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This paper studies the numerical approximation of the boundary control for the wave equation in a square
domain. Itis known that the discrete and semi-discrete models obtained by discretizing the wave equation
with the usual finite-difference or finite-element methods do not provide convergent sequences of approx-
imations to the boundary control of the continuous wave equation as the mesh size goes to zero. Here, we
introduce and analyse a new semi-discrete model based on the space discretization of the wave equation
using a mixed finite-element method with two different basis functions for the position and velocity. The
main theoretical result is a uniform observability inequality which allows us to construct a sequence of
approximations converging to the minimiaf-norm control of the continuous wave equation. We also
introduce a fully discrete system, obtained from our semi-discrete scheme, for which we conjecture that
it provides a convergent sequence of discrete approximations a$ taoith At, the time discretization
parameter, go to zero. We illustrate this fact with several numerical experiments.
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1. Introduction
Let us consider2 = (0, 1) x (0, 1) c R? with boundaryl” = I'y U I'; divided as follows:
No=1{(x0:0<x<1U{0y):0<y<1,
[ I={(x,1:0<x<1JU{(Ly):0<y<1. (1)

We are concerned with the following exact boundary controllability property for the wave equation
in Q: given T sufficiently large andu®, ul) e L?(Q) x H™1(Q), there exists a contrdb (t, y),
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z(t, x)) € [L2((0, T) x (0, 1))]? such that the solution of the equation

(U — Au=0 for(x,y) e 2, t >0,
ut,x,y)=20 for(x,y) e Ip, t > 0,
ut,1,y) =o(t,y) forye (0,1), t >0, 1.2)
u(t, x, 1) = z(t, x) forx e (0,1), t >0, '
u@©,x,y) =ul(x,y) for(x,y) e Q,
u@,x,y) =ul(x,y) for(x,y)e @

satisfies
u(T, ) =U(T,)=0. (1.3)

By ' we denote the time derivative.

The Hilbert uniqueness method (HUM) introduced by J.-L. Lions provides a coftya) with
minimal L?-norm (seeLions, 1988. This control is unique and it will be referred in the sequel as the
HUM control. We briefly describe this method at the beginning of Se&ibalow.

In the last years, many works have dealt with the numerical approximations of the control prob-
lem (1.2—(1.3). For instance, irGlowinski (1997, Glowinski et al. (1989 1990 and Glowinski &

Lions (1996, numerical algorithms based on the finite-difference and finite-element approximations of
(1.2) were described. However, these algorithms do not converge when the discretization parameters go
to zero.

Let us briefly explain this fact. When we are dealing with the exact controllability problem, a uniform
time T > O for the control of ‘all solutions’ is required. This timie depends on the size of the domain
and the velocity of propagation of waves. In general, any semi-discrete dynamics generates spurious
high-frequency oscillations that do not exist at the continuous level. Moreover, a numerical dispersion
phenomenon appears and the velocity of propagation of some of these high-frequency numerical waves
may possibly converge to zero when the meshidees. Consequently, the controllability property for
the semi-discrete system will not be uniform for a fixed timeThis is the case when the semi-discrete
model is obtained by discretizing the wave equation with the usual finite-difference or finite-element
method (seénfante & Zuazug1999 for a detailed analysis of the 1D case ahthzua(1999 for the
2D case, in the context of the dual observability problem).

From the numerical point of view, several techniques have been proposed as possible cures of the low
velocity of propagation of the high-frequency spurious oscillations (see, for inst@tmeinski, 1991
Glowinski et al, 1989 1990 Glowinski & Lions, 1996. To our knowledge, no proof of convergence
has been given for any of these methods) &ands to 0, so far.

In this paper, we construct, for affysufficiently large but independent bf a convergent sequence
of semi-discrete approximations of the HUM contfol z) of (1.2). The main idea is to introduce a
new space discretization scheme for the wave equati@) pased on a ‘mixed finite-element method’,
in which different base functions for the positiarand the velocity’ are considered. More precisely,
while the usual linear finite elements are used for the former, discontinuous elements approximate the
latter. This new scheme still has spurious high-frequency oscillations but the numerical dispersion makes
them to have larger velocity of propagation. Consequently, the velocity of propagation of all waves is
bounded from below by a uniform positive constant.

The semi-discrete approximatiolis,, zn)n-o of the HUM control (v, z) of (1.2) are obtained by
minimizing a functional # depending on the associated space-discretized adjoint systenb (5&e (

The main result of the paper is Theorén2 which gives a uniform (irh) observability inequality for
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this homogeneous semi-discrete adjoint system. This is equivalent to the uniform coerciyfy. of
Theoremd4.2 permits to show that if a weakly convergent sequence of approximations of the continuous
initial data (u°, ul) is considered, the sequence of approximatians zn)n-o converges weakly to

(v, 2) (Theorems.3and6.4).

To our knowledge, the scheme described in this paper was used by the first time in the context of the
wave equation irBankset al. (199)) in order to obtain a uniform decay rate of the energy associated
to the semi-discrete wave equation by a boundary dissipation. This scheme is different from the mixed
element method applied iBlowinski et al. (1989 where two different basis functions are considered
foruandVvu.

In this paper, we concentrate on the simplest 2D domain consisting of a unit square. The mixed
finite-element method may be applied to general domains but our proofs of the uniform observability
and convergence strongly depend on the particular geometry of the square and cannot be generalized.

We also introduce a fully discrete approximation of the wave equation, based on the semi-discrete
scheme, for which the velocity of propagation of all numerical waves does not vanish dsdudht,
the time discretization parameter, tend to zero. Based on this fact, we conjecture that this fully discrete
scheme also provides convergent approximations of the control. At the end, we include two numerical
experiments that illustrate this fact.

The rest of the paper is organized in the following way: Secibriefly recalls some controllability
results for the wave equatiori.@) and introduces the HUM. In Sectid®) the semi-discrete model
under consideration is deduced. In Sectipthe main properties of this system are discussed and, in
particular, the fundamental uniform observability inequality (Theo#eh Its technical proof is given
in Appendix A at the end of the paper. In Sectignan approximation sequence is constructed and in
Section6, its convergence to the HUM control of the continuous equatlod) {s proved. SectiofT is
devoted to present the fully discrete scheme and the numerical results.

2. The continuous problem: results and notations

In this section, we recall some of the controllability properties of the wave equdtirafd we briefly
describe the HUM. Also, we introduce some notations that will be used in the article. The following
classical result may be found, for instancel.ions (1988.

THEOREM2.1 Given anyT > 2¢/2 and(u®, ul) € L2(2) x H~1(Q), there exists a control function
(v,2) € [L2((0, T) x (0, 1))]? such that the solutiotu, u’) of (1.2) verifies (L.3).

In general, there are infinitely many controls when they exist. However, the one with mibfmal
norm is unique and can be characterized by the minimizer of a suitable functional. Let us introduce the
map _#: H3(Q) x L2(2) — R defined by

1 T r1 1 T 1
7 (WP, wl)zé /O /0 (wy)2(t, 1, y)dydt+§ /0 /O (wy)?(t, X, 1)dx dt

+/ UO(X, y)U)/(Oa X, y)dx dy - <U1, U)(O, ')>—1,la (21)
Q

where(w, w’) is the solution of the backward homogeneous equation

w’ — Aw =0 for(x,y) e Q, t >0,
wt,0,y)=wt,X,0) =w(t,x,) =w(,1,y)=0 forx,ye[0,1], t >0, (2.2)
w(T, %, y) = wo(x,y), w(T,xy) =wx,y) for (x,y) € Q.
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In (2.1, (-, -)—1,1 denotes the duality product betwelT1(Q) andHI(Q).

