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Abstract
This work applies the moment method onto a generic form of kinetic equations to simplify kinetic
models of particle systems. This leads to the moment closure problem which is addressed using
entropy-based moment closure techniques utilizing entropy minimization. The resulting moment clo-
sure system forms a system of partial differential equations that retain structural features of the kinetic
system in question. This system of partial differential equations generate balance laws for velocity
moments of a kinetic density that are symmetric hyperbolic, implying well-posedness in finite time.
In addition, the resulting moment closure system satisfies an analog of Boltzmann’s H-Theorem, i.e.
solutions of the moment closure system are entropy dissipative. Such a model provides a promising
alternative to particle methods, such as the Monte Carlo approaches, which can be prohibitive with
regard to computational costs and inefficient with regard to error decay. However, several challenges
pertaining to the analytical formulation and computational implementation of the moment closure
system arise that are addressed in this work.

The entropy minimization problem is studied in light of the classical results by Junk [18] showing
that this technique suffers from a realizability problem, i.e. there exists realizable moments such that
the entropy minimizer does not exist. Recent results by Hauck [17], Schneider [31] and Pavan [29] are
used to investigate and circumvent this issue.

The resulting moment closure system involves moments of exponentials of polynomials of, in prin-
ciple, arbitrary order. In the context of numerical approximations, this is regarded as a complication.
A novel and mathematically tractable moment system is developed that is based on approximating
the entropy minimizing distribution. It will be shown that the resulting system retains the same
structural features of the kinetic system in question. This system can be seen as a refinement of
Grad’s original moment system [15, 32].

Finally, a numerical approximation of the resulting moment systems is devised using discontinuous
Galerkin (DG) finite elements method. Energy analysis based on the work of Barth [1, 2] is employed
to investigate energy stable numerical flux functions to be used for the DG discretization of the
moment systems. In contrast to the work of Barth [1], the numerical flux function suggested for the
tractable system does not require a simplified construction since it is computable. In addition, higher
order (approximated) moment systems, beyond the 10-moment system investigated by Barth [1], can
be considered.
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Chapter 1

Introduction

1. Motivation
A fluid dynamical description of gases is based on the assumption that a typical macroscopic length
scale pertaining to the flow geometry is much larger than the mean free path of a fluid particle.
This is quantified by the Knudsen number viz., the ratio of the mean free path to the macroscopic
length scale of interest. Such a description suggests that the velocity distribution of these particles
tends towards a local equilibrium that is parametrized by fluid variables (typically the mass density,
fluid velocity and temperature). In the context of fluid dynamics, the evolution of fluid variables
is governed by either the (compressible) Euler equations, which approximate the velocity by a local
equilibrium, or the Navier-Stokes-Fourier (NSF) equations, which account for small deviations of the
velocity distribution from a local equilibrium. As the Knudsen number grows, the basic assumption
of fluid dynamics breaks down leading to what are known as rarefaction effects. Typical situations in
which such effects take place include the following examples (see [9, 32] and references therein),

• At high altitudes (for example, in high altitude flights) and in near-vacuum applications, gas
pressure and density are very low. Consequently, the mean free path becomes large enough such
that the Knudsen number can not be neglected giving rise to rarefaction effects.

• Flow across small geometries such that the relevant length scales are so small that, even at
normal pressure and densities, the Knudsen number becomes significant. Typical applications
of such a situation include micro-channel flows or flow in porous media.

• Accounting for rarefied gas effects is required in order to understand the behavior of small
particles in a fluid as well as their space-time distributions. Typical applications include envi-
ronmental problems such as emission of particles from electric power plants, chemical plants or
vehicles, as well as understanding the role such small particles play in fog or cloud formation
and the release of radioactivity from nuclear reactor accidents

The significance of rarefaction effects is that the deviation of the velocity distribution from a local
equilibrium may become large and the NSF equations can yield momentum and energy fluxes that are
inconsistent with nonnegative particle densities and that may even be wrong by orders of magnitude
[24].



2

In the context of kinetic theory, deviations of the velocity distribution of dilute gases from equilib-
rium can be described using kinetic equations that govern the evolution of single-particle phase-space
densities (one for each species in the case of multi-component flows) rather than fluid dynamical
variables. In the continuum limit, solutions of the kinetic system correspond to the solution of both
the Euler and the NSF equations [30]. Furthermore, the NSF equations can be recovered in the fluid
dynamical regime by using either a Hilbert or Chapman-Enskog expansion [32].

Kinetic equations pose a formidable challenge for numerical approximations methods, on account
of their high dimensional phase-space setting: for a problem in N spatial dimensions, the single
molecule phase-space is 2N dimensional. The corresponding computational complexity of conventional
discretization methods for differential equations, such as finite-element methods with uniform meshes,
is prohibitive. Away from the fluid dynamical regime numerical approximations of kinetic systems
are predominantly based on particle methods, such as the Direct Simulation Monte Carlo (DSMC)
method. However, the phase-space description of the system results in the prohibitive computational
cost of DSMC in the fluid dynamical limit. Moreover, from an approximation perspective, DSMC
can be inefficient since it is inherent to the Monte-Carlo process that the approximation error decays
only as n−

1
2 for the number of simulation molecules n [21]. Hence, efficiently modeling gases in the

transition regime between the free molecular flow and fluid dynamics remains difficult.
Physically, rather than solving the kinetic equations for particle phase-space density, it would

be more interesting to solve for functions of this density that would, for example, correspond to
some macroscopic properties of the gas. This implies that one would instead track weighted averages
or moments of the particle phase-space density. Such an approximation can be achieved using the
method of moments. A moment method is a statistical approximation technique which suggests that
the unknown parameters should be estimated by matching population moments (which are functions
of unknown parameters) with appropriate sample moments [25].

Grad’s moment method [15] is based on an expansion of the one-molecule marginal using Her-
mite polynomials, modulated by the local equilibrium distribution. A deficiency of Grad’s moment
closure system is the potential occurrence of locally negative and therefore inadmissible phase-space
distributions, and potential loss of hyperbolicity [7, 33]. Later, Levermore [23] developed a moment
closure system based on entropy minimization, which leads to an exponential closure. However, it was
subsequently shown by Junk [18] that Levermore’s moment closure system suffers from a realizability
problem, i.e. there exist moments for which the minimum entropy solution is undefined. On the other
hand, results of recent work by Schneider [31] and Pavan [29], show that a relaxation of the entropy
minimization problem does not suffer from non-realizability while retaining exponential closure.

Another fundamental complication pertaining to the implementation of the moment-closure sys-
tems based on exponential closure, is that the resulting formulation requires the evaluation of mo-
ments of exponentials of polynomials of, in principle, arbitrary orders. It is generally accepted that
the derivation of closed-form expressions for such moments is intractable, and accurate approximation
of the moments is a notoriously difficult problem [22].

This study investigates the application of the method of moments to a generic form of a kinetic
system given by the Boltzmann equation and the resulting moment closure problem. Furthermore,
the moment closure system is studied from the perspective of subspace approximations, based on
the observation that taking moments of the kinetic system over some basis vectors can be viewed
as a projection of the system onto the space spanned by the basis vectors. Moreover, this work
attempts to develop a tractable approximation to Levermore’s moment-closure by approximation
(Taylor expansion) of the minimizing entropy distribution. It has been noted that Grad’s moment
closure can be perceived as a first order linearization of the Levermore’s exponential closure [32]. The
results of this study can be conceived as a refinement of Grad’s moment system since it overcomes
potentially negative densities and potential loss of hyperbolicity. In addition, the work of Barth [1]
is extended to develop a discontinuous Galerkin approximation of the resulting approximate moment
closure system.
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2. The Boltzmann equation: Properties
This work involves describing a gas composed of a single species of identical classical particles, i.e.
a monatomic gas, contained within a fixed spatial domain Ω ⊂ RD. Through kinetic theory such a
description involves the evolution of a non-negative (phase-space) density f = f(t,x,v) over a single
particle phase Ω × RD. This evolution is governed by the (kinetic) Boltzmann equation expressed,
using the Einstein summation convention, as

∂tf + vj∂xjf = C (f) (1.1)

where the collision operator f 7→ C (f) acts only on the v dependence of f locally at each (t,x). Let
〈·, ·〉 denote v−integrations, i.e. the integral of any scalar or vector valued measurable function over

the D−dimensional Lesbesgue measure d
D
v; thus,

〈q, 1〉 ≡
∫
RD

q(v)d
D
v (1.2)

Note that all function considered in this work are understood to be Lebesgue measurable in all
variables.

The collision operator C is assumed to be defined over the domain D(C ) that is contained within
the set of non-negative functions of v. Furthermore, it is assumed that C has the following properties:
[23]

1. Conservation: Mass, Momentum and Energy
The operator C is assumed to have γ ∈ {1, vi, |v|2}, i = 1, 2, ..., D as locally conserved quantities;
thus,

〈C (f), γ〉 = 0, ∀f ∈ D(C ) (1.3)

Note that equations (1.3) represent the physical laws of mass, momentum and energy conser-
vation during collisions. Moreover, it is assumed that there are no other conservation laws and
that every locally conserved quantity is a linear combination of these three, i.e. for any g = g(v)
the following statements are equivalent:

(a) 〈C (f), g〉 = 0, ∀f ∈ D(C )

(b) g ∈ C ≡ span{1, v1, v2, ..., vD, |v|2}.

Note that C denotes the collection of collision invariants.

2. Dissipation: H-Theorem
The operator C is assumed to satisfy the local dissipation relation

〈C (f), ln f〉 ≤ 0, ∀f ∈ D(C ) (1.4)

The local equilibria of C are assumed to be characterized by the vanishing of the local entropy
dissipation rate and to be given by the class of Maxwellian densities for some (%, u, η) ∈ R+ ×
RD × R+. More precisely, for every f ∈ D(C ) the following statements are assumed to be
equivalent

(a) 〈C (f), ln f〉 = 0

(b) C (f) = 0

(c) f is a Maxwellian density i.e. it is given by the form

f =M(%, u, η) ≡ %

(2πη)
D
2

e−
|v−u|2

2µ (1.5)

where % is the mass density, %u is the momentum density and µ is the rescaled temperature
of the gas
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It is worthy to note that, naturally, any modification of the assumption in the dissipation relation
(1.4) should be consistent with the equivalence relation of the aforementioned statements.

3. Symmetry: Galilean Invariance
The operator C is assumed to commute with translational and orthogonal transformations.
Specifically, given any g = g(v) then for every vector u ∈ RD and for every orthogonal matrix
O ∈ RD×D define transformed functions Tuf and TOf by

Tug = Tug(v) ≡ g(u− v)

TOg = TOg(v) ≡ g(O>v)
(1.6)

Hence, equation (1.1) formally retains Galilean invariance, i.e. if f satisfies (1.1) so does every
Galilean group acting on f . Physically, this implies the Galilean invariance of the microscopic
collisional dynamics.

3. Moment Systems
Physically, one maybe more interested in functions of f , which would correspond to macroscopic
properties, rather than in f itself. Such reasoning motivates deriving equations for functions of f
instead. That is, rather than resolving equation (1.1) for f , one could resolve moment systems (or
weighted averages) of f instead, which would govern the evolution of a finite set of velocity moments
of f because it is the moments which are (at least in theory) experimentally measurable quantities
[16]. In resolving the moment equations instead of (1.1), the velocity dependence of f is replaced by
a finite number of parameters, thus, reducing the complexity of the problem [32].

To derive the moment equations, consider a finite linear subspace Θ of functions of v (taken to be
polynomials) with dimension θ and basis {ϑi = ϑi(v)}θi=1. Denote the column θ−vector of these basis
elements by ϑ = ϑ(v), so that every ϑ ∈ Θ has a unique representation in the form ϑ(v) = α>ϑ(v)
for some α ∈ Rθ. Consider the space of phase-space density distributions given by

F ··= {f ∈ L1(RD) : f  0 and fϑi ∈ L1(RD)} (1.7)

Taking the moments, i.e. weighted average, of equation (1.1) over the vector ϑ(v):

∂t〈f,ϑ〉+ ∂xj 〈f, vjϑ〉 = 〈C (f),ϑ〉 (1.8)

thus, equation (1.1) is formally expressed as a hierarchy of a system of partial differential equations
in (1.8). It is not known whether the quantities appearing in this equation are well defined for every
solution f of a given kinetic equation. Since, it has been shown that this is the case for the spatially
homogenous equation [12], following Levermore [23] it shall be assumed here that these quantities are
well defined. Furthermore, it is observed that in equations (1.8) the flux in one equation appears as
the density in the subsequent one, i.e. the expansion at some order n contains the moments at orders
n ± 1. Moreover, the equations contain the production terms which are related to the distribution
function f through the collision term C (f). Therefore, in order to have a complete set of equations
for the moments, it is necessary to express the production and flux terms as functions of the density
moments. Generally, this is achieved by finding a relation between the moments and the distribution
function. Finding this relation is called the moment closure problem.

