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Abstract. We provide an overview of current techniques and typical applications of
numerical bifurcation analysis in fluid dynamical problems. Many of these problems
are characterized by high-dimensional dynamical systems which undergo transitions
as parameters are changed. The computation of the critical conditions associated with
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these transitions, popularly referred to as ‘tipping points’, is important for understand-
ing the transition mechanisms. We describe the two basic classes of methods of nu-
merical bifurcation analysis, which differ in the explicit or implicit use of the Jacobian
matrix of the dynamical system. The numerical challenges involved in both methods
are mentioned and possible solutions to current bottlenecks are given. To demonstrate
that numerical bifurcation techniques are not restricted to relatively low-dimensional
dynamical systems, we provide several examples of the application of the modern
techniques to a diverse set of fluid mechanical problems.

AMS subject classifications: 37H20, 35Q35, 76-02, 37M, 65P30

Key words: Numerical bifurcation analysis, transitions in fluid flows, high-dimensional dynami-
cal systems.
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1 Introduction

Transition phenomena in flows of liquids and gases are of great fundamental interest.
A prominent classical example is the sudden transition from laminar to turbulent flow
which takes place in a circular pipe (Poiseuille flow) when the speed in the center of the
pipe exceeds a critical value [51]. Other classical examples are the flow between rotating
cylinders (Taylor-Couette flow), which undergoes successive transitions when the rota-
tion rate of the inner cylinder is increased, and convection in a liquid layer heated from
below (Rayleigh-Bénard-Marangoni flow), which shows a fascinating and rich set of flow
patterns once a critical vertical temperature gradient is exceeded [62]. Central issues
when studying these flows are the characterization of the range of conditions over which
particular flows exist and the mechanisms of transition between the different flow pat-
terns. In their classical treatise on Fluid Mechanics, [67] provide an elegant and general
framework on the loss of stability of a general fluid flow due to changes in the parameters
of the system.

Transitions in industrial and environmental flows are of great practical interest. Crit-
ical conditions in such flows, at which they may undergo a large qualitative change,
are associated with what has been recently called a “tipping” point [48]. Examples are
boundary flows, which may undergo qualitative changes in separation behavior and tur-
bulence intensity, mean flows in turbulent buoyancy driven convection, which change
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their overall pattern, and plasma flows in a Tokamak, which suddenly show strong os-
cillatory behavior. An example of a highly relevant environmental flow is the possible
transition of the large-scale Atlantic ocean circulation once a critical freshwater pertur-
bation is exceeded [30]. From a practical point of view, one would like to identify these
critical conditions and understand how to avoid undesirable transitions.

To tackle flow transition problems, numerical models are essential and many finite el-
ement, finite difference (volume) and spectral codes for solving the Navier-Stokes equa-
tions and their extensions (such as Boussinesq equations) are available. Starting from a
certain initial condition and given model parameters, the model is integrated forward in
time and the long-time behavior of quantities of interest are studied; we will refer to these
methods below as initial value problem (IVP) methods. To determine transition behav-
ior and critical conditions, parameters are subsequently changed and the transient and
asymptotic behavior of the model solutions is studied. In this way, transitions between
different types of equilibrium behavior (steady or time-dependent) are found.

Since the primary interest is in changes in asymptotic behavior when parameters are
changed, another class of numerical methods can be used, that focuses directly on the
computation of the asymptotic flow states in the models. These may be steady states,
periodic orbits, quasi-periodic orbits or more complicated states, usually referred to as
attractors of the model. The issue of finding critical conditions for transitions is then
rephrased in terms of dynamical systems theory to that of finding the parameter values
at which bifurcations exist. The methods in the numerical bifurcation toolbox (NBT), in
particular continuation techniques, consist of efficient numerical schemes to determine
attractors as a function of parameters. This toolbox has originally been developed for
tackling transition problems in models consisting of a small number of ordinary differ-
ential equations (ODEs), hence with a small number of degrees of freedom. Over the
last decades the methods have been extended and applied to a number of flow problems
governed by systems of discretized partial differential equations (PDEs) such as Navier-
Stokes (and Boussinesq) equations with a large number of degrees of freedom.

The strong advantages of using NBT methods are (i) the systematic and efficient ap-
proach to the computation of attractors and bifurcation points and (ii) a detailed frame-
work for understanding the physics of the flow transitions. In addition, the mathematical
theory of dynamical systems provides a priori knowledge (e.g. based on the presence of
symmetry in the problem) through a catalogue of possible behavior [50]. The NBT meth-
ods also provide information concerning the parameters and initial conditions which can
lead to interesting transient behavior. Finally, NBT methods are also efficient in providing
information to control possible dynamical behavior, e.g. how parameters can be adjusted
to avoid certain transitions.

A disadvantage of the NBT methods is that they are more complicated, especially in
their need for sophisticated numerical linear algebra and, as a result, their application
in fluid flows is more limited than those of IVP methods. Although they can be quite
relevant in detecting whether a bifurcation (or a series thereof) leads the system to chaos,
NBT methods cannot be used to determine so-called strange attractors, characterized by
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chaotic, aperiodic behavior. It is important to underline that a comprehensive under-
standing of the mechanisms leading a system to exhibit turbulent behavior is one of the
grand challenges of physical and mathematical sciences [13].

The aim of the paper is to give an overview of the state-of-the-art of NBT methods and
their application to flow transition problems. In Section 2, we will start by presenting
the basic scheme followed in NBT methods together with a taxonomy of the different
computational strategies. Section 3 is concerned with the state-of-the-art linear algebra
methods applied in NBT methods. Subsequently, in Section 4, we provide an overview of
current codes and their applications to fluid flow problems. Section 5 addresses current
bottlenecks and the outlook for the use of NBT methods in the near future.

