.87)

+ E
[∫ t

0

∫
‖z‖>1

∂u

∂xi
(s,Xε(s)hij(X

ε(s−))zjνε(dz)ds

]
− E

[∫ t

0

∫
|z|≤1

∂u

∂xi
(s,Xε(s)hij(X

ε(s−))zjνε(dz)ds

]
,
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so that

E
[∫ t

0

∂u

∂xi
(s,Xε(s))hij(X

ε(s))ajds

]
+ E

[∫ t

0

∂u

∂xi
(s,Xε(s))bi(Xε(s))ds

]
(4.88)

= E
[∫ t

0

∂u

∂xi
(s,Xε(s))b1(Xε(s))ds

]
,

where b1(x) = b(x) + h(x)a. Thus, (4.84) becomes

E [u(t,Xε(t))− u(0, Xε(t))] = E
[∫ t

0

∂u

∂s
(s,Xε(s))ds

]
+ E

[∫ t

0

∂u

∂xi
(s,Xε(s))bi1(Xε(s))ds

]
+ E

[∫ t

0

∫
‖z‖>1

∂u

∂xi
(s,Xε(s)hij(X

ε(s−))zjνε(dz)ds

]
− E

[∫ t

0

∫
|z|≤1

∂u

∂xi
(s,Xε(s)hij(X

ε(s−))zjνε(dz)ds

]
(4.89)

+ E
[

1

2

∫ t

0

∂2u

∂xixj
(s,Xε(s))hik(X

ε(s)) (Σε)kl hjl(X
ε(s))ds

]
+ E

[∫ t

0

∫
Rd
u(s,Xε(s−) + h(Xε(s))z)− u(s,Xε(s−))νε(dz)ds

]
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Step 4: We now in introduce the generator L1 in to (4.89) to obtain

E [u(t,Xε(t))− u(0, x)]

= E
[∫ t

0

∂u

∂s
(s,Xε(s)) + L1u(s,Xε(s))ds

]
+ E

[
1

2

∫ t

0

∂2u

∂xixj
(s,Xε(s))hik(X

ε(s)) (Σε)kl hjl(X
ε(s))ds

]
+ E

[∫ t

0

∫
‖z‖>1

∂u

∂xi
(s,Xε(s)hij(X

ε(s−))zjνε(dz)ds

]
− E

[∫ t

0

∫
|z|≤1

∂u

∂xi
(s,Xε(s)hij(X

ε(s−))zjνε(dz)ds

]
(4.90)

+ E
[∫ t

0

∫
Rd
u(s,Xε(s−) + h(Xε(s))z)− u(s,Xε(s−))νε(dz)ds

]
− E

[∫ t

0

∫
‖z‖>1

u(s,Xε(s−) + h(Xε(s))z)− u(s,Xε(s−))ν(dz)ds

]
− E

[∫ t

0

∫
‖z‖≤1

u(s,Xε(s−) + h(Xε(s))z)− u(s,Xε(s−))

− ∂u

∂xi
(s,Xε(s))hij(X

ε(s−))zjν(dz)ds

]

Step 5: Here, we replace Σε by its value (4.13), to obtain

E [u(t,Xε(t))− u(0, Xε(0))]

= E
[

1

2

∫ t

0

∂2u

∂xixj
(s,Xε(s))hik(X

ε(s))(Σε)klhjl(X
ε(s))ds

]
− E

[∫ t

0

∫
Rd
u(s,Xε(s−) + h(Xε(s))z)− u(s,Xε(s−))

− ∂u
∂xi

(s,Xε(s))hij(X
ε)zjνε(dz)ds

]
= E

[
1

2

∫ t

0

∫
Rd

∂2u

∂xixj
(s,Xε(s))hik(X

ε(s))zkzlhjl(X
ε(s))νε(dz)ds

]
− E

[∫ t

0

∫
Rd
u(s,Xε(s−) + h(Xε(s))z)− u(s,Xε(s−)) (4.91)

− ∂u
∂xi

(s,Xε(s))hij(X
ε(s))zjνε(dz)ds

]
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Step 6: Next, we let

M = u(s,Xε(s−) + h(Xε(s))z)− u(s,Xε(s−))− ∂u

∂xi
(s,Xε(s))hij(X

ε)zj

− 1

2

∂2u

∂xixj
(s,Xε(s))hik(X

ε(s))zkzlhjl(X
ε(s)). (4.92)

By Taylor’s expansion, we obtain

M =
1

6

∂3u

∂xixj∂xk
(s,Xε(s−) + θh(Xε(s)z))hil(X

ε(s))hjm(Xε(s))hkn(Xε(s))zlzmzn

(4.93)

with θ ∈ (0, 1). It follows from Lemma 4.6.2 and the Lipschitz continuity of h that

there exists a positive constant C such that

E [|M |] ≤ C
(
E
[
‖h(Xε(s))‖3

])
‖z‖3

≤ C
(
E
[
1 + ‖Xε(s−)‖3

])
‖z‖3

≤ C
(
1 + ‖x‖3

)
‖z‖3.

Thus ∣∣∣∣E [−∫ t

0

∫
Rd
Mνε(dz)ds

]∣∣∣∣
≤ CE

[∫ t

0

∫
Rd

(
1 + ‖x‖3

)
‖z‖3νε(dz)ds

]

Step 7: Combining Step 1, Step 2, Step 3, Step 4, Step 5 and Step 6, and

invoking Lemma 4.3.1, Corollary 4.6.1, and Fubbini’s theorem we obtain

|E [g(X(T ))− g(Xε(T ))]| ≤ C

∫
Rd
‖z‖3νε(dz),

and the result follows.
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We now state and proof the main result for this section.

