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Abstract. It is often the case that the numerical simulation of two phase flows leads to a

number of difficulties associated with the solution algorithms utilized. Those difficulties

manifest themselves as an impossibility to converge the iterative solution process, typical of

the finite-volume pressure-correction methods, and are particularly persistent in cases with

phase segregation (complete, or almost complete, separation of one phase from the other)

and with fine meshes. A number of effective measures to overcome such problems are here

proposed and tested, encompassing: (1) modification of the momentum equations

formulation in a way that avoids singularity as volume fractions tend to zero; (2) bounding

of the volume fractions during the iterative algorithm in a way that enforces the physical

limits,  and ; (3) symmetric treatment of some terms in the equations, and� �} � | �
consistent formulation of cell-face fluxes in order to prevent numerical-induced oscillations.
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1 INTRODUCTION

 Numerical modelling of two phase flows using the Eulerian approach is one in which both

phases are treated as interpenetrating continua and suitably averaged momentum equations

are solved for both . In this study we examine, from a numerical perspective, the behaviour1

of a typical finite-volume algorithm for the solution of the Eulerian equations for two phase

flow. By “typical” we mean pressure-based, iterative algorithms similar to that described in

previous work , which in many ways descends from the early IPSA algorithm of Spalding .2 �

Recent representative applications of that type of algorithm are given in the work of refs. .4,5

 Experience with iterative two-phase flow algorithms (for example ) has invariably led to�

numerical problems, especially when there is segregation of the phases or when recirculation

zones occur. In practical terms the outcome is the impossibility to converge the iterative-like

procedure used to solve the sets of discretized equations. Often convergence is hindered due

to the inability to solve the equations to the prescribed tolerance in only a few problematic

cells of the mesh, but the solution is otherwise achieved in most of the computational domain.

Lack of robustness is also observed when the computational grid is refined.

 The purpose of this work is to investigate some of the key numerical issues which affect

the robustness of two-phase algorithms and to devise and test various procedures designed to

improve algorithm performance. In particular, the following issues have been studied:

 • Behaviour of the velocity field for each phase as the volume fractions go to zero. The

standard formulation for the momentum equations become singular in that limit, so the

resulting velocities can fluctuate widely in the regions where volume fractions tend to vanish.

This causes numerical problems, especially at the boundary between regions of segregated

phases.

 • Boundedness of the volume fraction field, especially as the volume fraction tends to one

of its physical limits (zero or one). This issue is related to the choice of equations solved to

obtain the volume fractions, as will be discussed in the paper.

 • Behaviour of the algorithm with mesh refinement. One of the important requirements of

a generally applicable algorithm is "robustness", when fine computational meshes are used to

obtain numerically resolved solutions.

 • Capability of the algorithm to handle phase segregation.

 The proposed remedies have been tested and verified for several test cases which exhibit

the flow features above and the results of these tests are presented.

2 DIFFERENTIAL EQUATIONS

 In this section the standard form of the averaged momentum equations comprising the

Eulerian two-fluid model for two-phase flows are given first, and then the steps required to

obtain a working set of equations, after division of each by its volume-fraction, are explained.

The final form of the governing equations are listed at the end of the section.



Paulo J. Oliveira and Raad I. Issa

3

2.1 Basic governing equations

 The basic averaged equations are those representing conservation of mass and momentum

for each phase  (  for continuous and  for dispersed):� � �

     0 (1)
C
C!
� �� � �] c yII ""

      (2)
C
C!
� � � � � � �� � �� � � � � � � � �"" II "" "" II ;; �� 44] c i y c ] ] 

The averaging procedure and the resulting equations  are by now relatively well established1

although some differences may arise due to the detailed treatment of the interphase terms. In

Eqs. (1) and (2)  is a phase averaged velocity,  is a volume fraction, and both phases are"" �

assumed to have a constant density . The total stress tensor is decomposed into an isotropic�

pressure term and an effective (molecular turbulent) deformation stress as:]