THEOREM 2.2 Given anyT > 2¢/2 and(u®, ul) e L?(Q) x H™1(Q), _# has a unique minimizer
@%@t € HH(Q) x L2(Q). If (@, @) is the solution of 2.2) with initial data(@®, ®1), then

((t,y), z(t, x)) = (x(t, 1, y), wy(t, x, 1)) (2.3)
is the control of {.2) with minimal L?-norm.

The method we have just presented was introduced by J.-L. Liond_{gses 1988 and named
HUM. The control(v, z) given by @.3) is usually called the HUM control.

We recall that the main ingredient of the proof of Theor2is the following observability in-
equality for @.2): given T > 24/2, there exists a consta6t > 0 such that the following inequality
holds for any solution 0f.2):

T r1 T p1
/(|Vw|2+|wt|2)dxdy<C(// |wx(t,1,y)|2dydt+// |wy(t,x,1)|2dxdt). (2.4)
Q 0 JO 0 JoO

Indeed, R.4) implies that_# is coercive and ensures the existence of a minimizer, as stated in
Theorem2.2

REMARK 2.3 For the continuous wave equatidnd), the velocity of propagation of all waves is one
and the bound of the minimal controllability tim€, > 2+/2, is exactly the minimum time that requires
a wave, starting at any € © in any direction, to arrive to the controllability zone.

REMARK 2.4 The controlv, z) from Theoren®.2is characterized by the following two properties:

1. (v, 2) is a control for (.2 or, equivalently,
Tl T 1
// u(t,y)wx(t,l,y)dydt+// z(t, x)wy(t, X, 1)dx dt
0 Jo 0 Jo

— (Ul w(0)) 11 — /Q WO(x, y)w' (0, X, y)dx dy (2.5)

for any (w?, wl) € H}(Q) x L2(Q), beingw the solution of the adjoint equatioB.g).
2. There exist$?, ©) € H}(Q) x L2(Q) such thab(t, y) =x(t, 1, y) andz(t, X) = Dy(t, X, 1),
where(@, @) is the solution of the adjoint systerf.p) with initial data(@°, ©?).

Much of our analysis will be based on Fourier expansion of solutions. Therefore, let us now intro-
duce the eigenvalues of the wave equati@i)(

A" = sgnin)v'n2 + m2x (2.6)

and the corresponding eigenfunctions:
ianmy—1
PIM(x, y) = /2 (("1_1) ) sin(nz x) sin(mzy), (n,m) e Z* x N*, i=+-1 (2.7

The sequenc€?"™)  myez+xN+ forms an orthonormal basis H&(Q) x L2(Q). Moreover,

1
1™ 20y xH-1(@) = T’
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The following characterization of any control df.p) in terms of the Fourier coefficients of initial
data is useful.

PROPOSITION2.5 Given anyT > 2¢/2 and(U®, ut) = 3", 1 7+ v aam®@"™ € L2(Q) x H71(Q),
(v,2) € [L?((0, T) x (0, 1))]? is a control for (.2) if and only if for all (n, m) € Z* x N*,
0

ei/{n t - n d - d at = —
n i i n . 2.8
/ (( |) II/ D(t, y) Sln( TL'y) Y+ ( |) III/ Z(t,X) Sln(n?Z'X) X) t f ( )

Proof. From the continuity of the linear form: H3(Q) x L?(2) — C, defined by

T pr1 T p1
A(wo,wl)z// v(t,y)wx(t,l,y)dydt+// z(t, X)wy(t, x, 1)dx dt
0 JO 0 JO

— (ut, w(0)) H-1 g T / uO(x, y)w'(0, x, y)dx dy,
Q

it follows that ©.5) holds for any(w?, w!) € H}(Q) x L2(Q) if and only if it is verified on a basis of
the spaceH}(Q) x L2(Q). Thus, by consideringw®, w!) = ¥"™in (2.5), we obtain that the control
(v, 2) drives to zero the initial data olL(2) if and only if (2.8) is verified. O

3. The semi-discrete problem

In this section, we introduce a suitable semi-discretization of the homogeneous adjoint eqi&ion (
By minimizing the HUM functional corresponding to this semi-discrete system, a convergent sequence
of discrete approximation®, zn)n-o of the HUM control(v, z) of (1.2) is obtained.

We introduceN € N* andh = 1/(N + 1), we consider the point&, yj) = (ih, jh), 0 < i, ] <
N + 1, and we denotejj = w(Xi, Yj).

Let us also introduce the new variaklé, x, y) = w’'(t, x, y). Equation 2.2) may be written in the
following variational form:

Find (w, ¢) = (w, O)(t, X, y) with (w(t), (1)) € H}(Q) x L3(Q) Vte (0, T)and

d
g Jo Jo wt X Yy yydxdy = fo o ¢t x. Yy (x. y)dxdy Yy e L(Q),
J (3.1)

d
) 0)11=J5 fo Vult.x.y)Ve(x, y)dxdy Ve e Hi(2).

w(T, %, y) = wlx,y), (T, x,y) = whx,y) V(xy)eQ.

We now discretize3.1) by using a mixed finite-element method (see, for instaRaderts & Thomas
1989. Let Q1 be the space of all polynomials of degree less than or equal to one with respect to
each of the variableg, y and Qg the space of constant functions. We introduce the basis functions
in the following way: For each 1< i,j < N, let Qihj = (X, Xi+1) x (¥j, Yj+1) be such that

Uosi.jen Q) = @ = (0, 1)? and define the functions

1 h h h h
3, if (X, y) € Qij U Qi_lj U Qij—lU Qi—lj—l’
0, otherwise,

‘//ij|QE| € Qo, wij=

il © Q011 O ) = 3.
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The variational formulation3.1) is then reduced to find

N

N
wh(t, X, y) = Z wij Oeij (X, y) and ¢h(t, X, y) = Z G Owij (X, y) (3.2)
=1 ij=1

that satisfy

4 fo ot x, )i (, y)dxdy =[5 Jo cn(t X)wij (x, yydxdy ¥1<i, j <N,
Lt ), pij)-11 = fol fol Vwn(t, X, Y)Veij (X, y)dx dy VI<i,j <N, (3.3)
wh(T, X, y) = wd(X, ¥), ¢h(T,X, y) = wi(X, y) V(X y) e Q.

The variablegij may be eliminated from32) and @.3) leading to the following semi-discrete system
for wij (t)int e (0, T):

[ h2 1 1 1 " " " " "

16 (4wij + 2wi+1j1+ 20{_qj + 2wij g + 2075 g+ 0 5 g F w0 g F w4,
+w_qj_1) + 3Bwij — wit1j) — Wi—1j — Wij41 — Wij—1 ~ Wilj41 ~ Wiglj-1
—wi—1j41 — wi—1j-1) =0, for 1 <i, j <N, (3.4)

wio = wiN4+1 =0, woj = wN41j =0 forO<i < N+1,

_wij(T)zwﬂ, wi; (T) =w foro<i,j <N+L1

The convergence of the schen®4) is given inKappel & Ito (1998. We shall consider that the
initial data are zero on the boundary@f which in the discrete equation corresponds to

0 1 0 1 ;
woj =wgj =0, wyygj=wiyy ;=0 forO<j<N+1, 5)
wio,ozwil,ozo, in,N+1=wil,N+1=0 forO<i < N+ 1
The same property will be also satisfied by the corresponding solutioBs4pf (
If we denote the unknown
Wh(t) = (w11(t), w21(t), . . ., N1, - - - ., WIN (), W2N (D), . .., WNND)T,
then @.4) may be written in vectorial form as follows:
MhW/ (1) + KnWh(t) =0, fort > 0,
(3.6)
Wh(T) = WP, W,(T) = Wg,

where (WP, W) = (wﬁ , u)ilj)lgijjgN e R2N? are the initial data and the corresponding solution of
(3.4) is given by(W, Wr;) = (wij, u)i/< )1<i,j<N-
The entries of the block-three-diagonal matridég and Ky, belonging to.#2(R) may be easily

deduced from3.4).
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4. Properties of the semi-discrete system

In this section, we study some of the properties of the semi-discrete adjoint sya#me{ated to

the controllability problem. More precisely, the aim of this section consists in giving a uniforhy (in
observability inequality for 3.4). But before that, let us briefly explain why the semi-discretization
introduced in this paper is likely to provide a uniform observability property rather than others like the
usual finite-difference semi-discretization implementeGlowinskiet al. (1990.