Theorem 4.7. Let g, h ∈ C3
b (Rd), k = 1, 2, 3 and assume that E [‖Z‖3] < ∞. Then

the following estimate holds,

|E [g(X(T ))− g(Xε(T ))]| ≤ C

∫
Rd
‖z‖3νε(dz) (4.94)

for some positive constant C which does not depend on ε.

Proof. By Corollary 4.6.1 and Lemma 4.6.3 it follows that

|E [g(X(T ))− g(Xε(T ))]| = |E [u(0, X(0))− g(Xε(T ))] |

= |E [u(0, X(0))− u(T,Xε(T ))] | (4.95)

≤ C

∫
Rd
‖z‖3νε(dz).

4.2.5 Convergence Results for Strong and Weak Numerical

Schemes

Here, we give error bounds for numerical approximations of the solution X of (4.4).

Before establishing these error estimates, we have the following remark.

Remark 4.2.1. For each fixed ε ∈ (0, 1), the SDE

Xε(t) = x+

∫ t

0

b1(Xε(s))ds+

∫ t

0

h(Xε(s))Σ1/2
ε dB(s)

+

∫ t

0

∫
Rd
h(Xε(s−))zÑ ε(dz, ds), (4.96)

is a jump-diffusion SDE which is a special case of (3.4), with b1(x) = b(x) + h(x)ã,

σ(x) = h(x)Σ
1/2
ε , G(x, z) = h(x)z, E = Rd, and the Lévy measure is νε.
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Theorem 4.8. For a given γ ∈ {0.5, 1, 1.5, · · · } and a fixed ε ∈ (0, 1), let Y =

{Y (t); t ∈ [0, T ]} be the strong order γ Taylor approximation defined in (3.32) of the

solution Xε of equation (4.96), corresponding to a time discretization (t)∆ with a

maximum step size ∆ ∈ (0, 1). Further, assume that the coefficient functions b and

h are 2(γ + 1) times continuously differentiable, uniformly bounded, with uniformly

bounded derivatives. Then the following estimate holds

E
[
‖X(T )− Y (T )‖2] ≤ C

(
trace(Σε) + ∆2γ

)
(4.97)

for some positive constant C.

Proof. By the triangle inequality and Theorem 4.2.1., we have that

E
[
‖X(T )− Y (T )‖2

]
≤ 2

(
E
[
‖X(T )−Xε(T )‖2

]
+ E

[
‖Xε(T )− Y (T )‖2

])
≤ C1trace(Σε) + E

[
‖Xε(T )− Y (T )‖2

]
(4.98)

But by Remark 4.2.1 and Theorem 3.2, we have that

E
[
‖Xε(T )− Y (T )‖2

]
≤ C2∆2γ. (4.99)

for some positive constant C2. Combining (4.98) and (4.99), we obtain

E
[
‖X(T )− Y (T )‖2] ≤ C

(
trace(Σε) + ∆2γ

)
(4.100)

for some positive constant C.

Theorem 4.9. For a given β ∈ {1, 2, · · · } and a fixed ε ∈ (0, 1), let Y =

{Y (t) : t ∈ [0, T ]} be the weak order β Taylor approximation defined in (3.34) of the

solution Xε of equation (4.96), corresponding to the regular time discretization (t)∆

with maximum step size ∆ ∈ (0, 1). Further, we suppose that b, σ,G ∈ C2(β+1),
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Lipschitz continuous and uniformly bounded. Then the following estimate holds

|E [g(X(T ))− g(Y (T ))]| ≤ C

(∫
Rd
‖z‖3νε(dz) + ∆β

)
(4.101)

for some positive constant C which does not depend on ε.

Proof. By the Triangle inequality, Theorem 3.3 and Theorem 4.9 we get

|E [g(X(T ))− g(Y (T ))]| (4.102)

≤ |E [g(X(T ))− g(Xε(T ))]|+ |E [g(Xε(T ))− g(Y (T ))]|

≤ C

(∫
Rd
‖z‖3νε(dz) + ∆β

)

for some positive constant C.

4.3 A More General Model

4.3.1 Formulation

Here, we consider the following stochastic process Y = {Y (t) : t ≥ 0}, the solution

to the SDE

Y (t) = x+

∫ t

0

b(Y (s))ds+

∫ t

0

σ(Y (s))dW (s) +

∫ t

0

h(Y (s−))dZ(s), t ∈ [0, T ]

(4.103)

where Z is as in (4.2) and W = {W (t) : t ≥ 0} is a d-dimensional Brownian motion

which is independent of Z. Further, we assume that σ : Rn → Rn×d is a Lipschitz

continuous function, with b and h are as in (4.4). By the Lévy-Ito decomposition, we
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can rewrite (4.103) as follows

Y (t) = x+

∫ t

0

b(Y (s))ds+

∫ t

0

h(Y (s))ads+

∫ t

0

σ(Y (s))dW (s)

+

∫ t

0

∫
‖z‖≤1

h(Y (s−))zÑ(dz, ds) +

∫ t

0

∫
‖z‖>1

h(Y (s−))zN(dz, ds) (4.104)

Let Zε be the Lévy process given by (4.23), and consider the following SDE

Y ε(t) = x+

∫ t

0

b(Y ε(s))ds+

∫ t

0

h(Y ε(s))aεds+

∫ t

0

σ(Y ε(s))dW (s)

+

∫ t

0

h(Y ε(s))Σ1/2
ε dB(s) +

∫ t

0

∫
Rd
h(Y ε(s−))zN ε(dz, ds) (4.105)

By Theorem 2.6, equations (4.104) and (4.105) have uniques solutions due to the

assumptions of Lipschitz continuity on the coefficient functions.

