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Abstract 

In this paper, quintic B-spline differential quadrature method (QBDQM) has been 

used to obtain the numerical approximation of the combined Korteweg-de Vries and 

modified Korteweg-de Vries equation (combined KdV-mKdV). The efficiency and 

effectiveness of the proposed method has been tested by computing the maximum error 

norm 𝐿" and discrete root mean square error 𝐿#. The newly found numerical 

approximations have been compared to available numerical approximations and this 

comparison has shown that the proposed method is an efficient one for solving the 

combined KdV-mKdV equation. We have also carried out a stability analysis. 
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Kombine KdV-mKdV Denkleminin Kuintik B-Splayn Diferansiyel Kuadratür 

Yöntemiyle Sayısal Yaklaşımlar 

Öz 

Bu makalede, kombine Korteweg-de Vries ve modifiye edilmiş Korteweg-de Vries 

denkleminin (kombine KdV-mKdV) sayısal yaklaşımını elde etmek için kuintik B-spline 

diferansiyel kuadratür yöntemi (QBDQM) uygulanmıştır. Yöntemin etkinliği ve 

doğruluğu, maksimum hata normu 𝐿" ve ayrık kök ortalama kare hatası 𝐿# hesaplanarak 

ölçülmüştür. Yeni elde edilen sayısal sonuçlar, yayınlanan sayısal sonuçlarla 

karşılaştırıldı ve karşılaştırma, yöntemin, kombine KdV-mKdV denklemini çözmek için 

etkili bir sayısal şema olduğunu göstermiştir. Aynı zamanda bir kararlılık analizi de 

yapılmıştır. 

Anahtar Kelimeler: Kısmi diferansiyel denklemler, Diferansiyel kuadratür metod, 

Kombine KdV-mKdV denklemi, Kuintik B-Splaynlar, Güçlü kararlılık-koruyucu Runge-

Kutta metod 

1. Introduction 

In this study, we are going to investigate one of the widely used natural phenomena 

which is also a prototype for wave propagation in a 1-dimensional nonlinear lattice [1, 2]. 

Because of its importance, many researchers have dealt with the combined KdV-mKdV 

equation given as  

                                 𝑈% + 6𝛼𝑈𝑈) + 6𝛽𝑈
#𝑈) + 𝑈))) = 0,                                  (1) 

in which 𝛼 and 𝛽 denote constant parameters, 𝑡 and 𝑥 stand for time and space derivatives, 

respectively. 

Combined KdV-mKdV equation is solved with various methods by several 

researchers. It has both analytical and numerical solutions. Among others, Ablowitz and 

Taha found differential-difference equations having as limiting forms the KdV and 

mKdV equations [3]. Fan [4] proposed a novel unified algebraic procedure for 

constructing a series of explicit analytic solutions about general nonlinear equations. Peng 

[5] developed the modified mapping method for finding novel analytic solutions of the 
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combined KdV-mKdV equation. Bekir [6] established analytic solutions of combined 

KdV-mKdV equation with extended tanh method. Lu and Shi [7] established analytic 

solutions of combined KdV-mKdV equation by using four novel types of Jacobi elliptic 

funtions and extending the Jacobi elliptic functions. Taha [3] implemented inverse 

scattering transform numerical procedure for nonlinear evolution equations. 

As an effective method for obtaining approximate solutions via small number of 

nodal points, Bellman et al. [8] first presented DQM in 1972 where partial derivative of 

a function in terms of a coordinate direction is defined as a linear weighted combination 

of the functional values over the nodes on the given direction [9]. The method has been 

popular recently due to its easy application. The basic concept of the method is to find 

the weighting coefficients for functional values at nodes by using the base functions 

whose derivatives are known on the same nodes over the solution domain. Several 

scholars presented various types of DQM by using several trial functions. For example, 

Bellman et al. [8, 10] utilized Legendre polynomials with spline base functions for finding 

weighting coefficients. Quan and Chang [11, 12] presented an explicit formula to find out 

the weighting coefficients by means of Lagrange interpolation polynomials. Shu and 

Richards [13] introduced an explicit formula including Lagrange interpolation 

polynomials. Besides those, Shu and Xue [14] used Lagrange interpolated trigonometric 

polynomials for finding out weighting coefficients explicitly. Zhong [15], Guo and Zhong 

[16] and Zhong and Lan [17] presented an effective DQM as spline based DQM and 

tested it on several problems. Cheng et al. [18] proposed Hermite polynomials to 

determine the weighting coefficients. Shu and Wu [19] have presented a few implicit 

formulations of weighting coefficients based on radial base functions. The weighting 

coefficients are at the same time found by Striz et al. [20] with harmonic functions. Sinc 

functions are utilized as base functions in finding the weighting coefficients by Korkmaz 

and Dağ [21] and Bonzani [22]. B-spline base functions are also used to find weighting 

coefficients by Başhan [23], and Korkmaz and Dağ [24-26].  

