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Abstract

Recently, Caputo and Fabrizio proposed a new derivative with fractional order

without singular kernel. The derivative has several interesting properties that are

useful for modeling in many branches of sciences. For instance, the derivative is able

to describe substance heterogeneities and configurations with different scales. In

order to accommodate researchers dealing with numerical analysis, we propose a

numerical approximation in time and space. We modified the advection dispersion

equation by replacing the time derivative with the new fractional derivative. We solve

numerically the modified equation using the proposed numerical approximation. The

stability and convergence analysis of the numerical scheme were presented together

with some simulations.

Keywords: Caputo-Fabrizio derivative; numerical approximation; advection

diffusion equation; stability analysis

1 Introduction

In the last decade, many physical problems have been modeled using the concept of

noninteger-order derivative. These derivatives of fractional order range from Riemann-

Liouville via Caputo toCaputo-Fabrizio [, ].We can find in the literaturemany analytical

approaches to deal with differential equations with fractional equations [–]. Most of

these techniques are dealing with linear fractional differential equations. However, most

fractional differential equations describing real-world problems are highly complicated

and cannot sometime be handled via analytical methods. In order to solve these problems

in many cases, researchers rely on the use of numerical methods because these problems

have initial conditions, boundary condition, and source terms that turn hard to find an

analytical solution.

Several numerical approaches in connectionwith derivatives of fractional order describ-

ing real-world problems alter essentially in the many in which the derivative of fractional

order is tailored [–]. Approximation representation of a derivative of fractional order

has a highly complicated formula compared to those of integer order because fractional

derivatives are nonlocal, and therefore the calculation at a particular point requires knowl-
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edge of the function further out of the region close to that point. Accordingly, finite dif-

ference approximations of derivatives of fractional order engage a quantity of points that

alters according to how faraway we are from the border line [–].

The most recent derivative of fractional order was proposed by Caputo and Fabrizio [],

who demonstrated that the new-fangled derivative encompasses extra encouraging prop-

erties in comparison with the old version. They demonstrated, for example, that it can de-

pict substance heterogeneities and configurations with different scales, which obviously

cannot be overseeingwith the prominent local theories and also thewell-known fractional

derivative. An additional application is in the investigation of the macroscopic behaviors

of some materials, associated with nonlocal communications between atoms, which are

recognized to be important of the properties of material. We present the definition of the

Caputo fractional derivative.

Definition  The Caputo derivative of fractional order old editor of a function f is given

as

C
D

α
x

(

f (x)
)

=


Ŵ(n – α)

∫ x



(x – t)n–α– d
n

dtn

(

f (t)
)

dt, n –  < α ≤ n. ()

Definition  Let f ∈H(a,b), b > a, α ∈ [, ]. Then the new Caputo fractional derivative

is defined as

CF
 Dα

t

(

f (t)
)

=
M(α)

 – α

∫ t

a

f ′(x) exp

[

–α
t – x

 – α

]

dx, ()

where M(α) is a normalization function such that M() = M() =  []. However, if the

function does not belong to H(a,b) then, the derivative can be redefined as

CF
 Dα

t

(

f (t)
)

=
αM(α)

 – α

∫ t

a

(

f (t) – f (x)
)

exp

[

–α
t – x

 – α

]

dx. ()

The aim of this paper is to propose a numerical approximation of the space and time

Caputo-Fabrizio derivative of fractional order that will be used by researchers in the field

of numerical analysis.

2 Caputo-Fabrizio approximations

In this section, we derive a numerical approximation based upon the definition of newly

proposed derivative of fractional order [],

CF
 Dα

t

(

f (t)
)

=
M(α)

 – α

∫ t



f ′(x) exp

[

–α
t – x

 – α

]

dx. ()

For some positive integer N , the grid size in time for finite difference technique is defined

by

k =


N
.