4.3.2 Lp Error Estimate

We assume here that E[‖Z‖p] <∞, p ≥ 2. Then (4.104) and (4.105) can be rewritten

as

Y (t) = x+

∫ t

0

b1(Y (s))ds+

∫ t

0

σ(Y (s))dW (s) +

∫ t

0

∫
Rd
h(Y (s−))zÑ(dz, ds),

(4.106)

and

Y ε(t) = x+

∫ t

0

b1(Y ε(s))ds+

∫ t

0

σ(Y ε(s))dW (s) +

∫ t

0

h(Y ε(s))Σ1/2
ε dB(s) (4.107)

+

∫ t

0

∫
Rd
h(Y ε(s−))zÑ ε(dz, ds), (4.108)
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where b1(x) = b(x) + h(x)ã. Observe that

M2(t) =

∫ t

0

σ(Y ε(s))dW (s) +

∫ t

0

h(Y ε(s))Σ1/2
ε dB(s) (4.109)

is a martingale, so we can apply Burkholder’s inequality to the expectation

E
[
sup0≤s≤t ‖M(s)‖p

]
, for p ≥ 1.

Corollary 4.9.1. In the above setting, it holds that

E
[

sup
0≤t≤T

‖Y (s)‖p
]
≤ C1 (1 + ‖x‖p) , p ≥ 2, (4.110)

and

E
[

sup
0≤t≤T

‖Y ε(s)‖p
]
≤ C2 (1 + ‖x‖p) , p ≥ 2, (4.111)

for some positive constants C1, and C2 which do not depend on ε.

The proof technique is in the same lines as the proof of Corollary 4.9.2, so we omit

it. From (4.106) and (4.108) we obtain

Y (t)− Y ε(t)

=

∫ t

0

[b1(Y (s))− b1(Y ε(s))] ds+

∫ t

0

[σ(Y (s))− σ(Y ε(s))] dW (s)

+

∫ t

0

∫
Rd

[h(Y (s−))− h(Y ε(s−))] zÑ(dz, ds) (4.112)

+

∫ t

0

∫
Rd
h(Y ε(s−))zÑε(dz, ds)−

∫ t

0

h(Y ε(s))Σ1/2
ε dB(s).

Corollary 4.9.2. Let Y and Y ε be the unique solutions of (4.104) and (4.105)

respectively. Then for p ≥ 2 the following estimate holds

E
[

sup
0≤t≤T

‖Y (t)− Y ε(t)‖p
]
≤ C

∫
Rd
‖z‖pνε(dz) (4.113)

for some positive constants C which does not depend on ε.
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Proof. Let

Y1(t)− Y ε
1 (t) =

∫ t

0

[b1(Y (s))− b1(Y ε(s))] ds

+

∫ t

0

∫
Rd

[h(Y (s−))− h(Y ε(s−))] zÑ(dz, ds) (4.114)

+

∫ t

0

∫
Rd
h(Y ε(s−))zÑε(dz, ds)−

∫ t

0

h(Y ε(s))Σ1/2
ε dB(s).

Then Y (t)− Y ε(t) can be written as

Y (t)− Y ε(t) = Y1(t)− Y ε
1 (t) +

∫ t

0

[σ(Y (s))− σ(Y ε(s))] dW (s). (4.115)

But,

E
[

sup
0≤t≤T

‖Y (t)− Y ε(t)‖p
]
≤ C

(
E
[

sup
0≤t≤T

‖Y1(t)− Y ε
1 (t)‖p

]
E
[

sup
0≤t≤T

∥∥∥∥∫ t

0

[σ(Y (s))− σ(Y ε(s))] dW (s)

∥∥∥∥p]) . (4.116)

for some positive constant C. By Theorem 4.4, we have that that

E
[

sup
0≤t≤T

‖Y1(t)− Y ε
1 (t)‖p

]
≤ C3

∫
Rd
‖z‖pνε(dz), (4.117)

for some positive constant C3. By Burkholder’s inequality, Jensen’s inequality and

the Lipschitz continuity of σ, it follows that

E
[

sup
0≤s≤t

∥∥∥∥∫ t

0

[σ(Y (r))− σ(Y ε(r))] dW (r)

∥∥∥∥p] ≤ C4E
[∫ t

0

‖Y (s)− Y ε(s)‖p ds
]

(4.118)
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for some positive constant C4. Combining (4.114), (4.115), (4.116), (4.117), (4.118)

and applying Gronwall’s inequality we obtain

E
[

sup
0≤t≤T

‖Y (t)− Y ε(t)‖p
]
≤ C

∫
Rd
‖z‖pνε(dz). (4.119)

for some positive constant C which does not depend on ε.

4.3.3 Weak Estimate

Next, we consider the weak error E [g(Y (T ))− g(Y ε(T )] for some smooth function g.

