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Numerical approximation of the boundary control for the wave equation
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This paper studies the numerical approximation of the boundary control for the wave equation in a square
domain. It is known that the discrete and semi-discrete models obtained by discretizing the wave equation
with the usual finite-difference or finite-element methods do not provide convergent sequences of approx-
imations to the boundary control of the continuous wave equation as the mesh size goes to zero. Here, we
introduce and analyse a new semi-discrete model based on the space discretization of the wave equation
using a mixed finite-element method with two different basis functions for the position and velocity. The
main theoretical result is a uniform observability inequality which allows us to construct a sequence of
approximations converging to the minimalL2-norm control of the continuous wave equation. We also
introduce a fully discrete system, obtained from our semi-discrete scheme, for which we conjecture that
it provides a convergent sequence of discrete approximations as bothh andΔt , the time discretization
parameter, go to zero. We illustrate this fact with several numerical experiments.
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1. Introduction

Let us considerΩ = (0, 1)× (0, 1) ⊂ R2 with boundaryΓ = Γ0 ∪ Γ1 divided as follows:
{
Γ0 = {(x, 0): 06 x 6 1} ∪ {(0, y): 06 y 6 1},

Γ1 = {(x, 1): 0< x < 1} ∪ {(1, y): 0< y 6 1}.
(1.1)

We are concerned with the following exact boundary controllability property for the wave equation
in Ω: given T sufficiently large and(u0, u1) ∈ L2(Ω) × H−1(Ω), there exists a control(v(t, y),
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z(t, x)) ∈ [L2((0, T)× (0, 1))]2 such that the solution of the equation





u′′ −Δu = 0 for (x, y) ∈ Ω, t > 0,

u(t, x, y) = 0 for (x, y) ∈ Γ0, t > 0,

u(t, 1, y) = v(t, y) for y ∈ (0, 1), t > 0,

u(t, x, 1) = z(t, x) for x ∈ (0, 1), t > 0,

u(0, x, y) = u0(x, y) for (x, y) ∈ Ω,

u′(0, x, y) = u1(x, y) for (x, y) ∈ Ω

(1.2)

satisfies

u(T, ∙) = u′(T, ∙) = 0. (1.3)

By ′ we denote the time derivative.
The Hilbert uniqueness method (HUM) introduced by J.-L. Lions provides a control(v, z) with

minimal L2-norm (seeLions, 1988). This control is unique and it will be referred in the sequel as the
HUM control. We briefly describe this method at the beginning of Section2 below.

In the last years, many works have dealt with the numerical approximations of the control prob-
lem (1.2)–(1.3). For instance, inGlowinski (1991), Glowinski et al. (1989, 1990) and Glowinski &
Lions (1996), numerical algorithms based on the finite-difference and finite-element approximations of
(1.2) were described. However, these algorithms do not converge when the discretization parameters go
to zero.

Let us briefly explain this fact. When we are dealing with the exact controllability problem, a uniform
time T > 0 for the control of ‘all solutions’ is required. This timeT depends on the size of the domain
and the velocity of propagation of waves. In general, any semi-discrete dynamics generates spurious
high-frequency oscillations that do not exist at the continuous level. Moreover, a numerical dispersion
phenomenon appears and the velocity of propagation of some of these high-frequency numerical waves
may possibly converge to zero when the mesh sizeh does. Consequently, the controllability property for
the semi-discrete system will not be uniform for a fixed timeT . This is the case when the semi-discrete
model is obtained by discretizing the wave equation with the usual finite-difference or finite-element
method (seeInfante & Zuazua(1999) for a detailed analysis of the 1D case andZuazua(1999) for the
2D case, in the context of the dual observability problem).

From the numerical point of view, several techniques have been proposed as possible cures of the low
velocity of propagation of the high-frequency spurious oscillations (see, for instance,Glowinski, 1991;
Glowinski et al., 1989, 1990; Glowinski & Lions, 1996). To our knowledge, no proof of convergence
has been given for any of these methods, ash tends to 0, so far.

In this paper, we construct, for anyT sufficiently large but independent ofh, a convergent sequence
of semi-discrete approximations of the HUM control(v, z) of (1.2). The main idea is to introduce a
new space discretization scheme for the wave equation (1.2), based on a ‘mixed finite-element method’,
in which different base functions for the positionu and the velocityu′ are considered. More precisely,
while the usual linear finite elements are used for the former, discontinuous elements approximate the
latter. This new scheme still has spurious high-frequency oscillations but the numerical dispersion makes
them to have larger velocity of propagation. Consequently, the velocity of propagation of all waves is
bounded from below by a uniform positive constant.

The semi-discrete approximations(vh, zh)h>0 of the HUM control(v, z) of (1.2) are obtained by
minimizing a functionalJh depending on the associated space-discretized adjoint system (see (5.1)).
The main result of the paper is Theorem4.2 which gives a uniform (inh) observability inequality for
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this homogeneous semi-discrete adjoint system. This is equivalent to the uniform coercivity ofJh.
Theorem4.2permits to show that if a weakly convergent sequence of approximations of the continuous
initial data (u0, u1) is considered, the sequence of approximations(vh, zh)h>0 converges weakly to
(v, z) (Theorems6.3and6.4).

To our knowledge, the scheme described in this paper was used by the first time in the context of the
wave equation inBankset al. (1991) in order to obtain a uniform decay rate of the energy associated
to the semi-discrete wave equation by a boundary dissipation. This scheme is different from the mixed
element method applied inGlowinski et al. (1989) where two different basis functions are considered
for u and∇u.

In this paper, we concentrate on the simplest 2D domain consisting of a unit square. The mixed
finite-element method may be applied to general domains but our proofs of the uniform observability
and convergence strongly depend on the particular geometry of the square and cannot be generalized.

We also introduce a fully discrete approximation of the wave equation, based on the semi-discrete
scheme, for which the velocity of propagation of all numerical waves does not vanish as bothh andΔt ,
the time discretization parameter, tend to zero. Based on this fact, we conjecture that this fully discrete
scheme also provides convergent approximations of the control. At the end, we include two numerical
experiments that illustrate this fact.

The rest of the paper is organized in the following way: Section2 briefly recalls some controllability
results for the wave equation (1.2) and introduces the HUM. In Section3, the semi-discrete model
under consideration is deduced. In Section4, the main properties of this system are discussed and, in
particular, the fundamental uniform observability inequality (Theorem4.2). Its technical proof is given
in Appendix A at the end of the paper. In Section5, an approximation sequence is constructed and in
Section6, its convergence to the HUM control of the continuous equation (1.2) is proved. Section7 is
devoted to present the fully discrete scheme and the numerical results.

2. The continuous problem: results and notations

In this section, we recall some of the controllability properties of the wave equation (1.2) and we briefly
describe the HUM. Also, we introduce some notations that will be used in the article. The following
classical result may be found, for instance, inLions (1988).

THEOREM 2.1 Given anyT > 2
√

2 and(u0, u1) ∈ L2(Ω) × H−1(Ω), there exists a control function
(v, z) ∈ [L2((0, T)× (0, 1))]2 such that the solution(u, u′) of (1.2) verifies (1.3).

In general, there are infinitely many controls when they exist. However, the one with minimalL2-
norm is unique and can be characterized by the minimizer of a suitable functional. Let us introduce the
mapJ : H1

0 (Ω)× L2(Ω) → R defined by

J (w0, w1)=
1

2

∫ T

0

∫ 1

0
(wx)

2(t, 1, y)dy dt +
1

2

∫ T

0

∫ 1

0
(wy)

2(t, x, 1)dx dt

+
∫

Ω
u0(x, y)w′(0, x, y)dx dy − 〈u1, w(0, ∙)〉−1,1, (2.1)

where(w,w′) is the solution of the backward homogeneous equation





w′′ −Δw = 0 for (x, y) ∈ Ω, t > 0,
w(t, 0, y) = w(t, x, 0) = w(t, x, 1) = w(t, 1, y) = 0 for x, y ∈ [0, 1], t > 0,
w(T, x, y) = w0(x, y), w′(T, x, y) = w1(x, y) for (x, y) ∈ Ω.

(2.2)
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In (2.1), 〈∙, ∙〉−1,1 denotes the duality product betweenH−1(Ω) andH1
0 (Ω).

THEOREM 2.2 Given anyT > 2
√

2 and(u0, u1) ∈ L2(Ω) × H−1(Ω), J has a unique minimizer
(ŵ0, ŵ1) ∈ H1

0 (Ω)× L2(Ω). If (ŵ, ŵ′) is the solution of (2.2) with initial data(ŵ0, ŵ1), then

(v(t, y), z(t, x)) = (ŵx(t, 1, y), ŵy(t, x, 1)) (2.3)

is the control of (1.2) with minimal L2-norm.

The method we have just presented was introduced by J.-L. Lions (seeLions, 1988) and named
HUM. The control(v, z) given by (2.3) is usually called the HUM control.

We recall that the main ingredient of the proof of Theorem2.2 is the following observability in-
equality for (2.2): given T > 2

√
2, there exists a constantC > 0 such that the following inequality

holds for any solution of (2.2):

∫

Ω
(|∇w|2 + |wt |

2)dx dy 6 C

(∫ T

0

∫ 1

0
|wx(t, 1, y)|2 dy dt +

∫ T

0

∫ 1

0
|wy(t, x, 1)|2 dx dt

)

. (2.4)

Indeed, (2.4) implies thatJ is coercive and ensures the existence of a minimizer, as stated in
Theorem2.2.