  ;;� ��    (3)y ^ � ]�� ��

The interface momentum transfer term can be decomposed into drag, virtual mass and an

interface-average stress contribution, denoted by a corresponding superscript, as:

 44 44 44 44� � � �
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 � � ��� k

where the symbol ^ denotes the other phase. Other interface forces are known to arise and be

significant in some circumstances, such as lift or history forces, but their effect on the

numerical behaviour of the algorithm has not been considered here. Furthermore, since the

objective was to study numerical aspects of the solution procedure, simple models have been

used for the phasic interactions, although they assume the usual forms which lead to

numerical difficulties. The drag was assumed to follow the standard curve for drag around a

sphere of diameter , namely 24 Re (Re ) with 1 0.15 Re  and� * y  « ®� � y ]� � � �D
0.687

Re . Also , the instantaneous drag gives rise to a turbulent drag term,� � �� �y " � «� � 6,7

proportional to the eddy diffusivity (  with ) in Eq. (5).� � � �� �
!y « y �»��� �



Paulo J. Oliveira and Raad I. Issa

4

2.2  Alternative form of the equations

 As mentioned earlier, in the limit of , the momentum equation for phase  becomes��S� �
singular. Division of the momentum equations by  lead to well-behaved velocity fields in��

the limit of vanishing velocity of the other phase; in the absence of flow-induced

accelerations, the velocity of either phase will then tend to the corresponding “terminal

velocity”. If the momentum equations (2) are expressed in non-conservative form (by

differentiating the convection terms) and then divided by  we obtain:��

   k   ^� � � �� � � ��
Z

� � � � � �
D  
D
"" II� �

�!
y ^ � ] c ^ ] 2 ] *  ^ ® ]II II II �� ^̂ "" ""��

2
3

 ^�
�

(8)

    ^] *  ^ ®� �� #��

D  D  
D D
"" ""^
� �

! !
where

     . (9)2 y ^ � ^ � ® ] *� ��� � ��

In Eq. (8) it is assumed that , but a difference between the average phase stress and� �� ��y
its interfacial average could be included. The effective stress is linearly related to the strain

rate via a Boussinesq relationship, with the effective viscosity being the sum of molecular and

turbulent contributions (to be obtained from the k-  turbulence model). In arriving at Eq. (8)�

the stress was decomposed as:

 �� �� ��� �
Z
� �     k  (10)y ^ 2

3
�

with

 �� ��
Z ;
� ��

��
� �    (11)y  ] ^ c ®� II"" II"" II ""

2
3

The normal turbulent stress is written separately (using the stress deviator ) because it is an��
ZZ

important factor for phase dispersion and may be subjected to specific numerical treatment.

 It is noted that the simplifications leading to Eq. (8) were possible because the interface

forces (drag, Eq. (5), and virtual mass, Eq. (6)) were assumed to be proportional to the

product of both volume fractions, . Not all authors make that assumption, but there are^� �� �

physical arguments to justify it. A consequence of the present manipulation is that the only

problematic term remaining, when , is the interface term being proportional to .� � ��S� I «
It is required that the gradient of  goes to zero faster than , as .� � �S�

2.3  Special symmetric treatment of terms

 In arriving at the final form of the momentum equations, from Eq. (8), two terms deserve

special attention so that the resulting equations remain symmetric in relation to either phase.

We deal first with the gravity term and then with the normal stress term.

 It will generally be assumed that the same static pressure acts in both phases, . The� y ��

gravity terms in the above equations are usually written in terms of a buoyancy term
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appearing solely in the dispersed phase equation, after subtracting the weight of the continuos

phase from the static pressure. This manipulation leads to modified pressure gradient and

body-force terms of the form (prior to division by the volume fraction):

 continuous phase: -^ ���II
(12)

 dispersed phase:   (with -^ � ^ y ^ ®� � "� "� � �� � � �II ��      

where     constant  (  is the direction vertically upwards and  is the-� y � ^ & ] & ����� 

magnitude of gravity). When there is no reason to treat one of the phases differently from the

other, such as in separated flow regimes (stratified flow, for example), it is better to use a

symmetric treatment and define the modified pressure as:

 II II ��� y � ^ y ]-        (with ) (13)� � � � � �� � �� c d

A manipulation similar to that above leads now to modified pressure gradient and body-force

terms of the form (prior to division by the volume fraction):

 continuous phase:  -^ � ]� � � "�� �II ��d  

(14)

 dispersed phase:   -^ � ^� � � "�� � �II �� 

The advantage of this new modified pressure is that  will not suffer any change of slope-�
across a stratified flow.

 In what relates to the turbulent normal stress term (the k terms in Eq. 8), they can�«� I�
be included into a modified pressure in a symmetric way similar to that for the gravity terms

above. The original momentum equation has terms of the form:

  k^ � ^� � �� � ��II II
2
3

where it is assumed that the densities  are constant. Define the modified pressure as:��

 II II II II� y � ]  ]-    k k ) (15)2
3 c d� � � �� � ��

where the turbulent kinetic energies of the continuous and dispersed phases are  and k ,�� �

respectively. These are related to each other in the turbulence model employed in this work

by k C k . Then the relevant terms in the equations become:� �y k

 continuous phase:   k k-^ � ^  ^ ®� � � � �� � � �� �II IId
2
3

 dispersed phase:   k k (16)-^ � ]  ^ ®� � � � �� � � � �� �II II
2
3
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2.4  Final equations

 After inserting the symmetric treatment just explained for the gravity and normal stress

into the momentum equations, we arrive at the following working form of the various

governing equations.

 Momentum equation for the continuous phase

      k k      � � � � � "�� � � �
Z

� � � � �
D  
D

"" II� �

�!
y ^ � ] c ^ ^ ] ] 2 ]II II II ����

2
3

4 5  
�
�

(17)
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!
D  

D

""�

!

 Momentum equation for the dispersed phase:

      k k     � � � � � "�� � � �
Z

� � � � �
D  
D

"" II� �

�!
y ^ � ] c ] ^ ^ 2 ]II II II �� ^̂��

2
3

4 5   
�
�

(18)

     ] *  ^ ® ] *  ^ ®� � �� � � � � #��"" ""
D  D  
D D

"" ""� �

! !

with:   (here it is assumed that ) .2 y 2 y * « � y �� � �
!

�� �� ��
 Continuity equation for the continuous phase:

     0 (19)
C
C!
� �� � �] c yII ""

 Continuity equation for the dispersed phase:

     0 (20)
C
C!
� �� � �] c yII ""

 Equation of phase compatibility:

     (21)� �� �] y �

 Turbulence modelling is not the issue under study here, hence the equations governing the

transport of turbulent kinetic energy (k k ) and its dissipation rate ( )  are merelyy y� �� � 6,7

stated below. They are:

  k  G   (22)� � �� �
Dk
D

 
!
y c ]  ^ ® ] :II II

�

�

!

k
k

    C G C   (23)� � �� �

D
D k
� ��
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!
y c ]  ^ ® ] :II II
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�� 1 2 �
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where the source terms are:

  2k C 1        (mean slip velocity, (24): y *  ^ ® ] * c y ^ ®k i c�� � � � � �
�
� �

�!
�

��

II
"" "" "" ""

for the kinetic energy, and

 2C C 1  (25): y *  ^ ®� 3 i��� �

for the dissipation rate, and where C     (covariance or interactioni y c « c"" "" "" ""Z
�

Z Z Z
� � �

coefficient). It is noted that the C 1 -term in these dispersed-phase-related terms should ^ ®i

be treated implicitly if C 1 (case of solid particles in a gas); otherwise (gas bubbles in ai z
liquid, C 1), it should be left on the right-hand-side of the equations. The dispersed phasei {
turbulent kinetic energy and viscosity are related to the continuous phase ones by means of

response functions:

 k C  k    and      C  � �
! !
� �y yk � ��

with:

 C k ,      and  .� � � � � � � � � �! �� ! !
� � � � � � ��

��
�y « y ] y  ] ®� d

In this work we have used C 1,  C 1, C =0 (no turbulent modulation terms) and C� y yi k3

followed an expression given by ref. 6:

 C C , with C  ,  1 2 )k tt
2y y y  ]

3

1 2

]
] ] « !