2 The methodology of continuation

Almost any computational fluid dynamical problem starts from the Navier-Stokes equa-
tions, possibly supplemented by conservation equations for scalar quantities. When these
PDEs are discretized using a spectral, finite element or finite difference method, the re-
sulting problem can be written in the general form

Mdu

dt
=Φ(u,p)=Lu+N (u), (2.1)

where u(t)∈IRn corresponds to a discretized solution of the original PDEs, M is the mass
matrix, L the discretized linear operator, N (u) the discretized nonlinear operator. In
general, the operators depend on a set of parameters, indicated in (2.1) by the vector p.
Note that M is typically not invertible because of algebraic constraints such as the con-
tinuity equation in incompressible flows. We may also implicitly include the boundary
conditions in the formulation (2.1). For instance, Dirichlet conditions correspond to M
and N (u) being zero on the boundary of the domain and L being the identity operator.

2.1 Transition behavior and bifurcations

In many of the applications (as we will see in Section 4) one is interested in the changes
in the long-time solutions of (2.1), when one (or more) parameter values are changed.
In dynamical systems theory, these solutions are referred to as attractors of the high-
dimensional dynamical system which is defined by (2.1). The simplest attractors of a
model are fixed points, also called steady states. Complexity of the behavior of the solu-
tions increases due to two factors: (i) the type of attractor and (ii) the number of attractors.
After fixed points, the types of attractors are, in order of complexity, periodic orbits, orbits
on a torus (quasi-periodic behavior) and a general class referred to as chaotic attractors.

Transitions between attractors when parameters are varied occur through bifurca-
tions. The simplest bifurcations involve instabilities of steady states when one parameter
p is varied. For each of these, there is a system of ODEs, called the normal form, which
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contains the particular bifurcation in its most elementary form [53]. For easy reference in
this and subsequent sections, we list these bifurcations below.

(i) Saddle-node or fold bifurcation, also called a turning point: the normal form is
given by

du

dt
= p±u2. (2.2)

The sign characterizes supercriticality (du/dt = p−u2) or subcriticality (du/dt =
p+u2). In the supercritical case, the branch of solutions u=

√
p is linearly stable

and the branch u=−√
p is unstable (see Fig. 1a). In the subcritical case, it is just the

other way around (Fig. 1b).

(ii) Transcritical bifurcation: in this case the normal form is given by

du

dt
= pu±u2. (2.3)

In both subcritical and supercritical cases, there is an exchange of stability from
stable to unstable fixed points and vice versa as the parameter p is varied through
the bifurcation at p=0 (Fig. 1c-d).

(iii) Pitchfork bifurcation: the normal form is

du

dt
= pu±u3. (2.4)

In the supercritical situation (du/dt= pu−u3), stability is transferred from the sym-
metric solution u= 0 to the pair of conjugated solutions u=±√

p (Fig. 1e). In this
case the system remains in a neighborhood of the equilibrium so that one observes
a soft or non-catastrophic loss of stability. In the subcritical case (du/dt= pu+u3),
the situation is very different, as can been seen in Fig. 1f. The domain of attraction
of u = 0 is bounded by the unstable fixed points and shrinks as p decreases, dis-
appearing at p= 0. The system is thus pushed out from the neighborhood of the
now-unstable fixed point leading to a sharp or catastrophic loss of stability. De-
creasing the parameter again to negative values will not return the system to the
previously stable fixed point since it will have already left its domain of attraction.

(iv) Hopf bifurcation: It is also possible for a steady solution to transfer its stability to a
limit cycle. The normal form can be written in polar coordinates (r,θ) as

dr

dt
= pr±r3, (2.5a)

θ̇=ω. (2.5b)

The sign again determines whether the Hopf bifurcation is supercritical (Fig. 1g) or
subcritical and the discussion is similar to the case of the pitchfork bifurcation.



6 H. A. Dijkstra et al. / Commun. Comput. Phys., 15 (2014), pp. 1-45

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

p

u

(a)
−2 −1.5 −1 −0.5 0

−1.5

−1

−0.5

0

0.5

1

1.5

p

u

(b)

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

p

u

(c)
−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

p

u

(d)

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

p

u

(e)
−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

p

u

(f)

p < 0 p > 0 Limit cycle

(g)

Figure 1: Supercritical (a) and subcritical (b) saddle-node bifurcation. Supercritical (c) and subcritical (d)
transcritical bifurcation. Supercritical (e) and subcritical (f) pitchfork bifurcation. The solid (dash-dotted)
branches indicate stable (unstable) solutions. (g) Phase space trajectories associated with a supercritical Hopf
bifurcation at p= 0. For p< 0, there is only one stable fixed point (left panel), whereas a stable limit cycle
appears for p>0 (right panel).

The idea of continuation methods is to compute families of steady states or periodic
orbits as a parameter is varied. It enables one to obtain meaningful and generic informa-
tion on the local dynamics of the PDE model (2.1) for a large range of parameter values.
Although time integration of the model may ultimately be needed to detect more compli-
cated bifurcations as well as statistical properties of the flow, continuation methods are
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able to determine the first bifurcations from the branches of steady states and periodic
orbits in an efficient way. When interested in steady states, continuation naturally avoids
potentially long time integrations for many parameter values.

2.2 Pseudo-arclength continuation

We will first illustrate continuation methods through the computation of steady states
and their stability. The basic technique involves two main steps. In the first step, one
advances along a branch of steady states as a parameter is varied. In the second step, a
linear stability analysis of the most recently computed steady state is performed [109].