In this manuscript, QBDQM will be used for finding numerical solutions of the 

combined KdV-mKdV equation. DQM based on cubic B-spline has been utilized to solve 

the 312 order differential equations such as KdV one which needs to be transformed for 

solution [27]. However, QBDQM doesn’t need transformation to solve the 312 order 
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differential equations such as KdV, combined KdV-mKdV and to carry out the stability 

analysis of the present method there is no need for a reduction like splitting for the 

solution procedure. Thus, to be able to carry out stability analysis of the 312 order non-

linear combined KdV-mKdV equation, quintic B-spline basis functions have been 

preferred. The DQM has many pros over the classical methods, chiefly, it doesn’t require 

perturbation and linearization to get more accurate solutions for a given nonlinear 

equation. 

2. Application of the Method 

DQM is described as an approximation for derivatives of a predfined function by 

means of the linear combination of the functional values at nodal points on the solution 

domain of the problem. When we assume 𝑎 = 𝑥4 < 𝑥# < ⋯ < 𝑥7 = 𝑏 on the closed 

interval 𝑎, 𝑏 . If 𝑈 𝑥  is smooth enough on its domain, then the derivatives of itself in 

terms of 𝑥 at node 𝑥9 is written as linear combination of its functional values, that is,  

       𝑈)
1
𝑥9 =

2 : ;

2) :
|)= =

7
>?4 𝑤9>

1
𝑈 𝑥> ,				𝑖 = 1(1)𝑁,				𝑟 = 1(1)𝑁 − 1,     (2) 

here 𝑟 is derivative order, 𝑤9>
1

 are the weighting coefficients denoting 𝑟%I order 

derivative approximation, 𝑁 is the number of nodes. The 𝑗 is a symbol stating that 𝑤9>
1

 

is the weighting coefficient for the value 𝑈 𝑥> . 

In the present work, we are going to need the 1K% and 312 order derivatives for the 

function 𝑈(𝑥). Thus, we are going to find the values of the Eq. (2) for the 𝑟 = 1,3. 

When Eq. (2) is scrutinized, then one can see that the basic procedure of 

approximating the derivatives of a predefined function by means of DQM is about finding 

the unknown coefficients 𝑤9>
1

. The basic idea lying under DQM is about finding the 

unknown weighting coefficients 𝑤9>
1

 through base functions covering the solution 

domain. In this process, various base functions can be applied. For this manuscript, we 

are going to calculate weighting coefficients by means of quintic B-spline base functions. 

If we assume 𝑄N(𝑥) are the quintic B-spline base functions with nodes 𝑥9 in which 

the uniform 𝑁 nodes are used as 𝑎 = 𝑥4 < 𝑥# < ⋯ < 𝑥7 = 𝑏 on the space axis. Then the 
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set of B-splines 𝑄9 for 𝑖 = −1(1)𝑁 + 2 constitutes a base for the functions on [𝑎, 𝑏]. The 

quintic B-splines 𝑄N(𝑥) are described by the following relationships: 

𝑄N 𝑥 =
1

ℎR

(𝑥 − 𝑥NST)
R, 𝑥 ∈ [𝑥NST, 𝑥NS#],

(𝑥 − 𝑥NST)
R − 6(𝑥 − 𝑥NS#)

R, 𝑥 ∈ [𝑥NS#, 𝑥NS4],

(𝑥 − 𝑥NST)
R − 6(𝑥 − 𝑥NS#)

R + 15(𝑥 − 𝑥NS4)
R, 𝑥 ∈ [𝑥NS4, 𝑥N],

(𝑥 − 𝑥NST)
R − 6(𝑥 − 𝑥NS#)

R + 15(𝑥 − 𝑥NS4)
R −

20(𝑥 − 𝑥N)
R,

𝑥 ∈ [𝑥N, 𝑥NW4],

(𝑥 − 𝑥NST)
R − 6(𝑥 − 𝑥NS#)