As we have mentioned in Rema2lk3, in order to have an observability inequality for the continuous
wave equation2.2) of the type R.4), it is necessary to considar > 2./2. This is due to the finite
velocity of propagation of waves. More precisely, a planar wave of the fdfrfie)—®! propagates in
any spatial direction = (v1, v2) € R? with group velocityVew - v, wherew = |£|. Let us denote

=min max Vsow-o= m|n [Veol. 4.1)
feR2peR2,|p|=1 seR2

The observability timeél and¢ are inversely proportional. In our particular ca3e,> 2 diam(Q)/¢

(seeLions, 1989 and; = 1. ThusT > 2/2.

In a similar way, we may introduce the velocity of waves for the semi-discrete problem (see
Trefethen 1982). Let wjj = €€ XY= ¢ — (&, &) e (—x/h, z/h)?, be a discrete plane wave
which propagates in any spatial directior= (v1, v2) € R? with group velocityV:w - v. In the mixed
finite-element method,

© = omel&) = \/tanz(flh) rar(D)  Zar(D) (L), @2

while for the finite-difference method,

o= oty = 2 fsit(S0) e (2) 43

Note thatmfe = MiNzc(_z /h z/hy2 | Veomiel = 1 and¢ia = MiNs¢(_z/h 2/ ny2 | Vewral = O(h). This is
illustrated in Fig.1. Thus, the observability tim& can be uniformly bounded, im, only for the mixed
finite-element method.

In the rest of this section, we prove that indeed this property holds for sy8tédm (

Since the matriceMy, andKp, are positive definite, we may define the inner product

((f1, 12), (91, 92))0 = (Kn f1, 91) + (Mn fo, Oo) (4.4)

for any (f1, f2), (g1, g2) € R?N?, where(., -) denotes the canonical inner productif’. The corre-
sponding norm will be denote||o.
We introduce the following discrete version of the continuous energf.af: (

1
En(t) = 5 I1(Wh, W) (D113 (4.5)

The following proposition shows that as in the corresponding continuous case, the ERedgfined
by (4.5 is conserved along trajectories.

PrRoOPOSITION4.1 For anyh > 0 and any solution of3.4), the following holds:

En(t) = En(0) Vvt > 0.
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30 ~

continuous spectrum
finite differences spectrum
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FIG. 1. (&) with & € [0, 7/ h)2 andh = 1/21 for the mixed finite-element semi-discretization (upper surface), continuous wave
equation (medium surface) and the usual finite-difference semi-discretization (lower surface). We observe that the norm of the
gradient| Ve (&)| is always one in the continuous case, it is greater than one for the mixed finite-element scheme and it becomes
zero for the usual finite-difference scheme’approacheséz/ h, 0).

Proof. Multiplying (3.6) by W},, we obtain that
/) 1 / d
0= (MaW, Wi) + (KnWh, W) = 5[(MhW¥],Wﬁ) + (KnWh, Wh)]" = 5 En(®)

and the proof finishes. O
The following result shows that a discrete version of the observability inequaldy ié valid for

the solutions of systenB8(4).

THEOREM 4.2 GivenT > 24/3, there exists a consta@t(T) > 0 independent of the discretization
steph such that the following inequality holds:

h(/r1 1 ,
En(0) < C(T)§ [/o [ﬁ(chw{\]., W) + ﬁ(ChW’N, WN)] dt
Tra 1
—/0 W(BhWN»WN-)‘Fﬁ(BhWN,WN) dtt, (4.6)
WhereWN. = (wNj)léjgN e RN andWN = (wiN)lgigN e RN, The matrixeth, Ch € MNZ(R)
are defined as followsBy, = —% T andCy, = Q—fs(T + lg) wherelq € My2(R) is the identity matrix

andT My2(R) is the tridiagonal matrix whose elements are all ones.

REMARK 4.3 The method used in the proof of the observability inequadit§) fvorks only if T > 24/3.
Probably this time is not sharp and the same is trudfor 2+/2, which is the necessary and sufficient
time condition for controllability in the continuous case (see Rer@aBk

The proof of Theoremd.2is technical and it is given in Appendix A.
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5. Construction of the discrete approximations

In this section, we explicitly construct a sequence of approximatiofnszn)n-o of the HUM control
(v, 2) of (1.2). This will be done by minimizing the HUM functional of the semi-discrete adjoint system

(3.4).

Suppose thatu?, U}) = (u?, U:J!')lgjgN e R?N? is a discretization of the continuous initial data of
(1.2 to be controlled. We define the functiongdh: R2N? R,

(W2, W = — (=K PMRUE, UD), (Wh(0), W, (0)))o

1 T
+ %/ [(ChWR., WR.) + (ChW/y, Wiy )]dt
0

1 T
+%/O [(BaWa., W) + (ByWin, WonIdt, (5.1)

where(Wh, W) is the solution of 8.6) with initial data(WP, W) e R2N? and we have noted/y. =
(10N])1<J<N e RN andW.y = (w|N)1<|<N e RN
We show now that#h has a m|n|m|ze(Wh , Wh)

THEOREMS5.1 For anyT > 24/3, the functional 7, (5.1) has a unique minimizetW_?, WY).

Proof. Since_# is continuous, convex and defined in a finite-dimensional space, the theorem is proved
if we show that 7} is coercive. This is a consequence 4f). More precisely,

h T N / / N / /
In(W2, W) > 32/ 2 |wNj+1(t)+wNj(t)|2+§ w41 @) + wiy ()% ] dt
j=0 i=0

T N N
+ = Z lwnj+1(t) + wnj )% + Z wi+an () + win (0% ] dt
j=0 i=0

1 T N 2 N 2
~& /s ,-Z()'w“j(t)' +§|wm(t)| dt
— I(=K5*MRUE, UD) [0l (Wh(0), W (0)) o
> C(M) W2, W I3 = (=K *MRUE, UD) ol (WS, Wi [,
and therefore

lim T W, W = oo
(WP, W) llg— 00

O

REMARK 5.2 The main tool in the proof of the previous result is the observability inequdliy (
stated in Theorem.2 It ensures the coercivity of¢ and consequently the existence of a minimizer.
Moreover, as we shall see in Theoréni, the constanC(T) appearing in4.6) is an upper bound for
the sequences of minimizers and controls.
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Let (VAVr?, V/\\/&) be the minimizer of the functional#y given by Theorenb.1 We definev, =
(on,j)1<j<n € L2(0, T; RNy andzy = (zn)1<i<n € L2(0, T; RN) by
onj® =L, Zni) =—=% VI<i <N, (5.2)
where(Wh, W) is the solution of .6) with initial data(W_?, W).