The grid points in the time interval [,T] are labeled tn = nk, n = , , , . . . ,TN . The value

of the function f at the grid point is fi = f (ti).
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A discrete approximation to the Caputo-Fabrizio derivative of fractional order can be

obtained by simple quadrature formula as follows:

CF
 Dα

t

(

f (tn)
)

=
M(α)

 – α

∫ tn



f ′(x) exp

[

–α
tn – x

 – α

]

dx. ()

This equation can be modified using the first-order approximation to

CF
 Dα

t

(

f (tj)
)

=
M(α)

 – α

n
∑

j=

∫ jk

(j–)k

(

f k+ – f k

�t
+O(�t)

)

exp

[

–α
tj – x

 – α

]

dx. ()

Before integration we obtain the following expression

M(α)

 – α

n
∑

j=

(

f j+ – f j

�t
+O(�t)

)∫ jk

(j–)k

exp

[

–α
tn – x

 – α

]

dx, ()

CF
 Dα

t

(

f (tj)
)

=
M(α)

α

n
∑

j=

(

f j+ – f j

�t
+O(�t)

)

dj,k ,

where

dj,k = exp

[

–α
k

 – α
(n – j + )

]

– exp

[

–α
k

 – α
(n – j)

]

. ()

We finally have that

CF
 Dα

t

(

f (tn)
)

=
M(α)

α

n
∑

j=

(

f j+ – f j

�t

)

dj,k +
M(α)

α

n
∑

j=

dj,kO(�t). ()

Theorem  Let f (x) be a function in C[a,b], and let the order of the fractional derivative

be  < α ≤ . Then the first-order approximation of the Caputo-Fabrizio derivative at a

point tn is

CF
 Dα

t

(

f (tn)
)

=
M(α)

α

n
∑

j=

(

f j+ – f j

�t

)

dj,k +O
(

(�t)
)

. ()

Proof From equation () we have

CF
 Dα

t

(

f (tn)
)

=
M(α)

α

n
∑

j=

(

f j+ – f j

�t

)

dj,k

+
M(α)

α

n
∑

j=

(

exp

[

–α
k

 – α
(n – j + )

]

– exp

[

–α
k

 – α
(n – j)

])

O(�t).

However,

n
∑

j=

(

exp

[

–α
k

 – α
(n – j + )

]

– exp

[

–α
k

 – α
(n – j)

])

= exp

[

–α
k

 – α
(n)

]

– . ()
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Now the approximation of the exponential function can be obtained as

exp

[

–α
k

 – α
(n)

]

≈  – α
k

 – α
(n). ()

Then replacing the above in equation (), we obtain

n
∑

j=

(

exp

[

–α
k

 – α
(n – j + )

]

– exp

[

–α
k

 – α
(n – j)

])

≈ –α
k

 – α
(n). ()

Then equation () becomes

CF
 Dα

t

(

f (tn)
)

=
M(α)

α

n
∑

j=

(

f j+ – f j

�t

)

dj,k +
M(α)k

 – α
(n)O(�t). ()

We therefore obtain the requested result

CF
 Dα

t

(

f (tn)
)

=
M(α)

α

n
∑

j=

(

f j+ – f j

�t

)

dj,k +O
(

(�t)
)

. ()

This completes the proof. �

We now conclude that the first-order approximationmethod for the computation of the

Caputo-Fabrizio derivative of time fractional order is given as

CF
 Dα

t

(

f (tn)
)

=
M(α)

α

n
∑

j=

(

f j+ – f j

�t

)

dj,k . ()

We next propose the first order for the space fractional order.

For some positive integer N , the grid sizes in time for finite difference technique is de-

fined by

i =


M
.

The grid points in the time interval [,X] are labeled xi =mi,m = , , , . . . ,XM.

The value of the function f at the grid point is f ki = f (xi, tk). We have

CF
 Dα

t

(

f (xm, ti)
)

=
M(α)

√
π ( – α)

∫ xm



∂

∂y
f ′(y, ti) exp

[

–α (xm – y)

( – α)

]

dy. ()

Now employing the Crank-Nicolson approximation for the first-order derivative, the

above equation is converted to

CF
 Dα

x

(

f (xm, tk)
)

=
M(α)

√
π ( – α)

∫ xm



(

(f k+i+ – f k+i– ) – (f ki+ – f ki–)

�x
+O(�t)

)

× exp

[

–α (xm – y)

( – α)