3.1 Moment Closure
The system (1.8) involves more dependent variables than equations, hence it is not closed. In order to
close the system, constitutive relations are needed to express the above densities 〈f,ϑ〉, fluxes 〈f,vϑ〉
and collisional terms 〈C (f),ϑ〉 as a function of θ variables, thus forming a closed system. This can
be done if there exists a function F (and is made known) such that f(t,x,v) = F(〈f,ϑ〉,v). Then the
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flux terms 〈f,vϑ〉 and the collision terms 〈C (f),ϑ〉 can be related to the densities 〈F,ϑ〉 to provide
a closed system of the form

∂t〈F,ϑ〉+ ∂xj 〈F, vjϑ〉 = 〈C (F),ϑ〉 (1.9)

Note that f is an element of an infinite dimensional vector space and typically cannot be expressed by
any finite number of components. Therefore, any closure will require the approximation of f . The goal
then is to devise an approximation that, in addition to providing well-posedness of (1.9), maintains
the key physical and mathematical features of (1.1). Thus, closure should yield a system such that
[23]:

1. Every member of the hierarchy is hyperbolic and has an entropy extension, i.e. it should satisfy
some local dissipation relation. Thus, the resulting equations are formally well posed.

2. Collisional terms are approximated such that each member of the hierarchy beyond the second
recovers the proper Navier-Stokes approximation.

To attain such steps it would be required that [23]

i. span{1,v, |v|2} ≡ C ⊆ Θ:
In this condition, the collection of collision invariants C is retained within Θ. More specifically,
the constant functions are included in Θ so that any moment closure will include the conservation
law for mass. It also includes multiples of the polynomial v, which gives a balance law for
momentum. Multiples of |v|2 give a balance law for the energy and |v|2 ∈ Θ. This is needed if
any fluid dynamical approximation is to be recovered.

ii. Θ is invariant under actions of Tu and To:
More specifically, this means that Θ is unchanged when v 7→ O>v or v 7→ v − u, for every
vector u ∈ RD and for every orthogonal matrix O ∈ RD×D. This is a prerequisite of classical
dynamics, in particular, that Galilean invariance holds.

iii. The set Θc ≡ {ϑ ∈ Θ :
〈
eϑ, 1

〉
<∞} has a nonempty interior in Θ:

This requires, at a minimum, that Θ contain suitable functions to ensure integrability. Con-
sidering a subspace of polynomials, this condition would imply that the set Θc contains only
polynomials ϑ(v) for which ϑ(v)→ −∞ as |v| → ∞. This implies that condition iii. is satisfied
only for linear subspaces of polynomials over v with even maximal degree.

All subspaces that satisfy conditions i-iii will be called admissible and all other subspaces inadmissible.
Examples of admissible subspaces with maximal degree two are

Θ = span{1,v, |v|2} ≡ C
Θ = span{1,v,v ⊗ v}

(1.10)

and with maximal degree four

Θ = span{1,v,v ⊗ v, |v|2vi, |v|4}
Θ = span{1,v,v ⊗ v,v ⊗ v ⊗ v, |v|4}
Θ = span{1,v,v ⊗ v,v ⊗ v ⊗ v, |v|2v ⊗ v}
Θ = span{1,v,v ⊗ v,v ⊗ v ⊗ v,v ⊗ v ⊗ v ⊗ v}

(1.11)

Note that considering three spatial dimensions, the aforementioned subspaces in (1.10) and (1.11) are
5, 10, 14, 21, 26, and 35 dimensional, respectively.
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4. Thesis Outline
In summary, Chapter 1 is a review of the basic properties of a generic kinetic system given by the
Boltzmann equation (1.1). Moreover, the notion of moment systems and it’s application to the
Boltzmann equation are introduced. Finally, the resulting moment closure problem is presented,
thereby providing a general framework for the subsequent theory. The remainder of this work is
organized as follows.

Chapter 2 presents the details of closing the moment system (1.9) using entropy minimization.
The properties of the resulting system are analyzed in light of the aforementioned properties of the
Boltzmann equation. More specifically, properties pertaining to well-posedness and entropy dissipation
are investigated. Within this context, the issue of realizability is introduced as well as recent results
that involve modifying the closure procedure in order to circumvent this problem.

Chapter 3 introduces an analytical approximation of the moment closure system based on a lin-
earization procedure that results in mathematically tractable relations. The properties of this lin-
earized system are investigated for the properties of the full moment closure system. More specifically,
properties involving well-posedness and entropy-dissipation are investigated.

Chapter 4 considers a numerical approximation of the resulting moment closure systems in the
discontinuous Galerkin (DG) finite element framework. Energy analysis is employed to show stability
of a class of energy stable numerical flux functions which are introduced for the DG discretization.

Finally, Chapter 5 gives a concluding summary of the work and prospects for future studies.
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Chapter 2

Entropy Minimization Closure

For a system of identical particles, Boltzmann [3–5] described the micro-state of the system by particle
arrangements in phase space, and the macro-state by macroscopic properties of the system while pro-
ceeding to explain entropy probabilistically. He characterized entropy by describing it’s dependence
on the number of micro-states that are consistent with the macro-state of the system. Boltzmann’s
celebrated H-Theorem infers equilibria as the minimizers of entropy [3, 6]. Mathematically, this re-
lates equilibria to the dissipation of an entropy-based Lyapunov function. Such a characterization of
equilibrium motivates a choice for approximating f [23].

Denote the entropy by H = H(f) ··= 〈f, ln f−1〉, the entropy flux by φj = φj(f) ··= 〈f, vj(ln f−1)〉
and a dissipation term by σ = σ(f) ··= 〈C (f), ln f〉. Moreover, note that H(f) is a strictly convex
functional since the second (functional) derivative

d2

dε2
H(f + εψ)

∣∣∣∣
ε=0

=

〈
ψ2

f

〉
> 0 (2.1)

for all functions ψ. Note that relation (1.4) implies that solutions of the Boltzmann equation (1.1)
formally satisfy the local dissipation law corresponding to entropy dissipation

∂tH+ ∂xjφj = σ ≤ 0 (2.2)

Levermore [23] described a way of specifying F that closes the moment system as in (1.9) by
utilizing entropy minimization. Levermore proceeded to show that entropy dissipation is still satisfied
if f is replaced by the minimum entropy distribution F, if it exists. Formally, F is defined as the
minimizer for the entropy minimization problem:

arg min
g∈F
{H(g) : 〈g,ϑ〉 = ρ} (2.3)

where ρ ··= 〈f,ϑ〉. From an approximation perspective, the minimizer F for (2.3) (if it exists) can be
interpreted as an entropic projection [16] in the sense that it is a projection of f , parametrized by
ρ, from the velocity space onto a finite-dimensional subspace, thus providing a candidate for F that
closes the system (1.8). Such a closure, provided by entropy minimization, is called an entropy-based
closure. Later in this chapter, it will be shown that the resulting moment system retains important
properties of Boltzmann equation.
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The formal solution of (2.3) is obtained by constrained optimization using Lagrange multipliers.
Denote the vector of Lagrange multipliers by ζ and consider the Lagrange function

L(g, ζ) ··= H(g) + ζ · (ρ− 〈g,ϑ〉) (2.4)

Note that the Lagrange multipliers ζ are subject to optimality conditions such that they satisfy the
moment constraints ρ = 〈fζ ,ϑ〉. Denote the extrema by fζ , that is, where all directional derivatives
vanish. Thus

δL(fζ , ζ) = ln fζ − ζ · ϑ = 0 (2.5)

This implies that

fζ = eζ·ϑ (2.6)

Junk [18] has shown that when Lagrange multipliers that satisfy the aforementioned optimality con-
ditions exist, the minimum entropy problem in (2.3) exhibits a unique solution of the form (2.6). The
entropy minimizing distribution (2.6) is used to attain moment closure for the system in (1.9),

F(ρ,v) = fζ(ρ)(v) (2.7)

Furthermore, recalling requirement (iii) for admissible subspaces, the Lagrange multipliers ζ should
allow integrability of the distribution (2.6). It follows that the set of ζ for which eζ(ρ)·ϑ(v) is integrable,
denoted by Iϑ, can be expressed as

Iϑ ≡
{
ζ ∈ Rθ : ϑeζ·ϑ ∈ L1(Rθ)

}
(2.8)

that is to say, ϑ(v) = ζ · ϑ lies in Θc. Using the minimum entropy distribution, the moment system
(1.8) can be closed:

∂t〈F(ρ,v),ϑ(v)〉+ ∂xj 〈F(ρ,v), vjϑ(v)〉 = 〈C
(
F(ρ,v)

)
,ϑ(v)〉 (2.9)

It is understood that F ∈ Fϑ given by

Fϑ ··= {g ∈ F : 〈g,ϑ〉 = ρ} (2.10)

and that Fϑ ⊂ F .
The main deficiency of the aforementioned entropy-based closures is that for useful choices of

the basis vector ϑ(v) (in the sense that {ϑi}θi=1 span some admissible subspace), the set defined by
densities corresponding to physically realizable values of ρ for which a minimizer for (2.3) does not
exist, is non-void [17, 20]. Such densities are called degenerate. It is important to note, however, that
this does not mean that the moment-closure system (2.9) with exponential closure is ill posed; it merely
implies that the exponential closure can not be obtained as the solution of the entropy-minimization
problem (2.3).

1. Galerkin Projection
Levermore’s approach [23] can be conceived of as a Galerkin approximation of (1.1). It is performed
in two steps [31]:

1. Projecting equation (1.1) onto a given polynomial space Θ yielding the system (1.8). The highest
order fluxes in the resulting system of moment equations are not yet defined, thus, the moment
system is not closed.
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2. Projecting f (belonging to the velocity space) onto a finite dimensional subspace by solving the
minimization problem (2.3). That is, the non-linear projection of f is of the form eζ·ϑ and
the complete approximation of (1.1) is expressed in (2.9). Physically, this can be interpreted
as closure through constitutive relations which express fluxes and collisions of highest order as
functions of moments of lower order. In the case of using entropy minimization such relations are
obtained under the assumption that the density function is close to a local equilibrium function.

Given a space V of functions RD → R+, denote byW
(
Ω× (0, T );V

)
a suitable class of functions from

the spatial domain Ω and the temporal interval (0, T ) into V. Similarly, W(Ω;V) denotes a class of
functions from Ω into V. Moreover, denote by Pn(RD) the set of D-variate polynomials of degree at
most n and let Vn denote a polynomial subspace such that C ⊆ Vn ⊆ Pn(RD), n ≥ 2. Levemore’s
moment closure approximation of the Bolzmann equation can be written as

g ∈ W(Ω× (0, T );Vn) : ∂t〈eg, ψ〉+ ∂xj 〈vjeg, ψ〉 − 〈C (eg), ψ〉 = 0

∀ψ ∈ W(Ω;Vn), a.e. t ∈ (0, T ) (2.11)

Equation (2.11) expresses Levermore’s moment closure system from the perspective of a Galerkin
approximation. Equation (2.11) reduces to equation (2.9) when Vn ≡ Θ and noting that ϑi ∈
W(Ω; Θ).

Remark. Another way to perceive the Galerkin approximation, is that (2.11) can be conceived of
as a Galerkin projection of the renormalized Boltzmann equation conforming to f = eg.

