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NUMERICAL APPROXIMATIONS
OF ONE-DIMENSIONAL LINEAR CONSERVATION EQUATIONS

WITH DISCONTINUOUS COEFFICIENTS

LAURENT GOSSE AND FRANÇOIS JAMES

Abstract. Conservative linear equations arise in many areas of application,
including continuum mechanics or high-frequency geometrical optics approx-
imations. This kind of equation admits most of the time solutions which are
only bounded measures in the space variable known as duality solutions. In
this paper, we study the convergence of a class of finite-difference numerical
schemes and introduce an appropriate concept of consistency with the contin-
uous problem. Some basic examples including computational results are also
supplied.

1. Introduction

This paper is devoted to rather general numerical approximations of the following
linear conservation equation:{

∂tµ+ ∂x(aµ) = 0 for (t, x) ∈ ]0, T [×R,
µ(0, .) = µ0 ∈Mloc(R),(1.1)

when the coefficient a satisfies

a ∈ L∞(]0, T [×R), ∂xa ≤ α in ]0, T [×R, α ∈ L1(]0, T [).(1.2)

We shall also consider briefly the corresponding transport equation{
∂tu+ a∂xu = 0 for (t, x) ∈ ]0, T [×R,
u(0, .) = u0 ∈ BVloc(R).(1.3)

This kind of equation is encountered for example in the field of nonlinear hyper-
bolic systems. The transport equation appears in the context of nonconservative
products involved for instance in multispecies chemical reacting models, and in sev-
eral numerical methods for hyperbolic systems (see, e.g., [9, 20]). The conservation
equation arises when considering systems with measure-valued solutions (see for
instance [19, 21, 29]). Another field of application is the so-called pressureless gases
model: [1, 10, 16, 4, 5]. Equation (1.1) appears also explicitly when linearizing a
nonlinear hyperbolic equation

∂tu+ ∂xf(u) = 0(1.4)
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988 LAURENT GOSSE AND FRANÇOIS JAMES

with respect to the initial data or the flux f . Concerning the first case, we refer to
the numerical application by Olazabal [24], where a 2-dimensional perturbation of
a 1-dimensional shock is studied (see also [15]). A simplified model for this is the
linearized equation

∂tµ+ ∂x[f ′(u)µ] = 0,(1.5)

and we refer to [6] for a theoretical study of this problem when f is convex. In the
context of the flux identification for convex scalar conservation laws, we obtain the
same equation, with a measure-valued right-hand side. We refer to [18], where the
adopted point of view is very close to the one in this paper.

One may consider also the high-frequency geometrical optics approximations for
the two-dimensional Helmholtz equation in a nonhomogeneous medium. If one looks
for planar wave solutions in the form A(x, y)eiωϕ(x,y), where A is the amplitude, ω
the time frequency, and ϕ the phase of the wave, then ϕ satisfies a steady eikonal
equation with a source term on the right-hand side and the “energy” Ã = A2/2
might be sought as the solution of divx,y(Ã · ∇ϕ) = 0 (cf. [11, 12]). Most of the
numerical approximations one can get for this stationary problem are obtained
by a time dependent scheme iterated up to the convergence. The following one-
dimensional equation can therefore be considered as a simplified model for this
process:

∂tÃ+ ∂x(∂xϕ · Ã) = 0.(1.6)

Since ϕ is usually defined in the sense of the viscosity theory [23], it is only endowed
with a Lipschitz smoothness in space. This matches the context in which we propose
our work.

An appropriate theoretical framework for (1.1) has been recently introduced by
Bouchut and James [2, 3] (see also Poupaud and Rascle [26] for another approach in
the multidimensional case). It turns out that, in most of the cases, µ is a measure in
the space variable. So, because of the very low regularity imposed on the coefficient
a, one cannot treat a priori this Cauchy problem in the theory of distributions. One
way out is to understand the solution of (1.1) in the duality sense. For this purpose,
it will be useful to write down the dual problem{

∂tp+ a∂xp = 0, (t, x) ∈ ]0, T [×R,
p(T, .) = pT ∈ Lip(R) with compact support.(1.7)

It is known that this backward problem admits a Lipschitz continuous solution
under condition (1.2), and this fact has been used already to obtain uniqueness for
(1.4) (see [25, 8, 17, 28, 22]). The point is that there is no uniqueness for (1.7),
and one of the main results in [2, 3] is to characterize a class of solutions, known as
reversible solutions, for which existence and uniqueness hold. The duality solution
of (1.1) is then the unique element of the space C([0, T ];Mloc(R)) satisfying for all
reversible p’s

d

dt

∫
R
p(t, x)µ(t, dx) = 0.(1.8)

A similar notion can be introduced for (1.3). Equipped with this characterization,
it is therefore possible to give a precise interpretation of the ambiguous product
(aµ) in the distributional framework.
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We now want to make more precise what we mean by numerical approximation
of (1.1). We consider for K ∈ N conservative algorithms of the type

µn+1
j = µnj −

∆t
∆x

(
〈An

j+ 1
2
, ~µnj+ 1

2
〉R2K − 〈An

j− 1
2
, ~µnj− 1

2
〉R2K

)
~µn
j+ 1

2
= (µnj−K+1, ..., µ

n
j+K) ∈ R2K

An
j+ 1

2
= (an

j+ 1
2 ,−K+1

, ..., an
j+ 1

2 ,K
) ∈ R2K ,

(1.9)

where µnj and An
j+ 1

2
denote some approximations of µ(n∆t, j∆x) and a(n∆t, j∆x),

respectively. At this numerical level, the main difficulty is to handle the lack of
a priori estimates satisfied by (1.9). Consequently, most of the work is done es-
timating what we called the dual scheme which is obtained by a summation by
parts (as it is done for the continuous equations). Because of the smoothness of the
reversible solutions of (1.7), it seems more hopeful to seek strong properties such
as BV , L∞ or Lipschitz-like bounds for these backward approximations. We prove
that, under some CFL-type conditions on the space-time grid, we have compactness
results and convergence toward the reversible solution associated to every smooth
final data. Moreover, property (1.8) is automatically enforced by the definition of
our dual scheme. Finally, as a consequence of the conservative character of (1.9),
we have also a uniform bound on the total mass of the approximate solution of
(1.1). Putting all these arguments together easily gives the expected convergence
result toward the duality solution of the problem (1.1).

Consequently, this paper is organized as follows. In Section 2, we recall the
specific characterizations of duality solutions for (1.1) and (1.3), with the existence
and uniqueness results. We also present the derivation of the universal represen-
tative â of a, which gives a meaning to the product aµ in the distribution theory.
In Section 3, we develop our theory for conservative (2K + 1)-point schemes for
(1.1) and (1.3). We define the associated dual scheme and analyse its behaviour
by checking the sign of some appropriate coefficients. The cornerstones of our con-
vergence proofs are some positivity requirements for these coefficients, which give
bounds on the amplitude and the total variation of the approximations, as well as
monotonicity and monotonicity preserving properties, together with a convenient
notion of weak consistency with the time-continuous equation (1.1). In Section 4,
we use these general results to establish the convergence of some very classical nu-
merical schemes developed in the context of scalar conservation laws belonging to
the Lax-Friedrichs (LxF) and upwind families. Finally, in Section 5, we present
some numerical computations obtained with three-point schemes taken from both
these classes.

2. Some features about duality solutions

In this section we recall the definitions of the duality solutions to the direct
problems (1.1) and (1.3), introduced by Bouchut and James [2, 3]. As mentioned
before, a key tool is the adjoint equation, (1.7) for the conservative case, and{

∂tπ + ∂x(aπ) = 0, (t, x) ∈ ]0, T [×R
π(T, .) = πT ∈ L∞loc(R)(2.1)

for the transport equation. We first introduce the notion of reversible solutions to
the backward problems (1.7) and (2.1). Since one of the aims of this paper is to
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990 LAURENT GOSSE AND FRANÇOIS JAMES

characterize the approximations of (1.1) and (1.3) for which the aforementioned dual
scheme mimics these properties, we state precisely the most important properties of
these solutions. Next, we give the definitions and fundamental properties of duality
solutions.