REMARK 2.3 For the continuous wave equation (1.2), the velocity of propagation of all waves is one
and the bound of the minimal controllability time,T > 2

√
2, is exactly the minimum time that requires

a wave, starting at anyx ∈ Ω in any direction, to arrive to the controllability zone.

REMARK 2.4 The control(v, z) from Theorem2.2 is characterized by the following two properties:

1. (v, z) is a control for (1.2) or, equivalently,
∫ T

0

∫ 1

0
v(t, y)wx(t, 1, y)dy dt +

∫ T

0

∫ 1

0
z(t, x)wy(t, x, 1)dx dt

= 〈u1, w(0)〉−1,1 −
∫

Ω
u0(x, y)w′(0, x, y)dx dy (2.5)

for any(w0, w1) ∈ H1
0 (Ω)× L2(Ω), beingw the solution of the adjoint equation (2.2).

2. There exists(ŵ0, ŵ1) ∈ H1
0 (Ω)×L2(Ω) such thatv(t, y)= ŵx(t, 1, y) andz(t, x) = ŵy(t, x, 1),

where(ŵ, ŵ′) is the solution of the adjoint system (2.2) with initial data(ŵ0, ŵ1).

Much of our analysis will be based on Fourier expansion of solutions. Therefore, let us now intro-
duce the eigenvalues of the wave equation (2.2):

λnm = sgn(n)
√

n2 + m2π (2.6)

and the corresponding eigenfunctions:

Ψ nm(x, y) =
√

2

(
(iλnm)−1

−1

)
sin(nπx) sin(mπy), (n,m) ∈ Z∗ × N∗, i =

√
−1. (2.7)

The sequence(Ψ nm)(n,m)∈Z∗×N∗ forms an orthonormal basis inH1
0 (Ω)× L2(Ω). Moreover,

‖Ψ nm‖L2(Ω)×H−1(Ω) =
1

λnm
.
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The following characterization of any control of (1.2) in terms of the Fourier coefficients of initial
data is useful.

PROPOSITION2.5 Given anyT > 2
√

2 and(u0, u1) =
∑
(n,m)∈Z∗×N∗ α0

nmΦ
nm ∈ L2(Ω)× H−1(Ω),

(v, z) ∈ [L2((0, T)× (0, 1))]2 is a control for (1.2) if and only if for all (n,m) ∈ Z∗ × N∗,

∫ T

0
eiλnmt

(

(−1)nn
∫ 1

0
v(t, y) sin(mπy)dy + (−1)mm

∫ 1

0
z(t, x) sin(nπx)dx

)

dt =
α0

nm√
2π
. (2.8)

Proof. From the continuity of the linear formΛ: H1
0 (Ω)× L2(Ω) → C, defined by

Λ(w0, w1) =
∫ T

0

∫ 1

0
v(t, y)wx(t, 1, y)dy dt +

∫ T

0

∫ 1

0
z(t, x)wy(t, x, 1)dx dt

− 〈u1, w(0)〉H−1,H1
0

+
∫

Ω
u0(x, y)w′(0, x, y)dx dy,

it follows that (2.5) holds for any(w0, w1) ∈ H1
0 (Ω)× L2(Ω) if and only if it is verified on a basis of

the spaceH1
0 (Ω) × L2(Ω). Thus, by considering(w0, w1) = Ψ nm in (2.5), we obtain that the control

(v, z) drives to zero the initial data of (1.2) if and only if (2.8) is verified. �

3. The semi-discrete problem

In this section, we introduce a suitable semi-discretization of the homogeneous adjoint equation (2.2).
By minimizing the HUM functional corresponding to this semi-discrete system, a convergent sequence
of discrete approximations(vh, zh)h>0 of the HUM control(v, z) of (1.2) is obtained.

We introduceN ∈ N∗ andh = 1/(N + 1), we consider the points(xi , yj ) = (ih, jh), 0 6 i, j 6
N + 1, and we denotewi j = w(xi , yj ).

Let us also introduce the new variableζ(t, x, y) = w′(t, x, y). Equation (2.2) may be written in the
following variational form:






Find (w, ζ ) = (w, ζ )(t, x, y) with (w(t), ζ(t)) ∈ H1
0 (Ω)× L2(Ω) ∀ t ∈ (0, T) and

d

dt

∫ 1
0

∫ 1
0 w(t, x, y)ψ(x, y)dx dy =

∫ 1
0

∫ 1
0 ζ(t, x, y)ψ(x, y)dx dy ∀ψ ∈ L2(Ω),

d

dt
〈ζ(t, ∙), ϕ〉−1,1 =

∫ 1
0

∫ 1
0 ∇w(t, x, y)∇ϕ(x, y)dx dy ∀ϕ ∈ H1

0 (Ω),

w(T, x, y) = w0(x, y), ζ(T, x, y) = w1(x, y) ∀ (x, y) ∈ Ω.

(3.1)

We now discretize (3.1) by using a mixed finite-element method (see, for instance,Roberts & Thomas,
1989). Let Q1 be the space of all polynomials of degree less than or equal to one with respect to
each of the variablesx, y andQ0 the space of constant functions. We introduce the basis functions
in the following way: For each 16 i, j 6 N, let Qh

i j = (xi , xi +1) × (yj , yj +1) be such that
⋃

06i, j6N Qh
i j = Ω = (0, 1)2 and define the functions





ψi j |
Qh

kl

∈ Q0, ψi j =
{ 1

2, if (x, y) ∈ Qh
i j ∪ Qh

i −1 j ∪ Qh
i j −1 ∪ Qh

i −1 j −1,

0, otherwise,

ϕi j |
Qh

kl

∈ Q1, ϕi j (xk, yl ) = δkl
i j .
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The variational formulation (3.1) is then reduced to find

wh(t, x, y) =
N∑

i, j =1

wi j (t)ϕi j (x, y) and ζh(t, x, y) =
N∑

i, j =1

ζi j (t)ψi j (x, y) (3.2)

that satisfy






d
dt

∫ 1
0

∫ 1
0 wh(t, x, y)ψi j (x, y)dx dy =

∫ 1
0

∫ 1
0 ζh(t, x)ψi j (x, y)dx dy ∀ 16 i, j 6 N,

d
dt 〈ζh(t, ∙), ϕi j 〉−1,1 =

∫ 1
0

∫ 1
0 ∇wh(t, x, y)∇ϕi j (x, y)dx dy ∀ 16 i, j 6 N,

wh(T, x, y) = w0
h(x, y), ζh(T, x, y) = w1

h(x, y) ∀ (x, y) ∈ Ω.

(3.3)

The variablesζi j may be eliminated from (3.2) and (3.3) leading to the following semi-discrete system
for wi j (t) in t ∈ (0, T):






h2

16(4w
′′
i j + 2w′′

i +1 j + 2w′′
i −1 j + 2w′′

i j +1 + 2w′′
i j −1 + w′′

i +1 j +1 + w′′
i +1 j −1 + w′′

i −1 j +1

+w′′
i −1 j −1)+ 1

3(8wi j − wi +1 j − wi −1 j − wi j +1 − wi j −1 − wi +1 j +1 − wi +1 j −1

−wi −1 j +1 − wi −1 j −1) = 0, for 16 i, j 6 N,

wi 0 = wi N+1 = 0, w0 j = wN+1 j = 0 for 06 i 6 N + 1,

wi j (T) = w0
i j , w

′
i j (T) = w1

i j for 06 i, j 6 N + 1.

(3.4)

The convergence of the scheme (3.4) is given inKappel & Ito (1998). We shall consider that the
initial data are zero on the boundary ofΩ, which in the discrete equation corresponds to

{
w0

0, j = w1
0, j = 0, w0

N+1, j = w1
N+1, j = 0 for 06 j 6 N + 1,

w0
i,0 = w1

i,0 = 0, w0
i,N+1 = w1

i,N+1 = 0 for 06 i 6 N + 1.
(3.5)

The same property will be also satisfied by the corresponding solutions of (3.4).
If we denote the unknown

Wh(t) = (w11(t), w21(t), . . . , wN1, . . . ., w1N(t), w2N(t), . . . , wN N(t))
T,

then (3.4) may be written in vectorial form as follows:

{
MhW′′

h (t)+ KhWh(t) = 0, for t > 0,

Wh(T) = W0
h , W′

h(T) = W1
h ,

(3.6)

where(W0
h ,W

1
h ) = (w0

i j , w
1
i j )16i, j6N ∈ R2N2

are the initial data and the corresponding solution of
(3.4) is given by(Wh,W′

h) = (wi j , w
′
i j )16i, j6N .

The entries of the block-three-diagonal matricesMh and Kh belonging toMN2(R) may be easily
deduced from (3.4).
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4. Properties of the semi-discrete system

In this section, we study some of the properties of the semi-discrete adjoint system (3.4) related to
the controllability problem. More precisely, the aim of this section consists in giving a uniform (inh)
observability inequality for (3.4). But before that, let us briefly explain why the semi-discretization
introduced in this paper is likely to provide a uniform observability property rather than others like the
usual finite-difference semi-discretization implemented inGlowinskiet al. (1990).