2. Entropy-based Moment Closure System: Properties
This section investigates the properties of the resulting entropy-based moment closure system (2.9).
More specifically, it will be shown that system (2.9) is well-posed and that it retains the fundamental
properties of the Boltzmann equation (1.1). In particular, it will be shown that

1. The moment closure system (2.9) is a symmetric hyperbolic system.

2. Solutions of the moment closure system (2.9) satisfy the dissipation relation (2.2).

3. Equality in the dissipation relation (2.2) is attained if and only if F is an equilibrium density
given by (1.5), i.e. C (F) = 0

Note that the moment closure system (2.9) retains conservation of mass, momentum and energy
(collision invariance) as well as Galilean invariance since the finite linear subspace Θ is admissible.

2.1 Well-Posedness: Symmetric Hyperbolic System
Using the Einstein summation convention, consider a generic quasi-linear first order system of the
type

A0(u)∂tu+Ai(u)∂xiu = f(u) (2.12)

for the unknown m-column vector u(x, t) : u ≡ (u1, u2, ... , um)>; x ∈ Rn; A0, Ai are real m × m
matrices which are functions of u; the source term f(u) is vector in Rm; i = 1, 2, ...n. By denoting
the time t with x0 it is possible to write the system in abbreviated form

Aα(u)∂αu = f(u) (α = 0, 1, ..., n) (2.13)

For each y ∈ Rn, set

A(x, t;y) :=

n∑
j=1

yjAj (x ∈ Rn, t ≥ 0) (2.14)
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Definition 2.1 (Hyperbolicity). The system (2.12) is hyperbolic if the matrix A0 is invertible
and the matrix A is diagonalizable for each x, y ∈ Rn, t ≥ 0

Definition 2.2 (Symmetric Hyperbolic Systems). The system (2.12) is said to be symmetric
hyperbolic if

1. αA = (αA)>

2. 0A is positive definite

Remark. For hyperbolic systems, the corresponding Cauchy initial value problem is well posed
[14], at least for finite time.

Equation (2.9) can be rewritten using the chain rule as

〈F,ϑϑ>〉∂tζ + 〈F, vjϑϑ>〉∂xjζ = 〈C (F),ϑ〉 (2.15)

The symmetry of the coefficient matrices is clear and thus, the first requirement of definition 2.2 is
satisfied. The second requirement follows from the fact that for every γ ∈ Rθ

γ>〈F,ϑϑ>〉γ = 〈F, (γ · ϑ)2〉 ≥ 0 (2.16)

with the equality attained if and only if γ = 0. Thus, the moment closure system (2.9) is a symmetric
hyperbolic system.

2.2 Entropy Dissipation
Levermore [23] showed the existence of a convex entropy extension that is locally dissipated by mul-
tiplying (2.20) from the left by ζ>, yielding

∂t〈F, ζ>ϑ− 1〉+ ∂xj 〈F, vj(ζ>ϑ− 1)〉 = 〈C (F), ζ>ϑ〉 (2.17)

Recalling that ζ>ϑ = ln F, equation (2.17) reads

∂t〈F, ln F− 1〉+ ∂xj 〈F, vj(ln F− 1)〉 = 〈C (F), ln F〉 ≤ 0 (2.18)

which is equivalent to the convex entropy extension expressed in equation (2.2) when evaluated at
f = F. Hence, the system (2.9) posses a convex entropy extension expressed in (2.18). It is worthy
to note that it is an assumption that an entropy pair {H

(
F(ρ;v)

)
, φ
(
F(ρ;v)

)
} exists such that the

entropy inequality (2.18) holds. Implicit to this assumption, is that a solution to the entropy mini-
mization problem (2.3) exists.

Remark. In light of the Galerkin projection relation in (2.11), a similar argument could be made
when noting that ln F = ζ>ϑ − 1 resides in the test space of equation (2.11). Consequently setting
ψ = ζ>ϑ− 1 in (2.11) yields

∂t〈F, ln F− 1〉+ ∂xj 〈F, vj(ln F− 1)〉 = 〈C (F), ln F− 1〉 (2.19)

Recalling collision invariance properties expressed in (1.4), equation (2.19) reduces to (2.18). Thus,
there exists a convex entropy extension to the system (2.11), given by (2.18), that is locally dissipated
which is obtained by choosing a suitable test function from the test space (in this case ln F− 1).
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3. Realizability and the Domain of Definition of Levermore’s Moment Closure System
Levermore’s moment closure system, as discussed previously, retains the structural features of the
Boltzmann equation and exhibits hyperbolicity for each member of the hierarchy implying well-
posedness. These desirable properties all stem from the assumption that the minimum entropy dis-
tribution for a set of velocity moments given by the optimization problem (2.3) always exists. Junk
[18–20], however, has shown that for any moment system that include super-quadratic polynomial
moments the set containing all degenerate densities, i.e. for which a minimum entropy distribution
function cannot be found, is non-empty. Moreover, the densities describing local thermodynamic equi-
librium, given by Maxwellian distribution (1.5), always lies on the boundary of the set containing all
degenerate densities.

This deficiency reveals a fundamental problem if weight functions of fourth (or higher) order are
used. To explain this problem, consider the example given by Junk [20] for the 14-moment case. The
minimum entropy distribution function has the structure

F(ρ,v) = eζ(ρ)·ϑ(v) = eζ+ζivi+ζijvivj+ζ̄i|v|
2vi+ζ14|v|4 (2.20)

Obviously, this distribution function is only integrable if either ζ14 < 0 or if ζ14 = ζ̄i = 0 and ζij
is negative definite. Recall the set Iϑ in (2.8) of ζ for which eζ(ρ)·ϑ(v) is integrable. The physical
equilibrium states of the gas are given by Maxwellian states (1.5) which are of the form (2.20) with

ζ# = ln
%

(sπη)
3
2

− |u|
2η

ζ#
i =

ui
η

ζ#
ij = − 1

2η
δij

ζ̄#
i = ζ#

14 = 0

(2.21)

These states belong to ∂Iϑ because any small deviation ζ from ζ# with ζ14 > 0 does not belong to
Iϑ. As a consequence, the equilibrium moments ρ# from the set

U#
ϑ =

{〈
%(2πη)−

d
2 e−

|v−u|
2 ,ϑ

〉
: %, T > 0, u ∈ Rθ

}
(2.22)

are also on the boundary of the state space

Uϑ = {〈eζ·ϑ,ϑ〉 : ζ ∈ Iϑ} (2.23)

which is the domain of definition of equation (2.9). In most practical applications, there are regions
in the physical space where states are close to equilibrium. Hence, ρ(t,x) is at least very close to
∂Uϑ for a certain t and x. Junk [20] goes on to show that equilibrium states on the boundary
∂Uϑ always appear when the set of weight functions contains functions with super-quadratic growth
at infinity. Finally, Junk [20] concludes that Galilean invariance dictates the use of polynomials as
weight functions, while on the other hand polynomial weight functions with super-quadratic growth
at infinity lead to non-convexity of the state space (domain of definition) and the equilibrium states
are located on the boundary.

In summary, it has been argued [18, 20] that there are indeed functions f whose moments cannot
be realized by any exponential function, that is, for no value of ζ ∈ Rθ does

〈eζ·ϑ,ϑ〉 = 〈f,ϑ〉 (2.24)

Thus, the constraints of the minimization problem (2.3) can not be satisfied



12

Remark. It is proved in [27] that kinetic closures based on entropy minimization are formally
equivalent to the systems derived from extended thermodynamics. Recall the minimization problem
(2.3); if the minimizer exists, and if H is differentiable at the solution, the standard Lagrange multi-
plier theory yields relation (2.7). However, this issue of non-realizability leads one to question whether
entropy minimization is equivalent to extended thermodynamics (see Appendix 1). The problem is
that the extended thermodynamic approach assumes the existence of an entropy minimizing distribu-
tion explicitly provided by the minimizer of H, which is not always the case.

The issue of existence of the minimizing entropy distribution (or equivalently, the corresponding
Lagrange multipliers) was studied by Hauck et. al. [17], Schneider [31] and Pavan [29]. In what fol-
lows, their results [17, 29, 31] are merely presented. Their proofs are not discussed since that is well
beyond the scope of this work.

An important result concerning the existence of a minimizer for (2.3) is summarized as follows.
Recalling the set F in (1.7), let Rϑ denote the set of realizable densities expressed as

Rϑ ··= {ρ ∈ Rθ : ρ = 〈g,ϑ〉, g ∈ Fϑ} (2.25)

Denote the set of degenerate densities

Dϑ ··= {ρ ∈ Rϑ : the minimizer in (2.3) does not exist} (2.26)

and recall the definition of the set Iϑ in (2.8)

Theorem 2.3 (Hauck et. al. [17]). The set Dϑ is empty if and only if Iϑ is open.

This means that if Iϑ is open, then for any realizable moment ρ ∈ Rϑ(Ω) the full constraints problem
(2.3) admits a unique minimizer which reads

∃ζ ∈ Iϑ : F = eζ·ϑ (2.27)

Such a result is also obtained by Pavan ([29], Theorem 1). Hauck et. al. continue to explain that Iϑ
is only open when the moment closure equation (2.9) includes velocity moments of polynomials of, at
most, second degree. Otherwise, for velocity moments of super-quadratic polynomials, Iϑ is not open.
This can be seen in light of the aforementioned example in (2.20)−(2.23), one need only realize that
for cases in which velocity moments of super-quadratic polynomials are included, the vector ζ ∈ Iϑ
corresponding to any Maxwellian M lying on the boundary ∂Iϑ.

4. Modified Minimization Problem
In degenerate situations, the entropy-based closure will not be well defined. Consider two suggestions
to address this issue [17]:

1. Ensure that values corresponding to degenerate densities will never be attained by the moment
system generated by the entropy closure. One can either

(a) show that the set of densities for which (2.3) does have a solution is invariant under the
dynamics of the moment system, or,

(b) impose this condition in a way that is physically reasonable and mathematically justifiable.

2. Develop a modified approach that

(a) agrees with the minimum entropy approach for well-posed cases of (2.3)

(b) produces closures that generate symmetric hyperbolic systems that dissipate a physically
meaningful entropy.
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Previous studies of (2.3) can be found in [17–19, 31], where the entropy minimization problem is
altered in an attempt to handle the ill-posed cases. In [19] the problem is redefined by replacing the
minimum in (2.3) with an infimum,

arg inf
g
{H(g) : 〈g,ϑ〉 = ρ} (2.28)

This was done to include cases where the minimizer in (2.3) does not exist. While in [31], the problem
is rewritten as

arg inf
g
{H(g) : 〈g,ϑ〉 �∗ ρ} (2.29)

where �∗ roughly means that inequalities between certain components are allowed. To further elabo-
rate the latter problem, first recall that condition (iii) for admissible subspaces implies that Θ contains
polynomials of even maximal degree to ensure the decay necessary for integrability. Hence, for an
even θ = 2p, where p is some integer, one has that ϑθ(v) = v2p. Moreover, let ρ := (ρ1, ρ2, ..., ρθ).
Define the set

F relax
ϑ

··= {g ∈ F : ∀j < θ = 2p, 〈g, ϑj〉 = ρj , 〈g,v2p〉 ≤ ρ2p} (2.30)

The relaxed problem in (2.29) can be rewritten as

arg inf
g(ζ)∈Frelax

ϑ

H(g) (2.31)

Hauck et. al. [17] analyzed the relationship between problems in (2.28) and (2.29) in detail by apply-
ing a dual formulation to (2.29) based on the theory of convex optimization. He has shown that (2.28)
and (2.29) are equivalent, i.e., that the respective infima are equal. Schneider [31] and Pavan [29] show
that the relaxed minimization problem exhibits a unique solution, corresponding to the exponential
distribution. Such a result is summarized as follows

Theorem 2.4 (Pavan [29], Schneider [31]). The relaxed problem (2.31) admits a unique solution
that reads

∃ζ ∈ Iϑ : F = eζ·ϑ (2.32)

It can be shown [17, 29, 31] that the minimizer of (2.28) is also the unique minimizer of (2.3)
whenever (2.3) has a minimum. This was summarized by Hauck [16] in the following result. Recalling
the set Iϑ in (2.8), denote by Rexp

ϑ the set of exponentially realizable densities,

Rexp
ϑ
··= {ρ ∈ Rθ : ρ = 〈eζ·ϑ,ϑ〉, ζ ∈ Iϑ} (2.33)

It is clear that Rexp
ϑ ⊂ Rϑ.

Corollary 2.5 (Hauck [16]). The infimum in (2.28) is a minimum if and only if ρ ∈ Rexp
ϑ .