Finding steady states of the system (2.1) amounts to solving

Φ(u,p)=0. (2.6)

The idea of pseudo-arclength continuation [59, 109] is to parametrize branches of solu-
tions Γ(s)≡ (u(s),p(s)) with an arclength parameter s (or an approximation of it, thus
the term ‘pseudo’) and choose s as the continuation parameter instead of p. An addi-
tional equation is obtained by approximating the normalization condition of the tangent
Γ̇(s)= (u̇(s), ṗ(s)) to the branch Γ(s), where the dot refers to the derivative with respect
to s, with |Γ̇|2 =1. More precisely, for a given solution (u0,p0), the next solution (u,p) is
required to satisfy the constraint

u̇T
0 (u−u0)+ ṗ0(p−p0)−∆s=0, (2.7)

where Γ̇0=(u̇0, ṗ0) is the normalized direction vector of the solution family Γ(s) at (u0,p0)
and ∆s is an appropriately small step size. Eq. (2.7) stipulates that the projection of
(u,p)−(u0,p0) onto (u̇0, ṗ0) has the value ∆s.

In order to compute the tangent Γ̇0(s), one differentiates Φ(u(s),p(s))=0 with respect
to s at (u0,p0) to find

[

Φ0
u,Φ0

p

]

Γ̇0(s)=











∂Φ0
1

∂u1
··· ∂Φ0

1
∂un

∂Φ0
1

∂p

∂Φ0
n

∂u1
··· ∂Φ0

n
∂un

∂Φ0
n

∂p











Γ̇0(s)=0, (2.8)

where the Jacobian matrix Φ0
u and the derivative Φ0

p are evaluated at (u0,p0). If (u0,p0) is

not a bifurcation point, then dim ker
[

Φ0
u,Φ0

p

]

= 1 and therefore
[

Φ0
u,Φ0

p

]

has rank n. We

may thus determine Γ̇0(s) as the null vector of the n×(n+1) matrix
[

Φu,Φp

]

. In practice,
this can be done by upper triangulating the matrix

[

Φu,Φp

]

and solving a (n+1)×(n+1)
extended system with a one in the right-lower corner and right-hand side. Then the
normalization condition |Γ̇0|2=1 is used [109].

Another possibility, which avoids solving linear systems once the continuation has
been started, is to compute the tangent to the curve Γ̇0 by interpolation from a set of
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previously computed solutions along the curve Γ(s). This is important in the case of
large-scale computations.

A predictor solution of (2.7) is given by

u0=u0+∆su̇0, (2.9a)

p0= p0+∆sṗ0. (2.9b)

The next step is then to project the predictor solution (u0,p0) back onto the branch in a di-
rection orthogonal to the tangent Γ̇0. This is called the corrector algorithm. It should rely
on a robust nonlinear solver for the system (2.6). The one in common use is the Newton-
Raphson method. This method converges quadratically, provided that the initial starting
solution is close enough to the solution and that the Jacobian is non-singular [109]. The
predictor step provides an adequate initial starting solution if ∆s is sufficiently small. The
Newton-Raphson iterations, with iteration index k=0,1,··· , can then be written as





Φu(uk,pk) Φp(uk,pk)

u̇T
0 ṗ0









∆uk+1

∆pk+1



=





−Φ(uk,pk)

rk



, (2.10)

where rk =∆s−u̇T
0 (u

k−u0)− ṗ0(pk−p0).
Once (∆uk+1,∆pk+1) is found, one sets

uk+1=uk+∆uk+1, (2.11a)

pk+1= pk+∆pk+1. (2.11b)

In practical situations, it is sometimes better to solve two n×n linear systems instead of
directly solving (2.10), namely

Φu(u
k,pk)z1=−Φ(uk,pk), (2.12a)

Φu(u
k,pk)z2=Φp(u

k,pk). (2.12b)

Then, the solution of (2.10) is

∆pk+1 =
rk−u̇T

0 z1

ṗ0−u̇T
0 z2

, and ∆uk+1=z1−∆pk+1z2. (2.13)

The method is illustrated geometrically by Fig. 2, where the initial solution is indicated
by M0=(u0,p0), the predictor with M1 and the final converged solution by M∗.

The advantage of pseudo-arclength methods over traditional continuation methods
is that the Jacobian of the extended system

[

Φu,Φp

]

has rank n, even at folds where
Φu becomes singular. Hence, one can easily continue around folds. Another advantage
of pseudo-arclength continuation is that it can compute branches of unstable as well as
stable solutions [109].
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Figure 2: Sketch of the pseudo-arclength method. The initial solution is indicated by M0=(u0,p0), the predictor
by M1 and the final converged solution by M∗.

Once a steady state ū is computed, its linear stability must be assessed. Setting
u(t)= ū+ũ(t), linearizing (2.1) around ū and separating ũ(t)= û eλt gives a generalized
eigenvalue problem of the form

Φu(ū)û=λMû, (2.14)

where Φu(ū) is again the Jacobian matrix evaluated at ū. When all eigenvalues of the
generalized eigenvalue problem (2.14) have negative real part, then the steady solution
is linearly stable. If at least one eigenvalue has a positive real part, then the steady state
is unstable.

2.3 Large-scale applications lead to special problems

It is fair to say that in the context of PDEs, continuation method algorithms are basically
the same as those for ODEs. The difficulty rather lies in the accuracy of the Jacobian, the
solution of the nonlinear systems of equations, and the leading eigenvalues of the linear
stability problem.

The large linear systems which arise through the Newton-Raphson iteration can in
general no longer be solved by direct solvers. To date, there also exists no general iterative
method that solves all sparse linear systems efficiently. Hence, often the linear algebra
is tuned to the problem. The same holds for the eigenvalue problem solvers, where QZ
methods [49] must be replaced by tailored techniques, as will be discussed in Section 3.

All continuation methods rely essentially on a correct estimation of the extended Ja-
cobian matrix

[

Φu,Φp

]

. For PDEs this can be done in at least four ways: 1) by explicitly
determining and coding the linearization, 2) by automatic differentiation, 3) by symbolic
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computation or 4) by using the approximation

(Φu)ij(ū)≃
Φi(ū+ǫej)−Φi(ū)

ǫ
, (2.15)

for small ǫ>0, where ej is the unit vector in the jth direction. Each of these methods has
specific difficulties, as will be discussed in more detail in Section 3.2 below.