Define the function uY as follows

uY (t, x)
def
= E [g(Y (T )) | Y (t) = x] , (4.120)

where Y is the solution of (4.104) with initial value x ∈ Rn. Observe again that Y

is a Markov process (see Remark 2.3.2(iv)) with infinitesimal generator L2. In this

case, L2 is given by

(L2f)(t, x) =
∂

∂t
f(t, x) +

n∑
i=1

∂

∂xi
f(t, x)bi1(x) + (L∆f) (t, x)

+

∫
‖z‖>1

[f(t, x+ h(x)z)− f(t, x)]ν(dz) (4.121)

+

∫
‖z‖≤1

[
f(t, x+ h(x)z)− f(t, x)−

n∑
i=1

∂

∂xi
f(t, x)

(
d∑
j=1

hij(x)zj

)]
ν(dz),

= (L1f)(t, x) + (L∆f)(t, x)

where

(L∆f) (t, x) =
1

2

n∑
i,j=1

∂2

∂xi∂xj
f(t, x)σij(x) (4.122)
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and f ∈ C2
0(Rd) (see [1], Theorem 6.7.3, pp. 407). The only difference between L1 and

L2 is the inclusion of the Laplace operator L∆. uY satisfies the following backwards

Kolmogorov equation

∂uY
∂t

(t, x) + L1uY (t, x) = 0. (4.123)

uY (T, x) = g(x),

We have the following result which is a corollary to Theorem 4.7.

Corollary 4.9.3. Let g, h ∈ C3
b (Rd), and assume that E [‖Z‖3] < ∞. Then the

following estimate holds,

|E [g(Y (T ))− g(Y ε(T ))]| ≤ C

∫
Rd
‖z‖3νε(dz) (4.124)

for some positive constant C which does not depend on ε.

Proof. With an application of Itô’s formula we get

u(t, Y ε(t))− u(0, Y ε(0))

=

∫ t

0

∂uY
∂s

(s, Y ε(s))ds+

∫ t

0

∂u

∂yi
(s, Y ε(s))bi(Xε(s))ds

+

∫ t

0

∂uY
∂yi

(s, Y ε(s))hij(Y
ε(s))ajεds

+

∫ t

0

∂uY
∂yi

(s, Y ε(s))hik(Y
ε(s))

(
Σ

1
2
ε

)
kj
dBj(s)

+

∫ t

0

∂uY
∂yi

(s, Y ε(s))σij(Y
ε(s))dWj(s) (4.125)

+
1

2

∫ t

0

∂2uY
∂yiyj

(s, Y ε(s))hik(Y
ε(s)) (Σε)kl hjl(Y

ε(s))ds

+
1

2

∫ t

0

∂2uY
∂yiyj

(s, Y ε(s))σij(Y
ε(s))ds

+

∫ t

0

∫
Rd
u(s, Y ε(s−) + h(Y ε(s))z)− u(s, Y ε(s−))N ε(dz, ds)
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The difference here with Step 1 in the proof of Lemma 4.6.3 is the inclusion of the

terms

∫ t

0

∂uY
∂yi

(s, Y ε(s))σij(Y
ε(s))dWj(s) (4.126)

and

1

2

∫ t

0

∂2uY
∂yiyj

(s, Y ε(s))σij(Y
ε(s))ds (4.127)

with Xε replaced by Y ε. Observe that if we take the expected value of both sides in

(4.125) then (4.126) vanishes. (4.127) will be absorbed into the generator L1 in Step

4 in the proof Lemma 4.6.3 to give us L2 . The rest of the proof (Step 5–Step 7) is

the same as the proof of Lemma 4.3.1.

Remark 4.3.1. For each fixed ε ∈ (0, 1) we define the new Brownian motion B1 by

B1(t) = W (t) + Σ
1/2
ε B(t), and σ1(x) = (σ(x), h(x)) then (4.108) becomes

Y ε(t) = x+

∫ t

0

b1(Y ε(s))ds+

∫ t

0

σ1(Y ε(s))dB1(s) +

∫ t

0

∫
Rd
h(Y ε(s−))zÑ ε(dz, ds)

(4.128)

which is a jump-diffusion SDE of the form (4.96). Thus we have strong and weak

numerical schemes for (4.128) with corresponding convergence results as in Theorem

4.8 and Theorem 4.9.
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Chapter 5

Numerical Experiment

5.1 The SDE Considered for the Numerical Ex-

periment

For our numerical experiment, we will consider the Doléans-Dade exponential. Here,

we simulate the sample paths of the “exact” solution using series representation (see

Theorem 2.5) of the driving process. Next, we simulate the sample path of the jump-

diffusion using regular Euler scheme, jump-adapted Euler scheme and the strong

order–1 schemes respectively. Lastly, we give some numerical error estimates.

5.1.1 Set–Up of Simulation Example

We consider the Doléans-Dade exponential given in Example 2.3.2. Let X be the

unique solution to the SDE

dX(t) = X(t−)dZ(t), X(0) = x, t ∈ [0, T ], (5.1)
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where Z is an infinite activity Lévy process with Lévy triplet (a, 0, ν). Then the exact

solution is given by

X(t) = eZ(t)
∏

0≤s≤t

(1 + ∆Z(s)) e−∆Z(s). (5.2)

Let ε ∈ (0, 1] be arbitrary. The corresponding jump-diffusion equation Xε is given

by

Xε(t) = x+

∫ t

0

Xε(s)aεds+

∫ t

0

Xε(s)σεdB(s) +

∫ t

0

∫
|z|>ε

Xε(s−)zN(dz, ds), (5.3)

where,

aε = a−
∫
ε<|z|≤1

zν(dz). (5.4)

We denote by τ ε1 , τ
ε
2 , · · · , τ εNε(T ), the jump times generated by the PRM N ε(dz, ds)

with corresponding jumps (or marks) V1, V2, · · · , VNε(T ), where,

N ε(t) = N({z : |z| > ε} × [0, t]), (5.5)

for t ∈ [0, 1], is a Poisson process with parameter λεt. We note that N ε(t) counts the

number of jumps in [0, t] that are greater than ε in magnitude. Also note that, by

Theorem 2.3

λε = ν{z : |z| > ε} <∞. (5.6)

With this set-up, the exact solution of (5.3) is given by

Xε(t) = e

(
(aε−

σ2ε
2

)t+σεB(t)