Thus (2.3) has a solution if and only if ρ ∈ Rexp
ϑ .

In summary, the exponential closure is retained when the closure procedure is modified in such a
way that the constraints of the minimization problem are relaxed. Pavan [29] employs these results to
construct a moment closure system that, as opposed to Levermore’s system [23], restricts the problem
to a hierarchy in the basis such that a minimizer always exists for the entropy minimization problem.
This can be done by checking the condition in theorem 2.3 for each moment system in the hierarchy
and assigning the corresponding minimization problem to it such that a minimizer always exists for
each member of the hierarchy. Finally, Pavan [29] checks that all properties of Levermore’s moment
closure system [23] are recovered.
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Chapter 3

Analytical Approximation of the Moment Closure System

Any numerical approximation to the moment closure system (2.9) would require the evaluation of the
density, flux and collision terms which, in turn, involve evaluating moments of exponentials of poly-
nomials of, in principle, arbitrary order. It is generally accepted that the derivation of closed-form
expressions for such moments is intractable, and accurate approximation of the moments is a notori-
ously difficult problem [22]. The problem can be circumvented by numerical integration. However, in
that case, the hyperbolic systems engendered by the moment closure approximation are not explicitly
available, which impedes both their analysis, and the development of advanced numerical techniques.
Moreover, within the context of numerical schemes, numerical integration is generally computationally
intensive. This chapter investigates the novelty of this work: a tractable system approximating the
moment closure system (2.9) constructed by an approximation of the minimum entropy distribution.

1. Approximation of Collision Operator
So far the collision operator was dealt with in abstract terms using properties described in section 1.1,
that is, no explicit expression was used. Following Levermore [23], this section develops a generalized
B.G.K. operator C̃ to approximate the collision operator C .

Recall the definition, given in section 1.2.1, characterizing an admissible subspace Θ with basis
vectors {ϑi}θi=1 ∈ ϑ and let, for convenience, Θ0 ··= C ≡ span{1,v, |v|2}. Consider any finite sequence
of subspaces {Θk}Kk=0 ordered by strict inclusion and strictly contained within Θ, i.e.

Θ0 ( Θ1 ( ... ( ΘK ( Θ (3.1)

For each k, let {ϑi(k)}
θ
k=0 ∈ ϑ(k) form a basis for Θk and let ρ(k) ··= 〈f,ϑ(k)〉. The entropic projection

of f with respect to ϑ is defined by the entropy minimizing distribution, denoted by Ff ··= F(f ;ϑ).
Furthermore, let Fkf ··= F(f ;ϑ(k)) be the entropic projection of f with respect to ϑ(k) defined as the
solution of

arg min
g(ζ(k))

{H(g) : 〈g,ϑ(k)〉 = ρ(k)} (3.2)

where ζ(k) ∈ Rθ is uniquely determined by the constraints. Assuming the solution exists, it would

be given by eζ(k)·ϑ(k) where ζ(k) · ϑ(k) ∈ Θk. Using the sequence of entropic projections {Fkf}Kk=0, a
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multistage relaxation operator C̃ approximating the collision operator C is defined as

C̃ (f) = −νK(f − FKf )−
K−1∑
k=0

νk(Fk+1
f − Fkf ) (3.3)

where {νk}Kk=0 is an increasing sequence of positive relaxation rates depending on ρ(k). Note that νk
is the rate at which Fk+1

f relaxes to Fkf and νK is the rate at which f relaxes to FKf . Moreover, (3.3)
can be re-written as

C̃ (f) = −
K∑
k=0

ηk(f − Fkf ), (3.4)

where ηk = νk − νk−1 and setting ν−1 = 0.

1.1 Note on Realizability
In order to circumvent the realizability problem it is important to ensure that an entropy minimizer
is attained for every member of the hierarchy. Following Pavan [29], this can be done by considering
the following cases

• If ϑ(k) is such that the corresponding Iϑ is open, then consider the full minimization problem;

• If ϑ(k) is such that the corresponding Iϑ is not open, then consider the relaxed minimization
problem given by

arg inf
g(ζ(k))∈Frelax

ϑ(k)

H(g) (3.5)

This guarantees that for every member of the hierarchy a solution to the corresponding optimization
problem exists such that exponential closure is attained.

1.2 Properties of the Generalized B.G.K. Operator
It remains to check whether the approximate generalized B.G.K. operator C̃ satisfies the properties
assumed for the full collision operator C in section 1.1:

1. Entropy Dissipation: H-Theorem
Note that from the constrains of (3.2) it follows that ∀ϑ(k) ∈ Θk, 〈Fkf − f,ϑ(k)〉 = 0. It follows

that since ln Fkf ∈ Θk, 〈C̃ (f), ln Fkf 〉 = 0. Consider the relation〈
C̃ (f), ln f

〉
=

K∑
k=1

ηk
〈
Fkf − f, ln f

〉
=

K∑
k=1

ηk

〈
Fkf − f, ln

f

Fkf

〉
≤ 0

(3.6)

where, in the last step, the fact that ∀y, z ∈ R, (z − y) ln z
y ≥ 0 was used, where equality is

attained if and only if z = y. If one would consider the relaxed minimization problem (3.5),
the conditions imposed by the set F relax

ϑ would change the argument slightly: ∀ϑ(k) ∈ Θk,

〈Fkf − f,ϑ(k)〉 ≥ 0, it follows that since ln Fkf ∈ Θk, 〈C̃ (f), ln Fkf 〉 ≥ 0. Consequently,〈
C̃ (f), ln f

〉
=

K∑
k=1

ηk
〈
Fkf − f, ln f

〉
≤

K∑
k=1

ηk

〈
Fkf − f, ln

f

Fkf

〉
≤ 0

(3.7)
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and a similar result is obtained. Thus, C̃ (f) satisfies the H-Theorem. In addition, from (3.7) it
follows that for any entropic projection Fkf〈

C̃ (f), ln
f

Fkf

〉
≤ 0 (3.8)

2. Conservation: Mass, Momentum and Energy
From the constrains of (3.2) or the conditions imposed by (3.5) for problems involving super-
quadratic moments of velocity, it can be seen that each term in the sum in (3.4) employs
γ ∈ {1,v, |v|2} as locally conserved quantities. Thus, C̃ (f) satisfies the local conservation law

〈C̃ (f), γ〉 = 0 (3.9)

As each term of the sum in (3.6) or (3.7) is non-positive, the only way the sum can vanish is if
each term vanishes. This will happen if and only if the k = 1 term vanishes because in that case
one must have f =M , which would imply all the other terms would also vanish. This implies
that the only locally conserved quantities are those in in the collection of collision invariants
C ≡ span{1,v, |v|2}, thereby establishing the equivalence between the following statements

(a) 〈C̃ (f), g〉 = 0

(b) g ∈ C ≡ span{1,v, |v|2}

3. Galilean Invariance
Finally, the translational and rotational symmetries follow for each term in the sum (3.6) from
the fact that, being admissible, each Θ(k) is Galilean invariant.

2. Modified Kinetic System
This section introduces a novel tractable system that approximates Levermore’s moment closure sys-
tem in (2.9) by applying an approximation to the entropy minimizing distribution. The resulting
approximate system is checked for the structural properties of Levermore’s moment closure system,
more specifically, properties pertaining to well-posedness and entropy dissipation.

Recalling the entropy minimizing distribution given by (2.6), an entropic projection E of the same
exponential form can be factorized such that the entropy minimizing distribution can be rewritten as

F = E(ζ0)e(ζ−ζ0)·ϑ (3.10)

More specifically, E could be an entropic projection corresponding to the global equilibrium distribu-
tion Eg or the local equilibrium distribution El (for example, the equilibrium solutions of the 5-moment
or the 10-moment system) and ζ0 the corresponding vector of (known) Lagrange multipliers.

2.1 Approximation of Moment Closure
In this section the minimum entropy system is linearized in an attempt to approximate the integrals
with closed form expressions. For ease of exposition consider 1-dimensional exponential densities of
the form

f̃(η) = eη
>·x = eη0+η1x

1+...+η2kx
2k

(3.11)

where for k ∈ N

η = [η0, η1, ..., η2k]> (3.12)

x = [x0, x1, ..., x2k]> (3.13)
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Define moments of order i of the exponential density in (3.11) by

Mi(η) ··=
∫ ∞
−∞

xieη
>·x dx (3.14)

Furthermore, let the known η0 correspond to some special case for which the moment Mi(η0) is
known. Inserting the power series definition of the exponential into f̃(η), there holds

f̃(η) = eη
>
0 ·x

∞∑
n=0

1

n!
[x · (η − η0)]n (3.15)

Furthermore, from (3.15) it follows that an unknown moment corresponding to some η1 can be ex-
pressed as

Mi(η1) =

∞∑
n=0

1

n!

∫ ∞
−∞

xieη
>
0 ·x[x · (η1 − η0)]n dx (3.16)

Note that the integrations involved in (3.16) are just higher order moments of the exponential density
corresponding to η0. More specifically, if Gaussian densities are considered to correspond to η0, these
integrals can be seen as higher order moments of Gaussian integrals. Such moments are computable
(see Appendix II).

Applying the expansion in (3.15) to the minimum entropy (3.10) and denoting the approximation
to the minimum entropy corresponding to the truncated series expansion by F̃, gives

F̃(ζ1) = eζ
>
0 ·ϑ

N∑
n=0

1

n!
[ϑ · (ζ − ζ0)]n

=·· E [1 + F̃ (ζ1)] (3.17)

where ζ1 represents the unknown Lagrange multipliers and ζ0 are those of the corresponding equi-
librium distribution. Applying the approximation in (3.16) to the minimum entropy system in (2.9)
yields an approximation of the closed minimum entropy system :

∂t〈E(1 + F̃ ),ϑ〉+ ∂xj 〈E(1 + F̃ ), vjϑ〉 = 〈C (E [1 + F̃ ]),ϑ〉 (3.18)

Introducing the generalized B.G.K. operator in (3.3) to the approximated system (3.18)

∂t〈E(1 + F̃ ),ϑ〉+ ∂xj 〈E(1 + F̃ ), vjϑ〉 = 〈C̃ (E [1 + F̃ ]),ϑ〉 (3.19)

It still remains to check whether the approximated moment closure system (3.19) exhibits entropy
dissipation and hyperbolicity, as did Levermore’s moment closure system. In section 2.2 the entropy
dissipation property of (3.19) is considered. Section 2.3 is concerned with the symmetric hyperbolic
structure of (3.19).

2.2 Entropy Dissipation
This section investigates the entropy dissipation of the approximate moment closure system resulting
from linearization about some equilibrium distribution. Recall the entropy minimizing distribution
given by F in (2.7) and note that ln F = ζ · ϑ, similarly ln E = ζ0 · ϑ. Truncating the series in (3.17)
at N = 2 yields

F̃ (ζ) = (ζ − ζ0) · ϑ+
1

2
[(ζ − ζ0) · ϑ]2

= ln
F

E
+

1

2

[
ln

F

E

]2

(3.20)
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This implies that

(ζ − ζ0) · ϑ = ln
F

E
=
√

2F̃ + 1− 1 (3.21)

Noting the inverse relationship between lnx and ex, the motivation behind the choice of this solution

and ignoring −
√

2F̃ + 1, is that the former captures an approximation of that inverse property while
the latter solution does not. The entropy density for the linearized moment closure system can be
rewritten as

H̃(F̃ ) ··=
〈
E(1 + F̃ ), ln

F

E

〉
=
〈
E(1 + F̃ ),

√
2F̃ + 1− 1

〉
(3.22)

Note that min(ζ−ζ0)·ϑ F̃ = − 1
2 and that the second (functional) derivative

d2

dε2
H̃(F̃ + εψ)

∣∣∣∣
ε=0

=

〈
−Eψ

2(1 + F̃ )

(1 + 2F̃ )3/2
+

2 Eψ2√
1 + 2F̃

〉
> 0 (3.23)

for all functions φ, thus, H̃ is strictly convex. Using the inequality in (3.8) and in light of the Galerkin
projection description in (2.11) of the moment closure system, noting that ln F

E = (ζ − ζ0) · ϑ ∈
W(Ω; Θ), the space of (polynomial) test functions, one has that

∂t〈E(1 + F̃ ), (ζ − ζ0) · ϑ〉+ ∂xj 〈E(1 + F̃ ), vj(ζ − ζ0) · ϑ〉 = 〈C̃ (E [1 + F̃ ]), (ζ − ζ0) · ϑ〉 ≤ 0 (3.24)

Thus, (3.22) provides an auxiliary convex entropy density to the moment system (3.19) that dissipates
locally as in (3.24). Note that no distinction was made in this section between global and local
equilibrium because showing entropy dissipation for a moment system linearized about either of them
follows in a fashion similar to what was previously shown. In other words, the moment system (3.19)
written in terms of a global or local equilibrium solution also posses (3.24) as a convex entropy
extension that is locally dissipated.