]

dy. ()
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The latter equation can be converted to

CF
 Dα

x

(

f (xm, ti)
)

=
M(α)

√
π ( – α)

m
∑

l=

{

(f k+l+ – f k+l– ) – (f kl+ – f kl–)

�x
+O(i)

}

×
∫ li

(l–)i

exp

[

–α (im – y)

( – α)

]

dy, ()

where the integral part is given as

∫ li

(l–)i

exp

[

–α (im – y)

( – α)

]

dy

=
( – α)

√
π

α

{

erf

[

(mi – li)
α

 – α

]

– erf

[

(mi – li + i)
α

 – α

]}

, ()

so that equation () becomes

CF
 Dα

x

(

f (xm, tk)
)

=
M(α)

 – α

m
∑

l=

{

(f k+l+ – f k+l– ) – (f kl+ – f kl–)

�x
+O(i)

}

×
( – α)

α

{

erf

[

(m – l)
αi

 – α

]

– erf

[

(m – l + )
αi

 – α

]}

. ()

From the above we obtain

CF
 Dα

x

(

f (xm, tk)
)

=
M(α)

 – α

m
∑

l=

{

(f k+l+ – f k+l– ) – (f kl+ – f kl–)

�x

( – α)
√

π

α

×
{

erf

[

(m – l)
αi

 – α

]

– erf

[

(m – l + )
αi

 – α

]}}

+O(i)
( – α)

α

m
∑

l=

{

erf

[

(m – l)
αi

 – α

]

– erf

[

(m – l + )
αi

 – α

]}

. ()

Theorem  Let f (x, t) be a function in C([a,b] × [,T]), and let the order of the frac-

tional derivative be  < α ≤ . Then the first-order approximation of the Caputo-Fabrizio

derivative at a point (xm, tn) is

CF
 Dα

x

(

f (xm, tk)
)

=
M(α)

α

m
∑

l=

{

(f k+l+ – f k+l– ) – (f kl+ – f kl–)

�x

}

di,l + R(α, i, l), ()

where

di,l =

{

erf

[

(m – l)
αi

 – α

]

– erf

[

(m – l + )
αi

 – α

]}

,
∥

∥R(α, i, l)
∥

∥ <M.
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Proof From equation () we have that

CF
 Dα

x

(

f (xm, tk)
)

=
M(α)

α

m
∑

l=

{

(f k+l+ – f k+l– ) – (f kl+ – f kl–)

�x

{

erf

[

(m – l)
αi

 – α

]

– erf

[

(m – l + )
αi

 – α

]}}

+O(i)
M(α)

α

m
∑

l=

{

erf

[

(m – l)
αi

 – α

]

– erf

[

(m – l + )
αi

 – α

]}

.

We put

R(α, i, l) =O(i)
M(α)

α

m
∑

l=

{

erf

[

(m – l)
αi

 – α

]

– erf

[

(m – l + )
αi

 – α

]}

. ()

Then taking the norm to both sides, we have

∥

∥R(α, i, l)
∥

∥ =

∥

∥

∥

∥

∥

O(i)
M(α)

α

m
∑

l=

{

erf

[

(m – l)
–αi

 – α

]

– erf

[

(m – l + )
–αi

 – α

]}

∥

∥

∥

∥

∥

, ()

∥

∥R(α, i, l)
∥

∥ =

∥

∥

∥

∥

O(i)
M(α)

α

(

erf

[

m
–αi

 – α

])
∥

∥

∥

∥

.

This completes the proof. �

Then, the first-order approximation method for the computation of Caputo-Fabrizio

derivative of space fractional order is given as

CF
 Dα

x

(

f (xm, ti)
)

=
M(α)

α

m
∑

l=

{

(f k+l+ – f k+l– ) – (f kl+ – f kl–)

�x

×
{

erf

[

(m – l)
αi

 – α

]

– erf

[

(m – l + )
αi

 – α

]}}

. ()

3 Application to somewell-known equations

In this section, we present a numerical solution of the time fractional advection diffusion

equation in heterogeneous medium. The fractional derivative used here is of the Caputo-

Fabrizio type.