)
Nε(t)∏
k=1

(1 + Vk) (5.7)
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Next, we let the driving process Z be an exponentially tempered α-stable (TαS)

process with Lévy triplet (0, ν, 0) where ν is given by

ν(dz) =

(
e−|z|

|z|1+α
1(−∞,0) +

e−z

z1+α
1(0,∞)

)
dz, α ∈ (0, 2). (5.8)

In this case, the drift aε is equal to 0. Indeed,

aε = 0−
∫
ε<|z|≤1

zν(dz)

= −
(∫ −ε
−1

z
ez

(−z)1+α
dz +

∫ 1

ε

z
e−z

z1+α
dz

)
(5.9)

= −
(∫ 1

ε

−z e
−z

z1+α
dz +

∫ 1

ε

z
e−z

z1+α
dz

)
= 0.

The variance σ(ε)2 = σ2
ε of the small jumps is

σ2
ε =

∫
|z|≤ε

z2ν(dz),

=

∫ 0

−ε
z2 ez

(−z)1+α
dz +

∫ ε

0

z2 e
−z

z1+α
dz, (5.10)

= 2

∫ ε

0

z1−αe−zdz.

By Theorem A.3, we obtain

σ2
ε ∼

2

2− α
ε2−α, (5.11)

from which it follows that

σε ∼
(

2

2− α

) 1
2

ε1−
α
2 . (5.12)
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Therefore the jump-diffusion approximation Xε is given by

Xε(t) = 1 +

∫ t

0

Xε(s)σεdB(s) +

∫ t

0

∫
|z|>ε

Xε(s)zN(dz, ds), (5.13)

with exact solution

Xε(t) = e

(
−σ

2
ε
2
t+σεB(t)

)
Nε(t)∏
k=1

(1 + Vk), (5.14)

with σε is given by (5.12).

Remark 5.1.1.

The sample paths of the driving process Z and Zεare simulated using series repre-

sentation (see Algorithm 2, in Example 2.2.4), which is then used to construct the

sample paths of X and Xε respectively.

5.1.2 Euler Scheme

We now construct the Euler scheme for (5.13). Let T = 1, and 0 = t0 < t1 <

· · · , tn = 1, be an equidistant discretization of the interval [0, 1]. That is tn = n∆,

for n ∈
{

0, 1, · · · , 1
∆

}
, where ∆ ∈ (0, 1) is the time step. The Euler scheme is given

by

Y (tn+1) = Y (tn) + σεY (tn)∆Bn +

∫ tn+1

tn

∫
|z|>ε

Y (tn)zN(dz, ds)

= Y (tn)

1 + σε∆Bn +

Nε(tn+1)∑
k=Nε(tn)+1

Vk

 (5.15)

for n ∈ {0, 1, · · · , n1 − 1} with initial value Y0 = 1 with n1 given by (3.45).
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5.1.3 Jump-Adapted Euler Scheme

Let 0 = τ0 < τ1 < · · · , τn1 = 1 be an equidistant discretization of [0, 1], and

let τ ε1 , τ
ε
2 , · · · , τ εNε(T ), be the jump times of Zε. Consider the jump-adapted time

discretization

{t0, t1, · · · , tN1} = {τ0, τ1, · · · , τn1} ∪
{
τ ε1 , τ

ε
2 , · · · , τ εNε(1)

}
. (5.16)

where N1 = n1 +N ε(1). On this time discretization the jump-adapted Euler scheme

is given by

Y (tn+1−) = Y (tn)(1 + σε∆Bn), (5.17)

and

Y (tn+1) =

Y (tn)(1 + σε∆Bn)
(
1 + VNε(tn+1)

)
, if tn+1 is a jump time

Y (tn)(1 + σε∆Bn), if tn+1 is not a jump time.

(5.18)

5.1.4 Strong Jump-Adapted Order-One Scheme

A strong jump-adapted order-one approximation is given by

Y (tn+1) =

{
Y (tn)(1 + σε∆Bn +

σ2
ε

2

(
∆B2

n −∆n

)
)
(
1 + VNε(tn+1)

)
, if tn+1 is a jump time

Y (tn)(1 + σε∆Bn +
σ2
ε

2

(
∆B2

n −∆n

)
), if tn+1 is not a jump time,

(5.19)

where

Y (tn+1−) = Y (tn)

(
1 + σε∆Bn +

σ2
ε

2

(
(∆Bn)2 −∆n

))
. (5.20)
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Here, ∆ denotes the step size, ∆Bn = B(tn+1)−B(tn), ∆n = tn+1− tn and Y (tn+1−)

is the left limit of the process Y at tn+1. For other higher order schemes, see [26].

Before giving some error estimates, we display typical sample paths using the three

approximation schemes given above for α = 0.8 and α = 1.4.
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Figure 5.1: Simulated sample paths of an SDE driven by an exponentially tempered
α–stable Lévy process with index of stability α = 0.8.
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Figure 5.2: Simulated sample paths of an SDE driven by an exponentially tempered–
α-stable Lévy process with index of stability α = 1.4.
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5.1.5 Error Estimates

Denote by M , the number of realizations, and by Y the numerical approximation of

Xε. We begin by estimating the L2 and the weak errors due to the jump-diffusion

approximation, which we shall denote by

errsε = E
[
|X(t)−Xε(t)|2

]
, (5.21)

and

errwε = |E [(X(t)−Xε(t))]| , (5.22)

respectively. We examine errsε and errwε as ε → 0. These errors are estimated as

follows:

errsε = E
[
|X(T )−Xε(T )|2

]
≈ 1

M

M∑
k=1

|X(T, ωk)−Xε(T, ωk)|2 , (5.23)

and

errwε = |E [X(T )−Xε(T )]| ≈ 1

M

∣∣∣∣∣
M∑
k=1

(X(T, ωk)−Xε(T, ωk))

∣∣∣∣∣ , (5.24)

where, ωk is the kth realization. We let α = 0.95 and M = 5000 realizations. The

estimates for (5.23) and (5.24) are given in Table 5.1.

