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Abstract The number line task is often used to assess
children’s and adults’ underlying representations of integers.
Traditional bounded number line tasks, however, have limi-
tations that can lead tomisinterpretation. Here we present a new
task, an unbounded number line task, that overcomes these
limitations. In Experiment 1, we show that adults use a biased
proportion estimation strategy to complete the traditional
bounded number line task. In Experiment 2, we show that
adults use a dead-reckoning integer estimation strategy in our
unbounded number line task. Participants revealed a positive-
ly accelerating numerical bias in both tasks, but showed scalar
variance only in the unbounded number line task. We
conclude that the unbounded number line task is a more pure
measure of integer representation than the bounded number
line task, and using these results, we present a preliminary
description of adults’ underlying representation of integers.
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The number line task is often used to assess children’s and
adults’ underlying representations of integers (e.g., Berteletti,
Lucangeli, Piazza, Dehaene, & Zorzi, 2010; Geary, Hoard,
Nugent, & Byrd-Craven, 2008; Opfer & DeVries, 2007;
Siegler & Booth, 2004; Siegler & Opfer, 2003). The traditional
task consists of a bounded number line with labeled endpoints
(e.g., 0–100) and a target number. On each trial, the participant
is asked to indicate the position on the number line that the

target number would occupy. Bounded number line tasks,
however, have limitations (see, e.g., Barth & Paladino, 2011).
Here, we (1) demonstrate that the bounded number line task is
an invalid measure of integer representation, (2) present a new
task, an unbounded number line task, that overcomes the
limitations of the bounded number line and produces data
consistent with integer representation, and (3) present a
preliminary description of adults’ underlying representation of
integers, using the unbounded number line data.

One’s intuitive understanding of an integer (also referred
to as an analogue quantity representation or analogue
magnitude) can be described as a distribution of quantities.
For example, each time we see 15, we understand its
quantity to be slightly different (sometimes greater than 15,
sometimes less). The distribution of quantities one asso-
ciates with an integer describes one’s psychological
understanding of that integer. There is much debate in the
literature concerning the placement and variance of these
psychological distributions in relation to each other. The
debate concerns whether integers are best described by a
psychological representation in which (1) the mean dis-
tances between successive integers are logarithmically
spaced and the perceptual errors associated with successive
integers have a fixed variance (logarithmic models; e.g.,
Banks & Hill, 1974; Dehaene, 2003; Dehaene, Dupoux, &
Mehler, 1990; Nieder & Miller, 2003), or (2) the mean
distances between successive integers are linearly spaced
and the perceptual errors associated with successive
integers have scalar variance (i.e., linear models, with
variance increasing with successive integers; e.g., Gibbon,
1977; Gibbon & Church, 1981; Meck & Church, 1983;
Whalen, Gallistel, & Gelman, 1999).

Using the number line task, Siegler and Opfer (2003)
showed that younger children produced a negatively
accelerating error pattern (e.g., logarithmic). Older children
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and adults, in contrast, produced more linear estimates. The
authors concluded that there was a gradual shift from
logarithmic to linear representations of integers. This effect
has been well replicated and generalized to include both
more age groups and participants with varying mathemat-
ical abilities (e.g., Berteletti et al., 2010; Booth & Siegler,
2006; Geary et al., 2008; Laski & Siegler, 2007; Siegler &
Booth, 2004; Thompson & Opfer, 2008).

Barth and Paladino (2011) have reinterpreted the number
line data, suggesting that the apparent linearity in children’s
number line data is actually the ogival pattern typical of a
proportion estimation strategy (for a review of proportion
estimation, see Cohen, Ferrell, & Johnson, 2002).1 Specif-
ically, stimulus bias often follows Stevens’s power law,