!�
� � � �

�

d c
� �

�

�

�

where  is a time scale of the large eddies (typically C k , with C 0.4) and  is the! ! y « y !� � � �� �

"particle" relaxation time ( 1 , with 0.5).! y  «* ® ] * « ® * y� � #� #�� � �� � �

3 DISCRETISED EQUATIONS

 In this section the discretised form of the governing equations, which is based on a

standard finite-volume method, is given. The methodology developed to ensure that the

volume fractions remain bounded is then presented. This is a key point of the work and one

that has received little attention in the past, albeit being essential to ensure robustness of the

numerical method.

3.1 Momentum equations and fluxes

 A non-staggered mesh arrangement is utilised, following previous work . All variables are2

stored at the centre of the control volumes over which the governing equations are
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integrated, resulting in sets of linearised algebraic equations of the form8,9

� y / ® ] :7 7� � � which are then solved with conjugate gradient methods for linear-

equation sets. The discretised cell-centered momentum equations, with implicit treatment of

drag and virtual mass, is written in simplified 1-D fashion as:

         ^ ^� " y /"® ^ ) ¯ �° ^ = 2 ] * " = ]7 7 7 7 7 7 � 7 77" �
¯ °"�

�

 7

7

(26)

     ^ ^ ^ ^]  ® " ] : ] * � " ^ " ®
�

�

Z=
! 7

�
7 � -" 7 #� 7 -� � �

-

9

with

       ^� y � ]  ® ] * =7
�
-

- 7 � 77

�

�

Z=
!

�

        (diffusion and -corrected convection contributions) (27)� y � ] � = 4-  - -
: 9

     ./"® y � "�
-

- -

In these equations,  is an effective density corrected for virtual mass^� � � � �Z
#� �� � ] * « ®

effects,  is the cell in question,  are the neighbouring cells (6 in a general 3D problem, 4 in7 -

2D), and is the source term containing all contributions not explicitly written (such as:" 

buoyancy and normal turbulent stress terms, for example). Note the conservative and

consistent formulation of the virtual-mass term, based on the convective coefficients of the

other phase (here evaluated with volumetric flow rates).  is the volume of a cell,  are= )7 7

cell surface areas and  the time step.�!
 Convection fluxes at a cell face ( , between  and ) are evaluated with face velocities ~� 7 - "�
defined from a  a special Rhie-Chow interpolation practice , as:2

� " y /"® ^ ) ¯ �° ^ = 2 ] * " = ]  ® " ] :
^

7 � � � � � � � � "� ��

�         (28)~ ~^ ^
~

" �
¯ ° =

!

"�

� �

� �

7

Z

where the overbar denotes arithmetic average; the virtual-mass term is embedded into the

source term. Note that the gradient of  is evaluated directly at the cell face  (and not by� �
averaging) and thus oscillations in  will be avoided.�

3.2 Bounding of  and the various forms of the continuity equation��

 The volume fractions are obtained from solution of one of the continuity equations, either

Eq. (19) or (20). The important question is how to ensure boundedness of , i.e. � �� | | ��

for  or . Early studies of this issue are found in Carver .� y � � y � 10
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 3.2.1 Standard method

 One of the continuity equations, typically that for the dispersed phase Eq. (20), is

discretised and solved as a transport equation for . This equation is written in the� �� �

linearised form:

      (29)� y /  ® ] :� �
�7

� �7

with coefficients and source terms given by:

          f      f    (f Max(f,0), f Min(f,0))/  ® y � � y ^ � y ] � �� � � �� ��
-

- - � - �- ] ] ^ ^

^ ] ] ^

        (30)� y � ] ] I c "®� �
7 -

�
-

�

�

=
!