R + 15(𝑥 − 𝑥NS4)
R −

20(𝑥 − 𝑥N)
R + 15(𝑥 − 𝑥NW4)

R,
𝑥 ∈ [𝑥NW4, 𝑥NW#],

(𝑥 − 𝑥NST)
R − 6(𝑥 − 𝑥NS#)

R + 15(𝑥 − 𝑥NS4)
R −

20(𝑥 − 𝑥N)
R + 15(𝑥 − 𝑥NW4)

R − 6(𝑥 − 𝑥NW#)
R,

𝑥 ∈ [𝑥NW#, 𝑥NWT],

	0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

where ℎ = 𝑥N − 𝑥NS4 for all 𝑚 [28]. The values of quintic B-splines and its derivatives 

at the grid points are given in Table 1.  

Table 1. The values of quintic and its derivative functions at the grid points 

 

2.1. Determination of the First Order Derivative Weighting Coefficients 

In Eq. (2) if we take 𝑟 = 1 and use quintic B-splines as trial functions we obtain 

the following equations  

            𝑄]
	^ 𝑥9 = ]W#

>?]S# 𝑤9,>
4
𝑄] 𝑥> ,				𝑘 = −1(1)𝑁 + 2, 𝑖 = 1(1)𝑁.              (3) 

For instance, for the 1K% nodal point 𝑥4 (3), we obtain the following equation 

                    𝑄]
	^ 𝑥4 = ]W#

>?]S# 𝑤4,>
4
𝑄] 𝑥> ,				𝑘 = −1,0, … , 𝑁 + 2.                    (4) 

When we place the value of quintic basis functions in Eq. (4) and use four 

additional equations which are obtained from derivative of Eq. (4) at four different B-

spline 𝑄] 𝑘 = −1,0, 𝑁 + 1,𝑁 + 2  and finally eliminate four unknown terms from 

equation system, we obtain the following system of equations: 

𝑥   𝑥NST   𝑥NS#   𝑥NS4   𝑥N   𝑥NW4   𝑥NW#   𝑥NWT  

𝑄N  0  1   26   66   26   1  0 

𝑄N
	^

  0  
R

I
   

Rb

I
   0   −

Rb

I
   −

R

I
  0 

𝑄N
	^^

  0  
#b

Ic
   

db

Ic
   −

4#b

Ic
   

db

Ic
   

#b

Ic
  0 

𝑄N
	^^^

  0  
eb

If
   −

4#b

If
   0   

4#b

If
   −

eb

If
  0 

𝑄N
d

  0  
4#b

Ig
   

dhb

Ig
   

i#b

Ig
   −

dhb

Ig
   

4#b

Ig
  0 
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(5) 

 

Similarly, by using the value of quintic basis functions at the 𝑥9 , 2 ≤ 𝑖 ≤ 𝑁 − 1  

grid points, respectively, the following equation system is obtained:  

 

(6) 

For the last grid point 𝑥7 the following equation system is obtained: 

 

 

(7) 
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 So, weighting coefficients 𝑤9,>
4

 which are related to the 𝑥9 , 𝑖 = 1,2, . . . , 𝑁  are 

found quite easily by solving equation systems (5), (6) and (7) with Thomas algorithm. 

2.2. Determination of the Third Order Derivative Weighting Coefficients 

We will obtain the weighting coefficients of the 312 order derivatives similarly. In 

Eq. (2) if we take 𝑟 = 3, we obtain  

         𝑄]
	^^^ 𝑥9 = ]W#

>?]S# 𝑤9,>
T
𝑄] 𝑥> ,				𝑘 = −1,0, … , 𝑁 + 2, 𝑖 = 1,2, . . . , 𝑁.      (8) 

For the 1K% node 𝑥4 (8), we obtain the following equation 

                    𝑄]
	^^^ 𝑥4 = ]W#

>?]S# 𝑤4,>
T
𝑄] 𝑥> ,				𝑘 = −1,0, … , 𝑁 + 2.                  (9) 

If we place the value of quintic base functions in Eq. (9) and use÷ four additional 

equations obtained from the derivative of Eq. (9) at points 𝑥] for 𝑘 = −1,0, 𝑁 + 1,𝑁 +

2  and then eliminate those unknown terms from the system; the following is obtained: 

    

 

(10) 

     

Similarly, by using the value of quintic basis functions at the 𝑥9 , 2 ≤ 𝑖 ≤ 𝑁 − 1  

grid points, respectively, the following equation system is obtained: 
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(11) 

  

For the last grid point 𝑥7 the following equation system is obtained: 

 

(12) 

So, weighting coefficients 𝑤9,>
T

 which are related to the 𝑥9 , 𝑖 = 1(1)𝑁  are found by 

solving equation systems 10 , (11) and (12) with Thomas algorithm. 