yðIÞ ¼ kIa; ð1Þ
where I represents the stimulus intensity, k is a constant,
and a is the characteristic exponent, which describes the
observer’s stimulus bias. Exponents greater than 1 indicate
a positively accelerating bias (e.g., exponential), and
exponents less than 1 indicate a negatively accelerating
bias (e.g., logarithmic). Data from traditional number line
tasks are typically interpreted within the framework of
Stevens’s power law. However, when viewed closely,
number line data appear more ogival than linear or
accelerating. The ogival error pattern is emblematic of
proportion estimation tasks, in which observers are pre-
sented with a whole and asked to estimate a fraction of that
whole, say 20%. Spence (1990) discovered that observers
tend to estimate a target proportion in relation to the whole.
Spence adapted Stevens’s power law to model this process
(termed the power model). Spence’s power model predicts
that observers will be accurate at both the boundaries and
the halfway point, with perceptual bias manifesting as the
signature ogival pattern. Hollands and Dyre (2000) expand-
ed Spence’s power model to describe the use of multiple
reference points (termed the cyclic power model, here
abbreviated CPM). CPM predicts multiple cycles of the
ogival pattern, depending on the number of reference points
the observer adopts.

The number line task can be conceptualized as a
proportion estimation task because the labeled endpoints
reveal the value of the whole. To accurately complete the
task, integers smaller than the whole must be converted to
proportions of that whole (e.g., 50 is halfway between 0
and 100), rather than directly estimated as integers (e.g., 50
is 50 units to the right). Barth and Paladino (2011) showed
that the CPM accurately predicts 7-year-olds’ bias in the
bounded number line task and concluded that children

conceptualize the bounded number line task as a proportion
estimation task. Because the relation between the cognitive
processes underpinning one’s understanding of proportions
and integers is unclear (e.g., Cohen, 2010), one cannot
assume that the data from the bounded number line task
adequately describe integer representation.

The limitations of the bounded number line task extend
beyond its similarity to a proportion estimation task. Specif-
ically, the lower and upper bounds limit the degree and
direction of possible error in the task. The lower bound limits
one’s ability to underestimate small values, and the upper
bound limits one’s ability to overestimate large values. Thus,
the bounded number line task is likely an invalid measure of
estimation variability. Estimation variability is of central
importance to theories of numerical cognition (e.g., as
discussed above, logarithmic models often posit fixed
variance, and linear models often posit scalar variance).

Here, we present a new task, an “unbounded number line”
task, which does not have the limitations of the bounded
number line task. Experiment 1 assessed adults’ bias on a
bounded number line task. To assess whether the adults
treated the bounded number line task as a proportion
estimation task or as an integer estimation task, we fit both
a linear model and the CPM to each participant’s data, as well
as analyzed the error data. Experiment 2 assessed adults’ bias
on our new, unbounded number line task, in which we
displayed the distance between 0 and 1 and asked participants
to indicate the location of their estimate to the right of the
presented unit. To assess the adults’ strategy, we fit both a
linear model and a new, nonlinear “scalloped power model” to
each participant’s data, as well as analyzing error data.

Experiment 1

Method

Participants Fifty-two undergraduates from an introductory
psychology class volunteered in exchange for course credit.

Apparatus and stimuli All stimuli were presented on 24-in.
LED color monitors with 72-Hz refresh rates controlled by
a Mac mini. The resolution of the monitor was 1,920 ×
1,200 pixels. Participants sat approximately 30 in. away
from the screen.

On each trial, participants were presented with a number
line and target number (see Fig. 1). The number line was
centered on the y-axis of the screen. The target number was
placed half an inch below the left boundary of the number
line. The number line was constructed from 1-pixel-thick
red lines, with a 10-pixel-high vertical line marking the start
of the number line. This left boundary was labeled with the
number “0.” A similar vertical line indicated the right end

1 Siegler and Opfer (2003) presented an informal discussion of
possible proportion strategies.
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of the number line and was labeled with the number “26.”
The two vertical lines were connected at the bottom by a
red horizontal line (i.e., the number line). The target
numbers ranged from 2 to 25 and were chosen randomly
from a uniform distribution from trial to trial.

To prevent participants from using reference points
external to the number line (e.g., the position of the left edge
of the monitor or the center of the monitor), we varied the
location and physical length of the number line. For each trial,
the number line was randomly placed between 100 and 200
pixels from the left side of the screen. The length of the
number line was also randomly varied from 52 to 832 pixels.
In addition, we placed a strip of black tape across the bottom
of the monitor to conceal the reflective Apple symbol.

