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Abstract

Finite element (FE) implementations of nearly incompressible material models often employ

decoupled numerical treatments of the dilatational and deviatoric parts of the deformation gradient.

This treatment allows the dilatational stiffness to be handled separately to alleviate ill conditioning

of the tangent stiffness matrix. However, this can lead to complex formulations of the material tangent

moduli that can be difficult to implement or may require custom FE codes, thus limiting their general

use. Here we present an approach, based on work by Miehe (Miehe, 1996, “Numerical Computation

of Algorithmic (Consistent) Tangent Moduli in Large Strain Computational Inelasticity,” Comput.

Methods Appl. Mech. Eng., 134, pp. 223–240), for an efficient numerical approximation of the

tangent moduli that can be easily implemented within commercial FE codes. By perturbing the

deformation gradient, the material tangent moduli from the Jaumann rate of the Kirchhoff stress are

accurately approximated by a forward difference of the associated Kirchhoff stresses. The merit of

this approach is that it produces a concise mathematical formulation that is not dependent on any

particular material model. Consequently, once the approximation method is coded in a subroutine,

it can be used for other hyperelastic material models with no modification. The implementation and

accuracy of this approach is first demonstrated with a simple neo-Hookean material. Subsequently,

a fiber-reinforced structural model is applied to analyze the pressure-diameter curve during blood

vessel inflation. Implementation of this approach will facilitate the incorporation of novel

hyperelastic material models for a soft tissue behavior into commercial FE software.

Introduction

Numerical simulation of the nonlinear anisotropic mechanical behaviors of soft tissues and

structured biomaterials remains an important and challenging topic in computational

biomechanics. Various nonlinear strain energy functions have been developed for soft tissues,

including those assuming material isotropy [1,2], transverse isotropy [3–6], orthotropy [7–

12], and structural constitutive models involving invariants related to fiber organization [13–

16]. While most constitutive modeling efforts are focused on the characterization of tissue

behavior from experimental data, actual computational applications utilizing these
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experimentally driven user defined constitutive models have been rather limited. Moreover,

the development and validation of new constitutive models are often conducted using custom

finite element (FE) codes, and the difficulty of implementing such models within commercial

FE codes poses a practical obstacle to their wide-spread application.

To implement a constitutive model into a commercial FE code such as ABAQUS (Version 6.5,

Pawtucket, RI), the Cauchy stress tensor and the tangent modulus tensor (also referred to as

the material Jacobian) derived from the constitutive model need to be explicitly specified. The

tangent moduli (components of the tangent modulus tensor) serve as an iterative operator for

an implicit FE solver using a Newton-type method for the solution of nonlinear initial

boundary-value problems. Even though an exact closed-form solution for the tangent moduli

gives the most rapid convergence, the exact tangent moduli are not mandatory to achieve

accurate solutions. For highly nonlinear materials including soft tissues that exhibit “strain-

stiffening” J-shaped stress-strain curves, however, approximations of the tangent moduli

should be close to the true value to avoid numerical convergence issues.

Many soft tissues are commonly assumed to be incompressible or nearly incompressible at

physiological loading rates. To model such materials, a decoupled representation of dilatational

(volumetric) and deviatoric (isochoric) deformations is often employed. This treatment allows

the dilatational stiffness be handled separately, allowing ill conditioning of the tangent stiffness

matrix to be treated by numerical techniques [6]. However, such a treatment may lead to a

mathematically complex formulation of the tangent stiffness matrix, and implementation as a

user material subroutine in a FE code requires considerable algebraic manipulation and is prone

to coding errors. A robust technique for an accurate numerical approximation of the tangent

moduli that can be easily implemented for arbitrary strain energy formulations would therefore

be an attractive alternative.

In this study we present an approach based on the work of Miehe [17] to numerically

approximate the tangent modulus for a hyperelastic material model within the commercial FE

platform ABAQUS. By incrementally perturbing the deformation gradient, the tangent moduli

from the Jaumann rate of the Kirchhoff stress are approximated by a forward difference of the

associated Kirchhoff stresses. We present an initial validation using a neo-Hookean material

model and a subsequent numerical example of the approximation method in the context of a

fiber-reinforced hyperelastic material model for blood vessels.