2.3 Symmetry and Hyperbolicity
This section investigates the symmetric hyperbolicity of the approximate moment closure system
resulting from linearization about either a global or local equilibrium distribution. With regard to
showing symmetric hyperbolicity, distinction will be made between local and global equilibrium since
the procedure differs slightly. In section 2.3.1 a moment closure system resulting from linearization
about a global equilibrium distribution is considered. Section 2.3.2 is concerned with a moment closure
system resulting from linearization about a local equilibrium distribution.

2.3.1 Linearization about Global Equilibrium
This section investigates symmetric hyperbolicity of a moment closure system resulting from lineariza-
tion about a global equilibrium distribution. Rewriting equation (3.19) in terms of a global equilibrium
solution gives

∂t〈Eg(1 + F̃ ),ϑ〉+ ∂xj 〈Eg(1 + F̃ ), vjϑ〉 = 〈C̃ (Eg[1 + F̃ ]),ϑ〉 (3.25)

The approximated moment system (3.25) can be recast (using the chain rule) into the form of (2.12)
by rewriting it such that

〈Eg∂ζF̃ ,ϑ〉∂tζ + 〈Eg∂ζF̃ , vjϑ〉∂xjζ = 〈C̃ (Eg[1 + F̃ ]),ϑ〉 (3.26)

where from (3.20) one has that

∂ζF̃ = [1 + (ζ − ζ0) · ϑ]ϑ> (3.27)
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Thus,

〈Eg[1 + (ζ − ζ0) · ϑ],ϑϑ>〉∂tζ + 〈Eg[1 + (ζ − ζ0) · ϑ], vjϑϑ
>〉∂xjζ = 〈C̃ (Eg[1 + F̃ ]),ϑ〉 (3.28)

The symmetry of system (3.28) is clear.

Remark. Note that the term [1+(ζ−ζ0) ·ϑ] appearing in the coefficient matrices of the derivatives
of ζ is always non-negative. This can be seen from the fact that solutions of the moment system (3.25)
should satisfy (3.21) (and hence, the local dissipation relation (3.24)). In other words, given an initial
condition in which ζ satisfies (3.21), the evolution of ζ should satisfy (3.21). In contrast to solutions
of Levermore’s system, the fact that the solutions of the linearized system should satisfy (3.21) can
be conceived of as a restriction of the solution space to some ζ such that (3.24) is satisfied.

It remains to investigate the second requirement in definition 2.2. For any γ ∈ Rθ one has that

γ>〈Eg[1 + (ζ − ζ0) · ϑ],ϑϑ>〉γ = 〈Eg[1 + (ζ − ζ0) · ϑ], (γ · ϑ)2〉 ≥ 0 (3.29)

where equality is attained if and only if γ = 0 or ζ · ϑ = ζ0 · ϑ− 1. In the latter case, ζ follows from
the known ζ0 corresponding to global equilibrium, thus, the system becomes trivial. Therefore, the
approximate moment closure system (3.28) is symmetric hyperbolic.

2.3.2 Linearization about Local Equilibrium
This section investigates symmetric hyperbolicity of a moment closure system resulting from lineariza-
tion about a local equilibrium distribution. Rewriting equation (3.19) in terms of a local equilibrium
solution gives

∂t〈El(1 + F̃ ),ϑ〉+ ∂xj 〈El(1 + F̃ ), vjϑ〉 = 〈C̃ (El[1 + F̃ ]),ϑ〉 (3.30)

The approximated moment system (3.30) can be recast (using the chain rule) into the form of (2.12):

〈El∂ζF̃ ,ϑ〉∂tζ + 〈El∂ζF̃ , vjϑ〉∂xjζ
= 〈C̃ (El[1 + F̃ ]),ϑ〉 − 〈(1 + F )∂ζ0El,ϑ〉∂tζ0 − 〈(1 + F )∂ζ0El, vjϑ〉∂xjζ0

(3.31)

where from (3.20) one has that

∂ζF̃ = [1 + (ζ − ζ0) · ϑ]ϑ> (3.32)

Thus,

〈El[1 + (ζ − ζ0) · ϑ],ϑϑ>〉∂tζ + 〈El[1 + (ζ − ζ0) · ϑ], vjϑϑ
>〉∂xjζ

+ 〈(1 + F )∂ζ0El,ϑ〉∂tζ0 + 〈(1 + F )∂ζ0El, vjϑ〉∂xjζ0

= 〈C̃ (El[1 + F̃ ]),ϑ〉
(3.33)

The symmetry of system (3.33) is clear.

Remark. Note that the term [1+(ζ−ζ0) ·ϑ] appearing in the coefficient matrices of the derivatives
of ζ is always non-negative. This can be seen from the fact that solutions of the moment system (3.30)
should satisfy (3.21) (and hence, satisfying the local dissipation relation (3.24)). In other words, given
an initial condition in which ζ satisfies (3.21), the evolution of ζ should satisfy (3.21). In contrast
to solutions of Levermore’s system, the fact that the solutions of the linearized system should satisfy
(3.21) can be conceived of as a restriction of the solution space to some ζ such that (3.24) is satisfied.
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It remains to investigate the second requirement in definition 2.2. For any γ ∈ Rθ one has that

γ>〈El[1 + (ζ − ζ0) · ϑ],ϑϑ>〉γ = 〈El[1 + (ζ − ζ0) · ϑ], (γ · ϑ)2〉 ≥ 0 (3.34)

where equality is attained if and only if γ = 0 or ζ ·ϑ = ζ0 ·ϑ− 1. In the latter case ζ is no longer an
unknown since it follows from the known Lagrange multipliers ζ0 corresponding to equilibrium, thus,
the system becomes trivial. Therefore, the approximate moment closure system (3.33) is symmetric
hyperbolic.

Remark. An interesting observation about (3.33) relates to the derivatives of ζ0 that appear. The
contribution of these terms can be perceived as source/sink terms. Since it is not known whether
these terms act as sources or sinks, it maybe that the solutions blow up in the limit t → ∞. Hence,
any claim about well-posedness may only make sense in finite time.

2.4 Linearization about a Gaussian Distribution
More generally, E in (3.19) could also correspond to a general Gaussian distribution form, denoted
by G, such that the vector of Lagrange multipliers ζ0 remain unknown. Moreover, the definition
of F̃ changes slightly. This section investigates the properties of the approximate moment closure
system resulting from linearization about a Gaussian distribution G where the corresponding vector of
Lagrange multipliers ζ0 remains as part of the approximation. More specifically, properties pertaining
to entropy dissipation and hyperbolicity are studied. It has been noted that Grad’s moment closure
can be perceived as a first order linearization of the Levermore’s exponential closure [32].

2.4.1 Approximation of Minimum Entropy
For ease of exposition consider 1-dimensional exponential densities of the form

f̃(η) = eη·x = eη0+η1x
1+...+η2kx

2k

(3.35)

where for k ∈ N

η = [η0, η1, ..., η2k]> (3.36)

x = [x0, x1, ..., x2k]> (3.37)

Let η0, x0 and η1, x1 be defined such that for l ∈ N and l < k

η0 = [η0, η1, ..., η2l]
>

x0 = [x0, x1, ..., x2l]>

η1 = [η2l+1, η2l+2, ..., η2k]>

x1 = [x2l+1, x2l+2, ..., x2k]>

(3.38)

This implies that η = [η0,η1] and x = [x0,x1]. Thus, (3.35) can be rewritten as

f̃(η) = eη0·x0eη1·x1 (3.39)

Define moments of order i of the exponential density in (3.36) by

Mi(η) =

∫ ∞
−∞

xieη·x dx (3.40)

Furthermore, let η0 correspond to some special case for which the moment Mi(η0) is known, more
specifically it could correspond to some Gaussian distribution G. Invoking the power series definition
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of the exponential onto the second term in f̃(η) in (3.39), gives

f̃(η) = eη0·x
∞∑
n=0

1

n!
(x · η1)n (3.41)

Furthermore, from (3.41) it follows that an unknown moment corresponding to some η1 can be ex-
pressed

Mi(η) =

∫ ∞
−∞

xieη0·x
∞∑
n=0

1

n!
xnηn1 dx

=

∞∑
n=0

1

n!

[∫ ∞
−∞

xixneη
>
0 ·x dx

]>
ηn1

(3.42)

Note that the integrations involved in (3.42) are just higher order moments of the exponential density
corresponding to η0. More specifically, if the Gaussian densities are considered to correspond to
η0, these integrals can be seen as higher order moments of Gaussian integrals. Such moments are
computable (see Appendix II).

Applying the expansion in (3.41) to the minimum entropy (2.7) and denoting the approximation
to the minimum entropy corresponding to the truncated series expansion by F̃, gives

F̃(ζ) = eζ0·ϑ0

N∑
n=0

1

n!
(ϑ1 · ζ1)n

=·· G(ζ0)[1 + F̃ (ζ1)] (3.43)

where ζ = [ζ0, ζ1]>. Note that ζ represents all the unknown Lagrange multipliers and ζ0 are those un-
known Lagrange multipliers corresponding to some Gaussian distribution G. Applying the expansion
in (3.43) to the minimum entropy system in (2.9) yields the approximated moment closure system

∂t〈G(1 + F̃ ),ϑ〉+ ∂xj 〈G(1 + F̃ ),vjϑ〉 = 〈C (G[1 + F ]),ϑ〉 (3.44)

Introducing the generalized B.G.K. operator in (3.3) to the approximated system yields

∂t〈G(1 + F̃ ),ϑ〉+ ∂xj 〈G(1 + F̃ ),vjϑ〉 = 〈C̃ (G[1 + F ]),ϑ〉 (3.45)

2.4.2 Entropy Dissipation
Recall the entropy minimizing distribution given by F in (2.7) and note that ln F = ζ·ϑ = ζ0·ϑ0+ζ1·ϑ1,
similarly lnG = ζ0 · ϑ0. Truncating the series in (3.17) at N = 2 yields

F̃ (ζ1) = ζ1 · ϑ1 +
1

2
(ζ1 · ϑ1)2

= ln
F

G
+

1

2

[
ln

F

G

]2

(3.46)

This implies that

ln
F

G
=
√

2F̃ + 1− 1 (3.47)

The entropy density for the approximate moment closure system can be rewritten as

H̃(F̃ ) ··=
〈
G(1 + F̃ ), ln

F

G

〉
=
〈
G(1 + F̃ ),

√
2F̃ + 1− 1

〉
(3.48)
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Note that the minζ1·ϑ1
F̃ = − 1

2 and that the second (functional) derivative

d2

dε2
H̃(F̃ + εψ)

∣∣∣∣
ε=0

=

〈
−Gψ

2(1 + F̃ )

(1 + 2F̃ )3/2
+

2Gψ2√
1 + 2F̃

〉
> 0 (3.49)

Thus, H̃ is strictly convex. Using the inequality in (3.8) and in light of the Galerkin projection
description in (2.11) of the moment closure system, noting that ln F

G = ζ1 · ϑ1 ∈ W(Ω; Θ), the space
of (polynomial) test functions, one has that

∂t〈G(1 + F̃ ), ζ1 · ϑ1〉+ ∂xj 〈G(1 + F̃ ), vj(ζ1 · ϑ1)〉 = 〈C̃ (G[1 + F̃ ]), ζ1 · ϑ1〉 ≤ 0 (3.50)

Thus, there exists an auxiliary entropy to the moment system (3.45) that is locally dissipated.