As we have mentioned in Remark2.3, in order to have an observability inequality for the continuous
wave equation (2.2) of the type (2.4), it is necessary to considerT > 2

√
2. This is due to the finite

velocity of propagation of waves. More precisely, a planar wave of the form ei(ξ ∙(x,y)−ωt) propagates in
any spatial directionv = (v1, v2) ∈ R2 with group velocity∇ξω ∙ v, whereω = |ξ |. Let us denote

ζ = min
ξ∈R2

max
v∈R2,|v|=1

∇ξω ∙ v = min
ξ∈R2

|∇ξω|. (4.1)

The observability timeT andζ are inversely proportional. In our particular case,T > 2 diam(Ω)/ζ
(seeLions, 1988) andζ = 1. ThusT > 2

√
2.

In a similar way, we may introduce the velocity of waves for the semi-discrete problem (see
Trefethen, 1982). Let wi j = ei(ξ ∙(xi ,yj )−ωt), ξ = (ξ1, ξ2) ∈ (−π/h, π/h)2, be a discrete plane wave
which propagates in any spatial directionv = (v1, v2) ∈ R2 with group velocity∇ξω ∙ v. In the mixed
finite-element method,

ω = ωmfe(ξ) =
2

h

√

tan2

(
ξ1h

2

)
+ tan2

(
ξ2h

2

)
+

2

3
tan2

(
ξ1h

2

)
tan2

(
ξ2h

2

)
, (4.2)

while for the finite-difference method,

ω = ωfd(ξ) =
2

h

√

sin2
(
ξ1h

2

)
+ sin2

(
ξ2h

2

)
. (4.3)

Note thatζmfe = minξ∈(−π/h,π/h)2 |∇ξωmfe| = 1 andζfd = minξ∈(−π/h,π/h)2 |∇ξωfd| = O(h). This is
illustrated in Fig.1. Thus, the observability timeT can be uniformly bounded, inh, only for the mixed
finite-element method.

In the rest of this section, we prove that indeed this property holds for system (3.4).
Since the matricesMh andKh are positive definite, we may define the inner product

〈( f1, f2), (g1, g2)〉0 = 〈Kh f1, g1〉 + 〈Mh f2, g2〉 (4.4)

for any ( f1, f2), (g1, g2) ∈ R2N2
, where〈∙, ∙〉 denotes the canonical inner product inRN2

. The corre-
sponding norm will be denoted‖∙‖0.

We introduce the following discrete version of the continuous energy of (2.2):

Eh(t) =
1

2
‖(Wh,W

′
h)(t)‖

2
0. (4.5)

The following proposition shows that as in the corresponding continuous case, the energyEh defined
by (4.5) is conserved along trajectories.

PROPOSITION4.1 For anyh > 0 and any solution of (3.4), the following holds:

Eh(t) = Eh(0) ∀ t > 0.
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FIG. 1.ω(ξ) with ξ ∈ [0, π/h)2 andh = 1/21 for the mixed finite-element semi-discretization (upper surface), continuous wave
equation (medium surface) and the usual finite-difference semi-discretization (lower surface). We observe that the norm of the
gradient|∇ξ ω(ξ)| is always one in the continuous case, it is greater than one for the mixed finite-element scheme and it becomes
zero for the usual finite-difference scheme asξ approaches(π/h, 0).

Proof. Multiplying (3.6) by W′
h, we obtain that

0 = 〈MhW′′
h ,W

′
h〉 + 〈KhWh,W

′
h〉 =

1

2
[〈MhW′

h,W
′
h〉 + 〈KhWh,Wh〉]′ =

d

dt
Eh(t)

and the proof finishes. �
The following result shows that a discrete version of the observability inequality (2.4) is valid for

the solutions of system (3.4).

THEOREM 4.2 GivenT > 2
√

3, there exists a constantC(T) > 0 independent of the discretization
steph such that the following inequality holds:

Eh(0)6C(T)
h

2

{∫ T

0

[
1

h2
〈ChW′

N∙,W
′
N∙〉 +

1

h2
〈ChW′

∙N,W
′
∙N〉
]

dt

−
∫ T

0

[
1

h2
〈BhWN∙,WN∙〉 +

1

h2
〈BhW∙N,W∙N〉

]
dt

}
, (4.6)

whereWN∙ = (wN j )16 j6N ∈ RN andW∙N = (wi N )16i6N ∈ RN . The matrixesBh,Ch ∈ MN2(R)

are defined as follows:Bh = −1
3 T andCh = h2

16(T + Id) whereId ∈ MN2(R) is the identity matrix
andTMN2(R) is the tridiagonal matrix whose elements are all ones.

REMARK 4.3 The method used in the proof of the observability inequality (4.6) works only ifT > 2
√

3.
Probably this time is not sharp and the same is true forT > 2

√
2, which is the necessary and sufficient

time condition for controllability in the continuous case (see Remark2.3).

The proof of Theorem4.2 is technical and it is given in Appendix A.
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5. Construction of the discrete approximations

In this section, we explicitly construct a sequence of approximations(vh, zh)h>0 of the HUM control
(v, z) of (1.2). This will be done by minimizing the HUM functional of the semi-discrete adjoint system
(3.4).

Suppose that(U0
h ,U

1
h ) = (u0

j , u
1
j )16 j6N ∈ R2N2

is a discretization of the continuous initial data of

(1.2) to be controlled. We define the functionalJh: R2N2
→ R,

Jh(W
0
h ,W

1
h )= −〈(−K −1

h MhU1
h ,U

0
h ), (Wh(0),W′

h(0))〉0

+
1

2h

∫ T

0
[〈ChW′

N∙,W
′
N∙〉 + 〈ChW′

∙N,W
′
∙N〉]dt

+
1

2h

∫ T

0
[〈BhWN∙,WN∙〉 + 〈BhW∙N,W∙N〉]dt, (5.1)

where(Wh,W′
h) is the solution of (3.6) with initial data(W0

h ,W
1
h ) ∈ R2N2

, and we have notedWN∙ =
(wN j )16 j6N ∈ RN andW∙N = (wi N )16i6N ∈ RN .

We show now thatJh has a minimizer(Ŵ0
h , Ŵ

1
h ).

THEOREM 5.1 For anyT > 2
√

3, the functionalJh (5.1) has a unique minimizer(Ŵ0
h , Ŵ

1
h ).

Proof. SinceJh is continuous, convex and defined in a finite-dimensional space, the theorem is proved
if we show thatJh is coercive. This is a consequence of (4.6). More precisely,

Jh(W
0
h ,W

1
h )>

h

32

∫ T

0




N∑

j =0

|w′
N j+1(t)+ w′

N j (t)|
2 +

N∑

i =0

|w′
i +1N(t)+ w′

i N (t)|
2



 dt

+
1

6h

∫ T

0




N∑

j =0

|wN j+1(t)+ wN j (t)|
2 +

N∑

i =0

|wi +1N(t)+ wi N (t)|
2



 dt

−
1

6h

∫ T

0




N∑

j =0

|wN j (t)|
2 +

N∑

i =0

|wi N (t)|
2



 dt

−‖(−K −1
h MhU1

h ,U
0
h )‖0‖(Wh(0),W′

h(0))‖0

>C(T)‖(W0
h ,W

1
h )‖

2
0 − ‖(−K −1

h MhU1
h ,U

0
h )‖0‖(W

0
h ,W

1
h )‖0,

and therefore

lim
‖(W0

h ,W
1
h )‖0→∞

J (W0
h ,W

1
h ) = ∞.

�

REMARK 5.2 The main tool in the proof of the previous result is the observability inequality (4.6)
stated in Theorem4.2. It ensures the coercivity ofJ and consequently the existence of a minimizer.
Moreover, as we shall see in Theorem6.1, the constantC(T) appearing in (4.6) is an upper bound for
the sequences of minimizers and controls.
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Let (Ŵ0
h , Ŵ

1
h ) be the minimizer of the functionalJh given by Theorem5.1. We definevh =

(vh, j )16 j6N ∈ L2(0, T;RN) andzh = (zh,i )16i6N ∈ L2(0, T;RN) by

vh, j (t) = −
ŵNj

h
, zh,i (t) = −

ŵi N

h
∀ 16 i, j 6 N, (5.2)

where(Ŵh, Ŵ′
h) is the solution of (3.6) with initial data(Ŵ0

h , Ŵ
1
h ).

Our aim is to show that the sequence(vh, zh)h>0 converges to a control(v, z) of the continuous
equation (1.2). Sincevh andzh belong toL2(0, T;RN) whereasv andz are inL2(0, T; L2(0, 1)), the
convergence is stated in terms of the Fourier coefficients. This is done in Section6.1.

In the rest of this section, we introduce the eigenfunctions and the eigenvalues of the semi-discrete
problem (3.6). LetIN = {(n,m) ∈ Z∗ × N∗: 16 |n| 6 N, 16 m6 N}.

LEMMA 5.3 The eigenvaluesλnm
h , (n,m) ∈ IN , of the semi-discrete problem (3.6) are given by

λnm
h = sgn(n)

2

h

√

tan2

(
mπh

2

)
+ tan2

(
nπh

2

)
+

2

3
tan2

(
mπh

2

)
tan2

(
nπh

2

)
. (5.3)

The corresponding eigenfunctions are

Ψ nm
h =

√
2

cos
(nπh

2

)
cos

(mπh
2

)

(
(iλnm

h )−1Φnm
h

−Φnm
h

)

∀ (n,m) ∈ IN, (5.4)

whereΦnm
h = (φn

h sin(pmπh))16p6N ∈ RN2
andφn

h = (sin( jnπh))16 j6N ∈ RN .