Method

Kinematics

Let Ω0 and Ω be the (fixed) reference and deformed configurations of the continuous body,

respectively. We consider the general mapping χ:Ω0→ℝ3, which transforms a material point

X∈Ω0 to a position x=χ(X, t)∈Ω in the deformed configuration at time t. The deformation

gradient tensor F is defined as F(X, t)=∂χ(X, t)/∂X. The spatial velocity field may be expressed

as υ(x, t)=∂x/∂t. The spatial velocity gradient L is defined as the derivative of a spatial velocity

field with respect to the spatial coordinates L(x, t)=∂υ(x, t)/∂x=ḞF−1. Furthermore, let J=det

F be the Jacobian of the deformation, where J−1 is a measure of the volumetric strain.

The symmetric and positive definite right and left Cauchy–Green tensors are defined as

C=FTF and b=FFT, respectively. For computational convenience, a multiplicative

decomposition of the deformation gradient F is usually performed. Here, F is decomposed into

a volumetric part F˜ =J1/3I and a deviatoric part F¯  =J−1/3F. Consequently, the deviatoric right

and left Cauchy–Green strain tensors C¯  and b¯  are defined as C¯ =F¯ TF¯  and b¯  =F¯ F¯ T,

respectively.
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Stress Measures

In nonlinear problems, various stress measures can be defined. Three measures of stress are

considered here: the second Piola–Kirchhoff stress, S, the Cauchy stress, σ, and the Kirchhoff

stress, τ For hyperelastic materials, a scalar-valued strain-energy function ψ=ψ(F) is postulated

to exist, allowing the second Piola–Kirchhoff stress S, Cauchy stress σ, and Kirchhoff stress

τ to be derived as

(1)

In finite element procedures, the Cauchy and Kirchhoff stresses are associated with updated

Lagrangian formulations, whereas the second Piola–Kirchhoff stress is associated with total

Lagrangian formulations [18]. Although the total and updated Lagrangian formulations are

superficially quite different, the underlying mechanics of the two formulations are identical.

Expressions in the total Lagrangian formulation can be transformed to updated Lagrangian

expressions and vice versa. For example, the second Piola–Kirchhoff stress can be transformed

to the Cauchy stress by the “push-forward” operation [19], σ=J−1FSFT. In our applications

using ABAQUS, the updated Lagrangian formulation is adopted.

Objective Rate of Stress Tensor and Tangent Moduli

For FE implementation of user defined material models, the stress tensor and the tangent

modulus tensor derived from the constitutive model need to be explicitly specified. In addition,

to account for material rotation, an objective rate of the stress tensor is needed for the FE

implementation [20]. Different forms of the tangent modulus tensor can be obtained in terms

of different stress rates. Therefore, one should be cautious regarding which objective rate of a

stress tensor should be used when developing a user material model.

In the paper by Miehe [17], the convected rate (also called the Oldroyd rate, or Lie-type

derivative) of the Kirchhoff stress was used. The convected rate Lυτ of the Kirchhoff stress can

be written as

(2)

where the superposed dot denotes the material time derivative and ℂτc is the tangent modulus

tensor (or spatial elasticity tensor) for the convected rate of the Kirchhoff stress [19]. The rate-

of-deformation tensor D and spin tensor W are the symmetric and antisymmetric parts of the

spatial velocity gradient L, respectively. In the current treatment, we consider a different

objective stress rate, , the Jaumann rate of the Kirchhoff stress. The Jaumann rate, frequently

used in the current finite element software and adopted by ABAQUS for continuum elements,

can be expressed as

(3)

where ℂτJ is the tangent modulus tensor for the Jaumann rate of the Kirchhoff stress. The

relationship between ℂτc and ℂτJ can be expressed in component form as

(4)

where δij, the Kronecker delta, represents components of the rank 2 identity tensor.
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Numerical Approximation of the Tangent Moduli

A numerical approximation of the tangent modulus tensor for the convected rate of Kirchhoff

stress, ℂτc, was presented in the paper by Miehe [17]. Here, following a similar approach, we

derive a numerical approximation for the tangent modulus tensor for the Jaumann rate of

Kirchhoff stress, ℂτJ. The approximation approach is based on the idea that by perturbing the

deformation gradient on the linearized form of Eq. (3), the tangent moduli from the Jaumann

rate of the Kirchhoff stress can be represented and approximated by a forward difference of

the associated Kirchhoff stresses.