Throughout Section 2 we consider a coefficient a ∈ L∞(Ω), Ω =]0, T [×R, sat-
isfying the one-sided Lipschitz condition (1.2). Notice that (1.2) actually implies
some regularity on a: indeed for almost every t ∈]0, T [, a(t, .) ∈ BVloc(R) and for
any x1 < x2

TV[x1,x2](a(t, .)) ≤ 2 (|α(t)|(x2 − x1) + ‖a‖L∞) .(2.2)

Following [3], we introduce the following four spaces:

SM = C([0, T ],Mloc(R)− σ(Mloc(R), Cc(R))),
SLip = Liploc([0, T ]× R),
SBV = C([0, T ], L1

loc(R))
⋂
B([0, T ], BVloc(R)),

SL∞ = C([0, T ], L∞loc(R)− σ(L∞loc(R), L1
c(R))).

(2.3)

Here we are interested in solutions p ∈ SLip to (1.7), µ ∈ SM to (1.1) and to
solutions π ∈ SL∞ to (2.1), u ∈ SBV to (1.3).

Detailed proofs of all the theorems in this section are to be found in [3].

2.1. Reversible solutions of the dual backward problems. We shall denote
by L the space of Lipschitz solutions to (1.7). The key problem here is that there
is no uniqueness for solutions in this class, as is evidenced by the following example
(Conway [8]). Consider a(x) = − sgn(x). Then any solution to (1.7) is of the
following form:

p(t, x) =
{
pT (x− (T − t) sgnx) if T − t ≤ |x|,

h(T − t− |x|) if T − t ≥ |x|(2.4)

for some h ∈ Lip([0, T ]) such that h(0) = pT (0). Notice that there is a “canonical
choice” for the above h, namely h ≡ pT (0). If pT has a finite total variation, then
it is preserved for this solution. Motivated by these observations, we introduce the
following definition.

Definition 2.1 (Reversible solutions). (i) We define exceptional solution to be any
function pe ∈ L such that pe(T, .) = 0. We denote by E the vector space of
exceptional solutions.
(ii) We define domain of support of exceptional solutions to be the open set

Ve =
{

(t, x) ∈ Ω; ∃ pe ∈ E , pe(t, x) 6= 0
}
.

(iii) Any p ∈ L is called reversible if p is locally constant in Ve. The vector space
of reversible solutions to (1.7) will be denoted by R.

In the preceding example, the exceptional solutions are given by pe(t, x) =
h
(
(T − t − |x|)+

)
with h ∈ Lip([0, T ]), h(0) = 0, and we have Ve = {(t, x) ∈ Ω;

|x| < T − t}.

Theorem 2.2 (Backward Cauchy problem). Let pT ∈ Liploc(R). Then there ex-
ists a unique p ∈ L reversible solution to (1.7) such that p(T, .) = pT . This solution
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satisfies for any x1 < x2 and t ∈ [0, T ]

‖p(t, .)‖L∞(I) ≤ ‖pT‖L∞(J),(2.5)

‖∂xp(t, .)‖L∞(I) ≤ e

T∫
t

α(s).ds
‖∂xpT ‖L∞(J),(2.6)

with I =]x1, x2[ and J =]x1−‖a‖∞(T−t), x2+‖a‖∞(T−t)[. Moreover, ∂xp(t, .) ≥ 0
if ∂xpT ≥ 0.

Equipped with this class of solutions, we shall now be able to give a precise
meaning to the formal definition given by (1.8). But before that, we state some
very important properties of reversible solutions.

First, more handable characterizations of reversible solutions are given by their
specific behaviour with respect to monotonicity and total variation properties,
which are of course related.

Theorem 2.3. Let p ∈ L.
1. Characterization by total variation.

(i) If p is reversible, then t 7→
∫
R
|∂xp(t, x)| dx is constant in [0, T ].

(ii) If the above function is constant and finite, then p is reversible.
2. Characterization by monotonicity.

(i) p is reversible if and only if there exists p1, p2 ∈ L such that ∂xp1 ≥ 0,
∂xp2 ≥ 0 and p = p1 − p2.

Next, another important feature of reversible solutions is the following stability
result with respect to perturbations of the coefficient and final data.

Theorem 2.4 (Stability). Let (an) be a bounded sequence in L∞(Ω), with an ⇀ a
in L∞(Ω)−w?. Assume ∂xan ≤ αn(t), where (αn) is bounded in L1(]0, T [), ∂xa ≤
α ∈ L1(]0, T [). Let (pTn ) be a bounded sequence in Liploc(R), pTn → pT , and denote
by pn the reversible solution to{

∂tpn + an∂xpn = 0 in Ω,
pn(T, .) = pTn .

Then pn → p in C([0, T ]× [−R,R]) for any R > 0, where p is the reversible solution
to {

∂tp+ a∂xp = 0 in Ω,
p(T, .) = pT .

We turn now to the resolution of (2.1). The following definition and properties
actually follow by differentiating the reversible solutions of (1.7). More precisely,
if π ∈ SL∞ solves (2.1), there exists a unique (up to an additive constant) p ∈
SLip which solves (1.7) (see Lemma 2.2.1 in [3]). Thus we can state the following
definition.

Definition 2.5. We say that π ∈ SL∞ solving (2.1) is a reversible solution if the
corresponding p is reversible.

The reversible conservative solutions therefore enjoy the following properties.
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992 LAURENT GOSSE AND FRANÇOIS JAMES

Theorem 2.6 (Conservative reversible solutions). The following three properties
are equivalent for π ∈ SL∞ solution to (2.1):

(i) π is reversible,
(ii) π = 0 in Ve,
(iii) π = π1 − π2, for some πi ∈ SL∞ solutions to (2.1), such that πi ≥ 0.

From the existence and uniqueness Theorem 2.2 for the nonconservative Cauchy
problem, we have immediately

Theorem 2.7 (Conservative backward Cauchy problem). Let πT ∈ L∞loc(R). Then
there exists a unique π ∈ SL∞ reversible solution to (2.1) such that π(T, .) = πT .
This solution satisfies for any x1 < x2 and t ∈ [0, T ]

‖π(t, .)‖L∞(I) ≤ e
∫
T
t
α‖πT ‖L∞(J),

where I =]x1, x2[ and J =]x1 − ‖a‖∞(T − t), x2 + ‖a‖∞(T − t)[. Moreover, π ≥ 0
if πT ≥ 0.

2.2. Duality solutions. Without any further comment, we turn to the forward
problem (1.1), and state the following

Definition 2.8 (Conservative duality solutions). We say that µ ∈ SM is a duality
solution to (1.1) if for any 0 < τ ≤ T , and any reversible solution p to (1.7) with

compact support in x, the function t 7→
∫
R
p(t, x)µ(t, dx) is constant on [0, τ ].

Theorem 2.9 (Forward conservative Cauchy problem). Let µ0 ∈ Mloc(R). Then
there exists a unique µ ∈ SM duality solution to (1.1), such that µ(0, .) = µ0. This
solution satisfies for any x1 < x2 and t ∈ [0, T ]∫

[x1,x2]

|µ(t, dx)| ≤
∫

[x1−‖a‖∞t,x2+‖a‖∞t]

|µ0(dx)|.(2.7)

Moreover, t 7→
∫
R
|µ(t, dx)| is nonincreasing on [0, T ].

Once again, the similar notion of duality solution for the transport equation (1.3)
follows by analogy to the conservative case.

Definition 2.10 (Nonconservative duality solutions). We say that u ∈ SBV is a
duality solution to (1.3) if for any 0 < τ ≤ T , and any reversible solution π to
(2.1) with compact support in x, the function t 7→

∫
R π(t, x)u(t, x) dx is constant

on [0, τ ].

Theorem 2.11 (Forward nonconservative Cauchy problem). Given u0 ∈ BV (R),
there exists a unique u ∈ SBV duality solution to (1.3), such that u(0, .) = u0. This
solution satisfies for any x1 < x2 and t ∈ [0, T ]

TVI(u(t, .)) ≤ TVJ(u0),(2.8)

‖u(t, .)‖L∞(I) ≤ ‖u0‖L∞(J),(2.9)

with I=]x1, x2[ and J=]x1−‖a‖∞t, x2+‖a‖∞t[. Moreover, u ∈ Lip([0, T ], L1
loc(R)).
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Notice that the formal result which allows formally to pass from the conservative
equation (1.1) to the nonconservative one (1.3) by integration holds true in the
duality sense. More precisely, we have the following proposition, which will be
useful in the sequel of this paper.

