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NUMERICAL APPROXIMATIONS IN VARIATIONAL PROBLEMS
WITH POTENTIAL WELLS*

MICHEL CHIPOTt AND CHARLES COLLINS$

Abstract. In this paper, some numerical aspects of variational problems which fail to be convex
are studied. It is well known that for such a problem, in general, the infimum of the energy (the
functional that has to be minimized) fails to be attained. Instead, minimizing sequences develop
oscillations which allow them to decrease the energy.

It is shown that there exists a minimizer for an approximation of the problem and the oscillations
in the minimizing sequence are analyzed. It is also shown that these minimizing sequences choose
their gradients in the vicinity of the wells with a probability which tends to be constant. An estimate
of the approximate deformation as it approximates a measure and some numerical results are also
given.

Key words, finite element method, variational problem, Young measure

AMS(MOS) subject classifications. 65N15, 65N30, 35J20, 35J70, 73C60

1. Introduction. In this paper we study some numerical aspects of variational
problems which fail to be convex. It is well known that for such a problem, in
general, the infimum of the energy (the functional that has to be minimized) fails to
be attained. Instead, minimizing sequences develop oscillations which allow them to
decrease the energy.

Such oscillations are observed in the context of hyperelasticity for ordered ma-
terials such as crystals (see [3], [4], [6], [8], [16]-[24], [27], [30]). Indeed, in order to
lower its energy such a material makes full use of its special structure. This structure
is recorded in different models where generally it is assumed that the energy func-
tional experiences several potential wells (see for instance [3], [23], [24], [27]). From
the physical point of view it means that some linear deformations (related to the
material under consideration) are of very low cost in energy. Thus, the strategy for
the material to obtain a minimum energy configuration consists of using these low
cost deformations on a finer and finer scale. This, of course, can be observed both
experimentally and computationally [3], [4], [9], [11]-[14], [30].

Assume that we have an energy density Rn R supported on k potential
wells. That is, there are k vectors wi E Rn, with k _> 2, such that (wi) 0 for
i 1,..., k and () > 0 for : wi. Let a E Rn be in the convex hull of the wells,
but not equal to a well; that is, there is a vector (c1,..., (k) such that

k k

(1.1) aiwi=a with0_<ai<l and _ai= 1.
i----1 i--1

In addition, let " R - R be a continuous nonnegative function such that

(1.2) (0)=0 and(t)>0 fort-0.
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For instance (t) Itl q, q > 0 would be suitable for our purpose.
polygonal domain gt c IRn withO F0 t F1, let

For a given

(1.3) Va {v: --. [v is piecewise affine and v(x) a.x for x e F0).

By piecewise affine we mean that the function is continuous and affine on simplices
covering f. We consider the minimization problem:

(1.4) Find u e Va such that E(u) inf E(v)
vEV,

where E(v) is the total energy:

(1.5) E(v) =/a (Vv(x)) + (v(x) a. x) dx.

We could introduce some other spaces but the infinum of the energy is the same for
any space containing V so we have restricted ourselves to this case. Energies such as

(1.5) were introduced in [5]. If we set u(x) v(x) a.x then

ff (Vv) + b(v a. x)dx =/ (Vu + a) + )(u)dx.

So minimizing the integral on the left over v EVa is equivalent to minimizing the
integral on the right over u E V0. So, from now on we will assume that a 0 and
that zero is in the convex hull of the wells.

For the minimization problem (1.4), we will consider three cases: F0
F0 0, and 0 F0 0f. It follows from a later result that the infinum in each case
is zero. However, for a function to have zero energy it must satisfy (Vv) 0 and
(v(x)) 0 which would imply that Vv wi almost everywhere and v _= 0 which
is impossible, unless wi 0 for some i, but this is prohibited by (1.1). Thus, we
cannot obtain minimizers of (1.5) directly and so we consider minimizing sequences.
It is reasonable to expect that such a minimizing sequence will have a gradient which
oscillates between the wells in order to reach the lower levels of energy. This is indeed
what happens but, as we will show, these oscillations are done in an organized manner,
provided that the number of wells is limited to n+ 1 and that the wells are chosen such
that the vectors wi -Wl for 2,..., k are linearly independent. The mathematical
explanation of the controlled oscillations of the minimizing sequences in this case lies
in the fact that the Young measure (see [2], [8], [15], [25], [26], [28], [32]) associated
to the problem is unique (see 4).