The reason of this modification is that the fractional derivatives are recollection opera-

tional which recurrently distinguish indulgence of force or damage in the passable as in the

case of inelastic media or reconsideration of the porosity in the thinning out in permeable

media and supplementary in comprehensive they are in traditional values throughout the

subsequent theory of hydrology. They are accredited not merely for the motivation that

theymatch appropriately a variety of noticeable actuality, nevertheless, additionally for the

motive that they own the well-designed alongside with scrupulous property that although

the order of differentiation is integer, they match by means of the traditional derivative of

that order. On the other hand, this chattel is not pertinent to the effect they characterize in
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the physical observable fact and conjectures if using other differential operators, probably

simpler nevertheless devoid of this property, one may get similar responds of fractional

order derivative. Therefore, in order to well replicate the flow of the particles via porous

media in different scale in themedium, we replace the ordinary derivative in time with the

scale time derivative proposed by Caputo and Fabrizio. The equation under consideration

here is

CF
 Dα

t

(

P(x, t)
)

+
ϕu

cρ

∂P(x, t)

∂x
–

λ

cρ

∂P(x, t)

∂x
=
Q(x, t)

cρ
. ()

In equation (), four terms represents transient, advection, and source terms, respec-

tively, P(x, t) is the particle, heat, pollution, or other physical quantities; c is the specific of

heat, particles, or other physical quantities; ϕ is the porosity that is the ratio of the liquid

volume to the total volume of the medium via which the flow is taken place, ρ , λ are the

mass density and thermal conductivity, respectively, and, finally,Q(x, t) is the source term.

Now substituting equation () into (), we obtain

M(α)

α

j+
∑

k=

Pk
i – Pk–

i

τ

(

erf

(

(j – k)
αk

 – α

)

– erf

(

(j – k + )
αk

 – α

))

=
λ

hcρ

{(

P
j+
i+ – P

j+
i + P

j+
i–

)

+
(

P
j
i+ – P

j
i + P

j
i–

)}

–
ϕu

cρ

{(

P
j+
i+ – P

j+
i–

)

+
(

P
j
i+ – P

j
i–

)}

+
Q

j+
i +Q

j
i

cρ
. ()

The above equation can be converted to

M(α)

α

(

P
j+
i – P

j
i

τ
+

j
∑

k=

P
j+–k
i – P

j–k
i

τ

)

dα
k,j

=
λ

hcρ

{(

P
j+
i+ – P

j+
i + P

j+
i–

)

+
(

P
j
i+ – P

j
i + P

j
i–

)}

–
ϕu

hcρ

{(

P
j+
i+ – P

j+
i–

)

+
(

P
j
i+ – P

j
i–

)}

+
Q

j+
i +Q

j
i

cρ
. ()

For simplicity, let us put

a =
M(α)

ατ
, b =

λ

hcρ
, c =

ϕu

hcρ
.

Rearranging, we obtain the following recursive formula:

(

adα
k,j + b

)

P
j+
i =

(

adα
k,j – b

)

P
j
i + a

j
∑

k=

(

P
j+–k
i – P

j–k
i

)

dα
k,j

+ b
{(

P
j+
i+ + P

j+
i–

)

+
(

P
j
i+ + P

j
i–

)}

– c
{(

P
j+
i+ – P

j+
i–

)

+
(

P
j
i+ – P

j
i–

)}

+
Q

j+
i +Q

j
i

cρ
. ()
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4 Stability analysis of the numerical scheme

We present in this section the stability analysis of the Crank-Nicolson scheme for time

fractional advection diffusion equation. For this, we let e
j
i = P

j
i –p

j
i with p

j
i the approximate

solution at the point (xi, tj) (i = , , . . . ,N , j = , , , . . . ,M) and, as usual, ej = [e
j
, . . . , e

j
N ]

T .