2.4.3 Symmetry and Hyperbolicity
The approximated moment system (3.45) can be recast (using the chain rule) into the form of (2.12)
by rewriting it such that

A0∂tζ + Aj∂xjζ = 〈C̃ (G[1 + F̃ ]),ϑ〉 (3.51)

where

A0 =

(
〈G(1 + F̃ ),ϑ0ϑ

>
0 〉 〈G(1 + ζ1 · ϑ1),ϑ0ϑ

>
1 〉

〈G(1 + F̃ ),ϑ1ϑ
>
0 〉 〈G(1 + ζ1 · ϑ1),ϑ1ϑ

>
1 〉

)
Aj =

(
〈G(1 + F̃ ), vjϑ0ϑ

>
0 〉 〈G(1 + ζ1 · ϑ1), vjϑ0ϑ

>
1 〉

〈G(1 + F̃ ), vjϑ1ϑ
>
0 〉 〈G(1 + ζ1 · ϑ1), vjϑ1ϑ

>
1 〉

) (3.52)

The symmetry of system (3.51) is lost. Note that at equilibrium i.e. ζ1 = 0 and thus F̃ = 0, symmetry
is retained, but is no longer guaranteed at any deviation from equilibrium.

With regard to the positive definiteness of A0, a similar result is obtained. For any γ ∈ Rθ,
rewritten such that γ = {γ0,γ1}, consider

(γ>0 γ>1 )

(
〈G(1 + F̃ ),ϑ0ϑ

>
0 〉 〈G(1 + ζ1 · ϑ1),ϑ0ϑ

>
1 〉

〈G(1 + F̃ ),ϑ1ϑ
>
0 〉 〈G(1 + ζ1 · ϑ1),ϑ1ϑ

>
1 〉

)(
γ0

γ1

)
(3.53)

≡ 〈(γ>0 ϑ0)2G(1 + F̃ )〉+ 〈(γ>1 ϑ1)2G〉+ γ>1 〈(1 + ϑ>1 ζ1)ϑ1ϑ
>
0 G〉γ0 + γ>0 〈Gϑ0ϑ

>
1 (1 + ϑ>1 ζ1)〉γ1〉

The positive definitness of system (3.51) is lost. Note that at equilibrium i.e. ζ1 = 0 and thus F̃ = 0,
positive definiteness is retained, but is no longer guaranteed at any deviation from equilibrium.

2.4.4 Concluding Remarks
Consequently, it can be shown that at equilibrium a symmetric hyperbolicity is recovered, but it is not
guaranteed at any deviation from equilibrium. It is worthy to note at this point that well-posedness
of Cauchy’s initial value problem is not only implied for symmetric hyperbolic systems, but also for
all hyperbolic systems, i.e. systems with real and distinct characteristics. However, investigating
the requirement of distinctness of the characteristics can be difficult task [14] and requires further
investigation beyond the scope of this work. Brown [8] performed an eigensystem analysis for the
Levermore’s 10-moment system and showed that the system is hyperbolic. Note that the approximate
system (3.45) could be conceived as a perturbative expansion about the Gaussian distribution which, in
fact, corresponds to the entropy minimizing distribution of the 10-moment system. Thus, heuristically,
one might expect (3.45) to be hyperbolic for, at least, some finite region in phase-space. However,
this hypothesis is subject to criticism and needs further investigation.
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Chapter 4

Numerical Approximation: Discontinuous Galerkin

The previous chapters conveyed that the relaxed minimization problem (2.31) yields an exponential
closure that retains the structural features of Levemore’s moment closure system without suffering
from the realizability problem. Moreover, it was shown that the resulting moment closure system is
symmetric hyperbolic, which implies well posedness of Cauchy’s initial value problem (at least, for
finite time). Furthermore, for moment closure systems that consider super-quadratic velocity polyno-
mials, approximate systems were derived to obtain a tractable system with closed form expressions
of the integrals. It was seen that these derived approximate systems retain the structural features
of Levermore’s moment closure pertaining to well-posedness and entropy dissipation. This chapter
aims at developing a numerical approximation to Cauchy’s initial value problem corresponding to the
aforementioned moment closure systems using the discontinuous Galerkin method. This chapter is an
extension to the work of Barth [1] aimed at developing a numerical approximation to the developed
tractable moment system (3.18).

Any of the aforementioned moment closure systems, (Levermore’s system in (2.9) or linearized
approximations to it about an equilibrium solution (3.19)), can be recast into the form

∂tρ+ ∂xjJj(ρ)−Q(ρ) = 0 (4.1)

where ρ is the corresponding density, Jj corresponds to flux and Q(ρ) corresponds to the collision
term. For example, for Levermore’s system,

ρ ··= 〈F(ρ,v),ϑ(v)〉, J j ··= 〈F(ρ,v), vjϑ(v)〉, Q ··= 〈C
(
F(ρ,v)

)
,ϑ(v)〉 (4.2)

Moreover, any of the corresponding convex entropy extensions can be recast into the form given by
equation (2.2). Following Barth [1], it is assumed that the considered spatial domain is either periodic
in all space dimensions or non-periodic with compactly supported initial data. This is done in order
to deliberately avoid complications arising from analysis of the boundary conditions.

1. Finite Element Approximation
This section develops finite element meshes, i.e. substructures of an approximation space, and the
consequent finite element approximation that will be used in order to apply the discontinous Galerkin
method.
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Consider a family of finite element meshes denoted by {τh}h>0, parametrized by the strictly positive
mesh parameter h, each consisting of n simplices of maximum diameter h covering the spatial domain
Ω. In other words, {τh}h>0 partitions the space domain Ω into elemental domains denoted by κ.
Denote the diameter of a simplex κ ∈ τh by hκ and the diameter of the largest inscribed hypersphere
by rκ. That is,

∀κ ∈ τh, hκ = diam(κ) = max
x1,x2∈κ

‖x1 − x2‖D (4.3)

where ‖ · ‖D is the Euclidean norm in RD. The parameter h is given by

h = max
κ∈τh

hκ (4.4)

Definition 4.1 (Shape-regularity). A family of meshes {τh}h>0 is said to be regular if there
exists a constant c̄ such that for all h

∀κ ∈ τh c̄κ ··=
hκ
rκ
≤ c̄ (4.5)

Remark. [13] The motivation behind imposing the regularity condition can be understood within
the context of a 2-dimensional example as follows: let κ be a triangle and denote by θκ the smallest
of its angles. It can be shown that

hκ
rκ
≤ 2

sin θκ
(4.6)

Therefore, for a shape-regular family of triangulations, the triangles are restricted from becoming too
flat as h→ 0.

In addition, let {τh}h>0 be a shape-regular family of meshes of the spatial domain Ω. Assume (for
simplicity) that Ω is composed of stationary non-overlapping elements κ:

• Ω ≡
⋃
κ∈τh

κ.

• κi ∩ κj = ∅, i 6= j

• ∂Kh ≡
⋃
κ∈τh

∂κ.

Let Pk(Q) denote the set of polynomials of degree at most k ≥ 0 in a domain Q ⊂ RD. Employing
the discontinuous Galerkin method, the following finite element space is introduced

Vh =
{
w : ∀κ ∈ τh, w|κ ∈ [Pk]θ

}
(4.7)

Thus, the approximating functions are polynomials from Vh. Note that Vh contains piecewise discon-
tinuous polynomials (with no continuity requirement across inter-element boundaries).

2. Space-Time Discontinuous Galerkin
This section describes the the space-time discontinuous Galerkin formulation of Cauchy’s initial value
problem corresponding to (4.1) in the context of the aforementioned finite element approximation.
The space-time discontinuous Galerkin method considers a setting that does not distinguish between



25

space and time variables [13]. Consider an element κ and let n̄ denote the exterior unit normal to its
boundary. Introduce the following notation: for some g = g(y), let g± ··= lim

ε→0
g(y ± εn̄).

Definition 4.2 (Quasi-uniformity). A family of meshes {τh}h>0 is said to be quasi-uniform if
and only if it is shape-regular and there exists a c such that for all h

∀κ ∈ τh, hκ ≥ ch (4.8)

Consider the partitioning of the time interval [t0, tN ] by an ordered series of (N + 1) time levels
t0 < t1 < ... < tN and let

• the time interval In ··= [tn+, t
n+1
− ]

• I = {In}0≤n≤N−1 be a quasi-uniform mesh of ]t0, tN [

Remark. [13] The motivation for assuming quasi-uniformity can be seen as follows: let

∆tmin ··= min
0≤n<N

|tn+1 − tn|, ∆tmax ··= max
0≤n≤N−1

(tn+1 − tn) (4.9)

The quasi-uniformity of I implies that there is a c such that

∆tmax ≤
∆tmin

c
(4.10)

Relation (4.10) can be conceived as a CFL condition.

Employing a space-time discontinuous Galerkin formulation, define Vkh,In = [Pk(In;Vh)]θ and intro-
duce the following finite element space

Vkh,I =
{
w : ∀In ∈ I, w|In ∈ Vkh,In

}
(4.11)

Complementing equation (4.1) with an initial condition to set up Cauchy’s initial value problem

P
{
∂tρ+ ∂xjJj(ρ) = Q(ρ), Ω×]t0, tN [
ρ
(
ζ(x, t0−)

)
= ρ0(x)

(4.12)

supplemented with the convex entropy extension of the form given by equation (2.2). The problem
statement for the strong form of the differential equations (4.12):

Find ζ(x, t) such that (4.12) is satisfied ∀x ∈ Ω and ∀t ∈ [tn+, t
n+1
− ] (4.13)

In order to obtain the weak formulation, the following consecutive consistent reformulations of (4.12)
are considered:

1. multiplication by a test function wh ∈ Vkh,I

2. integrate over space and time

3. replace integrals over space and time with summation over space-time slabs κ× In

4. perform integration by parts

5. weakly enforce continuity of the density across the time interface

6. substitute Jj with a numerical flux J̃j that posses the following properties:
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(a) Discrete cell conservation: This property ensures that fluxes from adjacent cells sharing
a mutual interface exactly cancel when summed. This is achieved if the numerical flux
satisfies

J̃ (ζ(x−), ζ(x+);n) = −J̃ (ζ(x−), ζ(x+);−n) (4.14)

(b) Consistency: Consistency is obtained if the numerical flux with identical state arguments
reduces to the true total flux passing through an element interface of that same state, i.e.

J̃ (ζ(x−), ζ(x+);n) = J (ζ) · n (4.15)

Consider the bilinear form

ah(u,w) =

N−1∑
n=0

∑
κ∈τh

∫
In

∫
κ

−
[
ρ(u) · ∂tw + Jj(u) · ∂xjw

]
dx dt

+

N−1∑
n=0

∑
κ∈τh

∫
In

∫
∂κ

w(x−) · J̃
(
u(x−),u(x+);n

)
ds dt

+

N−1∑
n=0

∑
κ∈τh

∫
In

∫
κ

[
w(tn+1

− ) · ρ
(
u(tn+1
− )

)
− w(tn+) · ρ

(
u(tn−)

)]
dx

−
N−1∑
n=0

∑
κ∈τh

∫
In

∫
κ

Q(ρ) ·w

(4.16)

The weak formulation of (4.12):

Find ζh(x, t) ∈ Vkh,I such that : ah(ζh,w) = 0 ∀w ∈ Vkh,I (4.17)

Remark. Note that a solution along the element edge can not be uniquely determined because
continuity restriction along an edge is not enforced in a discontinuous Galerkin method. As a conse-
quence of the independence of local spaces, the solution along edges can not be uniquely determined
because it may be discontinuous. Thus, the flux across an inter-element edge depends on ρ across the
interface. Furthermore, wave interaction takes place at the discontinuity along an element edge, this
situation can be conceived as a Riemann problem. This suggests that J̃ (ζh(x−), ζh(x+);n) can be
perceived as an approximate Riemann solver that numerically approximates the interface-flux along
an element edge

3. Nonlinear Stability: Entropy and Energy Analysis
The entropy inequality (2.2) is necessary in order to single out a unique, physically relevant solution
among the possibly many weak solutions of (4.12). Weak solutions of (4.12), which in addition
satisfy the inequality (2.2) for all entropy pairs (H, φ) connected with that system, are called entropy
solutions. In fact, the notion of nonlinear stability is strongly related to entropy dissipation. Physically,
such a relation stems from the minimum entropy postulate at which the system in consideration attains
equilibrium, i.e. is most stable. Mathematically, the basic idea behind this relation can be understood
by first showing that the total entropy in the domain is bounded. This can be done by showing that
it steadily increases and that it cannot increase above a certain level. The next step is to show that if
the entropy is bounded, the solution is bounded in a certain norm (see Merriam [26] and Dutt [11]).