3. Discretization Process 

The combined KdV-mKdV equation of the form 

                                    𝑈% + 6𝛼𝑈𝑈) + 6𝛽𝑈
#𝑈) + 𝑈))) = 0                              (13) 

 

having the following boundary conditions taken from  

𝑈 𝑎, 𝑡 = 𝑔4 𝑡 , 𝑈 𝑏, 𝑡 = 𝑔# 𝑡  
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and the following initial condition  

𝑈 𝑥, 0 = 𝑓4 𝑥 , 𝑎 ≤ 𝑥 ≤ 𝑏, 

 

is rewritten as follows 

                               𝑈% = −6𝛼𝑈𝑈) − 6𝛽𝑈
#𝑈) − 𝑈))) .                                      (14) 

DQM approximations of the 1K% and the 312 orders are used in Eq. (14)  

               				
2; )=

2%
= −6𝛼𝑈 𝑥9 , 𝑡 − 6𝛽𝑈# 𝑥9 , 𝑡

7S4
>?# 𝑤9,>

4
𝑈 𝑥> , 𝑡 		                   

            																				− 7S4
>?# 𝑤9,>

T
𝑈 𝑥> , 𝑡 + 𝐵9 ,						𝑖 = 2,3, . . . , 𝑁 − 1,																	(15) 

where  

𝐵9 = −6𝛼𝑈 𝑥9 , 𝑡 − 6𝛽𝑈# 𝑥9 , 𝑡 𝑤9,4
4
𝑔4 𝑡 + 𝑤9,7

4
𝑔# 𝑡

− 𝑤9,4
T
𝑔4 𝑡 + 𝑤9,7

T
𝑔# 𝑡  

and ODE in Eq. (15) is found. Under these conditions, the integral of ODE given by Eq. 

(15) is taken in time using an appropriate method. Here, strong stability-preserving low 

storage Runge-Kutta 4(3)5 3𝑆∗  method has been preferred [29] thanks to its pros such 

as efficiency, stability and less memory usage characteristics. 

4. Stability 

Stability analysis of the numerical procedure used for a nonlinear differential 

equation needs the finding of eigenvalues of its coefficient matrices. With the numerical 

discretization of partial differential equation combined KdV-mKdV, it turns into an ODE. 

The stability of a problem which is time dependent is given as 

                                                   
t;

t%
= 𝑙 𝑈 ,                                                         (16) 

having appropriate initial and boundary conditions, in which 𝑙 stands for a spatial 

differential operator. When DQM is applied, Eq.(16) becomes a set of ODEs in time as 
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2{w}

2%
= 𝐴 𝑢 + 𝑏 ,                                                (17) 

where {𝑢} is a unknown vector of the values of the given function at the nodes except the 

both boundary nodes, {𝑏} is the vector including the non-homogenous part and the 

boundary conditions and 𝐴 is the coefficient matrix. The numerical scheme’s stability for 

numerical integration of Eq. (17) is dependent upon the stability of the ODE in Eq. (17). 

If Eq. (17) is not stable, then the numerical procedures may produce unconvergent 

solutions. The stability condition of Eq. (17) is closely related with the eigenvalues of 

the matrix 𝐴, for the exact solution is directly desribed with the eigenvalues of this matrix. 

If all 𝑅𝑒 𝜆9 ≤ 0 for every 𝑖, it is enough to show the stability of the analytic solution of 

{𝑢} when 𝑡 → ∞ where 𝑅𝑒 𝜆9  stands for the real part of the eigenvalues 𝜆9 of the matrix 

𝐴. The matrix 𝐴 at Eq. (17) is found as 𝐴9> = −6𝛼𝛿9 − 6𝛽𝛿9
# 𝑤9,>

4
−𝑤9,>

T
 where 𝛿9 =

𝑈(𝑥9 , 𝑡) [23]. Those eigenvalues for matrix 𝐴 must be lying in the stability region as 

illustrated in Ref. [30]. 