]

      : y ^ I c "® ]�

�

^ � �=
!

� �
7 7

 A positive cell neighbour or face is here denoted  or  (e.g. east, north and top), and a- �] ]

negative cell neighbour and face by  and  (e.g. west, south and bottom). The upwind- �^ ^

scheme is used to represent the convective fluxes  “f” (higher order methods are also

possible). The other volume fraction is then obtained from Eq. (21), 1 . A� �� �y ^
consequence of upwinding is that all coefficients in Eq. (30) are positive so this method

guarantees that  is bounded by zero ( 0) but does not guarantee boundedness by 1.� �� � }

 3.2.2 Two-equation method

 With this approach both phase continuity equations are solved separately for the two

phase fractions. Since it is easy to bound both volume fractions from below (  and�� } �
�� } �) using the standard discretisation schemes with the upwind scheme, and since

� � � �� � � �] y 1, then both  and  will be bounded by 1 at convergence. In order to exactly

enforce this constraint, the volume fractions obtained from solution of Eqs. (19) and (20),

denoted  and , are corrected by a factor  as:� � pd d
� �

       and       (31)� p � � p �� �
d d
� �y y

Now, since , hence:� �� �] y �

    1 . (32)p � �y « ] ®d d
� �

 Spalding  used a similar correction in early developments of his IPSA method but appear3

to have abandoned it later. A minor point against this method is that it requires solution of

two continuity equations. However, due to upwinding, these equations are extremely easy to

solve and often one iteration of the CGS solver is sufficient to reduce the initial residuals to

below 0.5%. A second point is that the process is iterative in nature with convergence only
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attained as . This is not an issue in steady state calculations where iteration is utilised, andpS�
is only a consideration in time-dependent applications.

4 RESULTS

 The reformulated momentum equations of section 2 and the new method for obtaining the

volume fractions discussed in section 3 have been implemented in a computer code. This

code is the same used in previous work  and is based on the finite-volume method in non-2

staggered meshes. We can then compare the numerical behaviour of the “new” against the

“old” formulation , especially in terms of convergence rate, robustness with mesh refinement,2

and capacity to handle a wide range of volume fractions in a given problem. The following

three test cases have been considered:

 (1) Turbulent bubbly flow in an axisymmetric sudden expansion

 (2) Turbulent high-void fraction bubbly flow about a plane obstruction

 (3) Stratified laminar flow in a channel

4.1 Sudden expansion

 The relevant dimensions for this problem were 25mm, 50mm (expansion ratio9 y 9 y1 2

9 «9 y 3 y2 1 12), inlet pipe length 25mm and outlet pipe length

3 y ] y y 9 " « �2 1 1
5350 1000 1350mm. The flow was turbulent, with Re 2 10 , and-� �� ��

the inlet profiles were obtained from the measurements of Bel Fdhila . The average value of11

the void fraction  at inlet was 5% and the bubble diameter 2mm.� � � y�

 Mesh refinement - Three meshes have been utilised, refined consistently (mesh doubling)

along both the axial and radial directions. Since the mesh is non-uniform in the axial direction

with higher concentration of cells closer to the expansion plane, doubling the mesh requires

taking the square-root of the geometrical expansion factors used to distribute the mesh

spacing (f ). In this way, the minimum spacing in a zone of non-uniform mesh is% �]� �� % « %� �

effectively halved when going from a coarser to a finer mesh. The mesh characteristics are

given in Table 1, where f  refers to the mesh blocks (length 350 mm) just downstream of the%

expansion plane.