The error committed while solving the time fractional advection diffusion equation with

the Crank-Nicolson scheme is

(

adα
k,j + b

)

e
j+
i =

(

adα
k,j – b

)

e
j
i + a

j
∑

k=

(

e
j+–k
i – e

j–k
i

)

dα
k,j

+ b
{(

e
j+
i+ + e

j+
i–

)

+
(

e
j
i+ + e

j
i–

)}

– c
{(

e
j+
i+ – e

j+
i–

)

+
(

e
j
i+ – e

j
i–

)}

+
Q

j+
i +Q

j
i

cρ
. ()

Here, we assume that

e
j
i = f (j) exp(τσ ij), ()

where σ is the real spatial wave number []. However, substituting equation () into equa-

tion (), we obtain, for j = ,

(

adα
k, + b sin

(

σ i



))

f () =

(

adα
k, – b sin

(

σ i



))

f (), ()

and for j > , we have

(

adα
k,j + b sin

(

σ i



))

f (j) =

(

adα
k,j – b sin

(

σ i



))

f (j – )

– a

j–
∑

l=

f (j – l)dα
k,j + f (j + )dα

k,. ()

Theorem  Assume that f (k) satisfies equations () and (). Then, for all k > ,

∣

∣f (j)
∣

∣ ≤
∣

∣f ()
∣

∣. ()

Proof We shall prove this theorem by employing the recursive method on the natural

number j. Then, when j = , we have equation (), and we reformulate it as follows:

∣

∣

∣

∣

f ()

f ()

∣

∣

∣

∣

=

∣

∣

∣

∣

(adα
k, – b sin( σ i


))

(adα
k, + b sin( σ i


))

∣

∣

∣

∣

≤ . ()

This implies

∣

∣f ()
∣

∣ ≤
∣

∣f ()
∣

∣.
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The property is verified for j = . Let us assume that this property is also satisfied for any

j ≥ . We shall verify that the property holds also for j + :

(

adα
k,j + b sin

(

σ i



))

f (j + ) =

(

adα
k,j – b sin

(

σ i



))

f (j) – a

j
∑

l=

f (j – l)dα
k,l. ()

Now taking the norms of both sides of equation (), we obtain

∣

∣

∣

∣

adα
k,j + b sin

(

σ i



)
∣

∣

∣

∣

∣

∣f (j + )
∣

∣ ≤
∣

∣

∣

∣

(

adα
k,j – b sin

(

σ i



))
∣

∣

∣

∣

∣

∣f (j)
∣

∣+

j
∑

l=

∣

∣f (j– l)
∣

∣dα
k,l. ()

Nonetheless, we recall that the property holds up to j. Thus, we transform the above equa-

tion into

∣

∣

∣

∣

adα
k,j + b sin

(

σ i



)
∣

∣

∣

∣

∣

∣f (j + )
∣

∣ ≤
∣

∣

∣

∣

(

adα
k,j – b sin

(

σ i



))
∣

∣

∣

∣

∣

∣f ()
∣

∣ +

j
∑

l=

∣

∣f ()
∣

∣dα
k,l.

Rearranging, we obtain

∣

∣

∣

∣

adα
k,j + b sin

(

σ i



)
∣

∣

∣

∣

∣

∣f (j + )
∣

∣

≤
{
∣

∣

∣

∣

(

adα
k,j – b sin

(

σ i



))
∣

∣

∣

∣

+

{

erf

[

mαi

 – α

]

– erf

[

αi

 – α

]}}

∣

∣f ()
∣

∣. ()

It is important to recall that

∣

∣erf[x]
∣

∣ ≤ , erf

[

mαi

 – α

]

– erf

[

αi

 – α

]

≤ . ()

Therefore,

|f (j + )|
|f ()|

≤
∣

∣

∣

∣

|(adα
k,j – b sin( σ i


))| + {erf[mαi

–α
] – erf[ αi

–α
]}

adα
k,j + b sin( σ i


)

∣

∣

∣

∣

≤ .