Procedure The experiment took place in individual dark
rooms. The participants were instructed to estimate the
appropriate position of the quantity indicated by a target
number on the number line. To do this, participants used a
mouse to “click and drag” the left boundary line to the
estimated target location. To click and drag, the participant
moved the cursor over the left boundary line. At that point,
a gray line appeared covering the left red boundary line.
The participant then pressed the left mouse button and
dragged the gray line to the estimated target location. As
the gray line was dragged, the left red boundary line
remained in place. Participants could freely move the gray
line, dragging and releasing without submitting a response.
When the participant determined that the placement of the
target line was accurate, he or she pressed the space bar to
submit the response. The next trial appeared 1 s after the
submission of the response. Participants’ accuracy, to the
pixel, and reaction time (RT) were recorded.

Each participant was presented with 3 practice trials and 400
experimental trials. The participants had a self-timed break
every 101 trials. The experiment typically lasted under 1 h.

Results

We removed all estimates in which the participants’ RTs were
greater than 45 s or less than 500 ms. Estimates over three
standard deviations from the mean error for each target number
(i.e., under 25% or over 150% of the target number) were also
removed. These constraints eliminated 2.6% of the data.

We calculated the mean estimate of each target number
from all trials for each participant. We then tested the fit of
three models using generalized nonlinear least squares (gnls)
methods. The models used were linear,2 CPM with two
reference points (i.e., the bounds of the number line), and

CPM with three reference points (i.e., the bounds and the
midpoint of the number line)3 (see Hollands & Dyre, 2000).

Each participant was categorized as being linear, two-point
CPM, or three-point CPM on the basis of the Akaike
information criterion (AIC) goodness-of-fit measure. We
assessed the global appropriateness of the models by the
model that fit the majority of participants. Seven participants
were determined to be linear, 32 fit the two-point CPM, and 13
fit the three-point CPM. Thus, 87% of the participants were
best classified by the CPM. The critical exponent, describing
the numerical bias, for the CPM (M = 1.13, SD = 0.14) was
significantly different from 1, t(44) = 6.3, p < .01. The
intercept of the linear model was –1.1 and significantly
different from 0, t(6) = –7.46, p < .01. The slope was 1.03
and approached being a significant difference from 1, t(6) =
2.17, p = .06. The r2 of all models was over .99. Figure 1
shows data for some of the participants whose data were best
predicted by each of the three models.

The bottom panel of Fig. 1 plots the participants’
average standard deviations as a function of target number.
The average standard deviation is lower at the reference
points and increases between the reference points. This
pattern is consistent with a proportion estimation strategy,
rather than an integer estimation strategy.

Discussion

We applied the CPM to the number line task in order to
assess numerical bias. The majority (87%) of the
participants’ data were better fit by the CPM than by
the linear model. This indicates that adults treat the
bounded number line task as a proportion estimation
task. Adults’ estimates are described by a positively
accelerating bias, revealing that the subjective distance
between successive numbers increases as the target
number increases. We will discuss this finding in detail
in the General Discussion.

In an attempt to remove the proportion estimation
strategy used by most participants in Experiment 1, we
conducted Experiment 2.

Experiment 2

Method

Participants Fifty-two naïve undergraduates from an intro-
ductory psychology class volunteered in exchange for
course credit.

2 We estimated the linear model using the gnls method to get the
appropriate model-fit statistics.

3 We also ran a four-cycle (five-reference-point) analysis. Only a
single participant’s data were best described by the four-cycle model
(these data were originally classified as linear).
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Apparatus and stimuli The unbounded number line differs
from the bounded number line in two ways. First, the
unbounded number line only represents a single, unit
distance; here, we used 0 to 1. Second, estimations are
made external to the bounds rather than within them.

For each trial, participants were presented with the
unbounded number line and a target number (see Fig. 2).
The left and right boundaries were unlabeled vertical lines.4

The vertical lines were connected at the bottom by a
horizontal line, the length of which represented the distance
of one unit. Centered directly below the unit was the label
“1.” The target number was presented below the label.