Our aim is to show that the sequen@®, zn)nh-o converges to a contrdab, z) of the continuous
equation {.2). Sincevn, andz, belong toL2(0, T; RN) whereas andz are inL2(0, T; L2(0, 1)), the
convergence is stated in terms of the Fourier coefficients. This is done in Sédtion

In the rest of this section, we introduce the eigenfunctions and the eigenvalues of the semi-discrete
problem @3.6). Let /y = {(n,m) e Z* x N*: 1 < [n| < N, 1 <m < N}

LEMMA 5.3 The eigenvalue®)™, (n, m) € 4y, of the semi-discrete problerB.¢) are given by

M = sgr(n)%\/tan?(m%h) + tan?(?) + gtan?(m%h) tan?(nizh). (5.3)

The corresponding eigenfunctions are

V2 @(iapm™~tepm
)

cos(%5) cos(5T) \ "

nm
Wh ==

) v(n,m) e AN, (5.4)

where@d!™ = (40 sin(pmz h))1<p<n € RN? andgf! = (sin(jnzh))1<j<n € RN.

A straightforward computation shows th&"™) n mye.», constitutes an orthonormal basisRaN’
with respect to the inner produ¢t -)o.
For any(fL, £2), (g%, g?) e R2N?, we introduce the notations

((F1,2), (g% g9)) 1= (=K *Mn 2, £1), (=K *Mhg?, gY)o,
ICFL, £2) )1 = [I(=K MR £2, £h]o.

Remark that-, -)_1 is an inner product anfft|| 1 is a horm orR2N?,

6. Convergence of the discrete approximations

In this section, we prove the weak convergence of the sequepcan )n-o to the HUM control of the
continuous equatioriL(2). Let us first show the following boundedness property of the initial data from
which (v, z,) were constructed.

THEOREM 6.1 Assume thal' > 24/3. The sequence of minimizers g}, given by Theoren®.1,
(WP, Whn- o, verifies

PN 1 _
IOWR, W) o < clI=K; IMaUE, U)o, (6.1)

whereC = C(T) is the observability constant od ) which is independent di.
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If the sequence of discretizatioﬂlslﬁ, Uﬁ)h>o is uniformly bounded in thd-||_1-norm, then the
sequencéW?, Whn- o is bounded in the-lo-norm.

Proof. From the observability inequality}(6), we have that
~0 w2 o N [T h [T
CII(W,, Widllg < 5/0 [(Chop, vp) + (Chzy, ;) ]dt — 5/0 [(Bhoh, vh) + (Bnzh, zn)]dt
= _Zh(WO, W) + ((=KpMaUE, UD), (Wh(0), W (0)))o.
Now, since_h (WP, W) < _#h(0, 0) = 0, it follows that

CIOWE, W 13 <((— K tMRUE, UD), (Wh(0), W, (0)))o
<I(=KitMaUE, UD) [0l (Wh (0), W (0)) llo = Il (=K " MU, UD) ol (W2, Wi [0,

which is equivalent tof.1). a

REMARK 6.2 Theoren®6.1shows that the sequence of initial da@?, VA\/r})h>o which give (vn, zn) is

uniformly bounded irh for the ||-|jo-norm if the sequence of discretizatiomi?, U,})h>o is bounded in
the||-||=1-norm. The sequencésy, Zn)h- o verify the following inequality:

h T
5/0 [(Chop, v1y) + (ChZ, Zhy) — (Bhon, vh) — (Bhzn, zn)]dt
1 _ 1
< g =Ky MhUE, U213 = 5||(U£, UbII2,. (6.2)

6.1 Weak convergence of the approximations

Assume that the sequence of discretizations of the continuous initial daﬂaZ)m((Jﬁ, Uﬁ)h>o, con-

verges weakly tqu®, ul) in L2(Q) x H=1(Q). This should be understood in the sense of the conver-
gence of the Fourier coefficients. More precisely, if

(Ur?’ Uﬁ) = Z “Hm(pr?m» (an Ul) = Z onm®@"",
(n,myesN (n,m)eZ* xN*

then the following weak convergence holdgf

h
%nm Onm
—_ - | — whenh — 0. 6.3
(lﬂm)(n,m)eeﬂN </1nm)(n,m)eZ* x N* ( )

Now, assume that the minimizef\/r?, Wr}) has the following expansion:

W, Wy = > ™ (6.4)

(n,mye.#N
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Inequality 6.1) is equivalent to

h (2

0~ 1 1 o
2 h 2 0 1\ 12 -1 1 0y (12 2
|ar|m| = ”(Wh’Wh)”O < C2 ”(_Kh MhUhauh)HO = C2 iﬁm

(n,m)e.N (n,mely
Here, the right-hand side is bounded due to the weak convergence stabeg).ilénce, the sequence
of the Fourier coefficientéaﬂm)(n,m)EjN is bounded in2 and there exists a subsequence, denoted in
the same way, antnm) (n,myez+xn+ € €2 such that
@ nmesy — @m)mmez <y i €2 whenh — 0. (6.5)
Let us now introduce the continuous initial data

@% o= > am?"™eHiQ) x LA(Q) (6.6)
(n,m)eZ* xN*

and the corresponding solutié®, w’) € C([0, T]; H(}(Q) x L2(Q)). We have that

et Ly)= > (Zlan (- 1)”“[”” i”"‘t)sin<m7ry) =0,

meN* \neZ*

Dy(t, X, 1) = Z ( Z ianm(— 1)m+1fmﬂ e"lnmt)sin(nnx) = w.

neZ* \meN*

If (Wh, WY,) is the corresponding solution c3.6) with initial data(W_?, W), it follows that

o= . > e (-t V2 sin(nzhye*™ | ¢,

1<m<N \1<|nj<N AhM cos(251) cog( gl

inh m+1 \/é . j Anmg n
Zh= Z Z ianm(—1) ) — sin(mzh)e“n™" | .
1<InI<N \1<m<N Apm cog("5") cos(5)
We denote
:-h 1 i i znmy .
bf, = 2o 1< 13am(=D"" l”'"cos(””h) oA 750) sin(nzhye*n ™, if1 <m< N,

0, if m> N,

. \/énﬂ' Sanm
bm = Z |anm(—1)n+1An—mell1 t,

neZ*

. . i ynm; .
dh = 2_1<m<N 'aﬂm(—l)m“lnmcos(mh) ) sin(mzh)é*'t, if1 < |n| <N,
0, if In] > N,

th=> ianm(—1>m+lfm” "

meN*
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THEOREM 6.3 Assume that the sequence of discretizatiQU#, U,})h>o converges weakly to

(O, ul) in the sense off.3). The following convergencies hold weakly ir?(0, T; £2) whenh tends
to zero:

(brr;])meN* - (bm)meN*a (dr?)nEZ* - (dn)HEZ*a
(O3 )mens — 0, (h(@))nezs — O.

In particular,(vn, zn)h-0o converges weakly té, z) in [L2((0, T) x (0, 1))]2.