The linearized incremental form of Eq. (3) can be expressed as

(5)

where

(6)

(7)

To obtain the approximation of each of the components of ℂτJ, a small perturbation to Eq. (5)

is needed. The perturbation in the rate of deformation tensor, ΔD, has six independent

components due to its symmetry properties. We denote ΔD(ij) as the perturbed ΔD produced

by perturbing only its (i,j) component (no summation). Thus, the choice of (ij) would be (11)

and (22), (33), (12), (13), and (23), and Eq. (7) can be rewritten for a perturbed condition as

(8)

where ΔF(ij) is the associated perturbation of the deformation gradient F produced by

perturbing only its (i,j) component. Following Miehe [17], we now choose ΔF(ij) as

(9)

where ε is a small perturbation parameter and {ei}i=1,2,3denotes the basis vectors in the spatial

description.

By inserting Eq. (9) into Eqs. (6) and (7), we obtain

(10)

(11)
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The perturbed deformation gradient F^ (ij) can be expressed as

(12)

and Δτ can be approximated by the forward difference of the perturbed and unperturbed

Kirchhoff stresses,

(13)

By inserting Eqs. (10), (11), and (13) into Eq. (5), we have

(14)

where ℂτJ(ij) represents the associated tangent moduli, or the components of the tangent

modulus tensor ℂτJ obtained by the perturbation of ΔF(ij). By exploiting symmetry properties,

Eq. (14) produces a concise form of the numerical approximation to the tangent moduli,

(15)

The material Jacobian, ℂMJ, defined in ABAQUS, is

(16)

Thus, we can rewrite Eq. (15) as

(17)

where ℂMJ(ij) is the material Jacobian obtained by the perturbation of ΔF(ij). For hyperelastic

materials, ℂMJ possesses major symmetries and has only 21 independent components at each

strain state. From Eq. (17) it can be seen that for each perturbation of ΔF(ij), six independent

components of ℂMJ(ij) can be determined. Thus there are 36 components of ℂMJ(ij) that can be

obtained after the six perturbations of ΔF(ij). These 36 components form a symmetric 6 × 6

matrix, and its 21 independent components furnish the ℂMJ(ij) of a hyperelastic material.

To our knowledge, Eqs. (15) and (17) have not been reported before in the literature. As both

Eq. (15) and Eq. (17) are material model independent, only a closed form equation for the

Cauchy stress needs to be specified in coding a user material subroutine.

Validation of the Approximation Method

As an initial validation of the approximation method, we consider the neo-Hookean

hyperelastic material model. For a finite element implementation, a penalty form of the neo-

Hookean model can be expressed as
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(18)

where G is the material constant describing the shear behavior of the material, D is the material

constant that introduces the near incompressibility, and Ī1=tr(C ̄) is the first strain invariant of

the deviatoric right Cauchy–Green tensor C ̄. In the limit as D approaches zero, the deformation

behavior approaches that of a true incompressible neo-Hookean material.

The Cauchy stress σ derived from Eq. (18) can be expressed as

(19)

Furthermore, the closed-form material Jacobian is given in component form as [21]

(20)

A single element implementation of the neo-Hookean model was used to evaluate the

approximation method. The single element model consisted of a three-dimensional (3D), 20-

node quadratic brick element with reduced integration (ABAQUS element type C3D20R) and

dimensions of 1×1×1 mm3. The material constants in Eq. (18) were set as G=80.0 kPa and

D=2.0×10−4 kPa−1. Twenty equal sized increments were used to apply 6.0 mm equibiaxial in-

plane extensions with no constraint on out-of-plane deformation. Both Eq. (20) and Eq. (17)

were coded in ABAQUS via user defined material subroutines (ABAQUS/UMAT). One

simulation was performed using the exact material Jacobian given by Eq. (20), and five

simulations were performed using the approximate material Jacobian given by Eq. (17) with

various values of the perturbation parameter ε(1.0×10−4, 1.0×10−6, 1.0×10−8, 1.0×10−10, and

1.0×10−12). Static simulations were performed, allowing for nonlinearity arising from both the

constitutive law and the large geometric deformations, and the default convergence criteria set

by ABAQUS was kept unchanged for all simulations.