A straightforward computation shows that(Ψ nm
h )(n,m)∈IN constitutes an orthonormal basis inR2N2

with respect to the inner product〈∙, ∙〉0.
For any( f 1, f 2), (g1, g2) ∈ R2N2

, we introduce the notations

〈( f 1, f 2), (g1, g2)〉−1 = 〈(−K −1
h Mh f 2, f 1), (−K −1

h Mhg2, g1)〉0,

‖( f 1, f 2)‖−1 = ‖(−K −1
h Mh f 2, f 1)‖0.

Remark that〈∙, ∙〉−1 is an inner product and‖∙‖−1 is a norm onR2N2
.

6. Convergence of the discrete approximations

In this section, we prove the weak convergence of the sequence(vh, zh)h>0 to the HUM control of the
continuous equation (1.2). Let us first show the following boundedness property of the initial data from
which (vh, zh) were constructed.

THEOREM 6.1 Assume thatT > 2
√

3. The sequence of minimizers ofJh given by Theorem5.1,
(Ŵ0

h , Ŵ
1
h )h>0, verifies

‖(Ŵ0
h , Ŵ

1
h )‖0 6

1

C
‖(−K −1

h MhU1
h ,U

0
h )‖0, (6.1)

whereC = C(T) is the observability constant of (4.6) which is independent ofh.
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If the sequence of discretizations(U0
h ,U

1
h )h>0 is uniformly bounded in the‖∙‖−1-norm, then the

sequence(Ŵ0
h , Ŵ

1
h )h>0 is bounded in the‖∙‖0-norm.

Proof. From the observability inequality (4.6), we have that

C‖(Ŵ0
h , Ŵ

1
h )‖

2
0 6

h

2

∫ T

0
[〈Chv

′
h, v

′
h〉 + 〈Chz′

h, z
′
h〉]dt −

h

2

∫ T

0
[〈Bhvh, vh〉 + 〈Bhzh, zh〉]dt

= Jh(Ŵ
0
h , Ŵ

1
h )+ 〈(−K −1

h MhU1
h ,U

0
h ), (Ŵh(0), Ŵ′

h(0))〉0.

Now, sinceJh(Ŵ0
h , Ŵ

1
h ) 6Jh(0, 0) = 0, it follows that

C‖(Ŵ0
h , Ŵ

1
h )‖

2
0 6〈(−K −1

h MhU1
h ,U

0
h ), (Ŵh(0), Ŵ′

h(0))〉0

6‖(−K −1
h MhU1

h ,U
0
h )‖0‖(Wh(0),W′

h(0))‖0 = ‖(−K −1
h MhU1

h ,U
0
h )‖0‖(W

0
h ,W

1
h )‖0,

which is equivalent to (6.1). �

REMARK 6.2 Theorem6.1shows that the sequence of initial data(Ŵ0
h , Ŵ

1
h )h>0 which give(vh, zh) is

uniformly bounded inh for the‖∙‖0-norm if the sequence of discretizations(U0
h ,U

1
h )h>0 is bounded in

the‖∙‖−1-norm. The sequences(vh, zh)h>0 verify the following inequality:

h

2

∫ T

0
[〈Chv

′
h, v

′
h〉 + 〈Chz′

h, z
′
h〉 − 〈Bhvh, vh〉 − 〈Bhzh, zh〉]dt

6
1

C
‖(−K −1

h MhU1
h ,U

0
h )‖

2
0 =

1

C
‖(U0

h ,U
1
h )‖

2
−1. (6.2)

6.1 Weak convergence of the approximations

Assume that the sequence of discretizations of the continuous initial data on (1.2), (U0
h ,U

1
h )h>0, con-

verges weakly to(u0, u1) in L2(Ω) × H−1(Ω). This should be understood in the sense of the conver-
gence of the Fourier coefficients. More precisely, if

(U0
h ,U

1
h ) =

∑

(n,m)∈IN

αh
nmΦ

nm
h , (u0, u1) =

∑

(n,m)∈Z∗×N∗

αnmΦ
nm,

then the following weak convergence holds in`2:

(
αh

nm

λnm
h

)

(n,m)∈IN

⇀
(αnm

λnm

)

(n,m)∈Z∗×N∗
whenh → 0. (6.3)

Now, assume that the minimizer(Ŵ0
h , Ŵ

1
h ) has the following expansion:

(Ŵ0
h , Ŵ

1
h ) =

∑

(n,m)∈IN

ah
nmΨ

nm
h . (6.4)
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Inequality (6.1) is equivalent to

∑

(n,m)∈IN

|ah
nm|2 = ‖(Ŵ0

h , Ŵ
1
h )‖

2
0 6

1

C2
‖(−K −1

h MhU1
h ,U

0
h )‖

2
0 =

1

C2

∑

(n,m)∈IN

∣
∣
∣
∣
αh

nm

λnm
h

∣
∣
∣
∣

2

.

Here, the right-hand side is bounded due to the weak convergence stated in (6.3). Hence, the sequence
of the Fourier coefficients(ah

nm)(n,m)∈IN is bounded iǹ 2 and there exists a subsequence, denoted in
the same way, and(anm)(n,m)∈Z∗×N∗ ∈ `2 such that

(ah
nm)(n,m)∈IN ⇀ (anm)(n,m)∈Z∗×N∗ in `2 whenh → 0. (6.5)

Let us now introduce the continuous initial data

(ŵ0, ŵ1) =
∑

(n,m)∈Z∗×N∗

anmΨ
nm ∈ H1

0 (Ω)× L2(Ω) (6.6)

and the corresponding solution(ŵ, ŵ′) ∈ C([0, T ]; H1
0 (Ω)× L2(Ω)). We have that

ŵx(t, 1, y)=
∑

m∈N∗

(
∑

n∈Z∗

ianm(−1)n+1

√
2nπ

λnm
eiλnmt

)

sin(mπy) := v,

ŵy(t, x, 1)=
∑

n∈Z∗

(
∑

m∈N∗

ianm(−1)m+1

√
2mπ

λnm
eiλnmt

)

sin(nπx) := w.

If (Ŵh, Ŵ′
h) is the corresponding solution of (3.6) with initial data(Ŵ0

h , Ŵ
1
h ), it follows that

vh =
∑

16m6N




∑

16|n|6N

iah
nm(−1)n+1

√
2

λnm
h cos

(nπh
2

)
cos
(mπh

2

) sin(nπh)eiλnm
h t



φm
h ,

zh =
∑

16|n|6N




∑

16m6N

iah
nm(−1)m+1

√
2

λnm
h cos

(nπh
2

)
cos
(mπh

2

) sin(mπh)eiλnm
h t



φn
h .

We denote

bh
m =






∑
16|n|6N iah

nm(−1)n+1
√

2

λnm
h cos

(
nπh

2

)
cos
(

mπh
2

) sin(nπh)eiλnm
h t , if 1 6 m6 N,

0, if m> N,

bm =
∑

n∈Z∗

ianm(−1)n+1

√
2nπ

λnm
eiλnmt ,

dh
n =






∑
16m6N iah

nm(−1)m+1
√

2

λnm
h cos

(
nπh

2

)
cos
(

mπh
2

) sin(mπh)eiλnm
h t , if 1 6 |n| 6 N,

0, if |n| > N,

dn =
∑

m∈N∗

ianm(−1)m+1

√
2mπ

λnm
eiλnmt .
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THEOREM 6.3 Assume that the sequence of discretizations(U0
h ,U

1
h )h>0 converges weakly to

(u0, u1) in the sense of (6.3). The following convergencies hold weakly inL2(0, T; `2) whenh tends
to zero:

(bh
m)m∈N∗ ⇀ (bm)m∈N∗ , (dh

n )n∈Z∗ ⇀ (dn)n∈Z∗ ,

(h(bh
m)

′)m∈N∗ ⇀ 0, (h(dh
n )

′)n∈Z∗ ⇀ 0.

In particular,(vh, zh)h>0 converges weakly to(v, z) in [L2((0, T)× (0, 1))]2.

Proof. We show the first convergence, the other ones being similar. Let us introduce

b̃h
m(t)=

∑

16|n|6N

iah
nm(−1)n+1

√
2 sin(nπh)

λnm
h cos

(nπh
2

)
cos
(mπh

2

)
1

(λnm
h )2

eiλnm
h t ,

b̃m(t)=
∑

n∈Z∗

ianm(−1)n+1

√
2nπ

λnm

1

(λnm)2
eiλnmt .

The convergence(bh
m)m∈N∗ ⇀ (bm)m∈N∗ is proved if we show that

∫ T

0

∑

m>1

|b̃h
m(t)− b̃m(t)|

2 dt −→ 0 whenh → 0. (6.7)

In order to prove (6.7), we consider an arbitraryε > 0 and show that there exists anN sufficiently large
such that

∫ T

0

∑

m>N

|b̃m(t)|
2 dt 6

ε

2
(6.8)

and
∫ T

0

∑

16m6N

|b̃h
m(t)− b̃m(t)|

2 dt 6
ε

2
. (6.9)

Remark that (6.8) and (6.9) imply (6.7) immediately.
To prove (6.8) note that since(anm) ∈ `2, there exists anN1 > 0 independent ofh such that for any

N > N1, we have

∫ T

0

∑

m>N

|b̃m(t)|
2 dt 6

∫ T

0

∑

m>N

(
∑

n∈Z∗

1

|λnm|4

)


∑

n∈Z∗

∣
∣
∣
∣
∣
ianm(−1)n+1

√
2nπ

λnm
eiλnmt

∣
∣
∣
∣
∣

2


 dt

6 2

(
∑

m>N

∑

n∈Z∗

1

|λnm|4

)∫ T

0

(
∑

m>N

∑

n∈Z∗

|anm|2 dt

)

6 cT
∑

m>N

∑

n∈Z∗

|anm|2 6
ε

2
.
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Let us now show that forh sufficiently small (or, equivalently, forN sufficiently large), (6.9) also
holds. We have that

1

2

∑

16m6N

|b̃h
m − b̃m|2

6
∑

16m6N

∣
∣
∣
∣
∣
∣

∑

16|n|6N

(−1)n+1 iah
nm

( √
2 sin(nπh)

λnm
h cos

(nπh
2

)
cos
(mπh

2

)
1

(λnm
h )2

eiλnm
h t −

√
2nπ

λnm

1

(λnm)2
eiλnmt

)∣∣
∣
∣
∣
∣

2

+
∑

16m6N

∣
∣
∣
∣
∣
∣

∑

16|n|6N

i(−1)n+1(ah
nm − anm)

√
2nπ

λnm

1

(λnm)2
eiλnmt

∣
∣
∣
∣
∣
∣

2

.