Proposition 2.12.

(i) Let u ∈ SBV be a duality solution to ∂tu+ a∂xu = 0. Then µ = ∂xu ∈ SM is
a duality solution to ∂tµ+ ∂x(aµ) = 0.

(ii) Let µ ∈ SM be a duality solution to ∂tµ + ∂x(aµ) = 0. Then there exists
u ∈ SBV duality solution to ∂tu+ a∂xu = 0, such that µ = ∂xu. Moreover, u
is unique up to an additive constant.

Up to now, the major drawback of duality solutions is that they are not defined
as distributional solutions, since the product aµ or a∂xu is not defined. The purpose
of the next section is to give some indications about that, and to state a stability
result with respect to perturbations of a and initial data, which is an important
feature of duality solutions.

2.3. Definition of the (aµ) product and stability. First we have to introduce
a notion of flux, which defines the product aµ in a rather simple way, through the
equation.

Definition 2.13 (Generalized flux). Let µ ∈ SM be a duality solution to (1.1).
We define the flux corresponding to µ by

a ∆ µ = −∂tu,(2.10)

where µ = ∂xu and u ∈ SBV is a duality solution to the nonconservative problem
(see Proposition 2.12(ii)). Therefore we have

∂tµ+ ∂x(a ∆ µ) = 0 in D′(Ω).(2.11)

The application µ 7→ a ∆ µ is of course linear, and since u ∈ Lip([0, T ], L1
loc(R)),

one can prove that a ∆ µ ∈ L∞(]0, T [,Mloc(R)), and for any x1 < x2,

‖a ∆ µ‖L∞(]0,T [,M(]x1,x2[)) ≤ ‖a‖∞
∫

]x1−‖a‖∞T,x2+‖a‖∞T [

|µ(0, dx)|.

The following stability theorem is a consequence of Proposition 2.12 and Theorem
2.4.

Theorem 2.14 (Weak stability). Let (an) be a bounded sequence in L∞(]0, T [×R),
with an ⇀ a in L∞(]0, T [×R)− w?. Assume ∂xan ≤ αn(t), where (αn) is bounded
in L1(]0, T [), ∂xa ≤ α ∈ L1(]0, T [). Consider a sequence (µn) ∈ SM of duality
solutions to

∂tµn + ∂x(anµn) = 0 in Ω,

such that µn(0, .) is bounded in Mloc(R), and µn(0, .) ⇀ µ0 ∈ Mloc(R). Then
µn → µ in SM, where µ ∈ SM is the duality solution to

∂tµ+ ∂x(aµ) = 0 in Ω, µ(0, .) = µ0.

Moreover, an ∆ µn ⇀ a ∆ µ weakly in Mloc(Ω).
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As it stands, the definition of the flux depends on the solution we consider, and
thus is not completely satisfactory. We have actually the following result, which is
proved through the study of the backward flow associated to (1.1). The proof is
much more delicate than the previous result, in particular for the last assertion of
the theorem.

Theorem 2.15 (Universal representative). There exists a bounded Borel function
â :]0, T [×R→ R such that for any conservative duality solution µ, one has

a ∆ µ = âµ.(2.12)

We call such a function a universal representative of a.
Moreover, one can choose â such that

a.e. t ∈]0, T [, ∀x ∈ R, â(t, x) ∈ [a(t, x+), a(t, x−)] .(2.13)

In particular, we have

â(t, x) = a(t, x) = a(t, x+) = a(t, x−) a.e. in ]0, T [×R.(2.14)

3. Numerical approximation

3.1. Some conservative linear numerical schemes. Starting from here, we
introduce a uniform grid defined by the two parameters ∆x and ∆t denoting the
mesh-size and the time-step, respectively. As usual, the parameter λ will refer
to ∆t/∆x, and we shall write for short ∆ → 0 when ∆t,∆x → 0 with a fixed λ.
Moreover, the following notations will be of constant use in the sequel of this paper:

∀j ∈ Z, µ0
j =

1
∆x

∫
R

1[(j− 1
2 )∆x,(j+ 1

2 )∆x[(x)µ0(dx).

The aim of this work is to derive numerical algorithms able to compute a sequence
(µnj )n∈Nj∈Z of approximations of local averages:

∀(j, n) ∈ (Z × N∗), µnj '
1

∆x

∫
R

1[(j− 1
2 )∆x,(j+ 1

2 )∆x[(x)µ(n∆t, dx).

We will also frequently use the vectors ~µn
j+ 1

2
and An

j+ 1
2

in R2K introduced in (1.9).
In the whole section, the notation anj will stand for an approximation of the coeffi-
cient a which can vary from one scheme to another. The letter N will also stand for
the quantity T/∆t. We give at once several examples directly inspired by standard
algorithms used in the context of scalar conservation laws.

Lax-Friedrichs type schemes. A sequence of nonnegative viscosity coefficients εn
j+ 1

2

being given, this class of schemes writes

µn+1
j = µnj −

λ

2

[
(anj+1µ

n
j+1 − anj−1µ

n
j−1)

− 1
λ

[
εnj+ 1

2
(µnj+1 − µnj )− εnj− 1

2
(µnj − µnj−1)

] ]
.

(3.1)

In this case, we have

An
j+ 1

2
=

1
2

(
anj +

εn
j+ 1

2

λ
, anj+1 −

εn
j+ 1

2

λ

)
.
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The classical LxF scheme corresponds to the constant value εn
j+ 1

2
≡ 1. For the case

where εn
j+ 1

2
≡ 1

2 , we get the modified “à la Tadmor” version [27]. Notice that, for
this kind of scheme, we have K = 1, but more than three points may be involved
through the viscosity coefficients εn

j+ 1
2
.

Upwind type schemes. We first define for each z ∈ R its positive and negative parts:

z+ = max(0, z), z− = min(z, 0).

We introduce the following discretization:

µn+1
j = µnj − λ

[
[(anj+ 1

2
)+µnj − (anj− 1

2
)+µnj−1] + [(anj+ 1

2
)−µnj+1 − (anj− 1

2
)−µnj ]

]
.

(3.2)

In this case, we have

An
j+ 1

2
=
(

(anj+ 1
2
)+, (anj+ 1

2
)−
)
.

We will present in Section 4 some possible choices for the values an
j+ 1

2
.

Notice that we can rewrite the scheme (3.2) in the following form:

µn+1
j = µnj − λ

[
(anj+ 1

2
)−(µnj+1 − µnj ) + (anj+ 1

2
)+(µnj − µnj−1) + (anj+ 1

2
− anj− 1

2
)µnj
]
,

which appears as a natural upwind discretization of

∂tµ+ a∂xµ+ ∂xa · µ = 0.

Remark 3.1. We would like to emphasize that the approximation of a (namely, the
choice of the vector An

j+ 1
2
) may not be totally arbitrary. For instance, concerning

the linearized equation (1.5), it depends on the approximation used for (1.4). In
the geometrical optics setting, (1.6), it is given by a discretization of ∂xϕ, which is
definitely not straightforward to choose.

3.2. Working out the associated dual scheme. An important tool for the
study of the numerical schemes for (1.1) is the dual algorithm.

Definition 3.2. For every direct scheme (1.9) operating on (µnj )0≤n≤N
j∈Z , we define

the dual scheme as the relation operating on the real-valued sequence (pnj )0≤n≤N
j∈Z

and satisfying the formal equality

∀ 1 ≤ n ≤ N,
∑
j∈Z

µnj p
n
j =

∑
j∈Z

µn−1
j pn−1

j .(3.3)

This equality is of course the discrete analogue of (1.8) which characterizes the
duality solutions of (1.1). Now, we detail the structure of this dual scheme: by its
definition, we have

∑
j∈Z

[
µn−1
j pnj − λ(〈An−1

j+ 1
2
, ~µn−1
j+ 1

2
〉R2K − 〈An−1

j− 1
2
, ~µn−1
j− 1

2
〉R2K )pnj − µn−1

j pn−1
j

]
= 0.