The location of the number line varied just as in
Experiment 1. However, the length of the number line

was randomly varied from 2 to 32 pixels long. These
distances match the smallest and largest single-unit sizes
from Experiment 1. Although estimates were not limited by
the boundaries of the number line, estimates could not be
closer than 100 pixels to the right edge of the screen. This
provided sufficient room for participants to overestimate the
largest target number with the largest unit size by 200%.

Procedure The same rooms and computers were used as in
Experiment 1. Participants were informed that the presented
lines were the start of a number line and represented one
unit. Their task was to estimate the position of a target
number to the right of the number line for each trial. To do
this, they clicked and dragged the right boundary line to the
estimated target location. The same click-and-drag method
used in Experiment 1 was used here. So, if the target
number was 10, participants were to drag the line nine units
to the right, so that the rightmost boundary would be
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Fig. 1 Methods and results of Experiment 1, using the bounded number
line task. The image at the top represents the means by which
participants estimated the location of the target number (shown here as
X) on the bounded number line. The black lines in this top panel indicate
the stimulus presented, and the gray solid line indicates the line revealed
on the “click and drag.” The hand represents the cursor, and the gray

dashed arrow indicates movement. Below the number line are examples
of participants who were best fit by the linear model, the one-cycle CPM,
and the two-cycle CPM. The bottom graph represents the relationship
between the standard deviations of the estimates and the target number.
The standard deviation is lower for target numbers near reference points
and higher for target numbers between reference points

4 We excluded the “0” label because it interfered with the “1” label
when the physical distance of the unit was small. The participants
understood the task well without the physical reminder of the value of
the left boundary.
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located ten units to the right of the leftmost boundary of the
number line. In all other respects, the procedure of
Experiment 2 was identical to that of Experiment 1.

Results

As in Experiment 1, trials with RTs of more than 45 s or
less than 500 ms were removed. Estimates over three
standard deviations from the mean error for each target
number (i.e., under 25% or over 480% of the target
number) were also removed. These constraints eliminated
3.5% of the data. Finally, we removed the participants’
responses to the target numbers 23–25 because the
computer screen boundary acted as an artificial endpoint
and skewed these data low. That is, the error associated
with participants’ average responses was greater than we
anticipated, and the edge of the computer screen interfered
with the participants’ estimates of the larger target numbers.

Because the unbounded number line task was designed
to inhibit the participants’ proportion estimation strategy
and because there was little evidence of an ogival pattern in
these new participants’ data, we believe that we success-
fully inhibited the participants’ use of a proportion
estimation strategy. Nevertheless, participants instead
tended to adopt a dead-reckoning strategy. We identified
the dead-reckoning strategy on the basis of verbal reports
by pilot participants and tested the validity of this
hypothesized strategy by developing a model and assessing
its fit. In this dead-reckoning strategy, participants first
moved a unit on the number line, then estimated the
position of the next unit based on their current position, and
so on. This dead-reckoning strategy is often revealed by a
repetitive scalloped pattern of errors in the data (see Fig. 3).
This scalloped pattern results when participants use multi-
ples of a small quantity (about ten) to estimate their position
on the number line. We term this range the participants’
working window of numbers. When participants are asked
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Fig. 2 Methods and results of Experiment 2, using the unbounded
number line task. The image at the top represents the means by which
participants estimated the location of the target number (shown here as
X) beyond the presented unit. The black lines in this top panel indicate
the stimulus presented, and the gray solid lines indicate the lines
revealed on the “click and drag.” The hand represents the cursor, and

the gray dashed arrow indicates movement. Below the number line are
examples of participants who were best fit by the linear, dual-scallop,
and multi-scallop models. The bottom left graph represents the
increase in the standard deviations of estimates with the target
number. The bottom right graph shows standard deviation as a
constant proportion of target numbers greater than 5
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to estimate numbers above this range, they count to the last
number in their working window, say ten, and from that
endpoint they start counting from one again. For example,
if the target number was 12, a participant might estimate the
location of ten, then estimate two more units. This creates a
scalloped pattern in the data, revealing a repeating bias. We
had three classes of participants: (1) those who estimated
numbers directly (single scallop), (2) those who repeated
their bias twice (dual scallop), and (3) those who repeated
their bias multiple times (multiscallop). The mathematical
formulas for this scallop power model (SPM) are below:

Y ¼ Xb; Single Scallop ð2Þ

if X < dð Þthen Y ¼ X b
� �

else Y ¼ db þ X � dð Þb
� �

; Dual Scallop

ð3Þ

Y ¼ truncate X=d; 0ð Þ � db þ X modulo dð Þb; Multi scallop

ð4Þ
where X is the target number, b is the characteristic
exponent, and d is the size of the working window.

For each participant, we calculated the mean estimate of
each target number from all trials. We then tested the fit of
the four models using gnls methods. The models used were
linear, single-scallop, dual-scallop, and multiscallop mod-
els. Each participant was categorized into a best-fit model
on the basis of the AIC goodness-of-fit measure. We

assessed the global appropriateness of the models by
identifying the model that fit the majority of participants.
Four of the participants were determined to be linear, 20 fit
the single-scallop model, 16 fit the dual-scallop model, and
12 fit the multiscallop model. Thus, 92% of the participants
were best classified by the SPM. The critical exponent,
describing the numerical bias, of the SPM (M = 1.11, SD =
0.2) was significantly different from 1, t(47) = 3.4, p < .01.
The working window averaged 10.6 for the SPMs that
included that parameter (dual and multi). The average
intercept of the linear model was –1.21, and the average
slope was 1.56. Because there were only four linear
observations, we did not assess significance. The r2

averaged .95 for the SPM and .975 for the linear model.
Figure 2 shows data for some of the participants whose data
were best predicted by each of the models.

The bottom panels of Fig. 2 plot participants’ average
standard deviations as a function of target number. The
average standard deviation increased with target number,
such that error variance was a constant proportion of the
target number for all numbers greater than five. This pattern
is consistent with scalar variance (Gibbon, 1977).

Discussion

As in Experiment 1, participants showed a positively
accelerating numerical bias. Unlike Experiment 1, howev-
er, participants’ errors increased to scalar variance for
quantities from 2 to 5 and remained stable at scalar
variance for quantities greater than five. We discuss these
results below.

General discussion

In Experiment 1, we presented participants with a bounded
number line task similar to that used by Siegler and Opfer
(2003) and their colleagues. Our results showed that adults
use a proportion estimation strategy that makes their biased
estimates appear linear. In Experiment 2, we presented
participants with an unbounded number line task that
successfully eliminated the use of a proportion estimation
strategy. Both Experiment 1 and 2 revealed an accelerating
power function of numerical bias. Furthermore, whereas the
error variance in the bounded number line task was
suppressed by the bounds, a scalar variance error pattern
was present in the unbounded number line task. The present
data suggest that both tasks are tapping into the same
underlying numerical cognition structure, but the error data
suggest that the unbounded number line task is a more pure
measure of integer representation.

The number line task is often used to assess the
psychological representation of integers. The psychological
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Fig. 3 Example of the dead-reckoning strategy used by most
participants in the unbounded number line task. The points represent
average estimates of the location of the target number for a single
participant. The gray lines represent the repeated pattern of error. The
curvature of the error is described by b, the bias, and the extent of the
biased segment is described by d, the size of the working window of
numbers. In this example, the working window is about five units
wide, and the bias is a characteristic exponent greater than 1
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representation of each integer (ψi) can be described by the
relative placement (mi) and variance (σi) of the psycholog-
ical distribution describing our understanding of that
integer’s quantity:

y i mi; s ið Þ: ð5Þ
Perceived mean distance is the psychological construct
associated with the mean distance between the psycholog-
ical distributions representing successive integers on a
psychological number line:

mi � mi�1ð Þ: ð6Þ
Perceived mean distance provides an understanding of the
layout of our psychological number line, but alone it
provides no information about how well people can
distinguish two successive integers. Both the bounded and
unbounded number line tasks reveal a positively accelerat-
ing power function describing the perceived mean distance
between successive integers. This result was unexpected,
because no major theory makes such a prediction. Never-
theless, very few empirical studies have assessed perceived
mean distance without using the bounded number line.5 As
a result, little is known about the perceived mean distance
between integers. Our data provide a striking new piece of
evidence that can help further our understanding of the
placement of integers on the psychological number line.