In applications, one often does not want to make changes in a supplied application
code that is highly tested and verified. If a code provides a right-hand-side Φ and pos-
sibly a Jacobian matrix Φu, then it is preferable to not make changes in the code in order
to carry out bifurcation analysis. Thus, it is advantageous for the continuation code to be
independent of the application code. A special challenge is then to design the bifurcation
analysis algorithm so that it does not control the linear algebra objects, but just operates
on them through an interface.

For systems of PDEs, the calculations require much more computing power than for
ODE systems, and hence the numerical methods should be efficient. One has to exploit
parallel computing and fast operations for data in cache. This requires special data struc-
tures and leads to complex software, easily growing to millions of lines of code.

3 Computation of bifurcation diagrams

The methods for computing the branches of equilibrium solutions as a function of pa-
rameters can be divided roughly into two types: methods for which only Φ, defined in
(2.6), is explicitly available and methods for which both Φ and its Jacobian matrix Φu are
available.

3.1 Matrix-free and time-integration based methods

Using u to denote the vector of independent variables and p to denote a parameter, the
system (2.1) is written as:

Mdu

dt
=Φ(u,p), (u,p)∈U ⊂ IRn×IR, (3.1)

with n≫ 1 again being the dimension of the system. In the following, we also need the
associated linearized system given by

Mdy

dt
=Φu(u,p)y+Φp(u,p)µ, (y,µ)∈ IRn×IR, (3.2)

for initial conditions y(0)=y0 and fixed µ. We assume that a time stepper is available to
solve the initial value problems (3.1) and (3.2) for given initial conditions.

A time-discretization scheme can be seen as replacing (3.1) by a map

u→G(u,p,T), (u,p)∈U ⊂ IRn×IR, (3.3)
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where T is the total integration time. We are interested in the stable or unstable steady
states of (3.1), which are fixed points of (3.3), and this will be discussed in the Subsections
3.1.1 and 3.1.2 below. Other invariant manifolds of (3.1), in particular periodic orbits and
invariant tori, can be defined as fixed points of other maps G, which we will discuss in
Subsections 3.1.3 and 3.1.4.

3.1.1 Computation of fixed points by Newton-Krylov methods

We first discuss the general problem of computing fixed points of maps G(u,p) via a com-
bination of Newton-Raphson and Krylov subspace methods, or Newton-Krylov meth-
ods. We will omit T from the argument list because in some cases described below, the
map will not depend explicitly on T.

When a continuation method is used to obtain sets (u,p) of fixed points, systems of
the form

(

u−G(u,p)
m(u,p)

)

=0 ∈ IRn×IR (3.4)

must be solved. In the case of arclength continuation, we have

m(u,p)≡v⊤
u (u−u0)+vp(p−p0), (3.5)

where (u0,p0) (similar as in (2.9)) and (vu,vp) are predictions of a new point on the curve
of solutions and the curve’s tangent. Another possibility for m(u,p) is to fix the value of
p, switching to fixing a component of u near a fold.

The system (3.4) is solved by Newton’s method. At each step, the linear system

(

I−Gu(ui,pi) −Gp(ui,pi)
v⊤

u vp

)(

∆ui

∆pi

)

=

(−ui+G(ui,pi)
−m(ui,pi)

)

(3.6)

is solved iteratively by matrix-free methods and the estimated values are updated via

(ui+1,pi+1)=(ui,pi)+(∆ui,∆pi). (3.7)

Iterative methods such as the generalized minimal residual method (GMRES) or the bi-
conjugate gradient method (BiCGStab) [94] require only the computation of matrix prod-
ucts, i.e., the calculation of actions of the form

Gu(u
i,pi)∆u+Gp(u

i,pi)∆p (3.8)

for given ∆u and ∆p.
Convergence is facilitated if the spectrum of Gu evaluated at the fixed points is clus-

tered around the origin, more precisely if very few of its eigenvalues are located outside a
disk centered at the origin and of a radius less than one. This is indeed the case for maps
like (3.3) which involve the time integration of systems of elliptic-parabolic PDEs. In this
case the map G is a strong contraction to the fixed points, except along the unstable man-
ifold if the fixed point is unstable. We assume that the dimension of this manifold is very
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small compared to the dimension n of the system. In summary, the system (3.6) needs no
preconditioning if the Jacobian Gu(ui,pi) has the kind of spectrum described above, and
we can expect fast convergence in O(10) iterations [98].

To compute the stability of a fixed point, ū, we only need to use any variant of the
power method (subspace iteration, Arnoldi methods, etc.) to compute the leading eigen-
values (largest in modulus) of Gu(ū) [2, 82].

We will now describe, for the three types of invariant objects under consideration, the
corresponding map G and the action of its Jacobian.

3.1.2 Continuation of fixed points based on time integration

In order to compute steady states of (3.1), we propose the map

G(u,p)=ϕ(T,u,p), (3.9)

with ϕ(T,u,p) the solution of (3.1) at time T with initial condition u. It is clear that

Φ(u,p)=0 ⇒ u−ϕ(T,u,p)=0. (3.10)

The matrix products required to solve the linear systems (3.6) are obtained by integrat-
ing (3.2) with initial condition y0=∆u, and µ=∆p. Each matrix product then requires the
time integration of a system of 2n equations, (3.1) for u and (3.2) for y. This will also be
the case for periodic orbits and invariant tori.

If the fixed points are stable, the method can be seen as an acceleration of the time
evolution towards the steady state. If they are unstable, it is similar to a stabilization
method like the Recursive Projection Method of [111]. This method was used in [81]
to compute solution branches in a two-dimensional annular region subjected to radial
gravity and differential heating.

The integration time T is chosen to optimize the computation time. Increasing T con-
centrates the spectrum of Gu at the origin, reducing the number of matrix evaluations (3.9)
required to solve (3.6). However, increasing T (for a fixed time step ∆t) also increases the
computation time to carry out each matrix evaluation (3.9). A few numerical experiments
are usually required to determine the optimal value of T.