Proof. We show the first convergence, the other ones being similar. Let us introduce

- V2 sinnzh) 1 m
bh (t) — i h (_1)n+1 el'lh t’
) K%:@ o 2™ cog("5) cog(Mg") (4™
n+1\/§n7f 1 ianmg

bin(t) = D iaam(—1)" )z

nez*

The convergencéb@meN* — (bm)men- is proved if we show that

/ > b (t) — b (t)|*dt — 0 whenh — 0. (6.7)
m>1

In order to prove§.7), we consider an arbitrary > 0 and show that there exists ahsufficiently large
such that

/ > bn(oPat < 6.8)
m>N
and

/0 S BR® — bm®)Pdt < % (6.9)

1<mN

Remark that§.8) and 6.9) imply (6.7) immediately.
To prove 6.8) note that sincéanm) € ¢2, there exists alN; > 0 independent dfi such that for any
N > Ni, we have
) .

/ PO dt</ mZN(Z inm|4)<z
<23 % k) [[(Z S ) <1 3 3 il <5

n+1 \/_nﬂ' nmt

ianm(—1)

neZ*
m> N neZ* m>N neZ* m> N neZ*
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Let us now show that foh sufficiently small (or, equivalently, foN sufficiently large), 6.9) also
holds. We have that

1 L
> 2 I6f—bnl?
1<mN
vz Nz i
. 2sin(nz h) 1 m 2nr 1 nm
< Z Z (_1)n+1|a2m( h h ZeI‘h - —ZeI‘
1<mEN | 1< <N Ap™ cog("57) cog( 51 (4h™) AR (AR

2
2 1 Sanm
+ Z Z i(—l)”+1(32m—anm)%unm)zem t

1<m<N [1<In|<N

According to the weak convergence of the seque(naqﬁg)nm to (ahnm)nm and the presence of the
weights 7(A"™)2, for h sufficiently small,

2
. «/En 1 Sanm
Z Z |(_1)n+1(a2m - anm) lnmn- (/lnm)ZeM t S %

1<mgN [1<nI<N

On the other hand,

> | > EyMtigy,

1<mgN [1€nIKN

i7nm. i7nm; 2
V2 sin(nzh) et 2ng 4t
cos50) cod T5E) UFTE A (2
ignm; ionm 2
V2 sin(nzh) ent  ong At
A cod ) cos ) G2 A G2

< 2 2 el X

NNV UIN 1<InsN

Since(aﬂm)nm is bounded irf?, there exists & > 0 such that

D oaahaP< > D IahlP<e,

1<InIKN 1SmKN 1NN
and 6.9) follows if we prove that

2

< —. (6.10)

V2sin(nzh) 1 gmg Vonm 1 it
=4

ADM cog "Zh) cog(M2h) (20™M)2 Anm- (anm)2

2. 2

1<mMN 1NN

Note that

V2 sin(nzh)

7imcos(%5%) cos(T5F)

Anm

,ﬁn”}gdé
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and thus there exists ap > 0 independent dfi such that

2
Z Z \/éSir(nﬂ' h) 1 euﬂmt \/Enﬂ,' 1 i Jnmg
h h nmy2 - 2
LN i | AT cos(5t) cog(5) (AR Anm- (nm)
2
+ Z Z \/é Slr(nn' h) 1 '/«Lﬂmt \/Enﬂ,' 1 i )My
h h nmy2 - 2
4 iomeN 1< men, | Ancos(57) cos(TFH) (AR AN (20M)
< 1 1 o €
<6 Z Z (Anm)2 +6 Z z (Anm)2 =g (6.11)
1<mEN n+1<In|<N n.+1<mN 1<|n|<n;

Let us now analyse the cased m, |n| < n;. Sincellﬂm — A"Mwhenh tends to zero, it follows
that forh sufficiently small,

2
V2sin(nzh) 1 g V20w 1
1™ cog"5") cog"5") (T2 Gy

< V2 A M2 ey [T e

© G [ cog15R) cog 5T ()2 < gor?
Consequently,

. 2

L, 1can, | AR cog("5") cog(M51) (453 Anm(anm? 8c
From 6.11) and 6.12, (6.10 follows immediately and the proof ends. O

6.2 Identification of the limit control

In this section, we show that the linit, w) of the sequencé&n, zn)n-o from Theorenb.3is the HUM
control for the continuous equatioh.p).

THEOREM 6.4 We have thafv, z) = (wx(t, 1, y), wy(t, X, 1)) is the HUM control for (.2), where
(@, @) is the solution of 2.2) with initial data(2°, @1) given by 6.6).

Proof. By taking into account Propositiah5, the proof consists of verifying?(8).
The optimality condition for the minimizer of#,, provides the following characterization o

andzy:
(=K' MnUp, UR), (Wh(0), Wy (0)))o
h2 T[N N
/ / / / J/ J / /
~ 160 D (@00 +0h 1+ b j_DWN] + D22+ Zhig + Zhi_)wiy | dt (6.13)
j=1 i=1
1 (T N N

+ 5/0 Z(Uh,j + 0h,j+1 + vhj—1)WNj + Z(Zh,i + Zhjiy1+ Zhi-1win |dt =0

j=1 i—1

for any (WP, W) e R2N? where(Wh, W) is the corresponding solution d3.6).
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Now, we evaluateq.13 for (Wt?, W) = #"™. We obtain that for anyn, m) e .7y,

cos("3") cos("5")

NG

.
- / A" =D [(=1)™ L sin(nz h) (Chof, ¢ + (—1)™ sin(mz h) (Chz,, ¢f)]dt
0

((—Ky MAUR UD), pmeiT).

T dAME=T)
+ / ——e— (=)™ sin(nz h) (Bhon, ¢ + (=1)™ sin(mz h)(Bnza, #0)]dt,
0

1nm
idh

which is equivalent to

h h
icos(n%) cos(mg ) (=K tMRUE UD),

2
_ ﬁ; l/ g [( 1™ sin(nz h) co§( )(vh #n)
0

+ (=)™ sin(mz h) co§( ) (7, ¢h)} dt

~ / e [(=)™ L sin(nz h) (1 + 2 cogmz h)) (vh, ¢T)
+(=1)™ L sin(mz h)(1 + 2 cognz h)) (zn, #M)]dt. (6.14)

We have that
k-1 1,0 mn_lh m_im n_in
il 2h 2h

By taking into account that for every fixéd, m) € .#y, whenh tends to zero we have that

anm — anm, inm — /lnm,
b (t) = bm(t), dii(t) - dm(t) in L20,T),
h2)'(t) = 0, h(dhy () — 0 inL30,T),

and by passing to the limit ir6(14), we obtain 2.8). d

7. Numerical experiments

This section is devoted to present numerical experiments which illustrate the efficiency of sGme (
in controllability problems. This is done by using a fully discrete approximation derived from the semi-
discrete scheme3(4). In Section7.1, we present the method and in SectibAwe consider two exam-
ples with different non-smooth initial data and location of controls.
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7.1 Description of a fully discrete approximation

We first introduce a fully discrete—in space and time—approximation method associated to system
(2.2). This is precisely a classical time discretization of the semi-discrete sciiede (

Given atime interval [PT], we introduce a uniform mestX = k At}k—o,...m With time step4t and
T = M 4t. Let us denote by)lkJ the approximation of the solutian of (2.2) at the point of coordinates

(xi,yj) and at timetk = k4t, i.e. w ~ wKAt, X, Yj).
A fully discrete scheme may be obtained by replacing the time deriva;g’ﬁ-v(ek) by the finite dif-

ference(wkj+1 2w +w 1y 4t2.1f Wk = (w”)l<| <N e RN? for 0 < k < M, the vectorial form
(3.6) becomes

At2
M _ 0 WM+1 WM -1 _ 1
The scheme®.]) is consistent of order 2 in time and space with the continuous syg&nand it is
stable under the so-called ‘Courant—Friedrichs—Lewy’ condition Caeen 2002
At? KhW, W
- sup (thv—vv) <1 Vh, 4t > 0. (7.2)
WERNZ,W;éo( hW, W)

M, M.,.K WK = 0, 0<k<
(7.1)

Moreover, the discrete spectruif"; ) 1<m n<n associated to this scheme is

2 [ 4t
A = o arcsw(;iﬂ‘”) , 1<mn<N,
with 2" defined by §.3). Therefore, 7.2) implies the following condition:
At < Ch® (7.3)

for someC > 0 independent of.