Most empirical studies addressing numerical bias have
assessed perceived difference, which can be conceptualized
as the amount of overlap of the psychological distributions

associated with two successive integers and can be
formalized by the following formula:

mi � mi�1ð Þ
s iþs i�1ð Þ

2

ð7Þ

Perceived difference provides an understanding of how well
people can distinguish two successive integers. Two
integers with distributions that greatly overlap (a small
perceived difference) are more difficult to distinguish than
two integers with distributions that have little overlap (a
large perceived difference). Most numerical cognition
research has identified a negatively accelerating perceived
difference function (e.g., Campbell, 2005).

Error variance is a critical component of the perceived
difference formula. The bounded and unbounded number
line tasks reveal different patterns of perceptual errors. The
error pattern associated with the bounded number line task
was a function of the proportion estimation strategy. We
therefore do not consider it an accurate mapping of the
psychological representation of integers. In contrast, the
error pattern associated with the unbounded number line
task was scalar, which is consistent with current theories of
integer representation. The scalar variance associated with
the error distributions seen in Experiment 2 has important
consequences for the perceived difference between integers.
The scalar variance (the denominator of Eq. 7) overwhelms
the positively accelerating perceived mean distance func-
tion (the numerator in Eq. 7), resulting in a negatively
accelerating perceived difference function. So, as target
number increases, the perceived difference between suc-
cessive integers decreases. This finding is consistent with
both the linear and logarithmic models of integer represen-
tation (and most published data on the topic). Figure 4
presents a description of the psychological representation of
integers based on our unbounded number line data.

If one accepts that the bounded number line task is a
valid measure of proportion estimation and the unbounded

5 To assess perceived mean distance, the experimenter must obtain an
estimate of the subjective quantity associated with an integer (e.g.,
Whalen et al., 1999). Obtaining such an estimate is difficult without
using some form of a direct estimation task (see Stevens, 1956).
Rather than getting estimates of subjective quantities, experimenters
often obtain the subjective difference between two integers, which
conflates perceived mean distance and error variance.

Fig. 4 Graph of perceived difference and distance between numbers.
The x-axis represents the estimates of target numbers, and the y-axis
represents density. Each curve represents the psychological construct
of the labeled target number. There are larger perceived distances

between the means of larger numbers than between the means of
smaller numbers. Nevertheless, the perceived difference between
numbers decreases as target number increases, because there is more
distributional overlap as target number increases

Psychon Bull Rev (2011) 18:331–338 337



task is a valid measure of integer estimation, the relation
between the results of these two tasks provides some clues
about the cognitive structures underlying our understanding
of proportions and integers. The similarity of the perceived
mean distance estimates extracted from the bounded and
unbounded tasks suggests that our understanding of
proportions is predicated on our understanding of integers.
The difference in error patterns supports the supposition
that, although our understanding of proportions is predicat-
ed on our understanding of integers, the psychological
construct of proportion is likely different from that of
integers (Cohen, 2010). Additional exploration of this issue
will be required to further disentangle these two constructs.

In summary, we found that the numerical bias in
estimations is best described by an accelerating power
function in both the bounded and unbounded number line
tasks. This suggests that both tasks tap into similar
psychological constructs. However, the proportion estimation
strategy used in the bounded number line task produced
measures of error variance related to the proportion estimation.
In contrast, the unbounded number line task revealed a scalar
variance pattern of error, which is consistent with integer
estimation. This pattern, together with the accelerating
perceived distance function, resulted in the negatively
accelerating perceived difference function ubiquitous in the
numerical cognition literature. We conclude that the unbound-
ed number line task is a purer measure of the numerical bias of
integers than is the bounded number line task.

Author Note This work was supported by NIH Grant
RO1HD047796.
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