According to the weak convergence of the sequence(ah
nm)nm to (anm)nm and the presence of the

weights 1/(λnm)2, for h sufficiently small,

∑

16m6N

∣
∣
∣
∣
∣
∣

∑

16|n|6N

i(−1)n+1(ah
nm − anm)

√
2nπ

λnm

1

(λnm)2
eiλnmt

∣
∣
∣
∣
∣
∣

2

6
ε

4
.

On the other hand,

∑

16m6N

∣
∣
∣
∣
∣
∣

∑

16|n|6N

(−1)n+1 iah
nm

( √
2 sin(nπh)

λnm
h cos

(nπh
2

)
cos
(mπh

2

)
eiλnm

h t

(λnm
h )2

−

√
2nπ

λnm

eiλnmt

(λnm)2

)∣∣
∣
∣
∣
∣

2

6
∑

16m6N




∑

16|n|6N

|ah
nm|2

∑

16|n|6N

∣
∣
∣
∣
∣

√
2 sin(nπh)

λnm
h cos

(nπh
2

)
cos
(mπh

2

)
eiλnm

h t

(λnm
h )2

−

√
2nπ

λnm

eiλnmt

(λnm)2

∣
∣
∣
∣
∣

2


 .

Since(ah
nm)nm is bounded iǹ 2, there exists ac > 0 such that

∑

16|n|6N

|ah
nm|2 6

∑

16m6N

∑

16|n|6N

|ah
nm|2 6 c,

and (6.9) follows if we prove that

∑

16m6N

∑

16|n|6N

∣
∣
∣
∣
∣

√
2 sin(nπh)

λnm
h cos

(nπh
2

)
cos
(mπh

2

)
1

(λnm
h )2

eiλnm
h t −

√
2nπ

λnm

1

(λnm)2
eiλnmt

∣
∣
∣
∣
∣

2

6
ε

4c
. (6.10)

Note that

max

{∣∣
∣
∣
∣

√
2 sin(nπh)

λnm
h cos

(nπh
2

)
cos
(mπh

2

)

∣
∣
∣
∣
∣
,

√
2nπ

λnm

}

6
√

3
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and thus there exists annε > 0 independent ofh such that

∑

16m6N

∑

nε+16|n|6N

∣
∣
∣
∣
∣

√
2 sin(nπh)

λnm
h cos

(nπh
2

)
cos
(mπh

2

)
1

(λnm
h )2

eiλnm
h t −

√
2nπ

λnm

1

(λnm)2
eiλnmt

∣
∣
∣
∣
∣

2

+
∑

nε+16m6N

∑

16|n|6nε

∣
∣
∣
∣
∣

√
2 sin(nπh)

λnm
h cos

(nπh
2

)
cos
(mπh

2

)
1

(λnm
h )2

eiλnm
h t −

√
2nπ

λnm

1

(λnm)2
eiλnmt

∣
∣
∣
∣
∣

2

6 6
∑

16m6N

∑

nε+16|n|6N

1

(λnm)2
+ 6

∑

nε+16m6N

∑

16|n|6nε

1

(λnm)2
6

ε

8c
. (6.11)

Let us now analyse the case 16 m, |n| 6 nε. Sinceλnm
h → λnm whenh tends to zero, it follows

that forh sufficiently small,
∣
∣
∣
∣
∣

√
2 sin(nπh)

λnm
h cos

(nπh
2

)
cos
(mπh

2

)
1

(λnm
h )2

eiλnm
h t −

√
2nπ

λnm

1

(λnm)2
eiλnmt

∣
∣
∣
∣
∣

2

6

√
2

(λnm)4

∣
∣
∣
∣
∣

sin(nπh)
nπ λnm

λnm
h cos

(nπh
2

)
cos
(mπh

2

)
(λnm)2

(λnm
h )2

ei(λnm
h −λnm)t − 1

∣
∣
∣
∣
∣

2

6
ε

8cn2
ε

.

Consequently,

∑

16m6nε

∑

16|n|6nε

∣
∣
∣
∣
∣

√
2 sin(nπh)

λnm
h cos

(nπh
2

)
cos
(mπh

2

)
1

(λnm
h )2

eiλnm
h t −

√
2nπ

λnm

1

(λnm)2
eiλnmt

∣
∣
∣
∣
∣

2

6
ε

8c
. (6.12)

From (6.11) and (6.12), (6.10) follows immediately and the proof ends. �

6.2 Identification of the limit control

In this section, we show that the limit(v,w) of the sequence(vh, zh)h>0 from Theorem6.3is the HUM
control for the continuous equation (1.2).

THEOREM 6.4 We have that(v, z) = (ŵx(t, 1, y), ŵy(t, x, 1)) is the HUM control for (1.2), where
(ŵ, ŵ′) is the solution of (2.2) with initial data(ŵ0, ŵ1) given by (6.6).

Proof. By taking into account Proposition2.5, the proof consists of verifying (2.8).
The optimality condition for the minimizer ofJh provides the following characterization ofvh

andzh:

〈(−K −1
h MhU1

h ,U
0
h ), (Wh(0),W′

h(0))〉0

=
h2

16

∫ T

0




N∑

j =1

(2v′
h, j + v′

h, j +1 + v′
h, j −1)w

′
N j +

N∑

i =1

(2z′
h,i + z′

h,i +1 + z′
h,i −1)w

′
i N



 dt (6.13)

+
1

3

∫ T

0




N∑

j =1

(vh, j + vh, j +1 + vh, j −1)wN j +
N∑

i =1

(zh,i + zh,i +1 + zh,i −1)wi N



 dt = 0

for any(W0
h ,W

1
h ) ∈ R2N2

, where(Wh,W′
h) is the corresponding solution of (3.6).
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Now, we evaluate (6.13) for (W0
h ,W

1
h ) = Ψ nm

h . We obtain that for any(n,m) ∈ IN ,

cos
(nπh

2

)
cos
(mπh

2

)

√
2

〈
(−K −1

h MhU1
h ,U

0
h ), Ψ

mn
h eiλmn

h T
〉

0

=
∫ T

0
eiλnm

h (t−T)[(−1)n+1 sin(nπh)〈Chv
′
h, φ

m
h 〉 + (−1)m+1 sin(mπh)〈Chz′

h, φ
n
h〉]dt

+
∫ T

0

eiλnm
h (t−T)

iλnm
h

[(−1)n+1 sin(nπh)〈Bhvh, φ
m
h 〉 + (−1)m+1 sin(mπh)〈Bhzh, φ

n
h〉]dt,

which is equivalent to

i cos

(
nπh

2

)
cos

(
mπh

2

)
〈(−K −1

h MhU1
h ,U

0
h ), Ψ

mn
h 〉0

=

√
2h2 i

4

∫ T

0
eiλnm

h t
[
(−1)n+1 sin(nπh) cos2

(
mπh

2

)
(v′

h, φ
m
h )

+ (−1)m+1 sin(mπh) cos2
(

nπh

2

)
(z′

h, φ
n
h)

]
dt

−

√
2

3λnm
h

∫ T

0
eiλnm

h t [(−1)n+1 sin(nπh)(1 + 2 cos(mπh))(vh, φ
m
h )

+(−1)m+1 sin(mπh)(1 + 2 cos(nπh))(zh, φ
n
h)]dt. (6.14)

We have that

〈(−K −1
h MhU1

h ,U
0
h ), Ψ

mn
h 〉0 =

1

iλnm
h
αh

nm, 〈vh, φ
m
h 〉 =

1

2h
bm

h (t), 〈zh, φ
n
h〉 =

1

2h
dn

h (t).

By taking into account that for every fixed(n,m) ∈ IN , whenh tends to zero we have that

αh
nm → αnm, λnm

h → λnm,

bh
m(t) → bm(t), dh

m(t) → dm(t) in L2(0, T),

h(bh
m)

′(t) → 0, h(dh
m)

′(t) → 0 in L2(0, T),

and by passing to the limit in (6.14), we obtain (2.8). �

7. Numerical experiments

This section is devoted to present numerical experiments which illustrate the efficiency of scheme (3.4)
in controllability problems. This is done by using a fully discrete approximation derived from the semi-
discrete scheme (3.4). In Section7.1, we present the method and in Section7.2we consider two exam-
ples with different non-smooth initial data and location of controls.
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7.1 Description of a fully discrete approximation

We first introduce a fully discrete—in space and time—approximation method associated to system
(2.2). This is precisely a classical time discretization of the semi-discrete scheme (3.4).