In order to relax this restrictive stability condition, we use an implicit method replacing the term
KnWK in (7.1) by 1/4Kn (WKt 4+ 2WK + Wk=1)_ Note that this corresponds to one of the Newmark
methods (with parametess = 1/2 andp = 1/4, seeCohen 2002. Thus, we obtain the following
scheme:

At2
M 0 WM+1 WM 1 1
w Y

consistent with the continuous systePng) and unconditionally stable for any value 4f.

Let us now analyse if this fully discrete system conserves the observability properties of the semi-
discrete scheme. Following the analysis in Sectdpnve study the group velocity of discrete plane
waves of the form

[(Mh+AtK)w+Khwkzo, 0<k<M, (7.4)

= dC=t e = (@, 8).
For the discrete systerd.d), the following relation between the modésind the frequencies holds:

At wmfe(f)z
o) =— arcsm - || —
21+ ATtZCUmfe(QZ)Z

wherewmie(¢) is given by é.2).
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The group velocity associated to a maflén a directiono = (v1, v2) iS given byV:w - v and a
necessary condition in order to have a uniformiiand 4t) observability property in finite time is to
have a uniform bound from below (& h and 4t) for |Vzo| = y/|650[° + |a5|%, ie.

[Vew| > C > 0 forallé, hand 4t. (7.5)

A straightforward computation shows that the minimum valugvgto| is obtained fo& = (z/h, =/ h)
and that

|Veor(z/h, z/h)| ~ h¥2 4171,
Therefore, this is uniformly bounded from below if
At =Ch®¥? vcC > o. (7.6)

Thus, even if the schem@.4) is stable for any discretization steft, in order to guarantee a uniform
(in h and 4t) controllable schemey7(6) should be verified.

Note that the implicit method7(4)—(7.6) permits to gain a factdn®? in the ratio A4t/ h compared
with the initial scheme®.1) for which stability is ensured byr(3).

7.2 Numerical examples

In this section, we present some numerical experiments for two different initial conditions. The first
example is a well-known test proposed Gjowinski et al. (1990 for which the initial velocityu? is
discontinuous. The second example is even more singular, involving a discontinuous initial displace-
mentu®. Each one of these examples is defined in the unit square.

The HUM control is obtained by minimizing the functiong# in (5.1) and then by using(2).
Following Glowinski et al. (1990, the iterative conjugate gradient algorithm is used with the initializa-
tion (W,?, VV,}) = (0, 0). We assume that the convergence is obtained when the corresponding relative
residual is lower than or equal to= 1078.

7.2.1 Example 1: discontinuity of the initial velocity'u Firstly, we consider the example in
Glowinski et al. (199Q p. 26). The initial data to be controlled,®, ul), is constituted by a Lips-
chitz continuous function® not belonging taC1(2) and a functioru® belonging toL *°(£) but not to
CO(Q). The explicit expressions @ti®, ul) may be found inGlowinski et al. (1990. The interest of
this example is that the analytical solution is known. More precisely, let us conBided5/4+/2 and
the solution of the wave equatiof.p) given by

D(t, X, y) = x/§C0<7r\/§ (T —t— 4—\1@)) sin(z x) sin(z ).

ow

Let (09, 1) be its corresponding initial data. Thevi,= o is exactly the HUM control acting on

the whole boundarg 2 which leads(u®, u?) to the rest in timeT .

In Glowinski et al. (1990, the simplest discretization for the wave equation is considered. It con-
sists in the five-point formula in space for the Laplacian combined with the usual three-point formula
for the second derivative in time. This produces an explicit scheme for which condnignfdils.

The conjugate gradient algorithm based on this scheme diverges. Several cures have been proposed to
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TABLE 1 Results obtained withit = h%?2 in Examplel. The
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control is active o and

T = 15/4/2
h=1/15 h=1/30 h=1/60 h=1/120
Conjugate gradient CG iterations 5 6 6 6
IAO_WO
W 261x 102 553x 103 143x 103 527 x 1074
L2(Q)
AO_WO
W 402x 102 180x 102 7.07x10-% 3.09x 10°3
H(Q)
21_\/\"/1
W 445x 102 213x 102 9.64x 1073 4.86x 1072
L2(Q)
V-V,
P hlizeoxomy 231x 101 124x 101 493x 1072 2.08x 10°2
I ”LZ(an(o,T))
IVl L2202 (0.TY) 7.4187 7.3782 7.3812 7.3859
En(T)/En(0) 155x 103 41x10% 561x10° 101x10°
v T v P -1.2
4r /V‘\ /r" \‘\ 1 1.4+
3t fA /[ %1 -1sf
/o [
2t / \ i \ 1 -8t
1t '{ \\" -2+
of J' 1 22t
t / \ f 241
ol ; Y / 26
=9 /J \ / -28+¢
N/ \\/ Ll
-4 '\,// g
: : : : -32 s ; :
0 05 1 1.5 2 2.5 2.5 3 3.5 4 4.5 5

FIG. 2. Left: Exact controV (t, X) (dashed line) and approximate contkyj (solid line) at thepointX = (1,1/2) € 6Q with
h = 1/15. Right: lod||(V = Vh) (-, X)[[Leo(0,T)) Versus logl/h) (Example 1).

TABLE 2 Results obtained wittit = h32 in Example2. The control is active oy c 9 and
T = 24/2. The last row indicates that the system is controlled at fime

h=1/15 h=1/30 h=1/60 h=1/120
CG iterations 13 11 10 10
W21l 20 150x 1001 135x10' 131x10°! 130x 1074
WOl 1oy 1.0990 1.1071 1.1147 1.1169
IWEI 20 5.871 5.425 5.196 5.164
lonllL2o.nyx .7y + IZ0ll2qo. 1) 1.290x 108 1.243x 100  1.222x 10"  1.218x 10
En(T)/En(0) 430%x 1072 368x10* 111x10* 839x 10°°
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Fic. 3. Controllability of the initial data®.7) in 2 = (0, 1)2: approximationsJy, (t) of the controlled solution fot = 0, T/5,

2T /5, 3T /5, 4T /5 andT = 2v/2 withh = 1/60 in Example 2.
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obtain convergence without changing the scheme, such as filtering with a bi-grid strategy or a Tychonoff

regularization technique (s€dowinski, 1991, Glowinskiet al.,, 1990).
Table1 displays the good behaviour of the schefmel\whenh and 4t = h®? are decreasing, by

comparing the exact and approximate results for the initial data giving the control and for the control

itself. [ ] 41, is defined b0l 1) = ([, IVH2 dx dy) %, whereas théd ~L-norm ofulin 2 is
defined byjju|| -1 = |w|y1(g), Wherew € HJ(Q) is the solution of the Dirichlet problem 4w = u*
inQ,w=0o0nr.