As inaccurate tangent moduli will slow the convergence, the accuracy of the approximation

method was evaluated by examining the number of iterations required to reach a convergent

solution for each increment and the relative errors (REs) of the tangent moduli calculated by

using Eq. (17) compared with those calculated using Eq. (20). Note that the closed-form

solution of Eq. (20) always gives the most rapid convergence and thus requires the fewest

numbers of iterations. Similarly, more accurate approximation methods will require fewer

iterations to reach convergence. The RE is defined by the equation

For a 3D 20-node quadratic brick element with reduced integration, the element stiffness

matrices are formed at eight integration points at each iteration. As the deformation in this

example is homogeneous, moduli can be compared at a single integration point.
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Application to Soft Tissue Modeling

In this second numerical example, we implemented a complex anisotropic constitutive model

and performed FE simulations of artery inflation utilizing the approximation approach of Eq.

(17) as a sample application to a more complex situation without a convenient analytical

solution. In order to describe the mechanics of fibrillar soft tissues, formulations motivated by

the theory of fiber-reinforced composites [22] are often employed. In particular, the fiber-

reinforced hyperelastic material model proposed by Holzapfel and Gasser [6,23] has been

shown to accurately capture the behavior of blood vessel inflation under internal pressurization.

In that model, the blood vessel is idealized as a cylindrical body composed of a matrix material

with two families of imbedded fibers, each of which is unidirectional with a preferred direction.

The fiber directions can be mathematically described using two unit vectors m0 and n0. The

strain invariants Ī4 and Ī6 of C ̄, which are given by Ī4=m0 C ̄m0 and Ī6=n0 C ̄n0, can be used to

describe the properties of the fiber families. Ī4 and Ī6 are equal to the squares of the stretches

in the fiber directions m0 and n0, respectively.

The strain-energy function ψ of Holzapfel’s model can be approximated as [6]

(21)

where G, k1, k2, and D are material constants. G and D have the same physical meanings as

those in Eq. (18), while k1 is a positive material constant with the dimensions of stress and

k2 is a dimensionless parameter. As in the neo-Hookean example, we introduce the

incompressibility constraint through a penalty term, with near incompressibility enforced as

D approaches zero.

The symmetric second Piola–Kirchhoff stress S can be obtained by the derivatives of the strain-

energy function ψ of Eq. (21) with respect to the right Cauchy–Green tensor C. The insertion

of Eq. (21) into Eq. (1) gives the representation

(22)

where

(23)

(24)

is the fourth order unit tensor with components ( )abcd=(δacδbd+δabδcd)/2. The corresponding

Cauchy stress σ can be easily obtained by using the push-forward operation [19], and the

associated Kirchhoff stress τ can be obtained by utilizing Eq. (1).

The closed-form elasticity tensor in the material or spatial description can be determined

following the procedure described by Holzapfel [19]. For an ABAQUS implementation, a

proper transformation following Eq. (4) should be adopted to obtain the correct tangent moduli.
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Zulliger et al. [16] utilized this model to describe experimental pressure-diameter data

generated by inflation of rat carotid arteries. From the experimental sample geometry described

by Zulliger et al. [16], we constructed a FE model of rat carotid artery segment with an inner

diameter of 0.3 mm, an outer diameter of 0.4 mm, and length of 0.05 mm (Fig. 1). The model

consisted of 10100 nodes and 1800 3D continuum brick elements (ABAQUS element type

C3D20R), with six layers of elements through the wall and three layers of elements along the

longitudinal axis. Axial deformation was constrained at both ends, and radial expansion was

allowed. Based on the data presented by Zulliger et al. [16], material constants were assigned

as G=22.12 kPa, k1=0.206 kPa, k2=1.465, and D=2.0×104 kPa−1, and the preferred collagen

fiber orientation was at ±39.76 deg with respect to the vessel circumferential direction. Based

on the results of the single element validation, the perturbation parameter was set as

ε=1.0×10−8. A constant pressure of 25 kPa was uniformly applied to the inner surface of the

artery, and the inner and outer radii were reported for each pressure increment. Automatic

incrementation control was specified such that ABAQUS could automatically adjust the size

of the increments to solve the nonlinear problem efficiently. The only difference from the neo-

Hookean model in the ABAQUS/UMAT subroutine was the constitutive definition of the

stress.