This paper is organized as follows. In 2 we prove an existence result for the
minimizers of an approximation of the problem. In 3 we show,through an energy
estimate, that the infinum of (1.4) is indeed equal to zero and we give different rates
of convergence of this energy towards zero. Section 4 is devoted to the analysis of
the oscillations of the minimizing sequences of (1.4). In particular we show that
these minimizing sequences choose their gradients in the vicinity of the wells with
a probability which tends to be constant (of course we assume we are in the case
where the Young measure associated to the problem is unique). Moreover, since the
problem at stake is the approximation of a measure, we give an estimate in this sense

(Theorem 6). Finally we comment in 5 on some numerical experiments. Our results
expand on the results obtained in one dimension by Collins, Kinderlehrer, and Luskin

[10] and Collins and Luskin [14].
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2. An existence result. Our first concern is to establish the existence of a so-
lution of an approximation of the problem (1.4). We restrict ourselves to one example
where such an existence can be proved, and we refer the reader to [7] for another case.

Recall that we are assuming a 0 so that in all that follows

E(v) f (Vv(x)) + (v(x)) dx.

Let Th be a triangulation with mesh size h of the domain 12 and let V be the
approximation of V0 corresponding to Th, i.e., V is the space of continuous functions
vanishing on F0 and affine on each simplex of Th.

THEOREM 1 (existence). /f and are continuous and limll_.+o (t)-+
then there exists a Uh E V such that

(2.1) E(uh)- inf E(v).
vey

Proof. Every element of Vh is completely determined by its value on the nodes
of Th, so finding the minimum reduces to finding a vector X (uh(nl),’", Uh(np))
where the ni’s are the nodes of Th not on F0, which minimizes E(uh). As and are
continuous, E(uh) is continuous in X.

Let IXI +c, then at least one component ofX goes to infinity, so assume that
Zi uh(ni) -- +oo. Now let T Th such that n is one of the vertices of T. Then
we have

(VUh (x)) + (Uh (x)) dx

(2.2)

where meas S denotes the Lebesgue measure of the set S. Assume that we have
proved that

(2.3) meas {x e T]luh(x)l

_
luh(n,)]/2}

_
(1/2)n measT,

then (2.2) reads

inf

when uh(n) -- +c, by our assumption on . Thus E(uh) +o and the existence
of Uh follows by an easy compactness argument. More precisely, choose V such
that E(fi) < cx) and let V {u e VIE(u <_ E(fi)}. Then by the above argument
and the continuity of E, U is a compact set and as E is continuous there must exist
a Uh e U C V such that E(uh) infvev E(v) infvey E(v).

To prove (2.3) note first that without loss of generality we can assume that ni 0
so that if we set b uh(ni) then

Uh(X) a. x + b.

Then we show that

(2.4) meas{x T lla.x + b >_ 1/21bl} >_ (1/2)nmeasT.
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By changing uh to --Uh we see there is no loss of generality in assuming b > 0, so that
(2.4) can be written as

(2.5) meas {x e T Il.x + 1 >_ 1/2} >_ (1/2)n measT.
Consider the one-dimensional case first, i.e., a/b ]R and T (0, T). Then if

_> 0 we clearly have

meas(x E T licx + 11 _> 1/2} measT;

hence (2.5) holds. If c < 0 then lax -t- 11 _> 1/2 implies that

1 3x< or x>
2a 2"

When -3/2 _> T we have -1/2a _> T/3 and

{ 1} (1)x e T lax + l >_ O,--a
and thus (2.5) holds. When -3/2a < T we have 1/a > -2T/3 and

{ 1}(1)(3)x e T lax + l >_ O,--a u --ff-,T
and thus

{ 1} 1
meas x e T lax + ll >_ - 2a

3 1 1
+T+7--=T+-> T;

hence (2.5) holds. Knowing now that (2.5) holds for the one-dimensional case, we use
polar coordinates and write for x rw, with w a unit vector in Rn,

(2.6)
{ a 1} {meas x T "x + 1 _>

xeTll’+ll ->1/2}
dx

rn-i dwdr.

For fixed w we have to integrate over.the set

{rll.wr+l{_>1/2}
and the measure of this set is certainly larger than r(w)/3 where r(w) is the largest r
such that rw T. Hence for fixed w

rn- 1 dr >_ I rn- dr
(o,,-(0,)/3)

and (2.6) becomes

{ a
meas x E T x + 1 >_ >_

=1 ,r(w)/3)
r- dr dw measT

which completes the proof.
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3. Energy estimate. In what follows we will assume the the triangulation of
the domain is regular.