REMARK 7.1 An analysis of the results from Tableshows that the number of conjugate gradient
iterations necessary to achieve convergence is independentaireover, the approximation errors for
(@0, vl) satisfy

12° = WllL2(g) = O ™), 2% — WPl 1 (o) = OO, 1" — Witlla (o) = O,
while for the control, we have
IV = Vall 200 x 01y = O,

Figure2 (left) depicts the exact and approximate contMlandVj, at thepointX = (1, 1/2) € 09,
obtained withh = 1/15 (forh = 1/30,1/60, 1/120, the two curves cannot be distinguished). The
approximation error is given in Fi@. (right) and satisfie§(V — Vh)llL~@©,1) = O(h%9),

At last, some numerical experiments (not reproduced here) highlight the condit®n\ore pre-
cisely, if the unconditionally stable schemg&4) is used with4t = O(h), then the conjugate gradient
algorithm diverges foh small enough.

7.2.2 Example 2: discontinuity of the initial positiorfu In this second example, we consider a more
singular situation with a discontinuous initial displacemght

40, (x,y) e (3, %)%

1
u-(x,y) =0. (7.7)
0, elsewhere

wO(x, y) = [

We assume that the contr@l, z) is active onl3 (see (.1)) and we takeT = 2v/2. As in the previ-

ous example, a conjugate gradient algorithm based on the simplest discretization of the wave equation

diverges. On the contrary, the use of scheihd)(@llows to obtain convergence without filtering or reg-
ularization techniques. This is displayed in TaBleThe number of iterations to achieve convergence
remains low and constant fdr small. Moreover, the convergence is slightly affected by the lack of

TABLE 3 [TW2,, — £ll 3 (o) and I TWE, — xil (o) with h = 1/60in Example2

T=3 T=5 T=10 T=20 T=40
CG iterations 10 9 8 8 5
ITWS, — Iluio) 7A5x1070 3.4x1071 1401070 1.11x107' 3.3x107°

ITWE, — xtllize) 4121071 2.21x1071 1.55x1071 8.46x1072 2.47x1072
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regularity ofu®: we compute for instance thgt® — Ut(|,-1) = O(h®") to be compared with
lut — Ul y-1(0) = O(hO) for the first example.

Forh = 1/60, the exact controllability of the wave equation is illustrated on Eitghe approximate
controlled solutiorlJy, is drawn in the unit squar@ for six values of timet = O, T/5, 2T /5, 3T/5,
4T /5 andT. Fort = 0, Uy, coincides with the discontinuous positiaf, while fort = T the solution is
null controlled: the ratio of the energy between the two stat&{3)/En(0) ~ 1.11 x 10~4. At last,
we highlight that the value oF is strictly lower than 2/3 obtained in Theorem.2

Furthermore, a very useful result to validate our numerical scheme for large valiies afue to
Bensoussafi1990 who has shown that when the control is active on the whole boundary,

lim T@?,d3) = (x° b, (7.8)
T—oo

wherey® and ! are solutions of

1, 1o, —
A0 = éu1 in2, x°=0o0n0Q; y'= Euo in Q

and (12)-?-, w7) are the initial conditions of the backward syste?). The numerical results we obtain
with the schemen.4) (see Tabl&) confirm clearly the theoretical property.g): ||TVV$h—Xr?|| Hi@Q) =

O(T~119 and | TW}, — 12y = O(T 1098 As advocated irGlowinski et al. (1990, these
results provide a validation of the numerical methodology introduced here and show that the scheme is
particularly robust, accurate and perfectly able to handle very long interyalg.[0

The numerical results we have presented indicate that the scitedherfder condition 7.6) pro-
vides a uniform approximation of the control with respect to the discretization parameters. However, a
rigorous proof of the convergence remains to be done.
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Appendix A
In this section, we prove Theorefn2. To simplify the notation, we write
aikjl = wik + wi| + wjk + wj, bikjl = wj) + wj) + wjk + w}| ,
ClkjI = wj} + wj| + w]k + u)
A owij =2wij — wit1j — wi-1j, 4@©1nWij = 2Wij — Wij+1 — Wij-1,

A@,ywij = 2Wij — Wi+1j+1 — Wi-1j-1, A@Q,-)Wij = 2Wij — Wi+1j—1 — Wi-1j+1.

When multiplying the discrete system by the discrete version of the usual continuous multiplier
X,y)-Vu, i.e.

oo Wi41j — Wi—1j Wij+1 — Wji-1j CWiglj —Wi-1j . Wij41 — Wij—1 _ Mjj
h, jh) - =
(ih, jh) ( oh , oh ) [ 5 + ] > 5

and summing in and j, we obtain

+1 -1j
/ Z (C|J|J+l ||+l + C“ + CJ ij)mii dt
i,j=1

=C

/ Z(A(lo)wll + 4, ywij + A(l Hwij + 4, 1)w.J)m.J dt. (A1)
i,j=1

=D
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We study separatelg andD. Integration by parts i€ allows us to obtain

T
c:/o Cyrdt +[C2]¢, (A.2)
where
JJ+1 J 1j JH—l 1 1j

z (b||+l ||+1 + bI 1i | =1i )mlj ’ (A-3)

i,j=1

+1 1j +1 1j

Co= Z (b|J|J+1 |J| +1J + b|“ 1i |J 1|J)m| i (A.4)

i,j=1

We first consider the tern®; above. In order to have the common fachﬁ 1, we change the
indexes in the last three terms Gf above. Then, taking into account thafp = wi N+1 = wo,j =
wj n+1 = 0 and after simplification, we obtain

N N
1,2
Cr=2 Z BIIHZ = (N+1) | D (wiy + wfy10)? + D (i + wije)? |- (A.5)
i,j=0 i=1 j=1
We now analyse the teri in (A.1). We only make the details for the first termlnsince the others
can be simplified similarly. It reads

N
Z A@,oywijmij = 2 A, oywij[i (wi1j — wi-1j) + | (Wij+1 — wij-1)]. (A.6)
i,j=1 i,j=1

We consider separately these two terms. For the second one, we have

N N
Aaowij j wij1—wij—1) = D jwij —wi—pwijri— P jWit1j — wij))wij 41
ij—1 ij—1

z ](wlj — Wj— 1J)U)||—l— Z ](U)|+:LJ _wlj)wlj—

i,j= i,j=1

Changing the indexes to obtain the common fatigr, 1 j — wjj ) in all the terms and taking into account
thatwj o = wj,n+1 = wo,j = wj N4+1 = 0, we obtain

N
Z [J (wit1j — wij)(Wit1j+1 — wij+1) — [ (Wit1) — wij)(Wit1j-1 — wij-1)]
i,j=0
N
== > (Wis1j+1 — wij 1) Wip1j — wij).
i.j=0
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An analogous argument allows to simplify the first term A€) and the other three terms . We
finally have

N

D=- Z [(wit1j+1 — wit1j)(Wij+1 — wij) + (Wi+1j+1 — Wij+1) (Wi+1) — wij)]
i.j=0

N N
+ Z [(wis1j — wij)® + (wij+1 — wi))?] — (N + 1) Z:[(wNj)2 + 2wNjwNj4+1]
i.j=0 =0