 An idea of the finer mesh (mesh-3) can be obtained from Fig. 1, where contours of the

predicted void fraction ( ) and turbulent kinetic energy (normalised by its maximum value)�

are also given, together with the mixture streamlines. Fig. 1 shows agglomeration of the gas

phase in the main part of the recirculating zone, where the turbulent kinetic energy also

shows its highest levels. The region just behind the step-wall is devoid of gas bubbles

( ).� � �

mesh NC f  f

1 2200 0.1 1.01560 1.0

2 8800 0.05 1.00770 1.0

3 35200 0.025 1.00384 1.0

�% «9min � % �

Table  1.:  Meshes used for the sudden expansion case (NC: number of cells).
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Figure 1 Predictions for the sudden expansion flow: (a) Mesh, (b) void fraction contours, (c) turbulent kinetic

energy contours, and (d) mixture streamlines.

The effect of mesh refinement upon the predicted profiles of void fraction is shown in Fig. 2.

There is good convergence with mesh refinement except for the profile closer to the

expansion plane ( 70mm) where larger differences are seen in the predictions with the% y
coarser mesh (the local maximum of  at 0.7 is due to the imposed inlet profile).� �«9 �1

  - The main differences between the two is the division of theNew and old formulation

momentum equations by  and the inclusion of the virtual mass term. The division by � �

implies some difference on the stress terms (due to the approximation ; compare Eq.� �� ��y
2 with  Eq. 8). In terms of the method used to obtain , the “old method” uses the standard�

method (section 3.2.1) while the “new method” can use either of two methods (sections 3.2.1

and 3.2.2) for solving the -equation.�

 For the predictions in the coarser mesh, Fig. 3 shows the decay of the -momentum"
residuals as time-marching proceeds (the behaviour of the other variables is similar). The

figure compares the residuals' history with the two methods, and also with the old method

when the turbulent-drag term in the dispersed phase momentum equation is switched off

(second term in Eq. 5). Clearly, when this term is present the “old” method cannot converge

to the specified tolerance (here 10 ) but by switching it off convergence can be achieved.^�
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Figure 2  Effect of mesh refinement on the   Figure 3  Decay of the residuals with the “old” and the

   void fraction profiles.      “new” method (TD: turbulent drag).

In the “new” method all terms are present.  This problem was traced back to the relative

velocity which attains unphysical high values just inside the area where 0 because the�� �
momentum equation is then singular (or undefined ). For this case the problem is� y �
restricted to a few problematic cells in that area.

 A few comparison of volume fraction profiles obtained with the new and old methods

(using the same method for ) are shown in Fig. 4. The differences seen in the figure are a�

result of the approximation ; they are small and only become significant close to the� �� ��y
expansion plane. The fact that these results were obtained on the coarser mesh presumably

tends to accentuate those differences.

 - In terms of accuracy,Bounding of volume fraction and method used to solve for  ��

Fig. 5 shows three typical radial profiles of  predicted on mesh-2 with the standard and the�

two-equation method; both give essentially the same results.
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Figure :  Comparison of 3 void fraction profiles    Figure 5 Effect on the predictions of the method�
predicted in the coarse mesh with the “new” and    used to obtain the volume fractions

the “old” method.             

 In terms of robustness the various methods are applied to solve for , instead of , since� �� �

in this way the more problematic bounding from above ( ) can be assessed with this� | �
flow problem (due to the region where 0). The results are summarised in Table 2 which�� y
gives the number of time steps to convergence (tolerances of 10  and 10 ) and cpu times.^� ^	

method solve for: mesh-1, tol=10 mesh-1, tol=10 mesh-3^̂�� ^	^	

standard, 3.2.1 698   (47.2) 815  (54.1) 3766   (8686)

762   (60.0) 10000

�

�
�

� {  (640) 10000

two-eq., 3.2.2 698   (49.1) 815   (56.2) 3767   (9166)

698   (49.1) 815   (56.2) 3767   (9166)

{

�

�
�

�

Table 2.: Number of time steps and (CPU sec.) for convergence with the two bounding schemes for the

sudden expansion

 As expected, the two-equation method requires somewhat higher execution times

compared with the existing (more 3.9% on the coarse mesh and 4.0% on the fine mesh).