Table 5.1: Numerical errors due to the jump-diffuison approximation.

ε 0.1 0.05 0.01 0.005
errsε 5.09× 10−4 1.53× 10−4 6.12× 10−5 1.55× 10−9

errwε 2.26× 10−2 1.24× 10−2 7.83× 10−3 3.94× 10−5

Timeconv/ secs 251.995 253.791 259.923 276.831

Rather the study the error E
[
|Xε(T )− Y (T )|2

]
and |E [(Xε(T )− Y (T ))]|, we will

instead estimate E
[
|X(T )− Y (T )|2

]
and |E [(X(T )− Y (T ))]|. That is, for different
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step sizes ∆, we estimate the strong errors errs(eu), errs(jadp) and errs(jdp1) due to the

numerical approximations, i.e., regular Euler, jump-adapted Euler and the strong–one

order schemes. These errors are estimated as follows

E
[
|X(T )− Y (T )|2

]
≈ 1

M

M∑
k=1

|X(T, ωk)− Y (T, ωk)|2 . (5.25)

Table 5.2: Strong error estimates.

∆ 2−6 2−7 2−8 2−9 2−10

errs(eu) 6.0× 10−5 2.7× 10−4 3.2× 10−4 2.4× 10−4 1.2× 10−6

teu/sec 35.42 70.15 134.28 257.52 634.63
errs(jdp) 3.5× 10−3 1.9× 10−3 2.4× 10−4 1.3× 10−4 9.0× 10−5

tjdp/sec 37.28 69.00 129.478 252.33 566.57
errs(jdp1) 6.0× 10−3 1.7× 10−4 7.4× 10−4 2.1× 10−4 5.9× 10−8

tjdp1/sec 32.11 65.24 128.85 299.33 531.07

We examine the numerical error due to the numerical approximation of the Xε by

Y using the the Euler, jump-adapted and and the order one strong jump-adapted

scheme. The log base 2 plots are given in Figure 5.3.
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Figure 5.3: Log-log base 2 plot of strong error from the numerical approximation
Y , of the jump diffusion Xε versus the time step ∆.
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We obtain the following polynomial fits on the errors from the three different schemes.

For the Euler scheme, we obtain y = −1.8 + 0.7x, for the the jump-adapted scheme,

we obtain y = 0.5 + 0.8x, and finally, for the order one strong jump-adapted scheme,

we get, y = −0.02 + 1.3x. The slope of each of these lines, indicates the order of

convergence of the given scheme.

Similarly, we denote by errweu, errwjadp and errwjadp1 the weak errors due to the regular

Euler, jump-adapted schemes and weak order one jump–adapted approximations

respectively, with the weak error estimate denoted by

errw = |E [X(T )− Y (T )]| (5.26)

Here, we have taken g to be the identity function. In this case, we have the following

estimates

Table 5.3: Weak error estimates

∆ 2−6 2−7 2−8 2−9 2−10

errw(eu) 5.3× 10−3 9.4× 10−3 1.5× 10−4 8.6× 10−6 5.3× 10−8

teu/sec 35.42 70.15 134.28 257.52 634.63
errw(jdp) 5.9× 10−2 9.0× 10−3 1.5× 10−3 2.2× 10−3 1.1× 10−3

tjdp/sec 37.28 69.00 129.478 252.33 566.57
errw(jdp1) 3.0× 10−2 2.0× 10−4 5.4× 10−5 1.8× 10−5 1.4× 10−5

tjdp1/sec 32.11 65.24 128.85 299.33 531.07

5.2 Conclusion and Further Directions

In this dissertation, I combine the ideas of Assmusen and Rosiński [3] (see also [31])

and in the spirit of the authors in [21], with the numerical schemes developed by Brutti

and Platen in [7] to construct numerical approximations to the solution of a class of

stochastic differential equations driven by a Lévy process with infinitely many jumps.

My theoretical results are complemented by good error estimates. This extends the
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work of authors in [7] and [8], to a larger of class of stochastic differential equations,

i.e., stochastic differential equations driven by Lévy processes with infinitely many

jumps.

Most of the numerical schemes developed so far, including the method in this

dissertation, assume that the driving process Z has at least the second moment.

This assumption excludes the class of SDEs driven by α-stable processes and other

classes with heavy-tailed distributions. I am interested in extending the methods in

my dissertation to include such SDEs. It is also worth mentioning that, it will be

interesting to relax some of the smoothness conditions on the coefficients of the SDE

considered in this dissertation, and still give upper bounds for the error estimates. I

believe can be accomplished via the powerful tool of Malliavin calculus.
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Appendix A

Some Useful Results

A.1 Gronwall’s Inequality

Theorem A.1. Let α be function from R+ to itself, and suppose that

α(s) ≤ c+ k

∫ s

0

α(r)dr (A.1)

for 0 ≤ s ≤ t. Then

α(t) ≤ cekt. (A.2)

Moreover, if c = 0 then α vanishes identically.