(3.4)
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A summation by parts gives therefore∑
j∈Z

pnj 〈An−1
j+ 1

2
, ~µn−1
j+ 1

2
〉R2K =

∑
j∈Z

K∑
k=−K+1

pnj a
n−1
j+ 1

2 ,k
µn−1
j+k

=
∑
j∈Z

K∑
k=−K+1

pnj−ka
n−1
j−k+ 1

2 ,k
µn−1
j ,

so that, for 1 ≤ n ≤ N , we get∑
j∈Z

µn−1
j

[
pnj − λ

K∑
k=−K+1

an−1
j−k+ 1

2 ,k
(pnj−k − pnj−k+1)− pn−1

j

]
= 0.(3.5)

That gives the expression of the dual scheme:

pn−1
j = pnj − λ

K∑
k=−K+1

an−1
j−k+ 1

2 ,k
(pnj−k − pnj−k+1).(3.6)

Expressions (3.4) and (3.5) imply respectively the two discrete weak formulations
N−1∑
n=1

∑
j∈Z

pn+1
j

[
µn+1
j − µnj + λ(〈An

j+ 1
2
, ~µnj+ 1

2
〉R2K − 〈An

j− 1
2
, ~µnj− 1

2
〉R2K )

]
+
∑
j∈Z

p0
jµ

0
j = 0,

and
N−1∑
n=0

∑
j∈Z

µnj

[
pnj − pn+1

j + λ

K∑
k=−K+1

anj−k+ 1
2 ,k

(pn+1
j−k − p

n+1
j−k+1)

]
= 0.

At this point, it is convenient to introduce some other notation. We first rewrite
the scheme (3.6) in order to emphasize boundedness and monotonicity. Let us
introduce the following coefficients:

Bnj,k = λ(an
j−k− 1

2 ,k+1
− an

j−k+ 1
2 ,k

), k 6∈ {−K, 0,K},
Bnj,−K = λan

j+K− 1
2 ,−K+1

,

Bnj,K = −λan
j−K+ 1

2 ,K
,

Bnj,0 = 1 + λ(an
j− 1

2 ,1
− an

j+ 1
2 ,0

).

(3.7)

We notice that by construction

∀(j, n) ∈ Z× N,
K∑

k=−K
Bnj,k = 1,(3.8)

and that (3.6) is equivalent to

pn−1
j =

K∑
k=−K

Bn−1
j,k pnj−k.(3.9)

Next, to study the TVD and monotonicity preservation properties of the scheme,
we introduce

∆pnj+ 1
2

= pnj+1 − pnj ,
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and another set of coefficients, namely

Cnj,k = λ(an
j−k+ 1

2 ,k+1
− an

j−k+ 1
2 ,k

), k 6∈ {−K, 0,K},
Cnj,−K = λan

j+K+ 1
2 ,−K+1

,

Cnj,K = −λan
j−K+ 1

2 ,K
,

Cnj,0 = 1 + λ(an
j+ 1

2 ,1
− an

j+ 1
2 ,0

),

(3.10)

for which we have

∀(j, n) ∈ Z× N,
K∑

k=−K
Cnj+k,k = 1.(3.11)

Notice that the coefficients Bnj,k and Cnj,k satisfy

Cnj,k = Bnj,k + λ(an
j−k+ 1

2 ,k+1
− an

j−k− 1
2 ,k+1

), for −K ≤ k ≤ K − 1,
Cnj,K = Bnj,K .

(3.12)

Writing (3.6) for the indexes j and j + 1, and making the difference, we obtain

∆pn−1
j+ 1

2
=

K∑
k=−K

Cn−1
j,k ∆pnj−k+ 1

2
.(3.13)

Coefficients Bnj,k and Cnj,k characterize various stability properties for the adjoint
scheme (3.6), which are given in the following two lemmas.

Lemma 3.3. Assume that the coefficients an
j+ 1

2 ,k
introduced in (1.9) are uniformly

bounded, and that

∀(j, n) ∈ Z× N, Bnj,k ≥ 0.(3.14)

Then the following estimates hold for all n ∈ {0, . . . , N − 1}:

sup
j∈Z
|pnj | ≤ sup

j∈Z
|pNj |;(3.15)

∀ J > 0,
∑
|j|≤J

|pn−1
j − pnj | ≤ Cλ

∑
|j|≤J

|pnj − pnj−1|.(3.16)

Moreover, the scheme (3.6) is monotone.

Proof. Because of the formulation (3.9), the uniform bound on the size of the pnj
is a straightforward consequence of relation (3.8) and the sign requirement (3.14).
Now, for the equicontinuity in time, we notice that

|pn−1
j − pnj | =

∣∣∣∣∣
K∑

k=−K
Bn−1
j,k pnj−k −

(
K∑

k=−K
Bn−1
j,k

)
pnj

∣∣∣∣∣ ≤
K∑

k=−K
Bn−1
j,k |pnj−k − pnj |.

We use now the standard triangular inequalities:{
k > 0 : |pnj−k − pnj | ≤

∑k
l=1 |pnj−l+1 − pnj−l|,

k < 0 : |pnj−k − pnj | ≤
∑k−1

l=0 |pnj−l+1 − pnj−l|.
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We plug this in the time variation expression and switch the j and l indices to get∑
|j|≤J

|pn−1
j − pnj |

≤
−1∑

k=−K

k−1∑
l=0

∑
|j|≤J

Bn−1
j+l,k|pnj+1 − pnj |+

K∑
k=1

k∑
l=1

∑
|j|≤J

Bn−1
j+l,k|pnj+1 − pnj |.

We now move the sum over the j’s

∑
|j|≤J

|pn−1
j − pnj | ≤

∑
|j|≤J

(−K+1∑
l=0

−1∑
k=−K

Bn−1
j+l,k +

K∑
l=1

K∑
k=l

Bn−1
j+l,k

)
|pnj+1 − pnj |

≤ λ
∑
|j|≤J

(−K+1∑
l=0

an−1
j+ 1

2 ,l
−

K∑
l=1

an−1
j+ 1

2 ,l

)
|pnj+1 − pnj |.

Finally, this gives∑
|j|≤J

|pn−1
j − pnj | ≤ 2Kλ sup

k,j,n
|anj+ 1

2 ,k
|
∑
|j|≤J

|pnj+1 − pnj |.

Concerning monotonicity, we introduce the operator H : R2K → R such that

pn−1
j = H(pnj−K , p

n
j−K+1, ..., p

n
j+K).

Then, the partial derivatives of H are just given by the Bnj,k coefficients. Con-
sequently, H is a monotone increasing function of each of its arguments under
requirement (3.14).

Lemma 3.4. Assume that the coefficients an
j+ 1

2 ,k
are uniformly bounded and that

∀(j, n) ∈ Z× N, Bnj,k ≥ 0, Cnj,k ≥ 0.(3.17)

Then in addition to properties of Lemma 3.3, the dual scheme (3.6) satisfies the
backward TVD estimate∑

j∈Z
|pnj+1 − pnj | ≤

∑
j∈Z
|pNj+1 − pNj |,(3.18)

and preserves monotonicity.

Proof. The TVD property follows easily from the formulation (3.13), (3.11) and
the sign requirement (3.17). Moreover, if we assume that each ∆pn

j+ 1
2
≥ 0, then

the formulation (3.13) implies that ∆pn−1
j+ 1

2
≥ 0 as a convex combination of some

positive quantities. This proves the two announced statements.

Remark 3.5. All the properties in Lemmas 3.3 and 3.4 are discrete analogues of
those of reversible solutions. Schemes satisfying only (3.14) do not enjoy all the
properties, in particular they lack the monotonicity preservation.
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3.3. Notion of consistency and convergence. We turn now to the definition
of a notion of consistency for our schemes. Let us denote by µ∆, p∆ the piecewise
constant functions defined for all (t, x) by µnj , and pnj , respectively, on each cell

T nj
def= [n∆t, (n+ 1)∆t[×[(j − 1

2
)∆x, (j +

1
2

)∆x[.