In another approach, a single large time step of size T is used, and so no tradeoff
is necessary to select the value of T. In this case, G no longer represents accurate time
stepping of (3.2) but its fixed points can nonetheless be steady states of (3.2) as we will
now demonstrate. A mixed time discretization is used to integrate (2.1), with L and N
integrated implicitly and explicitly, respectively:

M(u(t+∆t)−u(t))=∆t(Lu(t+∆t)+N (u(t)) . (3.11)

Eq. (3.11) is rearranged to yield the time-stepping scheme

u(t+∆t)=(M−∆tL)−1(M+∆tN )u(t), (3.12)
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where M−∆tL can be inverted inexpensively. In any tensor-product geometry, such
as Cartesian, cylindrical, or spherical, the inversion can be carried out directly, while in
more complicated geometries, techniques such as multigrid methods are available for
solving elliptic problems quickly. Thus (omitting the parameter p in the notation),

G(u)=ϕ(u,T)≡ (M−TL)−1(M+TN )u, (3.13)

and we seek solutions of

0=G(u)−u

=(M−TL)−1(M+TN )u−u

=(M−TL)−1(M+TN−(M−TL))u

=(M−TL)−1T(N+L)u. (3.14)

This demonstrates that steady states of (2.1) are indeed fixed points of G for the time-
stepping scheme (3.11), for any value of T. For large T, (3.14) shows that

G(u)−u≈L−1(N+L)u, (3.15a)

Gu−I≈L−1(Nu+L), (3.15b)

where I is the identity matrix. Consequently L−1 plays the role of a preconditioner for
Nu+L, and Gu−I is essentially a preconditioned version of Nu+L [15, 19, 134]. This
method has been used to calculate bifurcation diagrams in many physical systems, such
as spherical Couette flow [73], cylindrical Rayleigh-Bénard convection [14, 133], Bose-
Einstein condensation [57], and binary fluid convection [1, 3].

Far away from u=0, the linear solver may fail to converge, and other preconditioners
of Nu+L may be sought. If finite differences, volumes or elements are employed, in-
complete LU decomposition or other techniques described later can be used as precondi-
tioners to accelerate the convergence (see [79, 95] for examples of this methodology). For
spectral methods, it is not easy to find good preconditioners. Finite difference or finite
element versions of the problem have been successfully used as preconditioners [17, 18]
but the coding becomes much more complicated.

3.1.3 Continuation of periodic orbits

For computing periodic orbits, two possibilities are available for the map G. The first
consists of a Poincaré map on a certain manifold. A hyperplane Σ1 defined by

gΣ1
(u)=v⊤

1 (u−uΣ
1 )=0 (3.16)

was used in [98]. In this case G(u,p) =ϕ(T,u,p), with gΣ1
(ϕ(T,u,p)) = 0, is the first

intersection close to u of the trajectory starting at u∈Σ1, and T the arrival time. When
u=ϕ(T,u,p) we have a periodic orbit of period T. The details on how to parameterize Σ1,
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which has dimension n−1, are given in [98]. The action of the Jacobian can be computed
by the formula (see [112])

Gu(u,p)∆u+Gp(u,p)∆p=y− v⊤
1 y

v⊤
1 z

z, (3.17)

where v⊤
1 ∆u = 0, z = Φ(G(u,p),p), and y is the solution of the first variational equa-

tion (3.2) with initial condition y0=∆u, and µ=∆p. Again, each matrix product requires
the time integration of a system of 2n equations.

This formulation, together with Newton-Krylov methods, was used in thermal con-
vection problems in [98] and [89], and in [100] to obtain a normal form of a periodic orbit
with symmetries. The latter study also required the eigenfunctions of an adjoint operator
at the specific periodic orbit. A multiple shooting variant using parallelism has been con-
sidered in [96]. The computations of segments of two-dimensional invariant manifolds in
large-scale systems has been described in [135], generalizing the ideas of [64] and of [63].

The second formulation, without Poincaré maps, is that used, for instance, in AUTO
[33–35], CONTENT [66], or MatCont [29] and consists of solving the bordered system

u−ϕ(T,u,p)=0, (3.18a)

gphase(u)=0, (3.18b)

m(u,p)=0 (3.18c)

for (u,p,T) using Newton-Krylov methods. In this case the map depends explicitly on
T, i.e., G(u,p,T)=ϕ(T,u,p). In (3.18), gphase(u)= 0 is a phase condition which selects a
single point on the periodic orbit, and m(u,p) = 0 is a pseudo-arclength-like condition
as in (3.4). The phase condition can be again by Eq. (3.16) or an integral constraint, as is
done in AUTO. It is possible, but not strictly necessary, to scale the time as t=Tτ, with
T the unknown period of the periodic orbit (so that now the period is τ=1), and to then
rewrite the original system (3.1) as

Mdu

dτ
=TΦ(u,p). (3.19)

This is done when the periodic orbits are computed by collocation in time, in order to fix
the endpoints of the time interval.

The action of the Jacobian can be computed as described in the case of fixed points
by integrating the variational equation (3.2). The only difference is that the derivative
with respect to T must be included. These algorithms have been used to find periodic
orbits for plane channel and pipe flows in [37] and in [47]. In some cases the authors did
not have a good initial condition to start the continuation and therefore used globalized
Newton’s methods to increase the size of the basin of attraction [87].

Newton-Krylov methods are most widely used, but other techniques have been also
employed. In particular, the use of Newton-Picard iterations to compute periodic orbits
was described in [72]. A library, PDECONT, is freely available and was used in [128] for
the flow in a lid-driven cavity.