N

— (N +1) > [(win)® + 2win wi 11n]- (A7)
i=0

By Young'’s inequality, we can estimate the first term in this formula

N

D [wisaj41 — wis1))Wij 41 — wij) + Wit1j11 — wij+21) Wiy — wij)]
i,j=0

N
< D [(wij 41— wij)? + (wigaj — wi)?].
i.j=0

Therefore,

N
D>-(N+1 | D> w N,+2ZwN,wN,+l+zw,N+2Zw.Nw.+lN
j=0 j=0 i=0 i=0

N N

=—(N+1 Z(U)Nj—l + wNj + wNj+1)WNj + Z(wi—lN + win + witin)win |- (A.8)
=1 i—1

Substituting A.2), (A.5) and @A.8) into (A.1), we obtain

JJ+1 2 N 2
hz/ ( ||+l) dt < 8/ ( iN +2w|+lN) +Z(“’/Nj +2w’Nj+1) ot
i,j=0 i

i=1

1 [T | h wNj_1 + ONj + DNj+1 ON] < Wi—IN + WiN + Di+IN WiN
z ONj WIN -
+2/0 2 3 hot 2 3 h
]:l i=1
— —[Cs],. A.9
3.C2o (A.9)

We observe that the term in the left-hand side contains only one part of the energy. In order to obtain
the full energy, we make an equipartition of the energy. The following lemma is a discrete version of the
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well-known equipartition of energy for the continuous wave equation, which reads

T T
oz_/ /(|wt|2—|—|Vu|2)dxdt+/ |wtu|2dx} ) (A.10)
0 Q Q 0

LEMMA A.1 The following holds:
JALN 7piitl

- [[EC]e 20904

i.j=0

N T 2 2
1 /wir1i — wij 1 [ wijj+1 — wij
h? il ) B il et Bt}
- Z/o [3( h T3\

i.j=0

+§ (wi+lj+1 — Wwjj )2+ 2 (wi+1j - wij+1)2 at
3 hv/2 3 hv/2 '
The proof of this lemma is straightforward following the idea of the continuous system whé® (

is obtained multiplying systen®2(2) by u and integrating by parts.
When applying Lemma&.1 to the identity A.9), we obtain

T h? | Qi it '
i,j=0 0

N

2 2
h [T <= (Wi + 0y wyj + wNj
< = PR _— dt
8/0 {Z( 2 +,-Zl 2

i=1

1 [T | wnjo1 + N+ DN ON] < Wi—IN + WiN + DiIN N
— —_— — | dt. (A.11
+2/o Lzl 3 h +§ 3 h (A11)

The following lemma allows us to estimate the second term in the left-hand side of this formula.

LEMMA A.2 The following holds

+1 Mii+1

.
N
h? {Z all ol + Cz} < 64v/3En(0). (A12)
i,j=0

0

Before proving this lemma, we finish the proof of Theoréra
From LemmaA.2 and the conservation of the discrete energy, stated in Propoditipwe have

.

T 2 N .

/ En(t)dt + 2_2 {Z alltIpli+l 4 C2:| > T En(0) — 2v/3En(0) = (T — 2/3)En(0),
0

i,j=0
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which combined with A.11) provides the following:

h T N i +w| N wN +wN 1 2
(T—2«/§)Eh(0)<§/0 Z(u) +z( j J+) "

i=1 j=1

L WNj—1 + WNj + WNj+1 WNj N wi_in + win + Wi+1IN WiN
- — | dt.
+2/0 LZI 3 h +§ 3 h

This concludes the proof of Theorefr2
Proof. (LemmaA.2) From (A.4), we have

N N N
ji+1.ji+1 jj+1Rnii+1 ji+1 i—1j u+1 i=1ljq0.

Z a'||+l b||+l +C2 = Z a1|+l b||+l + Z[ ii+1 +b||+l +b| 1i bi—li ]m'J' (A'13)

i,j=0 i,j=0 i,j=1

To simplify the notation, we assume thak 2j = wNj, win+2 = win andw_1j = wj,—1 = 0 for
alli,j =0,..., N+ 1. We change the indexes in each of the terms of the right-hand sidel®) (in
order to have the common faciiq“J . Then, we obtain

N N
+1jj+1 jj+1 +1
Z a1]|J+1 b|J|J+1 +C2= Z (ajjij+1 + Rij )b,J|J+1 ) (A.14)
i,j=0 i,j=0
where
Rj =i[(wit1j — wi-1j) + Wit+1j4+1 — wi-1j+D] + ( + D[(wit2j — wij) + (Wi42j+1 — wij+1)]
+j[(wij+1 — wij—1) + Wi1j+1 — wit1j-1D)] + (§ + D[(wij+2 — wij) + (Wit1j4+2 — wit1))].

We estimate the right-hand side i.(4) using the Schwartz inequality. Thus,

i,j=0 0

N N 1/2 1/2
+1,jj+1 jj+1 2 +1,2
S alflit e [Z @+ Ry } [Z( ! } . (A.15)
i,j=0 i
Now we prove that

N N N N
S @ +HRDP< D R +8D (N +D(win)®+8> (N + D(wn))? (A.16)
i,j=0 i,j=0 i=1 i=1

Indeed, we have

N - N N -
Si@ + R =R = D 1@H? + 2[R (A.17)

i,j=0 i,j=0
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and it is not difficult to see that
N N

N B N
> al Ry =-2>" @VIH2+ DN + D(win + witan)? + DN + D(wnj + wnjr1)2
i,j=0

|+1
i,j=0 i=1 j=1

Therefore, using Young'’s inequality, the right-hand sideArl{) reads

N N . N N
Z [(aiji1:11)2 + 2aijiJJ:rllF"ij] =-3 Z (aiji]—:—ll)z + ZZ(N + D (win + wipin)?

i,j=0 i,j=0 i=1

N N N
+2> (N + D(wnj + wnjp1)? < 8D (N + D(win)*+ 8D (N+ D(wnp?  (A18)
j=1 i=1 j=1

From (A.17) and A.18), we easily deduceX.16). Now, we estimate the right-hand side #.16).
Concerning the first term, we have

N N
Z RIZJ < Z[(wl—i-l] — Wj- lj) ‘|‘(U)|J+1—w|1 1) ] (A.19)

i,j=0 i,j=0

where we have used Young’s inequality and the factithpt h=1. In (A.19), the first term is estimated
as follows:

N
> (wit1j — wi-1j)?

i,j=0

N
% Z[(wi+lj — wij + wij — wi-1j)® + (Wit1) — Wij4+1 + wij+1 — wi-1))?]
i,j=0
N
Z[(w|+11 _wlj) + (wij — wi- lJ) + Z[(wl+lj —u),|+1) + (wij+1 — wi— 1])]
i,j=0 i,j=1
N N
Z[Z(lerlJ - w.]) +(U)|+lj —wlj+l) +(U)|+1J+1—w|1) ]_ZZ(U)NJ) (A.20)
i,j=0 j=0

and an analogous formula holds for the second termih9).
Substituting this simplification of4.19) into (A.16), we easily obtain

Z(aa.‘”mnz
i,j=0

64
h Z[(wl+lj —wlj) +(wlj+l—wlj) +(wl+1j —w|1+1) +(w|+1]+1—w”)] (A-21)
i,j=0
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which allows us to estimaté\(15). In fact, by Young’s inequality, we obtain

N Y2 N
> a1’|’:11b|’|’:11 (Z (b .1:11) ) (Z [(wiyaj — wij)? + (wij 11— wij)?

i,j=0 0 .j=0

1/2
+ (Wit1j — wij+1)% + (Wip1j41 — wij)z])

bjj+1 2 1 N
<16v73 Z ( ”+1) 5 Z (wis1j = wij)? + (wij+1 = wi})?
i.j=0 =0
+ (wit1) — wij+1)% + (Wit1j41 — wij)z]:| = 32V3En ().
Therefore,
N T
[Z al ol + Cz} < 32V3(En(T) + En(0)) < 64v/3En(0). (A.22)

i.j=0 0

This concludes the proof of Lemn#a2. O
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