THEOREM 2 (energy estimate). Assume that for some constants m and q > 0

(3.) (t) <

then if is bounded on bounded sets

Eh inf E(v) <_ Ch,
where " 1 for q _> 1 and Fo 0, ands q/(q + l) for q < 1 and Fo 0 or
Fo =0.

Proof. Clearly since a 0 belongs o the convex hull of he wi’s, we can find
w’sthat for simplicity we will still label by wl,..., wasuch that (1.1) holds and
the vectors w -w for 2,..., k are linearly independent.

I is ey o see (cf. 4) hat he vector saising (1.1) is unique. Le p be he
number of 0 and renumber he wells so tha > 0 for i 1,..-, p. Le

(3.) wh(z) min w z + h
ligp

where (0, 1). First we note that

(.) (x)h V.

If not, then we have for some x, wi. x > 0 for i 1,...,p andi iwi. x > 0
comradicting (1.1). Second, all the wells for which i 0 participate in Wh; otherwise,
there is an j such that wj x + h wi x + h for i 1,..., p and for all x. Thus

k k

i:1

and so wj x 0 for all x which is possible only if wj 0, a contradiction of (1.1).
The set

& { e s () 0}

is the intersection of p half spaces and thus is a convex domain having p edges. Let
W be the subspace of Rn spanned by {wi}il. Then Sh W is a p- 1-simplex with
vertices v0, v,...%-1. Note that the functions wi. x are constant on any subspace
orthogonal to W so we just need to define our function on W. For any z Zp-1 set

p-1

Clearly Wh,z is a piecewise affine function, nonnegative on the set

p-1

(a.) &, & + , (v, v0 ).

Note that these subsets are disjoint. Let

(.) u,()= su, .,().
zZP-
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Then Uh is a piecewise affine function equal to Wh,z on Sh,z. Also note that for a
given x, the supremum in (3.6) is taken only over a finite number of z such that Sh,z
neighbors x. It is clear that

(3.7) lUh(X)l <_ Ch

for some constant C. Moreover we have that

(3.8) VUh wi

except on the edges of the function Uh where VUh switches from one well to another.
To match the boundary condition, we introduce the function Th where

(3.9) rlh(X) min(dist (x, F0), h)/h.
We have that ]rh] _< 1 and JVhJ <_ h-. If r0 we take h 1. We modify
Uh by replacing it by rlhUh, which we still denote by Uh. If IF01 denotes the (n- 1)-
dimensional area of F0 then this modification changes the value of Uh on a domain of
volume less than

(3.10) Clrolh.
On this domain V(lhUh) is bounded by IV hllUhl + IVUhl, which is bounded by some
constant independent of h. To make Uh E V2 we next modify Uh on the simplices
where Uh has an edge which intersects the simplex. On this simplex we replace Uh
by the affine function which agrees with Uh on the vertices of the simplex. Now the
volume of the simplices where this modification occurs is no more than

CIFolh + h. ((n- 1)-dimensional area of the edge of Uh due to (3.6))
as the edge of Uh cuts one simplex at a time, and any dimension of a simplex is
bounded by h. Let N(h) be the number of Sh,z covering . By scaling argument
we have

(n- 1)-dimensional area of the edge of Uh due to (3.6) _< Cg(h)(h)p-2
<_ cg(1)(h)p-2/(h)p-1
< Ch-.

Hence, by (3.10)-(3.12), we have obtained a function Uh e V such that (3.8)
holds except on a set S of volume less than

(3.13) Ch1- + ClroJh
where, of course, the gradient of Uh is bounded. We also have that (3.7) holds every-
where, and thus

E(uh) jf (VUh) + (Uh) dx

+ +

<_ C(h- + Ir01h + hZ).
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So if IF0l > 0 and q > 1 we have, if h is assumed to be less than 1,

Eh <_ Chmin(1-’)

which has maximum order for fl 1/2 and gives

Eh < Ch1/2.

If IF01 > 0 and q < 1 or IF01 0 then we have

Eh <_ Chmin(1-[3’q[3)

which has maximum order for fl 1/(q + 1) and gives

Eh <_ Chq/(q+l).

Remark 1. We do not know whether or not these estimates are sharp. For par-
ticular results in this direction see [7] and [14].

4. Analysis of oscillations. In what follows we assume that 2 < k < n+ 1 and
that the vectors

w wl are linearly independent.