H. A. Dijkstra et al. / Commun. Comput. Phys., 15 (2014), pp. 1-45 15

3.1.4 Computation of invariant two-dimensional tori

It is also possible to compute invariant tori using continuation methods [99]. The in-
tersection of an invariant two-dimensional torus with a hyperplane Σ1 which cuts it
transversally is, near one of the points of the intersection, an arc of a curve (Fig. 3). Let
P :V ⊂Σ1 →Σ1 be the Poincaré map defined on the hyperplane Σ1. The intersection arc
will be invariant under this map. Let Σ2 be another hyperplane, given by v⊤

2 (u−uΣ
2 )=0,

transverse both to Σ1 and to the invariant two-torus. Then we define the map

G(u,p) : U ⊂ (Σ1∩Σ2)×IR→ IRn−2 (3.20)

as follows (see Fig. 3). If u is a point on the intersection Σ1∩Σ2, and B(u,ε) is the ball of
radius ε centered at u, a time integration with initial condition u is started to find the first
q+1 powers of the Poincaré map

zj =P k j(u,λ), with j=1,··· ,q+1 and k1 < k2< . . .kq+1, (3.21)

which fall inside B(u,ε) (q=3 in Fig. 3). Then the intersection of Σ2 with the polynomial
which interpolates these points defines the map G. Its fixed points are approximations of
the points we are looking for. If

µj =v⊤
2 (P k j(u,p)−uΣ

2 ), j=1,··· ,q+1 (3.22)

are the projections of the points zj onto the line u=uΣ
2 +µv2, then

G(u,p)=
q+1

∑
j=1

lj(0)zj, (3.23)

where the lj(0) are the Lagrange interpolation polynomials of degree q, based on the
nodes µj, evaluated at µ=0.

µ1µ2µ3µ4

ΣΣ 21

(u,λ)

z1
z3z4

(u,λ)

z2
Σ1

2v

Pk=jz j

G

ε
u

Figure 3: Scheme of the map G defining a point on the torus. The solid line represents an arc of an invariant
curve in Σ1, and Σ1∩Σ2 is the vertical dashed line. The intersection of the invariant curve with Σ2 is the point
we want to approximate.
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The computation of the action of the Jacobian of G on a vector reduces to the case of
the differential of the Poincaré map. As in the case of periodic orbits, Σ1∩Σ2 must be
parameterized, and the radius ε defining G must be varied adaptively during the contin-
uation process. The method is only valid, in principle, for stable quasiperiodic tori, but
practice has shown that weakly unstable and resonant tori can be also computed. More
details are given in [99], where the method was applied to compute invariant tori in a
binary-mixture convection problem. Very recently an efficient parallel implementation
has been developed [97].

3.2 Matrix-based techniques

In this section we discuss the bifurcation analysis that can be carried out when the ap-
plication code supplies a Jacobian matrix. A significant number of simulation codes for
complex flow simulations compute a Jacobian matrix, defined as Φu in the previous sec-
tion. This code development is typically motivated by investigations of behaviors that
occur on long time scales and at steady state. In these cases, Newton-Raphson based
algorithms for implicit time integration and direct-to-steady solvers are the methods of
choice for efficiency.

Having a Jacobian matrix, and not merely an algorithm for applying the Jacobian
operator, can lead to more robust and efficient linear algebra. For modest sized prob-
lems, a direct solver can be used. For large-scale applications where direct solvers are
not practical, the entries of the matrix are used to generate a preconditioner to be used
with a Krylov iteration method such as GMRES. Having a fully formed matrix also leads
to more efficient application of the Jacobian operator for this computationally-intensive
step of Krylov iterations. Thus, for stiff linear algebra problems for which effective pre-
conditioners and many Krylov iterations are needed to solve the linear system, the cost
of computing a Jacobian matrix is worthwhile for efficiency and even necessary for ro-
bustness.

3.2.1 Linear systems

In pseudo-arclength continuation, as well as in the eigensolution methods, bordered linear
systems arise. These are of the form

[

J V
WT C

][

x

s

]

=

[

fx

fc

]

, (3.24)

where J is a sparse Jacobian matrix, and V and W contain an equal number of vectors.
The system (2.10) serves as an example with J=Φu, V=Φp, W= u̇0 and C= ṗ0.

A standard approach is to carry out a block LU-factorization

[

J V
WT C

]

=

[

J 0
WT I

][

I J−1V
0 C−WT J−1V

]

. (3.25)
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This is fine as long as J is non singular. However, at bifurcation (e.g. fold) points the
matrix J becomes singular, and applying its inverse leads to an unstable algorithm. Our
experience is that this is not a problem when using pseudo-arclength continuation to
pass around a fold point since the stepping algorithm will not land on the bifurcation
point precisely. This does become an issue when attempting to converge to the bifurca-
tion point. For the case of folds, there are essentially two approaches to deal with this
situation. The first is to integrate the border rows and columns into the system and use
multilevel preconditioners. The second one is to stabilize the block LU-factorization near
the bifurcation point; we will only discuss the first one.

Block multilevel preconditioners treat the border as part of the matrix. For example,
in a two-level case we get





A11 A12 V1

A21 A22 V2

WT
1 WT

2 C





=





A11 0 0
A21 I 0
WT

1 0 I









I A−1
11 A12 A−1

11 V1

0 A22−A21A−1
11 A12 V2−A21A−1

11 V1

0 WT
2 −WT

1 A−1
11 A12 C−WT

1 A−1
11 V1



. (3.26)

As described in [117], on the last level a direct method with pivoting can be applied,
which precludes an unstable factorization. Note that on the first level (and in general on
all but the last level) the application of the preconditioner to the border is just the same
as for the right hand side; it only differs for the last block. The implementation can take
advantage of this [117].

3.2.2 The eigenvalue problem

For the linear stability problem (2.14) one is usually only interested in those in a special
region, e.g., near the origin or near the imaginary axis. Fortunately the corresponding
eigenmodes are in general quite smooth, since, due to diffusion, eigenvalues correspond-
ing to high frequency eigenmodes have a large real negative part. The interesting eigen-
modes are in the low frequency range and these are for a large part determined by the
geometry. Moreover, in general the number of these is limited.