5. Numerical Examples and Stability Analysis 

In the present section, we are going to obtain the approximate solutions of the 

combined KdV-mKdV equation using the QBDQM. The efficiency of the proposed 

method is tested with those error norms 𝐿# and 𝐿" defined as, respectively:  

𝐿# = 𝑈�����%9� − 𝑈7 #
≃ ℎ

7

>?4

𝑈
>

�����%9�
− 𝑈7 >

#

, 

𝐿" = 𝑈�����%9� − 𝑈7 "
≃ max

>
𝑈>
�����%9�

− 𝑈7 > , 𝑗 = 1(1)𝑁 − 1. 

We are going to compute the numerical solutions of three different test problems 

using QBDQM. 

5.1. Motion of Single Soliton 

The analytic soliton solution of combined KdV-mKdV equation is given in [26] 

as: 
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                      𝑈 𝑥, 𝑡 =
�

�����c
�

c
� )S�%S�� W�����c

�

c
� )S�%S��

,                     (18) 

in which 𝜉b stands for the integration constant and  

𝐶 = 𝛼# + 𝛽𝜆 + 𝛼, 

𝐷 = 𝛼# + 𝛽𝜆 − 𝛼. 

When 𝛼 = 1, 𝛽 = 1, 𝜆 = 1 and 𝜉b = 0 are taken at 𝑡 = 0, we get the initial 

condition. By the same thought, if we take 𝑥 = −30 and 𝑥 = 70, we obtain boundary 

conditions, respectively. 

During the simulation, we have selected the several time increments and space 

increments over the interval −30,70 . The characteristics of the approximate solutions 

for Δ𝑡 = 0.01 and 𝑁 = 301 are illustrated in Fig. 1. As one can see from the Fig. 1, the 

amplitude and velocity of wave remain as a result of properties of solitons during the run-

time. 

 
Figure 1. Behaviour of numerical solutions at various times for Δ𝑡 = 0.01 

 

The calculated and compared values of the error norms 𝐿# and 𝐿" are given at some 

chosen times till 𝑡 = 35. The newly obtained results are tabulated in Table 2, Table 3 and 

Table 4. As one can see obviously the from Table 2 and Table 3 the present error norms 

𝐿# and 𝐿" are smaller than earlier works [26] which are obtained by inverse scattering 
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transform (IST) and Combination IST methods. Also, it is obviously seen from Table 3 

that obtained solutions by QBDQM with less number of nodes such as 𝑁 = 301 are better 

than those of both of the earlier works. Approximate values using different number of 

nodes are also shown in Table 4. It is clearly seen in Table 4 that by the increasing the 

number of nodes from 𝑁 = 151 to 𝑁 = 301 the 𝐿# and 𝐿" error norms decrease. 

Table 2. A comparison of 𝐿#  and 𝐿"  error norms for 𝑁 = 200, Δ𝑡 = 0.01 

 Present IST [3] Com.IST [3] 

t 𝐿# 𝐿" 𝐿# 𝐿" 𝐿# 𝐿" 

5 0.000823 0.000498 0.00229 0.01234 0.00751 0.04293 

35 0.008383 0.004470 0.00563 0.03237 0.03792 0.20920 

 

Table 3. A comparison of 𝐿#  and 𝐿"  error norms for 𝑁 = 400, Δ𝑡 = 0.01 

  Present 𝑁 = 301   IST [3] 𝑁 = 400   Com.IST [3] 𝑁 = 400  

t   𝐿#   𝐿"   𝐿#   𝐿"   𝐿#   𝐿"  

5  0.000252   0.000140   0.00051   0.00313   0.00215   0.01263  

35  0.005688   0.003142   0.00124   0.00701   0.01164   0.06360  

 

Table 4. The values of 𝐿# and 𝐿" error norms for Δ𝑡 = 0.01 at various values of 𝑁 

 𝑁 = 151 𝑁 = 201 𝑁 = 251 𝑁 = 301 

t 𝐿# 𝐿" 𝐿# 𝐿" 𝐿# 𝐿" 𝐿# 𝐿" 