To investigate the influence of the perturbation parameter ε on model convergence, simulations

were conducted with ε prescribed as 1.0×10−4, 1.0×10−6, 1.0×10−10, and 1.0×10−12, but with

all other parameters held constant. In addition, the influence of the penalty term D on the model

predictions was also explored with D prescribed as 2.0×10−2, 2.0×10−3, 2.0×104, and 2.0

×10−5 kPa−1 but with all other parameters held constant.

Results

Validation of the Approximation Method

For the single element model, the numbers of iterations required to reach convergence at each

increment were similar for all six simulations (Table 1). The total number of equilibrium

iterations over the 20 increments was 47, using the analytical expression for the tangent moduli

given by Eq. (20), while totals of 49, 47, 47, 47, and 50 iterations were required using the

approximate expression given by Eq. (17) with ε=1.0×10−4, 1.0×10−6, 1.0×10−8, 1.0×10−10,

and 1.0×10−12, respectively. Although there were slight degradations in efficiency for the

highest and lowest values of the perturbation parameter, the overall efficiency of the

approximation method was close to that of the closed-form solution for this example.

For a detailed comparison of the tangent modulus values calculated using Eq. (20) and Eq.

(17), we evaluated the relative errors in nine major components of the tangent moduli at the

second loading increment (Table 2), which represented the biggest discrepancy in convergence

in the simulation. The tangent moduli obtained from the approximate method demonstrated

close matches to those obtained from the closed-form formulation for all simulations. The

relative errors are on the order of magnitudes of, for example, 1.0×10−3–1.0×10−7 for

ε=1.0×10−4 and 1.0 ×10−6–1.0×10−10 for ε=1.0×10−8. Note that when ε=1.0×10−8, the tangent

moduli obtained using Eq. (17) showed the closest match to those obtained using Eq. (20).

Artery Inflation Simulations

Using the approximation approach of Eq. (17), we were able to quickly implement the complex

material model of Eq. (21) in FE simulations without an explicit development of a closed-form

solution for the tangent stiffness matrix, thus eliminating the associated coding. With ABAQUS

default convergence criteria, the simulation finished in 25 increments without encountering

convergence issues. The pressure-radius data output from the simulation closely matched the

experimental data reported in Zulliger et al. [16], as shown in Fig. 1.
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For the five simulations using Eq. (17), with ε varied from 1.0×10−4 to 1.0×10−12, the number

of equilibrium iterations required to reach convergence at each increment was similar (Table

3) with a slight increase in iterations when ε=1.0×10−12. The total number of equilibrium

iterations during the 25 increments was 52 when using Eq. (17) with ε=×10−4, 1.0×10−6,

1.0×10−8, 1.0×10−10, and 58 when using Eq. (17) with ε=1.0×10−12.

The initial and deformed geometries of the artery segment and a close-up view of the transmural

stress distribution are illustrated in Fig. 2. To examine the transmural stress distribution under

different pressure loadings, transmural maximum principal stress distributions across the artery

wall were plotted for five increments, corresponding to pressures of 4.92 kPa, 11.08 kPa, 16.62

kPa, 19.39 kPa, and 25.00 kPa (Fig. 3). At low pressure (for example, at 4.92 kPa), the

transmural stresses were relatively uniform. However, at higher pressures (for example, at 25

kPa), the stress at the inner wall (intimal-media layer) was much higher than that of the outer

wall (adventitial layer). It should be noted that this simulation did not account for physiologic

residual stresses in the artery wall, so this simulation likely overpredicted the actual inner wall

stress. Such a treatment is beyond the scope of this study, but incorporation of residual stresses

will be important in practical applications of this approach to investigations of artery

mechanical responses.

As shown in Fig. 4, the choice of the penalty parameter D does impact the simulation results.

When choosing D=2.0×10−2, the simulated vessel wall was more compliant than the actual

vessel (experimental data). Reducing the value of D caused the compliance of the simulated

vessel wall to converge to the experimental data, with negligible difference between

D=2.0×10−4 and D=2.0×10−5.

Discussion

Finite element simulations using sophisticated soft tissue models have been rather limited in

general purpose commercial FE codes such as ABAQUS and ANSYS. Currently, ABAQUS

and ANSYS, as well as other commercial FE codes, only provide support for several isotropic

hyperelastic models such as Mooney–Rivlin and Ogden models. The implementation of a

nonlinear anisotropic hyperelastic model requires the development of a user material

subroutine. In this paper, we present a method that can facilitate FE implementation of

sophisticated soft tissue models. Using the fiber-reinforced material model developed by

Holzapfel and Gasser [6] as a numerical example, we demonstrated the feasibility and

simplicity of using the approach to perform a FE simulation involving a complex tissue model.