Given a time interval [0, T ], we introduce a uniform mesh{tk = kΔt}k=0,...,M with time stepΔt and
T = MΔt . Let us denote bywk

i j the approximation of the solutionw of (2.2) at the point of coordinates

(xi , yj ) and at timetk = kΔt , i.e.wk
i j ≈ w(kΔt, xi , yj ).

A fully discrete scheme may be obtained by replacing the time derivativew′′
i j (t

k) by the finite dif-

ference(wk+1
i j − 2wk

i j + wk−1
i j )/Δt2. If Wk = (wk

i j )16i, j6N ∈ RN2
for 06 k 6 M , the vectorial form

(3.6) becomes
{

Mh
Wk+1−2Wk+Wk−1

Δt2 + KhWk = 0, 06 k 6 M,

WM = w0, WM+1−WM−1

2Δt = w1.
(7.1)

The scheme (7.1) is consistent of order 2 in time and space with the continuous system (2.2) and it is
stable under the so-called ‘Courant–Friedrichs–Lewy’ condition (seeCohen, 2002)

Δt2

4
sup

W∈RN2
,W 6=0

(KhW,W)

(MhW,W)
< 1 ∀ h,Δt > 0. (7.2)

Moreover, the discrete spectrum(λmn
h,Δt )16m,n6N associated to this scheme is

λmn
h,Δt =

2

Δt
arcsin

(
Δt

2
λmn

h

)
, 16 m, n 6 N,

with λmn
h defined by (5.3). Therefore, (7.2) implies the following condition:

Δt 6 Ch3 (7.3)

for someC > 0 independent ofh.
In order to relax this restrictive stability condition, we use an implicit method replacing the term

KhWk in (7.1) by 1/4Kh(Wk+1 + 2Wk + Wk−1). Note that this corresponds to one of the Newmark
methods (with parametersγ = 1/2 andβ = 1/4, seeCohen, 2002). Thus, we obtain the following
scheme:

{(
Mh + Δt2

4 Kh
)Wk+1−2Wk+Wk−1

Δt2 + KhWk = 0, 06 k 6 M,

WM = w0, WM+1−WM−1

2Δt = w1
(7.4)

consistent with the continuous system (2.2) and unconditionally stable for any value ofΔt .
Let us now analyse if this fully discrete system conserves the observability properties of the semi-

discrete scheme. Following the analysis in Section4, we study the group velocity of discrete plane
waves of the form

wk
i j = ei(ξ ∙(xi ,x j )−ωtk), ξ = (ξ1, ξ2).

For the discrete system (7.4), the following relation between the modesξ and the frequenciesω holds:

ω(ξ) =
2

Δt
arcsin



Δt

2

√√
√
√ ωmfe(ξ)2

1 + Δt2

4 ωmfe(ξ)2



 ,

whereωmfe(ξ) is given by (4.2).
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The group velocity associated to a modeξ in a directionv = (v1, v2) is given by∇ξω ∙ v and a
necessary condition in order to have a uniform (inh andΔt) observability property in finite time is to

have a uniform bound from below (inξ , h andΔt) for |∇ξω| =
√∣
∣∂ξ1ω

∣
∣2 +

∣
∣∂ξ2ω

∣
∣2, i.e.

|∇ξω| > C > 0 for all ξ , h andΔt . (7.5)

A straightforward computation shows that the minimum value of|∇ξω| is obtained forξ = (π/h, π/h)
and that

|∇ξω(π/h, π/h)| ∼ h3/2Δt−1.

Therefore, this is uniformly bounded from below if

Δt = Ch3/2 ∀ C > 0. (7.6)

Thus, even if the scheme (7.4) is stable for any discretization stepΔt , in order to guarantee a uniform
(in h andΔt) controllable scheme, (7.6) should be verified.

Note that the implicit method (7.4)–(7.6) permits to gain a factorh3/2 in the ratioΔt/h compared
with the initial scheme (7.1) for which stability is ensured by (7.3).

7.2 Numerical examples

In this section, we present some numerical experiments for two different initial conditions. The first
example is a well-known test proposed byGlowinski et al. (1990) for which the initial velocityu1 is
discontinuous. The second example is even more singular, involving a discontinuous initial displace-
mentu0. Each one of these examples is defined in the unit square.

The HUM control is obtained by minimizing the functionalJ in (5.1) and then by using (5.2).
Following Glowinski et al. (1990), the iterative conjugate gradient algorithm is used with the initializa-
tion (Ŵ0

h , Ŵ
1
h ) = (0, 0). We assume that the convergence is obtained when the corresponding relative

residual is lower than or equal toε = 10−8.

7.2.1 Example 1: discontinuity of the initial velocity u1. Firstly, we consider the example in
Glowinski et al. (1990, p. 26). The initial data to be controlled,(u0, u1), is constituted by a Lips-
chitz continuous functionu0 not belonging toC1(Ω) and a functionu1 belonging toL∞(Ω) but not to
C0(Ω). The explicit expressions of(u0, u1) may be found inGlowinski et al. (1990). The interest of
this example is that the analytical solution is known. More precisely, let us considerT = 15/4

√
2 and

the solution of the wave equation (2.2) given by

ŵ(t, x, y) =
√

2 cos

(
π

√
2

(
T − t −

1

4
√

2

))
sin(πx) sin(πy).

Let (ŵ0, ŵ1) be its corresponding initial data. Then,V = ∂ŵ
∂ν |∂Ω is exactly the HUM control acting on

the whole boundary∂Ω which leads(u0, u1) to the rest in timeT .
In Glowinski et al. (1990), the simplest discretization for the wave equation is considered. It con-

sists in the five-point formula in space for the Laplacian combined with the usual three-point formula
for the second derivative in time. This produces an explicit scheme for which condition (7.5) fails.
The conjugate gradient algorithm based on this scheme diverges. Several cures have been proposed to
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TABLE 1 Results obtained withΔt = h3/2 in Example1. The control is active on∂Ω and
T = 15/4

√
2

h = 1/15 h = 1/30 h = 1/60 h = 1/120

Conjugate gradient CG iterations 5 6 6 6
‖ŵ0−Ŵ0

h ‖L2(Ω)

‖ŵ0‖L2(Ω)
2.61× 10−2 5.53× 10−3 1.43× 10−3 5.27× 10−4

|ŵ0−Ŵ0
h |H1(Ω)

|ŵ0|H1(Ω)
4.02× 10−2 1.80× 10−2 7.07× 10−3 3.09× 10−3

‖ŵ1−Ŵ1
h ‖L2(Ω)

‖ŵ1‖L2(Ω)
4.45× 10−2 2.13× 10−2 9.64× 10−3 4.86× 10−3

‖V−Vh‖L2(∂Ω×(0,T))
‖V‖L2(∂Ω×(0,T))

2.31× 10−1 1.24× 10−1 4.93× 10−2 2.08× 10−2

‖Vh‖L2(∂Ω×(0,T)) 7.4187 7.3782 7.3812 7.3859

Eh(T)/Eh(0) 1.55× 10−3 4.1 × 10−4 5.61× 10−5 1.01× 10−6

FIG. 2. Left: Exact controlV(t, x) (dashed line) and approximate controlVh (solid line) at thepoint x = (1, 1/2) ∈ ∂Ω with
h = 1/15. Right: log(‖(V − Vh)(∙, x)‖L∞(0,T)) versus log(1/h) (Example 1).

TABLE 2 Results obtained withΔt = h3/2 in Example2. The control is active onΓ1 ⊂ ∂Ω and
T = 2

√
2. The last row indicates that the system is controlled at timeT

h = 1/15 h = 1/30 h = 1/60 h = 1/120

CG iterations 13 11 10 10
‖Ŵ0

h‖L2(Ω) 1.50× 10−1 1.35× 10−1 1.31× 10−1 1.30× 10−4

|Ŵ0
h |H1(Ω) 1.0990 1.1071 1.1147 1.1169

‖Ŵ1
h‖L2(Ω) 5.871 5.425 5.196 5.164

‖vh‖L2((0,1)×(0,T)) + ‖zh‖L2((0,1)×(0,T)) 1.290× 101 1.243× 101 1.222× 101 1.218× 101

Eh(T)/Eh(0) 4.30× 10−3 3.68× 10−4 1.11× 10−4 8.39× 10−5
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FIG. 3. Controllability of the initial data (7.7) in Ω = (0, 1)2: approximationsUh(t) of the controlled solution fort = 0, T/5,
2T/5, 3T/5, 4T/5 andT = 2

√
2 with h = 1/60 in Example 2.
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obtain convergence without changing the scheme, such as filtering with a bi-grid strategy or a Tychonoff
regularization technique (seeGlowinski, 1991; Glowinskiet al., 1990).

Table1 displays the good behaviour of the scheme (7.4) whenh andΔt = h3/2 are decreasing, by
comparing the exact and approximate results for the initial data giving the control and for the control
itself. |ŵ0|H1(Ω) is defined by|ŵ0|H1(Ω) =

( ∫
Ω |∇ŵ0|2 dx dy

)1/2, whereas theH−1-norm ofu1 inΩ is
defined by‖u1‖H−1 = |w|H1(Ω), wherew ∈ H1

0 (Ω) is the solution of the Dirichlet problem−Δw = u1

in Ω, w = 0 onΓ .