Then we can prove the following theorem.
THEOREM 3 (unique Young measure). If the vectors wi w for 2,..., k are

linearly independent then the vector c which satisfies (1.1) is unique. Also, for any
minimizing sequence of (1.4) bounded in W’(f) the corresponding Young measure
is unique and equals

k

12 l/ Oi6w
i=1

where 5o is the Dirac mass at w.
Proof. The first part of this theorem is of course well known; however, we give

a proof of it for use in later results. If we consider the wells w and a to be column
vectors, then condition (1.1) can be written as

(4.2) ( Wl W2 wk l ---1 1

where en+l is the usual (n + 1)th basis vector in ’+. Let M be the n + 1 k
matrix on the left-hand side of (4.2). Subtracting the first column of M from the
other columns, we get

Wl W2 W Wk W
\

1 0 0

and we see that this matrix has rank k since the vectors w -w are linearly inde-
pendent. Thus M has rank k and MTM is invertible. We can then rewrite (4.2) as
MTMc MTen+ and then solve for c to get

(4.3) Ae+l
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where A (MTM)-1MT. This proves the first part of the theorem.
For the second part, let {uk } be a sequence, as in the proof of Theorem 2, such

that

(4.4) lukl, IVukl <_ C and E(uk) O.

It is well known (see [2], [8], [15], [25], [26], [28], [31], [32]) that there exists a Young
measure x corresponding to this sequence such that

(4.5) /n F(x, Vuk(x)) dx ---. /n, F(x, A) d,x(A) dx

for any Carathdory function F. In particular, if we take F(x,) () then we have
that

0= k--,oolimf (Vuk)dx- jf, (A)dye(A)dx.

Thus u is supported only on the wells, and we can write

k

(4.6)
i--1

with

k

(4.7) 0 <_ (z)<_ 1 and /(x)= 1,
i--1

since u is a probability measure. Now from (4.4) we can extract a subsequence; still
denoted by Uk, such that

(4.8) Uk u uniformly in f.

On the other hand, from E(u) -- O, and again up to an extracted subsequence, we
deduce that

(Uk) 0 a.e. in f.

Hence, from (4.8) and the continuity of

(u)=0 a.e. inf

and u 0 by (1.2). Then from (4.4) we deduce now that up to an extracted subse-
quence

and in particular

Uk 0 in Wl’ (f) weak-.

Vuk 0 in L(f) weak-..

So, using (4.5) with F(x,) X(x) where X is the characteristic function of a mea-
surable set w C fl, we obtain

0= lim [Vukdx
k---oo

(4.9)
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From (4.7) and (4.9) we see that the vector {/11L Z(x) dx} satisfies the same condi-
tions as c does in (1.1), but since c is unique, we must have that c 1/Iw f (x) dx.
Since this holds for all w, we must have (x) c almost everywhere by the Lebesgue
differentiation theorem. So the Young measure is unique. [3

In order to obtain further estimates, the behavior of near the wells is important.
To control it we introduce the function H defined by

n(0 w,

(4.10) where w is the well of smallest index i such that

3

The function II takes only a finite number of values, i.e., the wi’s. Moreover, it is
clearly a Borel function so that if (x) is any measurable function, H((x)) will be
measurable as well.

From now on we will assume that there are constants A1, A2 > 0 and p > 1, and
q > 1 such that

(4.11) () _> ,kll IIlp )1 m.in I wilp V E Rn,
(4.12) (t) >_ A2ltl q V t e .
We next prove three lemmas which we use in the rest of the analysis.

LEMMA 1. For any B C and r <_ p, there exists a constant C C(B, r, p, 1)
such that

lVv nwl dx <_ CE()z

for all v Vo.
Proof. Applying Hhlder’s inequality and (4.11) we have

lw nwl dx <_ IBI(-)/ IVv nw:l dx

LgMMa 2. If B C is ipschitz domain nd r, s > 1 then there eists
constant C C(B, r, s) sch that for ll v Vo

]vds C Iv] (r-)’ dx
B

where s’ is the conjugate exponent for s (i. e., 1Is + 1Is’ 1) and

(4.1a) IIlll,,B I1 + I1 e

Proof. By the trace theorem for W,(B) (see [1]), there exists a constant C such
that

lul ds <_ C /B lul + ]Vul dx"
B
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Applying this result to u Ivl r, we have

lVlr ds < C] Ivllvlr-: + rlVlr--llVvl dx.
B JB

Hence by HSlder’s inequality we have

lVl ds < C
B

LEMMA 3. If B C f is a Lipschitz domain and s min(p, q), then there exists
a constant C C(B, wi, Ai, P, q) such that