Selection of Perturbation Parameter ε
The approximation method proposed in this paper is based on a perturbation of the deformation

gradient such that the tangent moduli from the Jaumann rate of the Kirchhoff stress can be

approximated by a forward difference of the associated Kirchhoff stresses. The selection of an

appropriate value of the perturbation parameter ε is therefore important. As indicated in Table

1 and Table 3, choosing a perturbation parameter that is too large (in this case, ε=1.0×10−4) or

too small (in this case, ε=1.0×10−12) results in an increase in the number of iterations required

to finish the simulations. When the perturbation parameter is too large, the inherent error in

the approximation increases. Conversely, when the perturbation parameter becomes small,

issues related to computer precision can introduce errors despite a theoretical improvement in

the approximation accuracy. When using a double precision FE code, ε cannot be less than

10−16. Even though no difference between using ε=1.0×10−6, 1.0×10−8, and 1.0×10−10 was

shown in Table 1 and Table 3, a detailed examination of the values of some components of the

tangent moduli in Table 2 revealed that when using ε=1.0×10−8 the relative errors were smallest

in all selections of ε. Thus, in our applications, 1.0×10−8 appeared to be an appropriate value

for the approximation method. We suggest this perturbation parameter as a starting point, but
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an appropriate range of perturbation parameters should be determined for any new constitutive

model (e.g., through single element analyses as in our first example).

Artery Inflation Simulations

In a simulation of artery inflation using a sophisticated material model, a converged finite

element solution is often difficult to obtain, especially at a high pressure region. In this artery

inflation example, the high pressure region was from 15 kPa to 25 kPa. In this region, the

typical strain-stiffening tissue behavior, which is caused by stiffening of collagen fibers, results

in a limited increase in artery radius at high pressures.

For an implicit finite element simulation using Newton’s method to resolve the equilibrium

equations iteratively, it was demonstrated [24] that numerical solutions of highly nonlinear

tissue behaviors require the tangent stiffness matrix to be well conditioned. Such well-

conditioned matrix properties include convexity and a low condition number. The approximate

solutions of the tangent moduli should be close to the closed-form solution to ensure the

efficacy of using Newton’s method to achieve a rapid convergence and also to preserve the

well-conditioned matrix properties of the closed-form solution.

We perturbed ε by orders of magnitude between 1.0×10−4 and 1.0×10−12, and converged

solutions with similar convergence rates were achieved for all conditions, illustrating the

robustness and efficiency of the approximation approach.

Summary

In this study, a numerical approximation method for the determination of tangent moduli for

general hyperelastic material models is presented. The approach to estimating tangent moduli

is material model independent; i.e., once the approximation method is coded in a user material

subroutine, it can be used for other hyperelastic material models with no modification and

merely requires coding of a correct stress tensor. Moreover, the approximation is

mathematically concise and can thus be implemented in a straightforward manner. Since the

approach is developed on a widely utilized, commercially available FE platform ABAQUS, it

is hoped that it will greatly facilitate the incorporation of nonlinear anisotropic soft tissue

models into FE simulations.
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Fig. 1.

With the material constants G=44.24 kPa, k1 =0.206 kPa, k2=1.465, and D=2.0×10−4 kPa−1

and fiber orientations of ±39.76 deg, pressure-radius results from the FE model were compared

with experimental data, adapted from Fig. 7 of Zulliger et al. [16]
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Fig. 2.

The FE model for a rat carotid artery segment, (A) before deformation, (B) deformed geometry

after a 25 kPa inner pressure in a maximum principal stress contour plot, (C) a radial segment

of the FE model showing the stress distribution across the artery wall thickness. The FE model

geometry, material constants, and loading conditions were adopted from Zulliger et al. [16].
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Fig. 3.

Maximum principal stress across the artery wall thickness under different static pressures
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Fig. 4.

Pressure-radius plots of simulated artery inflations with the variation in incompressibility

control parameter D with values of 2.0×10−2, 2.0×10−3, 2.0×10−4, and 2.0×10−5
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