We define also the following vector-valued function:

A∆ = (a∆
k )k=−K+1,...,K : [0, T ]× R → R2K

(t, x) 7→ An
j+ 1

2
for (t, x) ∈ T nj ,(3.19)

and we assume that, for a given pT ∈ Lip(R), the discretization (pNj )j∈Z satisfies

sup
j∈Z
|∆pNj+ 1

2
| ≤ ∆x Lip(pT ).(3.20)

This is achieved for instance by taking the local averages of pT on cells. Finally,
we shall need the functions a∆ and b∆ defined for (x, t) ∈ T nj by

a∆(t, x) =
K∑

k=−K+1

a∆
k (t, x),

b∆(t, x) =
1

∆x

K∑
k=−K+1

[
a∆
k (t, x+ (k − 1)∆x)− a∆

k (t, x+ (k − 2)∆x)
]
.

(3.21)

We can now state the most important definition.

Definition 3.6. The scheme (1.9) is said to be weakly consistent with the contin-
uous equation (1.1) if the coefficients an

j+ 1
2 ,k

are uniformly bounded and

(i) a∆ ⇀ a in L∞ − w ? as ∆→ 0;
(ii) for each ∆, there exists α∆ ∈ L1(]0, T [), with ‖α∆‖1 ≤ C uniformly in ∆,

such that b∆(t, .) ≤ α∆(t) for a.e. t ∈]0, T [.

These assumptions are the discrete analogues of those in the stability result
for reversible solutions (Theorem 2.4). From assertion (i) it follows by an easy
computation that b∆ → ∂xa in the sense of distributions. Assumption (ii) allows
us to make this convergence precisely: provided a satisfies (1.2), we have actually
b∆ → ∂xa for the weak topology of measures. This leads to the weak consistency
for the backward problem and therefore to the following result.

Theorem 3.7. Let pT be a Lipschitz continuous function with Lipschitz constant
Lip(pT ). Assume that the adjoint scheme is consistent and satisfies the positivity
requirements (3.17). Then the sequence (p∆) converges as ∆ → 0 in the strong
topology of L1

loc(Ω) and almost everywhere toward the reversible solution of the
problem (1.7).

Proof. We begin by a discrete analogue of the Lipschitz estimate (2.6). From (3.13)
and the nonnegativity of the Cn−1

j,k ’s, it follows

|∆pn−1
j+ 1

2
| ≤

K∑
k=−K

Cn−1
j,k |∆p

n
j−k+ 1

2
| ≤Mn

K

K∑
k=−K

Cn−1
j,k ,
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where for q ∈ N, Mn
q ≡ sup−q≤k≤q |∆pnj−k+ 1

2
|. Using now (3.12) and (3.14), we

have

|∆pn−1
j+ 1

2
| ≤

(
1 + λ

K−1∑
k=−K

(an−1
j−k+ 1

2 ,k+1
− an−1

j−k− 1
2 ,k+1

)

)
Mn
K .

Going back to the definitions of a∆
k and b∆, the preceding inequality rewrites

|∆pn−1
j+ 1

2
| ≤

(
1 +

λ

∆t

∫ tn

tn−1

∫
R
b∆(t, x)1]x

j− 1
2
,x
j+ 1

2
[(x)dx dt

)
Mn
K .

Assumption (ii) in Definition 3.6 gives therefore after an immediate induction

|∆pn−1
j+ 1

2
| ≤

(
1 +

∫ tn

tn−1
α∆(t)dt

)
Mn
K

≤
N∏

q=n−1

(
1 +

∫ tq

tq−1
α∆(t)dt

)
MN

(N−n+1)K .

But
∏N
q=n−1

(
1 +

∫ tq
tq−1 α

∆(t)dt
)
≤ e

∫ tN
tn−1 α

∆(t)dt ≤ eC by the consistency assump-
tion (ii). Thus we obtain the desired estimate: if Q > 0 is a given integer,

sup
−Q≤j≤Q

1
∆x
|∆pn−1

j+ 1
2
| ≤ eC sup

−Q−(N−n+1)K≤`≤Q+(N−n+1)K−1

|∆pN
j−`+ 1

2
|

∆x
.(3.22)

Letting ∆ → 0, N → +∞ and limn

∏
q

(
1 +

∫ tq
tq−1 α

∆(t)dt
)

= e
∫
α∆(t)dt, so that

we recover at the limit an analogue of (2.6). Thus, provided the sequence (pnj )
converges, its limit is Lipschitz continuous.

We turn now to relative compactness. The former estimate readily gives, for any
given a < b,

‖p∆(t, .)− p∆(t, .+ ∆x)‖L1(]a,b[) ≤ ∆x(b − a)eC Lip(pT ).

In the same way, we get from (3.16)

‖p∆(t, .)− p∆(t+ ∆t, .)‖L1(]a,b[) ≤ ∆x∆t(b − a)eC Lip(pT ).

Thus the sequence (p∆) is relatively compact in L1
loc(Ω), so we have convergence,

up to a subsequence, to some p which is Lipschitz continuous.
Next, p solves the backward equation. Indeed, if

p∆
t =

pnj − pn−1
j

∆t
for (t, x) ∈ T nj ,

it follows from the definition of the adjoint scheme and (3.22) that p∆
t is bounded

in L∞, so p∆
t ⇀ ∂tp in L∞ − w?. Then, we have

K∑
k=−K+1

an−1
j−k+ 1

2 ,k

pnj−k − pnj−k−1

∆x
= −

K∑
k=−K+1

an−1
j−k+ 1

2 ,k
− an−1

j−k− 1
2 ,k

∆x
pnj−k−1

×

K∑
k=−K+1

an−1
j−k+ 1

2 ,k
pnj−k −

K∑
k=−K+1

an−1
j−k− 1

2 ,k
pnj−k−1

∆x

(3.23)
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Setting (ap)∆ =
∑
j,n

∑K
k=−K+1 a

n−1
j−k+ 1

2 ,k
pnj−k1Tnj , we rewrite the second term in

the right-hand side of (3.23) as [(ap)∆(t, x)−(ap)∆(t, x−∆x)]/∆x, which converges
to ∂x(ap) provided (ap)∆ ⇀ ap. But

(ap)∆(t, x) =
K∑

k=−K+1

an−1
j−k+ 1

2 ,k
pnj−k +

K∑
k=−K+1

an−1
j−k+ 1

2 ,k
(pnj−k − pnj ) for (t, x) ∈ T nj .

The first term tends to ap in D′ by the consistency assumption on a∆ and the
bounds on p∆, the second tends to 0 because of the Lipschitz estimate

|pnj−k − pnj | ≤ K∆x eC Lip(pT ),(3.24)

and the boundedness of an−1
j−k+ 1

2 ,k
. The same trick allows us to rewrite the first

term in (3.23) as

(b∆p∆)(t, x) +
K∑

k=−K+1

an−1
j−k+ 1

2 ,k
− an−1

j−k− 1
2 ,k

∆x
(pnj−k − pnj ).

Assumption (ii) in Definition 3.6 leads to b∆ → ∂xa in the weak sense of measures,
and p∆ is a uniformly bounded Borel function, so b∆p∆ → ∂xa · p in the sense of
distributions. The second term is handled in the same way, since (3.24) holds for
any (t, x) and the remaining coefficient is a bounded measure.

So far, we proved that, up to a subsequence, (pnj )j,n converges strongly to a
Lipschitz continuous solution to (1.7). To prove that p is reversible, which will
lead by uniqueness to the convergence of the whole sequence, we remark that by
construction the adjoint scheme preserves monotonicity (Lemma 3.4). Thus, if we
split pT = pT1 − pT2 , with ∂xp

T
i ≥ 0, and denote p∆

i the discrete solution computed
by (1.9), then

(i) p∆
i → pi Lipschitz solution to (1.7);

(ii) ∂xp∆
i ≥ 0 by Lemma 3.4, so that ∂xpi ≥ 0;

(iii) p∆ = p∆
1 − p∆

2 → p = p1 − p2 by linearity.
So p is reversible by the second characterization of Theorem 2.3.

Remark 3.8. Theorem 3.7 actually gives an alternative proof for the existence of
reversible solutions to (1.7).

Theorem 3.9. Assume that the adjoint scheme is consistent and satisfies the pos-
itivity requirements (3.17). Then the sequence (µ∆) converges as ∆ → 0 in the
weak topology of M(Ω) toward the duality solution of the problem (1.1).