For the eigenvalue problem basically two methods exist: the Arnoldi method, [92]
which is a Krylov subspace method, and the Jacobi-Davidson method [116], which is an
accelerated Newton method. Both methods can be adjusted to target a desired set of
eigenvalues through a spectral transformation. However, targeting means that a shifted
system (such as the shift-invert transformation) needs to be solved. For Arnoldi meth-
ods such systems need to be solved to high accuracy in order to get an accurate Krylov
subspace, which is immediately related to the accuracy to which one can find the eigen-
values. Newton methods, and thereby the Jacobi-Davidson method, do not require this.
Inaccurate solves only influence the rate of convergence.

The shift-invert spectral transformation illuminates eigenvalues near the shift point
for accelerated identification and convergence. Since linear solvers are typically only
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Figure 4: Contour plot of the magnitude of an eigenvalue after undergoing a Cayley spectral transformation
(3.27) as a function of the complex eigenvalue in the untransformed system for σ=−µ=100. For an eigenvalue
λ located at any spot in this plane, the color contour indicates the magnitude of the corresponding eigenvalue
γ after undergoing the Cayley transformation. This transformation selects those eigenvalues near or to the right
of the imaginary axis, which is desirable for stability analysis.

available for real-valued matrices, one usually restricts the shift to a real value. In order to
be able to compute eigenvalues that have significant imaginary components, a so-called
Generalized Cayley Transformation [76], given by

C=(J−σM)−1(J−µM), (3.27)

is often applied. This transforms eigenvalues λ of the original generalized eigenvalue
problem (2.14) (Ju=λMu) to eigenvalues γ=(λ−µ)/(λ−σ) of the transformed problem
Cu=γu. In Fig. 4, a contour plot over the complex plane is shown for σ=−µ=100. For an
eigenvalue λ located at any spot in this plane, the color contour indicates the magnitude
of the corresponding eigenvalue γ after undergoing the Cayley transformation.

The Arnoldi method will converge fastest to the eigenvalues with the largest norms
after this transformation. It is evident that the Cayley transformation is desirable for
problems whose eigenvalues have large imaginary components, since the region of rel-
atively large magnitude extends up the imaginary axis (note the difference in scales for
the real and imaginary axes). The target need not be very precise in order to locate the
interesting eigenvalues, but it may influence the speed of convergence.

Analogies to time integration can be used to determine good choices for the parame-
ters in (3.27). Since eigenvalues have units of inverse time, the appropriate value of the
shift σ in the spectral transformations depends on the scaling of the particular problem.
As a rule, if one is investigating an instability through transient simulation and would
pick a time step of ∆t (based on knowledge or intuition of the characteristic time scales
of the problem), then an appropriate shift would be σ=2.0/∆t.
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3.2.3 Implementation issues

Once a problem has been abstracted out to the linear algebra level, it is possible to
use general-purpose algorithms for all phases of the analysis: preconditioning, iterative
solvers, Newton solvers, eigensolvers, continuation algorithms, and bifurcation tracking
algorithms. A large set of such algorithms have been developed in a modular, object-
oriented environment in the Trilinos framework (trilinos.sandia.gov). Inside Trilinos
there are separate software packages for the different phases of the calculations: LOCA
(continuation and bifurcation analysis), NOX (nonlinear solvers), Anasazi (eigensolver),
Epetra (distributed memory linear algebra objects), and many preconditioners and linear
solvers. All of these packages are designed to interoperate, so the continuation algorithm
can call the nonlinear solver, which in turn can call any linear solver. However, the con-
nection is through abstract interfaces so that users can use a tailored algorithm in place
of the Trilinos version, such as a user-defined physics-based preconditioner.

The bordered matrix systems that arise from the bifurcation algorithms can be pre-
sented using abstract linear algebra objects. Some of the algorithms, such as the block
matrix LU approach, can be implemented at this abstract level. Others, such as when
integrating the bordered system into the matrix, require direct manipulation of data and
layouts (such as a vector length or matrix sparsity) that can only be implemented for con-
crete linear algebra objects. In the LOCA implementation in Trilinos, bordered algorithms
are available at the generic level, while others (e.g. the Householder approach of [139])
are only available for codes that use the Trilinos Epetra linear algebra data structures.

At the beginning of this section we stipulated that we are dealing with application
codes with a Jacobian matrix. Here we will briefly discuss the approaches that are used to
generate this matrix. We can divide the approaches into analytic Jacobians which are exact
derivatives up to floating point precision, and numerical Jacobians which are generated
with finite difference approximations to the derivatives.

Analytic Jacobian matrices can be programmed by hand. For example, the linear
part of the matrix is computed and used for both the construction of the right-hand-
side and the Jacobian. In each update of the Jacobian matrix only the new nonlin-
ear part has to be added. So this approach is strongly matrix oriented. Analytic Ja-
cobian matrices can also be computed with Automatic Differentiation, a symbolic ap-
proach for generating derivatives. With Automatic Differentiation, the code for the
analytic derivatives is created, either by source transformation using a pre-processor,
for example, ADIFOR, http://www.mcs.anl.gov/research/projects/adiforand Ope-
nAD http://www.mcs.anl.gov/OpenADprojects or through the operator overloading ap-
proach for C++ codes (http://trilinos.sandia.gov/packages/sacado). Automatic
Differentiation can lead to a considerable decrease in code development time over hand-
coding the analytic Jacobian. If the PDEs are fixed, this might be a modest gain, but it
becomes a tremendous benefit when part of the research effort involves changes to the
form of the equations (such as investigations of source terms, solution-dependent prop-
erties, and equations of state). The numerical efficiency depends on many factors, but an
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Automatic Differentiation-generated Jacobian could take 50% longer to compute then a
hand-coded Jacobian matrix. For large-scale problems where the linear solver time dom-
inates, this difference decreases in significance.