REMARK 7.1 An analysis of the results from Table1 shows that the number of conjugate gradient
iterations necessary to achieve convergence is independent ofh. Moreover, the approximation errors for
(ŵ0, ŵ1) satisfy

‖ŵ0 − Ŵ0
h‖L2(Ω) = O(h1.88), ‖ŵ0 − Ŵ0

h‖H1
0 (Ω)

= O(h1.10), ‖ŵ1 − Ŵ1
h‖H1(Ω) = O(h1.06),

while for the control, we have

‖V − Vh‖L2(∂Ω×(0,T)) = O(h1.17).

Figure2 (left) depicts the exact and approximate controlsV andVh at thepointx = (1, 1/2) ∈ ∂Ω,
obtained withh = 1/15 (for h = 1/30, 1/60, 1/120, the two curves cannot be distinguished). The
approximation error is given in Fig.2 (right) and satisfies‖(V − Vh)‖L∞(0,T) = O(h0.95).

At last, some numerical experiments (not reproduced here) highlight the condition (7.6). More pre-
cisely, if the unconditionally stable scheme (7.4) is used withΔt = O(h), then the conjugate gradient
algorithm diverges forh small enough.

7.2.2 Example 2: discontinuity of the initial position u0. In this second example, we consider a more
singular situation with a discontinuous initial displacementu0:

u0(x, y) =

{
40, (x, y) ∈

(1
3,

2
3

)2
,

0, elsewhere,
u1(x, y) = 0. (7.7)

We assume that the control(v, z) is active onΓ1 (see (1.1)) and we takeT = 2
√

2. As in the previ-
ous example, a conjugate gradient algorithm based on the simplest discretization of the wave equation
diverges. On the contrary, the use of scheme (7.4) allows to obtain convergence without filtering or reg-
ularization techniques. This is displayed in Table2. The number of iterations to achieve convergence
remains low and constant forh small. Moreover, the convergence is slightly affected by the lack of

TABLE 3 ‖TŴ0
T h − χ0

h‖H1
0 (Ω)

and‖TŴ1
T h − χ1

h‖L2(Ω) with h = 1/60 in Example2

T = 3 T = 5 T = 10 T = 20 T = 40

CG iterations 10 9 8 8 5

‖TŴ0
T h − χ0

h‖H1
0 (Ω)

7.15×10−1 3.4×10−1 1.40×10−1 1.11×10−1 3.3×10−2

‖TŴ1
T h − χ1

h‖L2(Ω) 4.12×10−1 2.21×10−1 1.55×10−1 8.46×10−2 2.47×10−2
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regularity of u0: we compute for instance that‖u1 − U1
h‖H−1(Ω) = O(h0.71) to be compared with

‖u1 − U1
h‖H−1(Ω) = O(h1.01) for the first example.

Forh = 1/60, the exact controllability of the wave equation is illustrated on Fig.3: the approximate
controlled solutionUh is drawn in the unit squareΩ for six values of time:t = 0, T/5, 2T/5, 3T/5,
4T/5 andT . For t = 0,Uh coincides with the discontinuous positionu0, while for t = T the solution is
null controlled: the ratio of the energy between the two states isEh(T)/Eh(0) ≈ 1.11× 10−4. At last,
we highlight that the value ofT is strictly lower than 2

√
3 obtained in Theorem4.2.

Furthermore, a very useful result to validate our numerical scheme for large values ofT is due to
Bensoussan(1990) who has shown that when the control is active on the whole boundary,

lim
T→∞

T(ŵ0
T , ŵ

1
T ) = (χ0, χ1), (7.8)

whereχ0 andχ1 are solutions of

Δχ0 =
1

2
u1 in Ω, χ0 = 0 on∂Ω; χ1 =

1

2
u0 in Ω

and(ŵ0
T , ŵ

1
T ) are the initial conditions of the backward system (2.2). The numerical results we obtain

with the scheme (7.4) (see Table3) confirm clearly the theoretical property (7.8): ‖TŴ0
T h−χ0

h‖H1
0 (Ω)

=

O(T−1.10) and‖TŴ1
T h − χ1

h‖L2(Ω) = O(T−1.0087). As advocated inGlowinski et al. (1990), these
results provide a validation of the numerical methodology introduced here and show that the scheme is
particularly robust, accurate and perfectly able to handle very long intervals [0, T ].

The numerical results we have presented indicate that the scheme (7.4) under condition (7.6) pro-
vides a uniform approximation of the control with respect to the discretization parameters. However, a
rigorous proof of the convergence remains to be done.
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Appendix A

In this section, we prove Theorem4.2. To simplify the notation, we write

akl
i j =wik + wi l + w jk + w j l , bkl

i j = w′
ik + w′

i l + w′
jk + w′

j l ,

ckl
i j =w′′

ik + w′′
i l + w′′

jk + w′′
j l ,

Δ(1,0)wi j = 2wi j − wi +1 j − wi −1 j , Δ(0,1)wi j = 2wi j − wi j +1 − wi j −1,

Δ(1,1)wi j = 2wi j − wi +1 j +1 − wi −1 j −1, Δ(1,−1)wi j = 2wi j − wi +1 j −1 − wi −1 j +1.

When multiplying the discrete system by the discrete version of the usual continuous multiplier
(x, y) ∙ ∇u, i.e.

(ih, jh) ∙
(
wi +1 j − wi −1 j

2h
,
wi j +1 − wi −1 j

2h

)
= i

wi +1 j − wi −1 j

2
+ j

wi j +1 − wi j −1

2
≡

mi j

2
,

and summing ini and j , we obtain

0=
h2

32

∫ T

0

N∑

i, j =1

(cj j +1
i i +1 + cj −1 j

i i +1 + cj j +1
i −1i + cj −1 j

i −1i )mi j dt

︸ ︷︷ ︸
≡C

+
1

6

∫ T

0

N∑

i, j =1

(Δ(1,0)wi j +Δ(0,1)wi j +Δ(1,1)wi j +Δ(1,−1)wi j )mi j

︸ ︷︷ ︸
≡D

dt. (A.1)



NUMERICAL APPROXIMATION OF THE BOUNDARY CONTROL FOR WAVE EQUATION 209

We study separatelyC andD. Integration by parts inC allows us to obtain

C =
∫ T

0
C1 dt + [C2]T

0 , (A.2)

where

C1 = −
N∑

i, j =1

(bj j +1
i i +1 + bj −1 j

i i +1 + bj j +1
i −1i + bj −1 j

i −1i )m
′
i j , (A.3)

C2 =
N∑

i, j =1

(bj j +1
i i +1 + bj −1 j

i i +1 + bj j +1
i −1i + bj −1 j

i −1i )mi j . (A.4)

We first consider the termC1 above. In order to have the common factorbj j +1
i i +1 , we change the

indexes in the last three terms ofC1 above. Then, taking into account thatwi 0 = wi,N+1 = w0, j =
w j,N+1 = 0 and after simplification, we obtain

C1 = 2
N∑

i, j =0

(bj j +1
i i +1 )

2 − (N + 1)




N∑

i =1

(w′
i N + w′

i +1N)
2 +

N∑

j =1

(w′
N j + w′

N j+1)
2



 . (A.5)

We now analyse the termD in (A.1). We only make the details for the first term inD since the others
can be simplified similarly. It reads

N∑

i, j =1

Δ(1,0)wi j mi j =
N∑

i, j =1

Δ(1,0)wi j [i (wi +1 j − wi −1 j )+ j (wi j +1 − wi j −1)]. (A.6)

We consider separately these two terms. For the second one, we have

Δ(1,0)wi j j (wi j +1 − wi j −1)=
N∑

i, j =1

j (wi j − wi −1 j )wi j +1 −
N∑

i, j =1

j (wi +1 j − wi j )wi j +1

−




N∑

i, j =1

j (wi j − wi −1 j )wi j −1 −
N∑

i, j =1

j (wi +1 j − wi j )wi j −1



 .

Changing the indexes to obtain the common factor(wi +1 j −wi j ) in all the terms and taking into account
thatwi,0 = wi,N+1 = w0, j = w j,N+1 = 0, we obtain

N∑

i, j =0

[ j (wi +1 j − wi j )(wi +1 j +1 − wi j +1)− j (wi +1 j − wi j )(wi +1 j −1 − wi j −1)]

= −
N∑

i, j =0

(wi +1 j +1 − wi j +1)(wi +1 j − wi j ).
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An analogous argument allows to simplify the first term in (A.6) and the other three terms inD. We
finally have

D = −
N∑

i, j =0

[(wi +1 j +1 − wi +1 j )(wi j +1 − wi j )+ (wi +1 j +1 − wi j +1)(wi +1 j − wi j )]

+
N∑

i, j =0

[(wi +1 j − wi j )
2 + (wi j +1 − wi j )

2] − (N + 1)
N∑

j =0

[(wN j )
2 + 2wN jwN j+1]

− (N + 1)
N∑

i =0

[(wi N )
2 + 2wi Nwi +1N ]. (A.7)

By Young’s inequality, we can estimate the first term in this formula

N∑

i, j =0

[(wi +1 j +1 − wi +1 j )(wi j +1 − wi j )+ (wi +1 j +1 − wi j +1)(wi +1 j − wi j )]

6
N∑

i, j =0

[(wi j +1 − wi j )
2 + (wi +1 j − wi j )

2].