Proof. By its formulation, the scheme (1.9) is conservative and consequently µ∆ is
endowed with a uniform bound in M(Ω). So, up to a subsequence, we have µ∆ ⇀ µ in the weak ? topology ofM(Ω),

d

dt

∫
R
p∆(t, x)µ∆(t, dx) = 0,

which means that µ∆ converges toward the unique duality solution of (1.1). By the
classical uniqueness argument, the whole sequence is convergent.
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3.4. Convergence for the associated transport equation. This subsection is
devoted to the study of some numerical schemes for the transport equation (1.3).
We introduce some schemes which are in a way “integrated versions” of the con-
servative schemes (1.9), and prove the convergence to the duality solution to (1.3).
As a corollary, we shall recover some convergence results of the “discrete product”
of a by µ toward the product âµ.

Concerning the proofs, we shall limit ourselves to the nice case where the coef-
ficients Cnj,k defined by (3.10) are nonnegative. The Lax-Friedrichs type schemes
do not fall in this category, but for the sake of brevity, and in view of their poor
numerical behaviour, we do not wish to state the proofs here. Let us now be more
specific.

We consider the following scheme

un+1
j = unj − λ〈An

j+ 1
2
, ~∆unj 〉R2K ,

~∆unj =
(
unj+k − unj+k−1

)
k=−K+1,... ,K

,
(3.25)

and denote by u∆ the corresponding constant by cell function. We first notice that,
setting

µnj =
unj+1 − unj

∆x
,(3.26)

a simple computation shows that µnj is given by the conservative scheme (1.9).
This is the discrete analogue of Proposition 2.12. Thus, formally, we pass from
nonconservative to conservative by discrete differentiation, and interpret µnj as a
numerical approximation of (unj+1 − unj )δx

j+ 1
2

, which is related to ∂xu∆.

Theorem 3.10. Assume that the positivity and the consistency requirements of
Lemma 3.4 and Definition 3.6 are met, then the sequence (u∆) converges as ∆→ 0
toward the unique duality solution of the equation (1.3) in the strong topology of
L1
loc(Ω).

Proof. We merely give a sketch of the proof, since the arguments used here are very
similar to those in the proof of Theorems 3.7 and 3.9.

First, the scheme (3.25) is by construction endowed with a uniform BV bound,
so that the function u∆ belongs to L∞(0, T ;BV (R)) as soon as we assume the initial
sequence (u0

j)j∈Z to be bounded in total variation. We immediately deduce that the
family (u∆)∆→0 is relatively compact in the strong topology of L1

loc(]0, T [×R) and
almost everywhere convergent up to the extraction of a subsequence. Therefore,
we are done as soon as we prove that t 7→

∫
uπ dx is constant for any reversible

compactly supported π.
Therefore, as for the conservative case, we introduce the adjoint scheme by im-

posing

∀ 1 ≤ n ≤ N,
∑
j∈Z

πnj u
n
j =

∑
j∈Z

πn−1
j un−1

j .(3.27)
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A straightforward computation leads to the following scheme:

πn−1
j = πnj − λ

( K∑
k=−K+1

an−1
j−k− 1

2 ,k
πnj−k −

K−1∑
k=−K

an−1
j−k− 1

2 ,k+1
πnj−k

)
=

K∑
k=−K

Cn−1
j−1,kπ

n
j−k.

Under the boundedness and nonnegativity requirements on Cn−1
j−1,k, this scheme

is clearly bounded in L∞ and preserves nonnegativity. Since the corresponding
constant by cell function π∆ is L∞ bounded, up to a subsequence, π∆ converges to
some π in L∞−w?. The consistency requirements imply that π solves the backward
equation (2.1), as in the proof of Theorem 3.7. Finally, π is reversible, since the
positivity is preserved, and using the third characterization in Theorem 2.6.

Passing to the limit in (3.27), we obtain that u∆ converges to the duality solution.

Corollary 3.11. Set (aµ)∆(t, x) =
∑

j,n〈An
j+ 1

2
, ~µn
j+ 1

2
〉R2K1Tnj (t, x). Then, under

the assumptions of Theorem 3.10,

(aµ)∆ −→ a ∆ µ = âµ in D′(Ω).

Proof. First notice that u∆
x ≡

∑
j,n(unj+1 − unj )/∆x1Tnj converges in D′(Ω) to ∂xu,

and that, by Proposition 2.12, ∂xu solves (1.1) in the sense of duality. On the
other hand, by construction, µ∆ defined by (1.9) tends to µ, which is also a duality
solution to (1.1). Since, at t = 0, µ(0, ·) = ∂xu(0, ·), we have by uniqueness µ = ∂xu.
This justifies the “discrete differentiation” of the scheme.

Finally, we notice that u∆
t ≡

∑
j,n(un+1

j −unj )/∆t1Tnj converges in D′(Ω) to ∂tu.
But, on the one hand, by definition of the flux, ∂tu = −a ∆ µ = âµ, and on the
other hand, u∆

t = −(aµ)∆ by construction of the scheme. Thus we are done.

4. Some classical examples

The aim of this section is to illustrate the preceding results on a few examples
from the usual literature. Obviously, we do not pretend to exhaustivity. In the
following, we choose for anj

anj =
1

∆x∆t

∫ ∫
R+×R

a(t, x)1Tnj dx dt.(4.1)

This is justified and natural since the only assumption on a is an L∞ bound.

Remark 4.1. Notice that for the function ā∆(t, x) =
∑
j,n a

n
j 1Tnj (t, x) converges

a.e. to a and is bounded in L∞, so that ā∆ ⇀ a in L∞ − w?. Moreover, since for
a.e. t, ∂xa(t, .) is a locally bounded measure, we have for a.e. x

a(t, x) − a(t, x−∆x) =
∫ x

j+ 1
2

x
j− 1

2

∂xa(t, dξ) ≤ ∆xα(t).

Thus ∀ j ∈ Z and a.e. t ∈]tn, tn+1[, anj − anj−1 ≤ ∆xα(t), and also (anj − anj−1)+ ≤
∆xα(t)(α in (1.2) can always be chosen nonnegative).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1004 LAURENT GOSSE AND FRANÇOIS JAMES

4.1. Lax-Friedrichs type schemes. The most encountered first-order discretiza-
tions belonging to this family correspond to constant values for the viscosity coeffi-
cient εn

j+ 1
2
. We first give a general consistency result. We recall from the preceding

section that we have

An
j+ 1

2
=

1
2

(
anj +

εn
j+ 1

2

λ
, anj+1 −

εn
j+ 1

2

λ

)
.

This choice leads to the following coefficients:

Bnj,−1 = Cnj,−1 =
λ

2

(
anj+1 +

εn
j+ 3

2

λ

)
,

Bnj,0 = 1− εnj+ 1
2

+ εnj− 1
2
,

Cnj,0 = 1 +
λ

2
(
anj+1 − anj

)
− εnj+ 1

2
,

Bnj,1 = Cnj,1 = − λ

2

(
anj −

εn
j− 1

2

λ

)
.

Lemma 4.2. The Lax-Friedrichs type schemes (3.1) are weakly consistent in the
sense of Definition 3.6 under the condition

∃M > 0, ∀ 0 ≤ n ≤ N, j ∈ Z, − εnj+ 1
2

+ 2εnj− 1
2
− εnj− 3

2
≤M∆x.

(4.2)

Proof. We have, for (t, x) ∈ T nj , a∆(t, x) = 1
2 (anj +anj+1), which tends to a in L∞w?

by construction of the anj ’s, so that the first requirement of Definition 3.6 is met.
Next, for (t, x) ∈ T nj , a simple computation gives

b∆(t, x) =
1

2∆x

[
(anj+1 − anj ) + (anj − anj−1) +

1
λ

(−εj+ 1
2

+ 2εj− 1
2
− εj− 3

2
)
]
.

From condition (4.2) and Remark 4.1, we obtain that b∆ satisfies the second re-
quirement of Definition 3.6, with α∆ = α+M/(2λ). This concludes the proof.

We are going to state two convergence theorems. The first one is a direct con-
sequence of the general results of the previous section, but needs a restrictive CFL
condition. In order to relax this assumption, we have to strengthen the constraints
on εn

j+ 1
2
. We present the proofs of these results for the sake of completeness, but

we do not wish to search for optimal conditions, since there is a numerical evidence
of the bad quality achieved by Lax-Friedrichs type schemes in this context (see
Section 5).