Then,

|f (j + )|
|f ()|

≤ . ()

The property also holds for j + . According to the inductive technique, the property is

satisfied for any natural number. This completes the proof of Theorem. Theorem shows

that the Crank-Nicolson scheme is stable for the advection diffusion equation with the

time fractional Caputo-Fabrizio derivative. �

5 Convergence analysis of the numerical solution

Let us suppose that, at the point (xi, tj), the exact solution of our considered equation

is P(xi, tj) (i = , , , . . . ,N ; j = , , , , . . . ,M). We assume that the difference between

the exact solution and the approximate solution at that particular point is provided by
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δ
j
i = P(xi, tj) – P

j
i . The transpose matrix associated with the matrix δ

j
i = P(xi, tj) – P

j
i (i =

, , , , . . . ,N ; j = , , , , , . . . ,M) is (δ
j
, δ

j
, . . . , δ

j
N )

T . However, the row δ is zero because

it represents the initial condition. The recursive relation in connection with the Crank-

Nicolson scheme for the time fractional advection diffusion equation is given as

(

adα
k, + b

)

δi + (c – b)
(

δi+ + δi–
)

–
Q

i –Q
i

cρ
= R

i for j = , ()

(

adα
i,j + b

)

δ
j+
i –

(

adα
i,j + b

)

δ
j
i + (c – b)

(

δ
j+
i+ + δ

j+
i–

)

+ (c – b)
(

δ
j
i+ + δ

j
i–

)

–
Q

j+
i –Q

j
i

cρ

= –a

j–
∑

l=

δ
j–l
i dα

i,l + R
j+
i for j > .

The remainder term of the approximation for using the Crank-Nicolson scheme to solve

the modified advection diffusion equation is given in this case as

R
j+
i = aP(xi, tj+)d

α
i,l + a

j
∑

l=

b(xi, tj–l)d
α
i,l – b

{(

P(xi+, tj+) – P(xi, tj+) + P(xi–,xj+)
)

+
(

P(xi+, tj) – P(xi, tj) + P(xi–,xj)
)}

+ c
{(

P(xi+, tj+) + P(xi–,xj+)
)

+
(

P(xi+, tj) + P(xi–,xj)
)}

–
Q

j+
i –Q

j
i

cρ
. ()

Now using the full approximation and considering the remaining terms, we obtain the

following relation:

R
j+
i ≤ D

(

k + h
)

. ()

Theorem  The Crank-Nicolson scheme for the advection diffusion equation with time

fractional Caputo-Fabrizio derivative converges, and there exists a positive constant D such

that

∥

∥P(xi, ti) – P
j
i

∥

∥ ≤ D
(

k + h
)

for all (i = , , , . . . ,M, j = , , , . . . ,N). ()

6 Numerical simulation for different values of alpha

In this section, using the new numerical scheme, we present the numerical simulation of

the advection diffusion equation with the Caputo-Fabrizio derivative of fractional order

for different values of alpha. We chose in this case Q(x, t) = sin[x + π

], P(x, ) = cos[x],

P(, t) = cos[t], P(x, ) = , u = ., cρ = ., ϕ = , λ = .. The numerical simulations

are depicted in Figures , , , and . It is worth noting that each figure represents the

flow at scale alpha. It is very important to realize that fractional differentiation is able to

control the variabilities of the plumemovementwithin the geological formations. The pol-

lution does not only move within a homogeneous medium but also within heterogeneous

one; therefore, the plume paths cannot be predicted by the classical advection dispersion

equation. In these figures, we can see that the proportionally of the density of pollution

within the geological formation is not the same everywhere due to the heterogeneity, and
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Figure 1 Numerical simulation at scale alpha = 0.15.

Figure 2 Numerical simulation at scale alpha = 0.55.

this is better described via the concept of fractional differentiation with nonsingular ker-

nel.

7 Conclusions

We have proposed in this work the numerical approximation of the newly proposed

derivative of fractional order in order to fit this derivative in the scope of numerical inves-

tigations. The new derivative is easy to use even numerically and display important char-

acteristics that cannot be observed in the commonly used fractional derivatives. In order

to test the possible application of the new numerical approximation of the new Caputo-

Fabrizio derivative of fractional order, we presented a model of advection diffusion equa-

tion with the time fractional of the new derivative. We solved this equation numerically

using the Crank-Nicolson technique.We showed the stability analysis together with some

numerical simulations for different values of alpha.
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Figure 3 Numerical simulation at scale alpha = 0.85.

Figure 4 Numerical simulation at scale alpha = 0.95.
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