Therefore,

D > −(N + 1)




N∑

j =0

w2
N j + 2

N∑

j =0

wN jwN j+1 +
N∑

i =0

w2
i N + 2

N∑

i =0

wi Nwi +1N





= −(N + 1)




N∑

j =1

(wN j−1 + wN j + wN j+1)wN j +
N∑

i =1

(wi −1N + wi N + wi +1N)wi N



 . (A.8)

Substituting (A.2), (A.5) and (A.8) into (A.1), we obtain

h2
∫ T

0

N∑

i, j =0

(
bj j +1

i i +1

4

)2

dt 6
h

8

∫ T

0




N∑

i =1

(
w′

i N + w′
i +1N

2

)2

+
N∑

j =1

(
w′

N j + w′
N j+1

2

)2


 dt

+
1

2

∫ T

0




N∑

j =1

wN j−1 + wN j + wN j+1

3

wNj

h
+

N∑

i =1

wi −1N + wi N + wi +1N

3

wi N

h



 dt

−
h2

32
[C2]T

0 . (A.9)

We observe that the term in the left-hand side contains only one part of the energy. In order to obtain
the full energy, we make an equipartition of the energy. The following lemma is a discrete version of the
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well-known equipartition of energy for the continuous wave equation, which reads

0 = −
∫ T

0

∫

Ω
(|wt |

2 + |∇u|2)dx dt +
∫

Ω
|wt u|2 dx

]T

0
. (A.10)

LEMMA A.1 The following holds:

0= −h2
∫ T

0




N∑

i, j =0

(
bj j +1

i i +1

4

)2


 dt + h2




N∑

i, j =0

(
a j j +1

i i +1

4

)(
bj j +1

i i +1

4

)



T

0

+ h2
N∑

i, j =0

∫ T

0

[
1

3

(
wi +1 j − wi j

h

)2

+
1

3

(
wi j +1 − wi j

h

)2

+
2

3

(
wi +1 j +1 − wi j

h
√

2

)2

+
2

3

(
wi +1 j − wi j +1

h
√

2

)2
]

dt.

The proof of this lemma is straightforward following the idea of the continuous system where (A.10)
is obtained multiplying system (2.2) by u and integrating by parts.

When applying LemmaA.1 to the identity (A.9), we obtain

∫ T

0
Eh(t)dt +

h2

32




N∑

i, j =0

a j j +1
i i +1 bj j +1

i i +1 + C2





T

0

6
h

8

∫ T

0




N∑

i =1

(
w′

i N + w′
i +1N

2

)2

+
N∑

j =1

(
w′

N j + w′
N j+1

2

)2


 dt

+
1

2

∫ T

0




N∑

j =1

wN j−1 + wN j + wN j+1

3

wNj

h
+

N∑

i =1

wi −1N + wi N + wi +1N

3

wi N

h



 dt. (A.11)

The following lemma allows us to estimate the second term in the left-hand side of this formula.

LEMMA A.2 The following holds

h2




N∑

i, j =0

a j j +1
i i +1 bj j +1

i i +1 + C2





T

0

6 64
√

3Eh(0). (A.12)

Before proving this lemma, we finish the proof of Theorem4.2.
From LemmaA.2 and the conservation of the discrete energy, stated in Proposition4.1, we have

∫ T

0
Eh(t)dt +

h2

32




N∑

i, j =0

a j j +1
i i +1 bj j +1

i i +1 + C2





T

0

> T Eh(0)− 2
√

3Eh(0) = (T − 2
√

3)Eh(0),
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which combined with (A.11) provides the following:

(T − 2
√

3)Eh(0) 6
h

8

∫ T

0




N∑

i =1

(
w′

i N + w′
i +1N

2

)2

+
N∑

j =1

(
w′

N j + w′
N j+1

2

)2


 dt

+
1

2

∫ T

0




N∑

j =1

wN j−1 + wN j + wN j+1

3

wNj

h
+

N∑

i =1

wi −1N + wi N + wi +1N

3

wi N

h



 dt.

This concludes the proof of Theorem4.2.
Proof. (LemmaA.2) From (A.4), we have

N∑

i, j =0

a j j +1
i i +1 bj j +1

i i +1 + C2 =
N∑

i, j =0

a j j +1
i i +1 bj j +1

i i +1 +
N∑

i, j =1

[bj j +1
i i +1 + bj −1 j

i i +1 + bj j +1
i −1i + bj −1 j

i −1i ]mi j . (A.13)

To simplify the notation, we assume thatwN+2 j = wN j , wi N+2 = wi N andw−1 j = wi,−1 = 0 for
all i, j = 0, . . . , N + 1. We change the indexes in each of the terms of the right-hand side of (A.13) in
order to have the common factorbj j +1

i i +1 . Then, we obtain

N∑

i, j =0

a j j +1
i i +1 bj j +1

i i +1 + C2 =
N∑

i, j =0

(a j j +1
i i +1 + Ri j )b

j j +1
i i +1 , (A.14)

where

Ri j = i [(wi +1 j − wi −1 j )+ (wi +1 j +1 − wi −1 j +1)] + (i + 1)[(wi +2 j − wi j )+ (wi +2 j +1 − wi j +1)]

+ j [(wi j +1 − wi j −1)+ (wi +1 j +1 − wi +1 j −1)] + ( j + 1)[(wi j +2 − wi j )+ (wi +1 j +2 − wi +1 j )].

We estimate the right-hand side in (A.14) using the Schwartz inequality. Thus,

N∑

i, j =0

a j j +1
i i +1 bj j +1

i i +1 + C2 6




N∑

i, j =0

(a j j +1
i i +1 + Ri j )

2





1/2


N∑

i, j =0

(bj j +1
i i +1 )

2





1/2

. (A.15)

Now we prove that

N∑

i, j =0

(a j j +1
i i +1 + Ri j )

2 6
N∑

i, j =0

R2
i j + 8

N∑

i =1

(N + 1)(wi N )
2 + 8

N∑

j =1

(N + 1)(wN j )
2. (A.16)

Indeed, we have

N∑

i, j =0

[(a j j +1
i i +1 + Ri j )

2 − R2
i j ] =

N∑

i, j =0

[(a j j +1
i i +1 )

2 + 2a j j +1
i i +1 Ri j ], (A.17)
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and it is not difficult to see that

N∑

i, j =0

a j j +1
i i +1 Ri j = −2

N∑

i, j =0

(a j j +1
i i +1 )

2 +
N∑

i =1

(N + 1)(wi N + wi +1N)
2 +

N∑

j =1

(N + 1)(wN j + wN j+1)
2.

Therefore, using Young’s inequality, the right-hand side in (A.17) reads

N∑

i, j =0

[(a j j +1
i i +1 )

2 + 2a j j +1
i i +1 Ri j ] = −3

N∑

i, j =0

(a j j +1
i i +1 )

2 + 2
N∑

i =1

(N + 1)(wi N + wi +1N)
2

+ 2
N∑

j =1

(N + 1)(wN j + wN j+1)
2 6 8

N∑

i =1

(N + 1)(wi N )
2 + 8

N∑

j =1

(N + 1)(wN j )
2. (A.18)

From (A.17) and (A.18), we easily deduce (A.16). Now, we estimate the right-hand side in (A.16).
Concerning the first term, we have

N∑

i, j =0

R2
i j 6

32

h2

N∑

i, j =0

[(wi +1 j − wi −1 j )
2 + (wi j +1 − wi j −1)

2], (A.19)

where we have used Young’s inequality and the fact thati, j 6 h−1. In (A.19), the first term is estimated
as follows:

N∑

i, j =0

(wi +1 j − wi −1 j )
2

=
1

2

N∑

i, j =0

[(wi +1 j − wi j + wi j − wi −1 j )
2 + (wi +1 j − wi j +1 + wi j +1 − wi −1 j )

2]

6
N∑

i, j =0

[(wi +1 j − wi j )
2 + (wi j − wi −1 j )

2] +
N∑

i, j =1

[(wi +1 j − wi j +1)
2 + (wi j +1 − wi −1 j )

2]

=
N∑

i, j =0

[2(wi +1 j − wi j )
2 + (wi +1 j − wi j +1)

2 + (wi +1 j +1 − wi j )
2] − 2

N∑

j =0

(wN j )
2, (A.20)

and an analogous formula holds for the second term in (A.19).
Substituting this simplification of (A.19) into (A.16), we easily obtain

N∑

i, j =0

(a j j +1
i i +1 + Ri j )

2

6
64

h2

N∑

i, j =0

[(wi +1 j − wi j )
2 + (wi j +1 − wi j )

2 + (wi +1 j − wi j +1)
2 + (wi +1 j +1 − wi j )

2], (A.21)
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which allows us to estimate (A.15). In fact, by Young’s inequality, we obtain

N∑

i, j =0

a j j +1
i i +1 bj j +1

i i +1 + C26
8

h




N∑

i, j =0

(bj j +1
i i +1 )

2





1/2


N∑

i, j =0

[(wi +1 j − wi j )
2 + (wi j +1 − wi j )

2

+ (wi +1 j − wi j +1)
2 + (wi +1 j +1 − wi j )

2]





1/2

6 16
√

3




N∑

i, j =0

(
bj j +1

i i +1

4

)2

+
1

3

N∑

i, j =0

[(wi +1 j − wi j )
2 + (wi j +1 − wi j )

2

+ (wi +1 j − wi j +1)
2 + (wi +1 j +1 − wi j )

2]



 = 32
√

3Eh(t).

Therefore,



N∑

i, j =0

a j j +1
i i +1 bj j +1

i i +1 + C2





T

0

6 32
√

3(Eh(T)+ Eh(0)) 6 64
√

3Eh(0). (A.22)

This concludes the proof of LemmaA.2. �
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