(4.14)

or ll Vo. (g is the
Proof. irst we hve

HVV(X) dx N /s [HVv Vv[ dx + IS Vv dx

CE(v)I/P q- JB VV dx

by Lemma 1.
Next we use the divergence theorem to get

Vv dx vn ds (/0B
where n is the outward normal on OB and IOBI is the (n- 1)-dimensional Hausdorff
measure of OB. Applying Lemma 2 to the last term, we have for any r > 1 and
s min(p, q),

(4.16) Vv dx < lOB[ 1/r’ Ivl (r-:)s’ dx

Next we choose r such that (r 1)s’ q, i.e., r (q + s’)/s’, and we obtain

(4.17)
G C [v) q dx

s’/(q+8’)< B

Moreover, by HSlder’s inequality we have

(4.18) B
lvl" dx < IBI x-’/q Iv(x)l a dx

<_ CE(v)"/q
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by (4.12) and

_< C IVv- IIVvlp dx

<_ CE(v)s/p + C

by (4.11). Combining (4.18) and (4.19)we obtain

C (E(v)s/q + E(v)s/p + 1);_<

hence,

/C

Then (4.14) follows from (4.15), (4.17), and (4.20).
Remark 2. In the case of F0 # 0 and where the number of wells is less than n+ 1,

Poincar6 type inequalities can be used to improve our estimates (see [7]). However,
the estimates presented here have the advantage of holding for all cases.

THEOREM 4 (Young measure estimate). For 0 < R < min#j Iw wjl and
any Lipschitz domain B c let

B- {x e B IVv(x e S(wg,
k

B- U
y (4.) (4.)ottt o,tt

tt g mi(, ) ’= /(- )

(4.)

or i I,..., k and for ll v Vo.
Proof. First note that

thus by the Chebyshev inequality [33] and by Lemma 1 we have

1 fB ]Vv HVv]d
(.ee)

CE(v)/.

By the choice of R, we haveB B 0 for j and 8o

k

(4.23) Igl IBI- Igl.
i=1
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Also we have

k k

Let

We see that (4.23) and (4.24) form a set of equations similar to those for ( in (1.1)
and so using the same matrix as in (4.2), we can write

IBI
( w w2 w ) IBle/l +

1 1

Thus

B
[B[Aen+l + Ae

[B[a + Ae

with A as in (4.3) and so

IIBFI- ,IBll _< IIAII I1.
The value of IAII depends only on the wells and using Lemma 3 and (4.22) we can
estimate lel to obtain (4.21). ]

Remark 3. The estimate (4.22) can be improved when E(v) is small; indeed by
the Chebyshev inequality we have

IBRI _< IVv lIVvl’ dx
1< E(v).

A1RP

We next apply the result of Theorem 4 to a solution Uh of (2.1).
THEOREM 5. /f (3.1), (4.11), and (4.12) hold then for 0

and any Lipschitz domain B c f let

Bi (x e B IVUh(X e B(wi,
k

O
i--1

Then/f s min(p, q) and s’ s/(s 1) there exists a constant C such that for h < 1
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(4.26) lIBel-  ,IBII Chl/2min(1/p’l/(q+s’)) if Fo 0

(4.27) lIBel-   IBll -< Chq/(q+l) min(1/p’l/(q+s’)) if Fo O.

Moreover,

(4.28) IBI <_ Ch1/2 if Fo
(4.29) IBI _< Chq/cq+) if Fo

Proof. From (4.21) and Theorem 2 we deduce that

lIBel- ailBII <_ Chmin(1/p,1/(q+8’))

and (4.26), (4.27) follow. Equations (4.28) and (4.29) are easy consequences of (4.25)
and Theorem 2.

This gives an estimate for the rate of convergence of the probability for Uh to have
its gradient in B(wi, R) towards ai. We now estimate at what rate VUh is getting
close to the Young measure defined in Theorem 3. For this we evaluate VUh and
against some function F(x, ). More precisely, we have the following theorem.

THEOREM 6 (error estimate). Let F(x, w) t n __, ]1( be a function satisfying

(4.30) IF(x,) F(x, H)I -< PI HI for all e ]n.

If A is the matrix defined in (4.3), define the function G(x) by

k

(4.31) Gi(x) E AjiF(x, wj) .for i 1, n
j--1

and

(4.32) err(v,F)
k

If G E Lp’ (), V G Lq’ (t) and G L(q+s’)/q(F) then there exists a constant C
depending on G, such that

err(v, F) <_ CE(v)/p + E(v)/q
(4.33)

where s rain(p, q) and s is the conjugate of s as before.
Proof. First we write

err(v,F) l/ [F(x, Vv(x)) F(x, HVv(x))] dx

k

=I +I.
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Then by (4.30) and Lemma 1 we have

11 _< p fn IVv(x) HVv(x)ldx
(4.)