Proposition 4.3. The scheme (3.1) converges toward the duality solution of (1.1)
as ∆→ 0, under the consistency condition (4.2), provided (4.1) is chosen and the
following conditions are met:

∀(j, n) ∈ Z× N, λ|anj | ≤ εnj± 1
2
≤ 1, λ(anj − anj+1)/2 ≤ 1− εnj+ 1

2
.(4.3)

Proof. The proof is an immediate consequence of Theorem 3.9, since the conditions
in (4.3) exactly imply the positivity requirements on the coefficients Bnj,k and Cnj,k.

The second requirement of (4.3) cannot be met if, for instance, εn
j+ 1

2
≡ 1 and

x 7→ a(x, t) is a decreasing function. To fix this drawback, we also propose an
alternative result:
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Proposition 4.4. The scheme (3.1) converges toward the duality solution of (1.1)
as ∆→ 0, under the consistency condition (4.2), provided (4.1) is chosen and the
following conditions are met:

∀(j, n) ∈ Z× N, λ|anj | ≤ εnj± 1
2
≤ 1, εnj+ 1

2
≡ εn.(4.4)

Proof. First we notice that (4.4) implies Bnj,k ≥ 0, so that Lemma 3.3 applies.
However, as noticed before, we do not haveCnj,0 ≥ 0. We have therefore to prove first
that the discrete Lipschitz estimate holds, then that we can recover monotonicity
preservation.

Concerning the Lipschitz estimate, we have from (3.13) that

∆pn−1
j+ 1

2
=
λ

2

(
an−1
j+1 +

εn−1
j+ 3

2

λ

)
∆pnj+ 3

2
+
[
1 +

λ

2
(an−1
j+1 − an−1

j )− εn−1
j+ 1

2

]
∆pnj+ 1

2

− λ

2

(
an−1
j −

εn−1
j− 1

2

λ

)
∆pnj− 1

2
.

Using the first requirement in (4.4), we can write

|∆pn−1
j+ 1

2
| ≤ λ

2

(
an−1
j+1 +

εn−1
j+ 3

2

λ

)
|∆pnj+ 3

2
|+
∣∣∣∣1 +

λ

2
(an−1
j+1 − an−1

j )− εn−1
j+ 1

2

∣∣∣∣ |∆pnj+ 1
2
|

− λ

2

(
an−1
j −

εn−1
j− 1

2

λ

)
|∆pnj− 1

2
|

≤
[
λ

2

(
|an−1
j+1 −an−1

j |+(an−1
j+1 −an−1

j )
)

+
(

1− εn−1
j+ 1

2
+
εn−1
j+ 3

2
+ εn−1

j− 1
2

2

)]
Mn

1 ,

with the notations of Theorem 3.7. We have for a.e. t
1
2
(
|an−1
j+1 − an−1

j |+ (an−1
j+1 − an−1

j )
)

= (an−1
j+1 − an−1

j )+ ≤ ∆xα(t).

We can proceed as in the proof of Theorem 3.7 if for all j

εn−1
j+ 3

2
+ εn−1

j− 1
2
≤ 2 εn−1

j+ 1
2
.

An easy computation shows that this is possible only if the sequence is constant,
because εn−1

j+ 1
2
≥ 0. If the second condition in (4.4) holds, we have therefore

|∆pn−1
j+ 1

2
| ≤

(
1 +

∫ tn

tn−1
α(t) dt

)
Mn

1 ,

and we obtain the final estimate exactly as in the proof of Theorem 3.7.
So far, we know that, up to a subsequence, p∆ tends to p, Lipschitz solution to

(1.7). Now we want to prove that p is the reversible solution. Since the scheme
does not preserve monotonicity a priori, we have to be a bit more careful.

We have by (3.13) and (3.12)

∆pn−1
j+ 1

2
=

K∑
k=−K

Bn−1
j,k ∆pnj−k+ 1

2
+

K−1∑
k=−K

λ
(
an−1
j−k+ 1

2 ,k+1
− an−1

j−k− 1
2 ,k+1

)
∆pnj−k+ 1

2
.

(4.5)
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First consider (4.5) for n = N . Assuming ∆pN
j+ 1

2
≥ 0 for all j’s (which is achieved

by a suitable discretization if ∂xpT ≥ 0), since BN−1
j,k ≥ 0, we have

∆pN−1
j+ 1

2
≥ λ

(
aN−1
j−k+ 1

2 ,k+1
− aN−1

j−k− 1
2 ,k+1

)
∆pNj−k+ 1

2
.(4.6)

But, by (3.20), supj |∆pNj+ 1
2
| = O(∆x), and, on the other hand, |aN−1

j−k+ 1
2 ,k+1

−
aN−1
j−k− 1

2 ,k+1
| ≤ C since the coefficients are bounded. This implies that the right-

hand side of (4.5) is larger than a O(∆x).
We proceed now by induction, and assume that for some n ≤ N , infj ∆pn

j+ 1
2
≥

O(∆x). The first term in the right-hand side of (4.5) is larger than a O(∆x) since
Bn−1
j,k ≥ 0 and

∑
k B

n−1
j,k = 1. The second term is treated exactly as above, since

the Lipschitz estimate gives for all n’s

sup
j∈Z
|∆pnj+ 1

2
| ≤ sup

j∈Z
|∆pNj+ 1

2
| = O(∆x).

We can conclude now, because if we set for (t, x) ∈ T nj , p∆
x ≡ ∆pj− 1

2
/∆x, then,

up to a subsequence, p∆
x ⇀ ∂xp in L∞ − w? as ∆ → 0, so that the limit p of p∆

satisfies ∂xp ≥ 0.

4.2. Upwind schemes. From the expression (3.2), one sees that the keypoint is in
the determination of the vector An

j+ 1
2

once the anj ’s are fixed. The simplest choice
is as follows:

An
j+ 1

2
=
(
(anj )+, (anj+1)−

)
.(4.7)

This scheme can be interpreted as an adaptation of the classical Engquist-Osher
scheme [13] to the linear case. One notices that the corresponding scheme is not
consistent with the continuous problem in the usual sense of Taylor expansions as
soon as the coefficient a encounters a change of its sign. Anyway, we have the
following consequence of Theorem 3.9.

Proposition 4.5. The upwind discretization given by (3.2), (4.7) is consistent with
the continuous equation (1.1) provided (4.1) is chosen. Moreover, it converges
toward its unique duality solution as ∆ goes to zero under the CFL condition:

∀(j, n) ∈ Z× N, λ|anj | ≤
1
2
.(4.8)

Proof. We check the sign of the following coefficients:
Bnj,−1 = Cnj,−1 = λ(anj )+ ≥ 0,
Bnj,0 = 1 + λ[(anj )− − (anj )+],
Cnj,0 = 1 + λ[(anj+1)− − (anj )+],
Bnj,1 = Cnj,1 = −λ(anj )− ≥ 0.

The second and third expressions are positive under the restriction (4.8). On the
other hand, the consistency requirements of Definition 3.6 are met with for instance
α∆ = 2α.
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According to [11, 12], another possibility is to use the following average values
which correspond to Vol′pert’s superposition product [30] (or the straight lines
regularization in [9]):

An
j+ 1

2
=

(
(anj + anj+1)+

2
,

(anj + anj+1)−

2

)
.(4.9)

We shall consider more general upwind schemes defined by, for any given number
θ ∈ [0, 1],

An
j+ 1

2
=
(
((1− θ)anj + θanj+1)+, ((1 − θ)anj + θanj+1)−

)
.(4.10)

This definition has to be compared with the last assertion of Theorem 2.15. The
definition of the scheme defines in some way the value of a everywhere, and for
θ ∈ [0, 1] this is coherent with (2.13).

Proposition 4.6. The upwind discretizations given by (3.2), (4.10) are consistent
with the continuous equation (1.1) provided (4.1) is chosen. Moreover, they con-
verge toward its unique duality solution as ∆ goes to zero under the CFL condition

∀(j, n) ∈ Z× N, λ|anj | ≤
1
2
.(4.11)

Proof. In this case, we have the following quantities:
Bnj,−1 = Cnj,−1 = λ((1 − θ)anj + θanj+1)+ ≥ 0,
Bnj,0 = 1 + λ[((1 − θ)anj−1 + θanj )− − ((1 − θ)anj + θanj+1)+],
Cnj,0 = 1− λ|θanj+1 + (1− θ)anj |,
Bnj,1 = Cnj,1 = −λ((1 − θ)anj−1 + θanj )− ≥ 0.