However, on the fine mesh it performs very well, converging in the same number of time
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steps as the standard method when solving for  (when no upper bounding of  is� �� �

necessary). The standard method fails to converge on the finer meshes when solving for ;��

the two-equation method on the other hand performs identically well since it solves for both

� �� � and .

4.2 Flow Around Obstruction

 In this problem a high void-fraction (inlet 40%), two-dimensional, turbulent,� y
air/water mixture flows in the absence of gravity around a planar obstruction (blockage ratio

/ «/ y / y2 5, with half-width of obstruction 10 mm; see Fig. 6a). This flow resembles

that around impeller blades where large zones of high void fraction are generated. The region

in front of the obstruction ( ) is devoid of bubbles (high pressure region) and the region% | �
behind the obstruction ( ) has considerable bubble concentration but  is still far from 1% { � �

( 74%). Due to this, the matter of bounding  by 1 was studied indirectly by solving� �maxi �
the equation for  (which is 1 at the start of the calculations, and is also 1 in the high-�c

pressure region of the final steady-state solution, thus posing bounding problems).

 Uniform inlet profiles for volume fraction ( 0.4) and velocity ( 2m/s, 2.2�� � �y " y " y
m/s) were imposed at the entrance plane at  ( 250mm). The thickness of the% y ^ 3 3 y1 1

obstruction was 2mm and the region downstream was 500 mm long. The absence of3 y2

gravity leads to an increase in bubble concentration behind the obstacle.

 Mesh NC f f

1 3270 0.05 1.1295 1.0607

2 13080 0.025 1.0628 1.0299

�% «/min -max -max% &

Table  3.: Characteristics of meshes used for the obstruction problem

(NC-number of cells; f  and f :expansion factors (f )x y x +1 i� % « %� ��

 - The meshes used are summarised in Table 3 and aSolution fields and mesh refinement

portion of the fine mesh is given in Fig. 6 (a). The predicted fields obtained on mesh-2 are

shown for void fraction in Fig. 6 (b), and turbulent kinetic energy (normalised with its

maximum value, 0.370 m /s ) in Fig. 6 (c), and mixture streamlines in Fig, 6 (d). The most2 2

striking feature is the zone in front of the obstacle where the void fraction falls sharply from

40% to zero. There is accumulation of bubbles behind the obstacle, in the recirculating zone

which extends up to  8.27 and also in the area of high turbulence kinetic energy? «/ yR

which develops in the shear layer behind the recirculation zone.

 Several lateral profiles of void fraction are shown in Fig. 7 for the two computational

meshes. More mesh refinement would be required for the profiles closer to the obstacle

(namely at 0.5 and 1) to be less sensitive to the mesh, whereas those further%«/ y
downstream show little differences for the these two meshes.



Paulo J. Oliveira and Raad I. Issa

15

(
a
)
 
m
e
s
h

0
.
0
5

0
.
0
5

0
.
1
5

0
.
2
5

0
.
2
5

0
.
3

0
.
3

0
.
3
5

0
.
3
5

0
.
4

0
.
4

0
.
4
5

0
.
5

0
.
5
5

0
.
6

0
.
6
5

0
.
7

(
b
)
 
v
o
i
d
 
f
r
a
c
t
i
o
n

0
.
1

0
.
1 0
.
2

0
.
3

0
.
3

0
.
4

0
.
4

0
.
5

0
.
6

0
.
7

0
.
8

0
.
9

(
c
)
 
t
u
r
b
u
l
e
n
t
 
k
i
n
e
t
i
c
 
e
n
e
r
g
y

0

0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

0
.
9

-
0
.
0
0
5

-
0
.
0
1
0

0

(
d
)
 
m
i
x
t
u
r
e
 
s
t
r
e
a
m
l
i
n
e
s

Figure 6 Predictions for the flow around an obstruction: (a) Mesh, (b) void fraction contours, (c) turbulent

kinetic energy contours, and (d) mixture streamlines.