5 0.004508 0.001493 0.000823 0.000498 0.000400 0.000240 0.000252 0.000140 

10 0.006571 0.003090 0.001545 0.000883 0.000889 0.000491 0.000657 0.000366 

15 0.009006 0.004199 0.002506 0.001432 0.001591 0.000873 0.001264 0.000709 

20 0.011775 0.004926 0.003656 0.001983 0.002492 0.001361 0.002071 0.001164 

25 0.014478 0.006246 0.005019 0.002701 0.003591 0.001967 0.003076 0.001717 

30 0.018006 0.009036 0.006614 0.003553 0.004900 0.002697 0.004283 0.002379 

35 0.021393 0.010293 0.008383 0.004470 0.006401 0.003498 0.005688 0.003142 

 

Absolute errors at time 𝑡 = 35 are given in Fig. 2. One can see from Fig. 2 that the 

maximum absolute error is found 0.00314 at 𝑥 = 36.  
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Figure 2. The graph of absolute errors at  -30 ≤ 𝑥 ≤ 70, Δ𝑡 = 0.01, and N=301 at time t=35   

 

5.2. A Bell-shaped Soliton Solution 

For the present case, we are going to deal with numerical solutions of combined 

KdV-mKdV equation of which analytic solution is given in [7] as:  

𝑈(𝑥, 𝑡) = −
𝑝

2𝑞
+

6𝑐#

𝑞
secℎ 𝑐#𝜉 ,								𝑞 > 0,				𝑐# > 0, 

where 𝑝 = 6𝛼, 𝑞 = 6𝛽,and 𝜉 = 𝑥 + 𝑝# + 4𝑞𝑐# /4𝑞 𝑡. 

We have obtained initial condition from analytical solution at 𝑡 = 0 by using 𝑝 =

𝑞 = 1 in the following form 

𝑈(𝑥, 0) = −
𝑝

2𝑞
+

6𝑐#

𝑞
secℎ 𝑐#𝑥  

and by the same process, if we take 𝑥 = −50 and 𝑥 = 50, we simply obtain boundary 

conditions. 

The calculated values for 𝐿# and 𝐿" are given at some chosen times up to 𝑡 = 4. 

The newly obtained results are tabulated in Table 5. As one can see obviously from Table 

5, the error norms 𝐿# and 𝐿" decrease when 𝑐# gets smaller from 𝑐# = 0.1 to 𝑐# =
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0.0005. Also, it is clearly observed from these tables that solutions obtained by QBDQM 

using less number of nodes such as 𝑁 = 11 are acceptably good. 

Table 5. A comparison of 𝐿# and 𝐿" error norms for 𝑝 = 𝑞 = 1, Δ𝑡 = 0.1, and 𝑁 = 11 at various values 

of 𝑐# 

  𝑐# = 0.1   𝑐# = 0.05   𝑐# = 0.01   𝑐# = 0.0005  

t   𝐿#   𝐿"   𝐿#   𝐿"   𝐿#   𝐿"   𝐿#   𝐿"  

0.5   0.043473   0.006020   0.029840   0.005081   0.023344   0.004764   0.021744   0.004438  

1.0   0.088148   0.012119   0.059762   0.010211   0.046682   0.009552   0.043484   0.008892  

1.5   0.135121   0.018282   0.089849   0.015387   0.070008   0.014360   0.065214   0.013361  

2.0   0.185304   0.024497   0.120175   0.020609   0.093318   0.019187   0.086930   0.017843  

2.5   0.239375   0.032959   0.150812   0.025874   0.116604   0.024031   0.108627   0.022336  

3.0   0.297767   0.046932   0.181823   0.031182   0.139862   0.028890   0.130302   0.026839  

3.5   0.360683   0.063053   0.213263   0.036530   0.163086   0.033763   0.151949   0.031349  

4.0   0.428131   0.081151   0.245176   0.041916   0.186271   0.038647   0.173565   0.035866  

 

5.3. A Kink-shaped Soliton Solution 

The third test problem is a kink-shaped soliton solution with the following analytical 

solution 

𝑈(𝑥, 𝑡) = −
𝑝

2𝑞
+

6𝑐#

𝑞
tanℎ −

𝑐#

2
𝜉 ,								𝑞 < 0,				𝑐# < 0, 

where 𝑝 = 6𝛼, 𝑞 = 6𝛽,and 𝜉 = 𝑥 + 𝑝# + 4𝑞𝑐# /4𝑞 𝑡. 