Proof. See e.g., [28], Theorem 68, pp. 349.
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A.2 Burkholder’s Inequality

For a given stochastic process {X(t), t ≥ 0}, denote by X?(t) its supremum process,

i.e.,

X?
t = sup

0≤s≤t
|X(s)| . (A.3)

Theorem A.2. Let M be a local martingale. Then there exists constants cp, Cp such

that for a finite stopping time T

E [(M?
T )p]

1/p ≤ cpE
[
[M,M ]

p/2
T

]1/p

≤ CpE [(M?
T )p]

1/p
(A.4)

for 1 ≤ p <∞.

Proof. See e.g. [28], Theorem 74, pp. 226.

A.3 Approximation of Integral Involving Slowly

Varying Functions

Theorem A.3. (Bingham et al., [6], Proposition 1.5.8., pp 26) If L is slowly varying

and a is so large that L(z) is locally bounded in [a,∞), and α > −1, then

∫ z

a

tαL(t)dt ∼ zα+1L(z)

α + 1
. (A.5)
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Appendix B

MATLAB Codes

B.1 MATLAB Code for Generating the Graphs

in Chapter 2

% Author Ernest Jum

% Department of Mathematics

% University of Tennessee

% Knoxville

% Simulating alpha−stable and

% tempered alpha−stable processes

% August 2013

to=0; tf=1; m=1000;

dt=(tf−to)/(m−1);

t=to:dt:tf;

alpha=1.3; %index of stability

epsilon=0.001; %truncation level (precision)

lambda=1; %tempering parameter

kappa=1; %constant

tau=1/epsilonˆ(alpha); %truncation level
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k=0;

T(1)=−log(rand);

while sum(T(1:k)) < tau

k=k+1;

T(k)=−log(rand);

U(k)=rand;

s=rand;

if s<0.5

V(k)=1;

else

V(k)=−1;

end

eta(k)=−log(rand)/lambda;

xi(k)=rand;

eta xi(k)=eta(k)*((xi(k))ˆ(1/alpha));

end

%% Jump sizes process %%%

const=(alpha/(2*kappa*tf))ˆ(−1/alpha);

%%

Z(1)=0; Z1(1)=0;

for n=2:length(t)

for i=1:length(T)

gamma(i)=sum(T(1:i));

if U(i) <=t(n)

J(i)=V(i)*(gamma(i)ˆ(−1/alpha));

J1(i)=V(i)*(min(const*((gamma(i))ˆ(−1/alpha)),eta xi(i)));

else

J(i)=0;

J1(i)=0;

end

end

Z(n)=sum(J(1:length(T)));

Z1(n)=sum(J1(1:length(T)));

end
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figure(1)

plot(t, Z,'k', t, Z1)

hleg1 = legend('\alpha−−stable','tempered−\alpha−stable');

xlabel('time')

ylabel('smaple path')

B.2 Code for the Numerical Experiments in Chap-

ter 5

B.2.1 Function for Counting Number of Jumps on an Inter-

val

function num jumps = find num jumps(Uvec, tval)

l = length(Uvec);

num jumps = 0;

for i=1:l

if Uvec(i) <= tval

num jumps = num jumps+1;

end

if Uvec(i) > tval

break;

end

end

end
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B.2.2 Main Code

tic

clc

close all

clear all

format long

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Developed and written by

% Ernest Jum

% Department of Mathematics

% The University of Tennessee Knoxville

% January 2015

%% Initial time and Final time %%%%%

k=3;

%m=2ˆ(k);

m=10ˆ(k);

t0=0;tf=1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Regular time grid %%%%

Dt=(tf−t0)/m;%time step

t=0:Dt:tf;

kappa=1; lambda=1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Coefficient Function

h=@(x)x;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Index of stability and epsilon %%%%

alpha=1.3;

epsilon=0.009;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Variance of small jumps %%%%

sigmaeps=(((2*kappa)/(2−alpha))ˆ(1/2))*(epsilonˆ(1−(alpha/2)));
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ra=1/alpha;

%% Precision %%%%%

tau=alpha/(2*kappa*tf*(epsilonˆ(alpha)));%precision

%% number of iterations

N=10000;

%% Initialization

X=zeros(length(t), N);

Z=zeros(length(t), N);

W=zeros(length(t), N);

Xeps=zeros(length(t), N);

Y eu=zeros(length(t), N);

%% Simulation of Jumps

S=−log(rand);

k=0;

while S < tau

k=k+1;

T(k)=−log(rand);

gam(k)=S; %store the Poisson arrival times

S=S +T(k);

U(k)=rand;

jump times(k)=tf*U(k);

z=rand; %%%%% simulate random signs %%%%%%

if z <=0.5

e(k)=1;

else

e(k)=−1;

end

eta(k)=−log(rand)/lambda;

xi(k)=rand;

eta xi(k)=eta(k)*(xi(k))ˆ(1/alpha);

end

%% Jump sizes of tempered stable process %%%

g alpha=gam.ˆ(−ra);

const=(alpha/(2*kappa*tf))ˆ(−ra);
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new g alpha=const*g alpha;

eta xi1=eta xi;

jump size=e.*min(new g alpha, eta xi);

%%%%%% Dolean−Dades Exponential %%%%%%%%

%% Simulating the almost exact solution %%

U1=sort(jump times);

t1=sort([U1,t]);

m1=length(t1);

%BM increments for jump−adapted approx

dW1=zeros(length(t1), N);

% BM incrments for Euler

dW=zeros(length(t), N);

% Initialize jump−adapted approx

Y jadp=zeros(length(t1), N);

% Initialize jump−adapted stong−order−1 approx

Y jadp one=zeros(length(t1), N);

for n=1:N

dW(1,n)=normrnd(0, t(1));

dW1(1,n)=normrnd(0, t(1));

for k=2:m

dW(k, n)=normrnd(0, Dt);