<_ CpE(v)/’.
Next for any scalar valued function g we have that

k

/n(HVv(x))g(x) dx Ew In g(x) dx
i=1(4.36)

g(x) dx
i=1

where t {x e f HVv(x) w}. Let Z, fa, g(x)dx and then we have that
(4.36) is a set of equations for similar to (1.1), and thus we can write

1 1 1 fa g(x) dx

Using (4.3) we get

fl A ( f(IIVv(x))g(x) dx

g(x) dx

Writing this component by component we have
n

(4.37) .-a/og(x)dx=Aj(IIVv(x)),g(x)dx..:
We use (4.37) with g(x)= F(x, w,) and note that

i= jn F(x,w,)dx= ]2 F(x, nVv(x))dx.

Now we sum the resulting equations from i- 1 to k and get
k k k n

i=-i i-’l i--1 j--1

or, equivalently,
k

i--i

Then we have

(4.38)

n(HVv(x))
G(x) dx

IIVv(x) Vv(x)) G(x) dx Vv(x). G(x) dx

I +I4.
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Next we estimate I3 using Hhlder’s inequality and Lemma 1 to get

(4.39) (ff )lipI3 < [[GIILp, IVy(x)- HVv(x)[p dx

_< cIICll,, E(v)/,

where IIGIIL’ is the Lp’ norm of the Euclidean norm ofG over f. Using the divergence
theorem we have for any r > 1,

(4.40)

I4= fr v(s)G(s)’nds-inv(x)V’G(x)dx
< fr Iv(s)G(s)l ds + CIIV. GllL, E(v) 1/q

_< Cllall,,r Ivl,r / cIIv. allL’ E(v) 1/q.

(In the derivation of the above inequality we just used Hhlder’s inequality and (4.12).
IIGIIr,,rl denotes the Lr’ (F1) norm of G, which is guaranteed to exist.) Using (4.16),
(4.17), and Lemma 2 we see that

(4.41) (ff14 <_ Cl[allr,,p Iv(x)l (r-1)s’ dx II,lll,,,n + IIV. GIIs_,e E(v) llq

Arguing as in Lemma 3, (4.17)-(4.20) with r (q + s’)/s’ and r’ (q + s’)/q we get

(4.42)

Ia <_ Cllall,,r,E(v) l(q+’) {1 + E(v)"’lq(q+’) + E(v)’lp(q+’) }+llV.ClleE(v) llq.

Combining (4.34), (4.35), and (4.37)-(4.42) the result follows.
THEOREM 7 (convergence estimate). Assume that (3.1), (4.11), and (4.12) hold

and that the assumptions of the previous theorem hold. Let Uh be a solution of (2.1);
then there exists a constant C such that for h < 1

(4.43) err(uh, F) <_ Ch1/2 min(1/p,1/q) if Po Oft

(4.44) err(uh, F) <_ Ch1/2 min(1/p,1/(qq-s’)) if 0 F0 Oft

(4.45) err(uh, F) < Chq/(q+l) min(1/p,1/(qTs’)) if F0

Proof. When F0 OFt we have F1 and so in (4.42) the terms involving F1
are zero. Thus, we have

(4.46) err(v, F) <_ C {E(v) 1/p + E(v)llq},
and the error estimate (4.43) follows from Theorem 2. Next we consider the cases
when F0 OFt. From (4.33) we deduce that

err(uh, F) <_ CE(uh)’min(llp’ll(q+s’))
and (4.44), (4.45) follow from Theorem 2.
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5. Numerical example. For a numerical example we let the energy be

E(u) (Vu(x)) + u(x)2 dx

where

D [0, 1] 2

and

with wi (-1, 1) and w2 (1,-1).
For the numerical calculation we use a uniform mesh of triangles on D of size

h 1/N formed by dividing D into uniform squares of size h x h and dividing each
square into two triangles by cutting along the (1,-1) direction. We start with a
random initial guess near u 0 and then use an iterative method to update the value
of u to decrease the energy (see [9]). Figure 1 shows the resulting approximations for
meshes of size h 1/30 and h 1/50. For other calculations of this type see [9],
[11]-[13], [30].

h 1/30

h 1/50

FIG. 1. Computational results for h 1/30 and h 1/50.
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