 - The effect of the equation usedBounding of volume fraction and equation used for  ��

to solve for  on the accuracy of the results can be seen from Fig. 8. This figure compares�

predictions of void fraction obtained with the standard (Eq. 20) and the two-equation (Eqs.

31-32) methods on the fine mesh, at two locations upstream of the contraction

( 0.5 and 0, just upstream of the obstacle) and two locations downstream. No%«/ y ^ ^
differences can be distinguished in the figure. A comparison of the  variation along the�

centreline also show a lack of effect, with both methods predicting an identical recirculating

zone behind the obstruction, extending to a distance of 8.27 ./
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Figure 7 Effect of mesh refinement on the void   Figure 8  Effect of the equation solved for  on the�

   fraction variations.           predicted void fraction.

 We examine now the relation between bounding method and robustness. The number of

time steps for convergence (to a tolerance of 10 ) are given in Table 4, as well as the^�

corresponding CPU times in seconds (in a DEC-10000 machine). In all cases the time step

was fixed at 5 10  s which gives an approximate local Courant number of 3.1 on mesh-�! y -4

1 and 6.2 on mesh-2.

 Table 4 shows that the standard method fails to converge on both meshes when solving

for . The two-equation method does very well on either mesh and its performance matches��

that of the standard method when the latter solves for .��
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method solve for: mesh-1 mesh-1 mesh-2 mesh-2

time steps cpu (s) time steps cpu (s)

standard 3635 380 4230 2408

10000 1060 diverge   -

two-e

�

�
�

� { {

quations 3615 345 4257 2547

3615 345 4257 2547

�

�
�

�

Table 4. Number of time steps and cpu-time for convergence with the two bounding schemes (obstruction

flow problem)

4.3 Phase stratification in a channel

 The development of stratification of gas and liquid laminar flow is examined in a 2-D

channel of width mm and length 100mm ( 10). The density difference/ y �� 3 y 3«/ y
between the two phases was chosen to be small ( 1000 kg/m  and 950 kg/m ) so� �� �y y3 3

as to minimise numerical problems related to large discontinuities in pressure gradient at the

interface. The other properties have been carefully chosen to guarantee adequate

development of the flow from the inlet condition of the two equally mixed phases ( 0.5),�� y
to a complete stratification.

 Solution fields and mesh refinement- Two uniform meshes with 50 20 and 100 40_ _
cells have been utilised. The development of the lighter phase distribution is shown in Fig. 9

(using the modified -equation). At the stations  and   from inlet, the imposed inlet� % y � � /
volume fraction of 0.5 is still seen in the central portion of the channel, but further

downstream the two phases have fully separated with the heavier phase flowing at the bottom

( 0 for 0.5) and the lighter at the top (  for ). The slight� �� �y &«/ z y � &«/ { �»	
over/undershoots of  in the first profiles are due to the problems arising from the Rhie-�

Chow interpolation.

 The predictions in Fig. 9 are based on the finer mesh of 100 40 cells. With the coarser_
mesh (50 20 cells) the sharp interface between the regions of 0 and 1 is less well_ y��

   
Figure 9 Profiles of void fraction at several stations  Figure 10 Residuals history with two-equation

  along the channel            method.
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resolved, otherwise most other features are unchanged. For the profile near outlet

( ) the interface is resolved in 2 cells with the fine mesh.%«/ y ��
 Effect of bounding scheme - Fig. 10 shows convergence history for the -momentum"�

residuals. This shows good convergence behaviour, while the standard method fails

altogether because of the effect of phase segregation.

5. CONCLUSIONS

The division of the momentum equations for each phase by the corresponding volume

fraction seems to lead to better convergence characteristics of the two-phase flow algorithm.

This improved numerical stability is retained with refinement of the computational meshes

(very fine meshes were used in the 2-D test problems here presented). Some related physical

issues should be further investigated (e.g., should the stress term in the equations be I c ��
or  ).� �I c
 The two-equations bounding scheme, which solves the continuity equations for both

phases, showed excellent overall behaviour easily coping with extreme cases of fully

segregated phases.
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