W(k,n)=sum(dW(1:k, n));

end

for k=2:m1

dW1(k, n)=normrnd(0,t1(k)−t1(k−1));

W1(k,n)=sum(dW1(1:k, n));

end

Z(1,n)=0;

X(1,n)=exp(Z(1,n));

Xeps(1,n)=X(1,n);

%%Exact Solution

jp=zeros(length(t), 1);

jmp=zeros(length(t), 1);
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Z(1,n)=0; X(1,n)=1; Xeps(1,n)=1;

for j=2:length(t)

r=find num jumps(U1, t(j));

if r˜=0

jmp(j)=prod((1+jump size(1:r)));

jp(j)=prod((1+jump size(1:r)))*prod(exp(−jump size(1:r)));

Z(j, n)=sum(jump size(1:r));

X(j,n)=exp(Z(j,n))*jp(j);

Xeps(j, n)=exp(−((sigmaepsˆ(2))/2)*t(j)+sigmaeps*W(j,n))*jmp(j);

else

Z(j, n)=sum(jump size(1:r−1));

X(j, n)=exp(Z(j,n));

Xeps(j, n)=exp(−((sigmaepsˆ(2))/2)*t(j)+sigmaeps*W(j,n));

end

end

%% Euler with constant step size

A=[];B=[];

Y eu(1, n)=1;

number jumps = length(U1);

p=number jumps;

js=zeros(length(t), 1);

for j=1:length(t)−1

% fprintf('iteration: %d\n', j);

l = find num jumps(U1, t(j));

s = find num jumps(U1, t(j+1));

if l == 0 && s == 0

Y eu(j+1, n)=h(Y eu(j, n))*(1 + (sigmaeps* dW(j+1,n)));

elseif l+1 > number jumps

js(j)=0;

Y eu(j+1, n)=h(Y eu(j, n))*(1 + (sigmaeps* dW(j+1,n))+js(j));

else

js(j)=sum(jump size(l+1:s));

Y eu(j+1, n)=h(Y eu(j, n))*(1 + (sigmaeps* dW(j+1,n))+js(j));

end

109



end

%% Jump−adapted Euler

jump flag = 0;

Y jadp(1,n)=1;

for k=2:m1

for j=1:length(U)

if t1(k)==U1(j)

num jumps = find num jumps(U1,t1(k));

Y jadp(k,n)=Y jadp(k−1, n)*(1 +sigmaeps*dW1(k, n))*...

(1+jump size(num jumps));

jump flag = 1;

break

end

end

if jump flag == 0

Y jadp(k,n)=Y jadp(k−1, n)*(1 +sigmaeps*dW1(k, n));

end

jump flag = 0;

end

%% jump−adapted−strong−order−one

jump flag1 = 0;

Y jadp one(1,n)=1;

for k=2:m1

for j=1:length(U)

if t1(k)==U1(j)

num jumps = find num jumps(U1,t1(k));

Y jadp one(k,n)=Y jadp one(k−1, n)*(1 +sigmaeps*dW1(k, n)...

+(sigmaepsˆ(2)/2)*((dW1(k, n)ˆ(2))−(t1(k)−t1(k−1))))...

*(1+jump size(num jumps));

jump flag1 = 1;

break

end

end

if jump flag1 == 0
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Y jadp one(k,n)=Y jadp one(k−1, n)*(1 +sigmaeps*dW1(k, n)...

+(sigmaepsˆ(2)/2)*((dW1(k, n)ˆ(2))−(t1(k)−t1(k−1))));

end

jump flag1 = 0;

end

end

%% Error due to jump diffusion approx of orginal SDE

err s epsilon=mean((X(length(t),:)−Xeps(length(t),:)).ˆ(2));

err w epsilon=abs(mean(X(length(t),:)−Xeps(length(t),:)))

err eps=[err s epsilon, err w epsilon]

%% strong errors

glob s err eu= mean((X(length(t),:)−Y eu(length(t),:)).ˆ(2));

glob s err eu1= mean((Xeps(length(t),:)−Y eu(length(t),:)).ˆ(2));

glob s err jadp= mean((X(length(t),:)−Y jadp(length(t),:)).ˆ(2));

glob s err jadp1= mean((Xeps(length(t),:)−...

Y jadp(length(t),:)).ˆ(2));

glob s err jadp11= mean((X(length(t),:)−Y jadp one(length(t),:)).ˆ(2));

glob s err jadp111= mean((Xeps(length(t),:)−...

Y jadp one(length(t),:)).ˆ(2));

% weak errors

glob w err jadp1=abs(mean(X(length(t),:)−Y jadp one(length(t),:)));

glob w err jadp11=abs(mean(Xeps(length(t),:) ...

−Y jadp one(length(t),:)));

glob w err jadp2=abs(mean(X(length(t),:)−Y jadp(length(t),:)))

glob w err jadp22=abs(mean(Xeps(length(t),:)−Y jadp(length(t),:)))

glob w err eu=abs(mean(X(length(t),:)−Y eu(length(t),:)));

glob w err eu1=abs(mean(Xeps(length(t),:)−Y eu(length(t),:)));

%% Plots of sample paths %%

figure(1)

plot( t, Y eu(:,N), 'k', t1, Y jadp(:, N),'m', t1, Y jadp one(:, N), ...

'−−g', t, X(:, N), 'b', t, Xeps(:,N),':r');

hleg1 = legend('Euler aprrox','Euler−jump−adapted−approx',...
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'order−one−jump−adapted−approx',...

'``exact solution"','jump−diffusion approx');

xlabel('time')

ylabel('sample path')

toc
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