The second and third expressions are positive under the restriction (4.11). The two
consistency requirements of Definition 3.6 are again met for α∆ = 2α.

We mention a variant of the preceding schemes, which is used by Olazabal [24]
and Godlewski et al. in [15]. They consider the convex nonlinear equation (1.4) with
an entropy initial datum, for which a Roe type scheme is used. In this context,
it is well-known that the scheme converges almost everywhere toward the entropy
solution of the problem; moreover it satisfies a uniform discrete one-sided Lipschitz
condition (see [7]). Next, they linearize this equation, obtaining (1.5), and propose
the following “linearized Roe scheme” to solve it. Let us denote by ā a Roe linearized
of f , and set ān

j+ 1
2

= ā(unj , u
n
j+1). Then the scheme is exactly the preceding one,

with ān
j+ 1

2
playing the same role as an

j+ 1
2
. Thus

An
j+ 1

2
=
(
ā(unj , u

n
j+1)+, ā(unj , u

n
j+1)−

)
.(4.12)

The stability analysis (nonnegativity of Bnj,k, C
n
j,k) follows exactly as before. Con-

cerning the consistency, the strong convergence of unj implies the convergence of
a∆, and the one-sided Lipschitz property provides the required bound on b∆.
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5. Numerical results

In this section we illustrate the behaviour of the four schemes studied in Section
3 on five test cases. For three of them (subsections 5.1, 5.2 and 5.3), uniqueness
is ensured, and all the schemes converge toward the duality solution. Then, con-
sidering the associated transport equation, one can compute explicitly the exact
solution. In the last two cases (subsections 5.4 and 5.5), uniqueness does not hold,
and it is clearly evidenced that each scheme chooses its own solution.

All the computations have been performed using a CFL condition of 1
2 , except

the last case, where other values are interesting to consider. In all the figures, we
shall have the following conventions.

upw upwind scheme (3.2)
EFO modified upwind scheme (4.9)
LxF standard Lax-Friedrichs scheme (εn

j+ 1
2
≡ 1)

Tad modified Lax-Friedrichs scheme (εn
j+ 1

2
≡ 1

2 )

Finally, the numerical approximation of a Dirac mass has been chosen as 1/∆x on
the appropriate cell.

5.1. Approximation of a Dirac mass in the compressive case. We consider
here a(t, x) = − sgn(x− 1

2 ) for all t. The initial datum is µ0(x) = 1x≤ 1
2
. In this case,

the exact solution is 1
2δx= 1

2
. We choose ∆x = 0.002. The approximate solutions

are displayed in Figure 1 and we also present the numerical primitives in Figure 2
in order to show that the weight of the Dirac mass is correctly computed.

Figure 1. Numerical solutions in the case a(t, x) = − sgn(x− 1
2 )
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Figure 2. Numerical primitives in the case a(t, x) = − sgn(x − 1
2 )

Figure 3. Upwind schemes in the case a(t, x) = x− 1
2 for ∆x = 0.02, 0.002, 0.0005
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5.2. Lipschitz expansive coefficient and smooth initial datum. We turn
now to a smooth coefficient a(t, x) = x − 1

2 for all t, and µ0(x) = sin(πx)1x∈[0,1].
The exact solution is given by

µ(t, x) =
µ0(x+ t

2 )
1 + t

.(5.1)

This example clearly evidences the lack of “strong” consistency in this theory. In-
deed the Engquist-Osher upwind scheme (4.7) exhibits a spurious spike at the point
where a changes sign. This spike is concentrated on one cell, and is of bounded
amplitude. Thus we clearly have only a weak convergence. A similar phenome-
non was observed by Engquist and Runborg in the simulation of two-dimensional
geometrical optics (see [14]). The modified version proposed in [12, 11] is better
suited in this case. The Lax-Friedrichs type schemes behave in the same way as
the scheme (4.9), so that we only display the results for the upwind type schemes.
The solution is given at time T = 3 in Figure 3.

5.3. Lipschitz expansive coefficient and Riemann initial datum. We keep
on using a smooth coefficient a(t, x) = x− 1

2 for all t, but we consider now a Riemann
initial datum µ0(x) = 1x≤ 1

2
. The exact solution is again given by (5.1). We display

the results obtained by both upwind schemes (4.7) and (4.9) with ∆x = 0.002
in Figure 4. The solution is given at time T = 3 and is free from any spurious
oscillation or numerical diffusion.

However, considering the results obtained by the LxF schemes displayed in Figure
5, one notices an excessive numerical dissipation creating an artificial profile which
length shrinks to zero as ∆x → 0. Moreover, the approximate solution generated

Figure 4. Numerical solutions with upwind schemes in the case
a(t, x) = x− 1

2

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



APPROXIMATION OF LINEAR CONSERVATION EQUATIONS 1011

Figure 5. Numerical solutions with LxF schemes in the case
a(t, x) = x− 1

2 and ∆x = 0.002, 0.0005

by the LxF scheme is endowed with oscillations whose amplitudes decrease also to
zero as we refine the grid.

5.4. Spreading of a Dirac mass by a rarefaction. We turn now to the nonuni-
queness cases starting with the conservative version of the first example presented
in [2, Section 3.1]. This corresponds to the following problem:

a(t, x) =


−1 if x− 1

2 ≤ −t,
x− 1

2

t
if − t ≤ x− 1

2 ≤ 0,

0 if x− 1
2 ≥ 0,

with the initial datum µ0(x) = δx= 1
2
. For any ϕ ∈ BV (]− 1, 0[) we define for t > 0

u(t, x) =


−1 if x− 1

2 < −t,

ϕ(
x − 1

2

t
) if − t < x− 1

2 < 0,

0 if x > 0.

Then µ = ∂xu belongs to SM for any T > 0 and solves (1.1) in ]0,∞[×R.
Two computations are displayed here at time T = 0.1, the first on a medium

mesh (∆x = 0.002), the second on a refined mesh (∆x = 0.0005). The first remark
is that the solution generated by the standard Lax-Friedrichs scheme is highly
oscillating, while Tadmor’s modification behaves nicely (see Figure 6). The Dirac
mass is spread in a more or less symmetric way. The upwind type schemes are not
displayed here: they give a good approximation of a solution which is the Dirac
mass at x = 1

2 .
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Figure 6. Numerical solutions for a rarefaction, LxF schemes,
∆x = 0.002

Figure 7. Numerical primitives for a rarefaction with ∆x = 0.002, 0.0005
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It is more interesting to show the primitives of the solutions, especially to un-
derstand the behaviour of the schemes when we refine the mesh (see Figure 7).
It becomes clear that, on the medium grid, the most important phenomenon for
Lax-Friedrichs type schemes is the numerical diffusion. Indeed, since the velocity
on the right is zero, no information should be present for x > 1

2 , and the profiles
are symmetrical. When refining the mesh, this phenomenon disappears, but it is
not clear at all that the schemes converge to the Dirac mass at x = 1

2 ; it is not even
clear that they converge to the same solution.

5.5. Spreading of a Dirac mass by a wildly expansive coefficient. By a
wildly expansive coefficient, we mean a discontinuous coefficient which does not
satisfy the OSLC condition (1.2). A typical example is

a(t, x) = sgn(x− 1
2

),

and we take for initial datum µ0 = δx= 1
2
. First we present a set of numerical

solutions with ∆x = 0.0025, and ∆t = 0.001 in Figure 8. When refining the grid,
the oscillations in Lax-Friedrichs remain as it might be expected considering the
proof of Proposition 2, where the role of the OSLC condition is crucial.

Next, we play with the value of the Courant number for the modified Tadmor
scheme [27]. It turns out that each CFL number determines a spreading of the
Dirac mass, which clearly illustrates the lack of uniqueness in this problem (see
Figure 9).

Figure 8. Numerical solutions with a(t, x) = sgn(x− 1
2 ) and ∆x = 0.0025
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Figure 9. Numerical primitives with a(t, x) = sgn(x − 1
2 ) and

∆x = 0.002, 0.004, 0.006
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