An energy analysis for discontinuous Galerkin method by Barth [2] gives sufficient conditions that
when imposed on the numerical flux yield discrete entropy inequalities and total entropy bounds
obtained for the discretization of Cauchy’s initial value problem:
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• Assuming a semi-discrete approximation for ζh ∈ Vkh,I and that the entropy flux flows out
through the boundary, integrating the inequality (2.2) over an element κ yields a local cell
entropy inequality given by

d

dt

∫
κ

H(ζh) dx+

∫
∂κ

φ̃
(
ζh(x−), ζh(x+);n

)
dx ≤ 0, ∀κ ∈ τh (4.18)

where φ̃
(
ζh(x−), ζh(x+);n

)
denotes a consistent and conservative numerical entropy flux. Sum-

ming over all elements then yields the global inequality

d

dt

∫
Ωh

H(ζh) dx ≤ 0 (4.19)

• The total entropy bound, written for a full space-time approximation as∫
Ω

H
(
ρ∗(t0)

)
dx ≤

∫
Ωh

H
(
ρ
(
ζh(x, tN )

))
dx ≤

∫
Ωh

H
(
ρ
(
ζh(x, t0)

))
dx (4.20)

where ρ∗(t0) denotes the minimum total entropy state of the projected initial data

ρ∗(t0) ··=
1

|Ω|

∫
Ωh

ρ
(
ζh(x, t0)

)
dx (4.21)

which is the usual L2-stability statement familiar from the linear theory of symmetric hyperbolic
systems. Thus, entropy stability could be viewed as a nonlinear extension of the L2 linear stability
set-up to general, non-symmetric N ×N systems.

3.1 E-Flux Schemes and the E-flux Condition
E-flux schemes are a class of monotone numerical fluxes introduced by Osher [28]. They are called
E-fluxes due to their relationship to Oleinicks well-known E-condition which characterizes entropy
satisfying discontinuities. Letting [q]+− ··= q|+ − q|−, E-fluxes denoted by J̃ E satisfy the inequality

[ζ]+− ·
(
J̃ E

(
ζ(x−), ζ(x+);n

)
− J̃

(
ρ(ζ)

))
≤ 0, ∀ζ ∈ [ζ(x−), ζ(x+)] (4.22)

Note that any numerical flux can be written in the form

J̃
(
ζ(x−), ζ(x+);n

)
=

1

2
[J+ · n+ J− · n]− 1

2
vJ̃
(
ζ(x−), ζ(x+);n

)
(4.23)

where vJ̃ (·) denotes a viscosity for the numerical scheme. Approximate solutions satisfying (4.20) are
obtained by entropy stable schemes satisfying the cell entropy inequality (4.18). Barth [1] has shown
that if J̃ (ζ(x−), ζ(x+);n) satisfies the system E-flux condition given by (4.22)

[ζ]+− ·
[
J̃
(
ζ(x−), ζ(x+);n

)
−J

(
ζ(χ)

)
· n
]
≤ 0, ∀χ ∈ [0, 1] (4.24)

where ζ is parameterized by χ such that ζ(χ) = ζ(x−) + χ[ζ]+− ∀χ ∈ [0, 1], then the cell entropy
inequality (4.18) and the total entropy bound (4.20) are satisfied, hence implying (entropy/nonlinear)
stability. Consider the following numerical fluxes:

• Barth [1] introduced an approximation to the the interface-flux given by the mean value Kinetic
Boltzmann moment system E-flux, J̃ LKMV , for Levermore’s moment closure system (2.20)
written in the form (4.23), where

vJ̃ ··= vJ̃ LKMV (
ζ(x−), ζ(x+);n

)
=

∫ 1

0

〈eζ(χ)·ϑ, |v · n|ϑ⊗ ϑ〉[ζ]+− dχ (4.25)
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Note that the integration in (4.25) is path dependant. Following the results by Dumbser et. al.
[10] and Barth [1], the linear path connecting the states ζ+ and ζ− is chosen. This approximate
flux can be conceived off as an Osher-Solomon flux with a linear integration path.

• A kinetic Boltzmann moment system E-flux for the linearized Levermore’s moment closure
system (about an equilibrium solution E) (3.19), J̃ eKMV , written in the form (4.23), where

vJ̃ ··= vJ̃ eKMV (
ζ(x−), ζ(x+);n

)
=

∫ 1

0

〈E [1 + (ζ(χ)− ζ0) · ϑ], |v · n|ϑ⊗ ϑ〉[ζ]+− dχ (4.26)

In what follows it will be shown that the numerical fluxes corresponding to (4.25) and (4.26) satisfy
the E-flux condition given by (4.24).

3.2 E-flux condition for J̃ LKMV

Barth [1] has stated that J̃ LKMV satisfies the system E-flux condition (4.22). However, the proof is
incorrect (this can be seen in the first identity of Barth’s proof of his Lemma 3). An alternate proof
is provided as follows; first note that

1

2
[J+ −J

(
ζ(ξ)

)
] · n =

1

2
(〈eζ+·ϑ, (v · n)ϑ〉 − 〈eζ(ξ)·ϑ, (v · n)ϑ〉 =

1

2
〈eζ(χ)·ϑ, (v · n)ϑ〉

∣∣∣∣1
ξ

=
1

2

∫ 1

ξ

〈eζ(χ)·ϑ, (v · n)ϑ⊗ ϑ〉[ζ]+− dχ

(4.27)

1

2
[J− −J

(
ζ(ξ)

)
] · n = −1

2
(〈eζ−·ϑ, (v · n)ϑ〉 − 〈eζ(ξ)·ϑ, (v · n)ϑ〉 = − 1

2
〈eζ(χ)·ϑ, (v · n)ϑ〉

∣∣∣∣ξ
0

= −1

2

∫ ξ

0

〈eζ(χ)·ϑ, (v · n)ϑ⊗ ϑ〉[ζ]+− dχ

(4.28)

It can be seen that J̃KMV satisfies the E-flux condition since

[ζ]+− ·
[
J̃KMV −J

(
ζ(χ)

)
· n
]

(4.29)

=
1

2
[ζ]+−

(
[J+ −J

(
ζ(ξ)

)
] · n+ [J− −J

(
ζ(ξ)

)
] · n− vJ̃KMV

)
(4.30)

=
1

2

∫ 1

ξ

〈eζ(χ)·ϑ, (v · n)(ϑ · [ζ]+−)2〉 dχ− 1

2

∫ ξ

0

〈eζ(χ)·ϑ, (v · n)(ϑ · [ζ]+−)2〉 dχ

− 1

2

∫ 1

0

〈eζ(χ)·ϑ, |v · n|(ϑ · [ζ]+−)2〉 dχ
(4.31)

=
1

2

∫ 1

0

〈eζ(χ)·ϑ, (v · n)(ϑ · [ζ]+−)2〉 dχ− 1

2

∫ ξ

0

〈eζ(χ)·ϑ, (v · n)(ϑ · [ζ]+−)2〉 dχ

− 1

2

∫ ξ

0

〈eζ(χ)·ϑ, (v · n)(ϑ · [ζ]+−)2〉 dχ− 1

2

∫ 1

0

〈eζ(χ)·ϑ, |v · n|(ϑ · [ζ]+−)2〉 dχ
(4.32)

=
1

2

∫ 1

0

〈eζ(χ)·ϑ, [(v · n)− |v · n|](ϑ · [ζ]+−)2〉 dχ−
∫ ξ

0

〈eζ(χ)·ϑ, (v · n)(ϑ · [ζ]+−)2〉 dχ ≤ 0 (4.33)
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3.3 E-flux condition for J̃ eKMV

In this section it is shown that J̃ eKMV satisfies the system E-flux condition (4.22). To show this,
first note that

1

2
[J+ −J

(
ζ(ξ)

)
] · n =

1

2
(〈E(1 + F̃+), (v · n)ϑ〉 − 〈E [1 + F̃

(
ζ(ξ)

)
], (v · n)ϑ〉

=
1

2
〈E [1 + F̃

(
ζ(χ)

)
], (v · n)ϑ〉

∣∣∣∣1
ξ

=
1

2

∫ 1

ξ

〈E [1 +
(
ζ(χ)− ζ0

)
· ϑ], (v · n)ϑ⊗ ϑ〉[ζ]+− dχ

(4.34)

1

2
[J− −J

(
ζ(ξ)

)
] · n =

1

2
(〈E(1 + F̃−), (v · n)ϑ〉 − 〈E [1 + F̃

(
ζ(ξ)

)
], (v · n)ϑ〉

= − 1

2
〈E [1 + F̃

(
ζ(χ)

)
], (v · n)ϑ〉

∣∣∣∣ξ
0

= −1

2

∫ ξ

0

〈E [1 +
(
ζ(χ)− ζ0

)
· ϑ], (v · n)ϑ⊗ ϑ〉[ζ]+− dχ

(4.35)

It can be seen that J̃ eKMV satisfies the E-flux condition since

[ζ]+− ·
[
J̃ eKMV −J

(
ζ(χ)

)
· n
]

(4.36)

=
1

2
[ζ]+−

(
[J+ −J

(
ζ(ξ)

)
] · n+ [J− −J

(
ζ(ξ)

)
] · n− vJ̃ eKMV

)
(4.37)

=
1

2

∫ 1

ξ

〈E [1 +
(
ζ(χ)− ζ0

)
· ϑ], (v · n)(ϑ · [ζ]+−)2〉 dχ

− 1

2

∫ ξ

0

〈E [1 +
(
ζ(χ)− ζ0

)
· ϑ], (v · n)(ϑ · [ζ]+−)2〉 dχ

− 1

2

∫ 1

0

〈E [1 +
(
ζ(χ)− ζ0

)
· ϑ], |v · n|(ϑ · [ζ]+−)2〉 dχ

(4.38)

=
1

2

∫ 1

0

〈E [1 +
(
ζ(χ)− ζ0

)
· ϑ], (v · n)(ϑ · [ζ]+−)2〉 dχ

− 1

2

∫ 1

ξ

〈E [1 +
(
ζ(χ)− ζ0

)
· ϑ], (v · n)(ϑ · [ζ]+−)2〉 dχ

− 1

2

∫ ξ

0

〈E [1 +
(
ζ(χ)− ζ0

)
· ϑ], (v · n)(ϑ · [ζ]+−)2〉 dχ

− 1

2

∫ 1

0

〈E [1 +
(
ζ(χ)− ζ0

)
· ϑ], |v · n|(ϑ · [ζ]+−)2〉 dχ

(4.39)

=
1

2

∫ 1

0

〈E [1 +
(
ζ(χ)− ζ0

)
· ϑ], ((v · n)− |v · n|)(ϑ · [ζ]+−)2〉 dχ

−
∫ ξ

0

〈E [1 +
(
ζ(χ)− ζ0

)
· ϑ], (v · n)(ϑ · [ζ]+−)2〉 dχ ≤ 0

(4.40)

3.4 Discrete Numerical Flux
Consider Levermore’s kinetic Boltzmann moment system E-flux (4.25), evaluation of the state space
integrations can be very difficult. It follows from the E-flux condition (4.24) that the entropy stability
results derived for a numerical flux J̃ E are retained using another numerical fluxes, J̃D, satisfying

[ζ]+− · J̃D(ζ(x−), ζ(x+);n) ≤ [ζ]+− · J̃ E(ζ(x−), ζ(x+);n) (4.41)
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Barth [1] has shown that a discrete kinetic Boltzmann moment E-flux which replaces exact path inte-
gration in state space with q-point Gauss-Lobatto quadrature satisfies the system E-flux comparison
principle. More specifically, letting ωi ∈ R+ and χi ∈ [0, 1] denote q-point Gauss-Lobatto quadrature
weights and locations. The discrete kinetic Boltzmann moment numerical flux, J̃DLMKV (q), of the
form (4.23) where

vJ̃ = vJ̃DLKMV (q)
(ζ, ζ;n) ··=

q∑
i=1

ωi〈eζ(χ)·ϑ, |v · n|ϑ⊗ ϑ〉[ζ]+− (4.42)

satisfies the system E-flux comparison principle

[ζ]+− · J̃DLKMV (q)(ζ(x−), ζ(x+);n) ≤ [ζ]+− · J̃KMV (ζ(x−), ζ(x+);n) (4.43)

for q ≥ 2. Note that this issue is not raised for the E-flux given by (4.26) since the integrations
involved are computable with closed form expressions. Therefore, the E-flux given by (4.26) does not
need a discrete approximation.