We obtained initial condition from analytical solution at 𝑡 = 0 by using 𝑝 = 𝑞 =

−1 in the following form 

𝑈(𝑥, 0) = −
𝑝

2𝑞
+

6𝑐#

𝑞
tanℎ −

𝑐#

2
𝑥  

and by the same process if we take 𝑥 = −50 and 𝑥 = 50, we simply obtain boundary 

conditions. 

The calculated values of the error norms 𝐿# and 𝐿" are given at some chosen times 

up to 𝑡 = 4. The newly obtained results are tabulated in Table 6. As one can see obviously 

from Table 6, the error norms 𝐿# and 𝐿" have decreased when 𝑐# becomes bigger from 

𝑐# = −0.1 to 𝑐# = −0.0005 values. Also, it is clearly observed from these tables that 

solutions by QBDQM using less number of grid points such as 𝑁 = 11 are acceptable. 
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Table 6. A comparison of 𝐿# and 𝐿" error norms for Δ𝑡 = 0.1,  and 𝑁 = 11 at various values of 𝑐# 

  𝑐# = −0.1   𝑐# = −0.05   𝑐# = −0.01   𝑐# = −0.0005  

t   𝐿#   𝐿"   𝐿#   𝐿"   𝐿#   𝐿"   𝐿#   𝐿"  

0.5   0.094035   0.018903   0.022589   0.005548   0.015354   0.004416   0.018594   0.004238  

1.0   0.190182   0.037748   0.045288   0.011091   0.030863   0.008895   0.037205   0.008492  

1.5   0.288587   0.056450   0.068091   0.016617   0.046528   0.013436   0.055828   0.012759  

2.0   0.389440   0.076542   0.090996   0.022117   0.062348   0.018038   0.074463   0.017040  

2.5   0.492977   0.098871   0.113999   0.027579   0.078324   0.022702   0.093104   0.021333  

3.0   0.599495   0.122697   0.137100   0.032991   0.094455   0.027426   0.111750   0.025637  

3.5   0.709352   0.148153   0.160301   0.038344   0.110739   0.032210   0.130398   0.029950  

4.0   0.822986   0.175387   0.183606   0.043627   0.127178   0.037054   0.149044   0.034273  

 

5.4. Stability Analysis 

For the proposed procedure a matrix stability analysis is made. For software, we 

have utilized the symbolic programming language Matrix Laboratory, that is MatLab 

program, for finding out the eigenvalues of the coefficient matrix . Eigenvalues of the 

proposed procedure for different number of grids are presented in Fig. 3. The eigenvalues 

for 𝑁 = 11 have only real component but for 𝑁 = 21, 𝑁 = 31, and 𝑁 = 41 have both 

components. It is seen that the eigenvalues are in compliance with the criteria [9].  

 

Figure 3. Eigenvalues for various number of grid points: 𝛼 =𝛽 = 𝜆 =1 

 

At the same time, the highest absolute value of those eigenvalues for different 

choices of nodes are presented in Table 7. As one can see from Table 7 when the number 

of the grid points increased since absolute value of eigenvalue grows, time step should be 

decreased to obtain the stable solution.  
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Table 7. The highest absolute values of the eigenvalues for different number of nodes 

  QBDQM: 𝛼=𝛽 = 𝜆 =1  

Grid Number  11   21   31   41   51   101   201  

Max|𝑅𝑒 𝜆 |   0.12   0.20   0.28   0.67   1.41   10.49   83.92  

Max|𝐼𝑚 𝜆 |   0.00   0.02   0.08   0.20   0.41   3.39   30.66  

 

6. Conclusion 

In the present manuscript, we have used DQM based on quintic B-splines for 

numerical solution of combined KdV-mKdV equation. The efficiency and accuracy of 

the method have been shown by calculating the error norms 𝐿# and 𝐿". One outstanding 

characteristics of the proposed method is its ability for obtaining better results by using 

less number of nodes. This may be easily seen from the tables presented in this article. 

As it is observed by the comparison between the presented values of the error norms 𝐿# 

and 𝐿" by present method and previous studies, QBDQM results are acceptable good. 

Stability analysis of the numerical approximation by the eigenvalues has also been made. 

The newly obtained results illustrate that QBDQM may be applied to find out more 

efficient approximate solutions of the combined KdV-mKdV equation. Thus, in 

conclusion, QBDQM is an accurate and efficient method to obtain the approximate 

solutions of several important linear and nonlinear problems. 
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