4. Concluding Remarks
In order to solve Cauchy’s initial value problem posed in (4.12), one seeks weak solutions of (4.17)
yielding an expression for ρh. The remaining task is then to obtain the Lagrange multipliers ζh from
ρh(ζh). Considering Levermore’s moment closure system, the issue would be that for cases involving
moments of super-quadratic polynomials there is no explicit expression for ζh as a function of ρh
since the moment integrals are incomputable. Moreover, the Legendre duality relationship between
the entropy density and the exponential distribution is not guaranteed (see, Appendix I). Hence, it is
unclear how the vector of Lagrange multipliers, ζh, is obtained. The developed approximate moment
closure (3.19) system overcomes this issue, since the explicit expressions in question are available, thus
providing means to compute the Lagrange multipliers ζh for moment systems involving moments of
super-quadratic polynomials. This issue was not raised in the work of Barth [1] since only moment
closure systems involving, at most, quadratic polynomials (5-moment and 10-moment systems) were
considered.
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Chapter 5

Conclusions

1. Summary
In this study, moments of the Boltzmann equation with exponential closure [23] (2.20) were intro-
duced. More specifically, applying the moment method to approximate the Boltzmann equation, the
consequent moment closure problem and the entropy minimization technique used to attain closure
were discussed. Moreover, an analysis of the properties resulting moment closure system is presented,
it was shown that the entropy based closure retained the existence of a convex entropy extension (en-
tropy dissipation) as well as exhibiting well-posedness. However, it was noted that such an analysis
is based on the assumption that a minimizer to entropy minimization problem (2.3) exists.

Attention was given to the realizability issue that was first raised by Junk [18], i.e. that the set
containing realizable densities for which the minimum entropy solution is undefined is non-void. Recent
results addressing this issue [17, 29, 31] which suggest a modified closure procedure by relaxing the
constraints of the entropy minimization problem, were presented. This relaxed entropy minimization
technique retains the exponential closure.

It was noted that any numerical approximation of the Levemore’s entropy-based moment closure
system requires the evaluation of moments of exponentials of polynomials of, in principle, arbitrary
orders. For that, an analytical approximation of the moment closure system based on a series expansion
procedure that results in a mathematically tractable system, was studied. It was shown that the
properties of this approximate moment system recover the properties of the Levermore’s full moment
closure system and, thus, properties of the Boltzmann equation. More specifically, they retain well-
posedness and entropy dissipation.

Finally, a numerical approximation of the approximate moment closure system (3.19) is considered
within a discontinuous Galerkin finite element framework. The work of Barth [1] is extended to devise
a numerical approximation for the resulting moment system. Energy analysis is employed to show
stability of an energy stable numerical flux function which is used for the discontinuous Galerkin finite
element discretization. The use of the kinetic mean value numerical flux introduced by Barth [1] is
extended to approximate a numerical flux corresponding to the linearized moment system (3.19). In
contrast to the work of Barth [1], the numerical flux function suggested for the tractable system does
not require a simplified construction since it is computable, in addition, higher order (approximated)
moment systems can be considered.
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2. Future Outlook
This study can be perceived as a first milestone towards the development and analysis of a finite-
element methodology using a suitable hierarchy of moment-closure systems, which facilitates imple-
mentation in a finite element method, while retaining the fundamental properties of the underlying
Boltzmann equation. Though there maybe many ways to carry forward this research, from the au-
thor’s perspective, future prospects would involve implementation of the finite-element method and
eventual development of an adaptive refinement strategy for the developed hierarchy.

In the context of developing a suitable hierarchy, open questions still remain about the suggested
approximation in equation (3.45) with regard to well-posedness. From an approximation perspec-
tive this form of linearization is interesting because it does not impose restrictions on the term the
approximation is taken about. Though symmetric hyperbolicity can’t be guaranteed for (3.45), it
maybe worthwhile to investigate general hyperbolicity of this approximation. This can be done by
studying the eigen-structure of (3.45). If the eigenvalues of the flux coefficient matrix are real and
the corresponding eigenvectors distinct, the system is considered to be hyperbolic (see Definition 5.1).
Brown [8] performed an eigensystem analysis for the Levermore’s 10-moment system and showed that
the system is hyperbolic. Note that the approximate system (3.45) could be conceived as a perturba-
tive expansion about the Gaussian distribution which, in fact, corresponds to the entropy minimizing
distribution of the 10-moment system. Thus, heuristically, one might expect (3.45) to be hyperbolic
for, at least, some finite region in phase-space. However, this hypothesis is subject to criticism and
needs further investigation. Another open question pertains to an error analysis that would estimate
how well the solution of any of the moment system presented in this work (both Levermore’s system
and the developed approximation to it) approximate solution(s) of the Boltzmann equation.

In the context of numerical approximations, an analysis incorporating boundary conditions still re-
mains open. In addition, implementation of the approximate moment systems devised in this work into
a discontinuous Galerkin finite element element algorithm is needed in order to apply the developed
theory.
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Appendix I

Extended Thermodynamics and Levermore’s Entropy Minimization: The
Correlation

For the moments system (1.9) closure based on the principles of extended thermodynamics [27] impose
an entropy structure at the continuum level. In extended thermodynamics moments 〈f,vϑ〉 and
〈C (f),ϑ〉 can be expressed in terms of the densities ρ ··= 〈f,ϑ〉 through constitutive relations that
are local in space-time 1 to provide a closure of the form (2.9). Thus, if the constitutive functions are
known explicitly, the moments 〈f,vϑ〉 and 〈C (f),ϑ〉 could be eliminated between the equations of
balance and the constitutive relations to yield explicit field equations for the densities ρ. They form
a quasi-linear system of partial differential equations of first order. Every solution of this system is
called a thermodynamic process. For an arbitrary vector ϑ, the formulation of constitutive relations
is based on the following postulates [27]:

1. Entropy principal : It is assumed that there exists an entropy density H = H
(
F(ρ,v)

)
and

entropy flux φ = φ
(
F(ρ,v)

)
and a dissipation term σ = σ

(
F(ρ,v)

)
such that (2.2) is satisfied

for all thermodynamic processes. Note that is also assumed that H, φ and σ are constitutive
quantities that can be expressed in terms of the densities ρ ··= 〈f,ϑ〉.

2. The requirement of convexity and causality : This imposes that H is a convex function of the
densities so that the matrix of second derivatives is positive definite. Mathematically, it is to
ensure well-posedness of Cauchy problems for the field equations and physically it guarantees
finite speed of propagation and thermodynamic stability.

3. Principal of relativity (material frame indifference):The field equations are assumed to be inde-
pendent of an observer, i.e. assuming material frame indifference or Galilean invariance. This
means that the field equations and the entropy inequality have the same forms in all Galilee
frames.

It has been observed that entropy-based closures resulting from entropy minimization are formally
equivalent to the systems derived from extended thermodynamics [27]. Recall the minimization prob-
lem (2.3); if the minimizer exists, and if H is differentiable at the solution, the standard Lagrange
multiplier theory yields relation (2.7). Furthermore, it is clear from (2.3) that ζ ∈ Rθ is related to ρ

1Thus no gradients or time derivatives occur among the variables in the constitutive equations.
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through the constraints

〈eζ·ϑ,ϑ〉 = ρ (I.1)

Following [23], one can identify explicitly the density and flux potentials

H∗(ζ) ≡ 〈eζ·ϑ, 1〉
φ∗(ζ) ≡ 〈eζ·ϑ,v〉

(I.2)

Differentiating H∗ with respect to ζ recovers the constraint relations in (2.7). Note that the equality
in the constraints relation (I.1) implies that

H(ρ) +H∗(ζ) = ζ>ρ (I.3)

which means that H∗ is the Legendre dual of H. Moreover, because

∂2
ζH∗(ζ) = 〈eζ·ϑ,ϑϑ>〉 (I.4)

is positive definite, the relation is invertible for ζ as a function of ρ. Consequently, the closure in (2.9)
possesses an auxiliary entropy equation of the form (2.2).

Remark. However, the function relating the density ρ to the vector of Lagrange multipliers ζ
may not be explicitly available since the left hand side of (I.1) is not computable for moments of
super-quadratic polynomials of velocity. Therefore, it remains unclear how to obtain ζ

Furthermore, differentiating (I.3) with respect to ρ shows that

ζ = [∂ρH(ρ)]
>

(I.5)

moreover, it shows that

∂2
ρH = [∂2

αH∗]−1 (I.6)

is positive definite and, thus, H is convex. Within the context of an extended thermodynamics frame-
work, one must also show that H is dissipated by solution of (2.9). This can be done by the same
procedure as in (2.17)-(2.19).

Remark. In the degenerate cases, however, H is not always dissipated by solutions of (1.1). Thus,
there is no guarantee that σ(ρ) < 0. This issue can be circumvented by considering the relaxed mini-
mization problem (2.29) instead which retains the exponential entropy minimizing distribution (2.7)
and, thus, the exponential closure.

In addition to a kinetic-based formulation and an entropy-based closure, the minimum entropy method
also provides an algorithm for computing ζ that is not readily available in the extended thermody-
namics theory. This can be observed in light of the Legendre duality in (I.3). Differentiating (I.3)
results in the gradient

∂ζH = ρ− ∂ζH∗ (I.7)

Recall from (I.4) H is strictly convex. From the constrains in (I.1)

∂ζH = 0 (I.8)
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This suggests that the vector of Lagrange multipliers ζ can be obtained by solving (I.8), or equivalently,
the minimization problem

min
ζ∈Rn
{ζ>ρ−H(ρ)} (I.9)

Note that (I.9) is the Legendre dual problem for (2.3)

Remark. However, in the degenerate cases, the Legendre duality relationship in (I.3) does not hold.
Note that considering the relaxed minimization problem (2.29) does not overcome this issue since the
equality in (I.1) of the constraints of the full minimization problem (2.3) is no longer guaranteed.
The contraints of the relaxed minimization problem (2.29) allows for inequalities between certain
components instead. Therefore an algorithm based on (I.9) is remains lacking.
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Appendix II

Generalized Gaussian Integral

Consider an integral of the form

J0 =

∫ ∞
−∞

e−(αx2+βx) dx (II.1)

where theα > 0. Using the fact that

(ax+ b)2 = a2x2 + 2abx+ b2 (II.2)

the exponent in (II.1) is rewritten as a squared term such that

αx2 + βx =

(√
αx+

β

2
√
α

)2

−
(

β

2
√
α

)2

(II.3)

= α

(
x+

β

2α

)2

− β2

4α
(II.4)

Letting

y ··= x+
β

2α
(II.5)

the integral can be written in the form

J0 = e
β2

4α

∫ ∞
−∞

e−αy
2

dy =

√
π

α
e
β2

4α (II.6)

Proceeding to evaluate moments of this integral, the first moment is given by

J1 =

∫ ∞
−∞

xe−αy
2

dy (II.7)

=

∫ ∞
−∞
− ∂

∂β

[
e−αx

2−βx
]
dx (II.8)

= − ∂

∂β
J0 (II.9)
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The second moment is given by

J2 =

∫ ∞
−∞

x2e−αx
2−βx−γ dx (II.10)

=

∫ ∞
−∞

∂

∂α

[
e−αx

2−βx
]
dx (II.11)

= − ∂

∂α
J0 (II.12)

Subsequent moments of can be evaluated by similar techniques resulting int he following general
expressions

J2m+1 = (−1)2m+1 ∂
2m+1J0

∂β2m+1
(II.13)

= (−1)2m+1 ∂2m+1

∂β2m+1

[√
π

α
e
β2

4α

]
(II.14)

and

J2m = (−1)m
∂mJ0

∂βm
(II.15)

= (−1)m
∂m

∂βm

[√
π

α
e
β2

4α

]
(II.16)
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