Numerical Jacobian matrices can be calculated by finite difference approximation by
repeated calculation of the right-hand-side. Using the approximation of a directional
derivative (2.15), the numerical Jacobian matrix can be constructed. In order to use nu-
merical differentiation for large problems, the sparsity pattern of the Jacobian matrix
must be exploited. In general it is not possible to evaluate a certain entry of the right-
hand-side function. Usually there is a vector input and a vector output. So it is crucial to
limit the number of calls to the right-hand-side function; one should try to get as many
derivatives as possible from one call to the right-hand-side function. For instance, if the
Jacobian matrix is just a diagonal matrix then due to the independence only two calls
are needed to get all the values. In general, unknowns can be subdivided by a coloring
algorithm in such a way that a small number of right-hand-side evaluations yields all of
the coefficients [27]. A more efficient approach, particularly suited to finite element cal-
culations, is to perform the finite difference loop at a local (element) level. If an element
has N degrees of freedom, then the dense element stiffness matrix can be computed by
N+1 residual evaluations for this element. This is slightly more invasive in the code, but
tends to be much easier to implement and requires far fewer residual evaluations than
the coloring approach.

To our knowledge, the LOCA package of the Trilinos framework is the only general-
purpose bifurcation analysis package that targets large-scale applications. The main ob-
stacle involved in devising such a library is that the performance and robustness of-
ten depend largely on the inner linear solver method, and its application-specific data
structures and preconditioners. So, a general purpose package must use abstract layers
around the linear algebra so the bifurcation analysis algorithms can be written indepen-
dently of the linear algebra. This makes it harder to write, and to interface to, than might
be expected.

4 Highlights of results

To demonstrate the use of numerical bifurcation analysis in solving fluid dynamical prob-
lems, we provide an overview of several cases which have been studied in detail over the
years.

4.1 Exact coherent states in shear flows

The transition to turbulence in plane Couette flow and pipe flow shares some of the phe-
nomenology of subcritical transitions: turbulence can be found while the laminar flow
is stable against infinitesimal perturbations, so that a finite amplitude disturbance is re-
quired to initiate turbulence. This looks like a subcritical transition but it differs from the



H. A. Dijkstra et al. / Commun. Comput. Phys., 15 (2014), pp. 1-45 21

standard cases discussed in Section 2 in that there is no laminar state from which a sub-
critical bifurcation could be tracked [41, 51]. Nevertheless, numerical and experimental
studies of pipe flow show that there are persistent three-dimensional coherent structures
that provide a scaffold for the turbulence in the sense that they appear transiently in the
turbulent velocity fields [40, 41, 43, 56, 105, 140]. These flow states are exact, persistent so-
lutions to the Navier-Stokes equations. They typically are fully three-dimensional, i.e. all
velocity components are active and vary in all three space dimensions. They are known
as ‘exact coherent states’ or ECS [138].

The exact coherent states can be fixed points of the Navier-Stokes equations in the
original frame or in a co-moving frame of reference (in which case they become travelling
waves in the laboratory frame) or real periodic states. For fixed points, an interesting vari-
ant on continuation methods is the Newton hook-step method introduced in [136, 137].
Let Φ(u,p)=0 again be the equation to be solved for the fixed point u as a function of the
external parameters p (which in addition to Reynolds number could also contain stream-
wise and/or spanwise wave numbers in periodic domains). Given an approximation uk

to the fixed point, an improved one, uk+1 =uk+∆uk+1, is obtained again by solving the
linear equation

Φu(u
k,p)∆uk+1=−Φ(uk,p). (4.1)

In the hook-step method, solving this linear system is done by considering the usually
much better behaved optimization problem

min
∆uk+1

||Φu(u
k,p)∆uk+1+Φ(uk,p)||. (4.2)

The GMRES method is then again used to solve this problem [130]. This by itself is not
enough, as the correction vector ∆uk+1 could still have a large norm. Therefore, the search
for an optimum in the Krylov subspace is restricted to solutions where ||∆uk+1|| is small.

For the above problem, the gain in convergence is enormous: while a direct method
typically requires that the deviation of the initial estimate from the fixed point be as small
as 10−6, the Newton hook-step method can converge if the initial state is within 10−3 of
the fixed point. This gain in efficiency suffices to find fixed points by starting from points
during the time-evolution where du/dt is small. Other methods use embeddings into a
family of flows within which the desired states can be tracked via homotopy [26, 43, 80,
138].

In systems with a subcritical transition, the perturbations must exceed a critical level
before they can induce turbulence. Moving away from the laminar profile, one finds that
the time it takes to return increases, and it diverges when the boundary is crossed. In
the shear flows in which this method for determining the boundary was introduced, the
turbulent state was not persistent but transient [56], and the lifetimes showed a sensitive
dependence on initial conditions. Since the boundary separates a region with regular
variations in lifetimes from one with chaotic variations it was called the ’edge of chaos’
[115]. States on the boundary do not become turbulent and they do not return to the
laminar state. They are permanently trapped in this manifold, but within it converge to
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relative attractors (relative, because they are attracting only within this manifold). The
states thus reached are called ’edge states’. The boundary between laminar and turbulent
is then formed by the stable manifold of these edge states. The motion within the edge of
chaos can be quite involved [39].

Tracking edge states is relatively straightforward, and requires only a program for
time integration [115, 129]. It has been used in various flow systems, including pipe
flow [104, 106, 137], plane Couette flow [107], in boundary layers [25, 38] and also in
plasma physics [20]. In the cases of the usual saddle-node bifurcation with a real node
and a saddle of co-dimension one, the edge state is the saddle and the boundary is the
stable manifold. In more complicated cases, where many states appear in saddle-node
bifurcations, there usually is only one saddle with a stable manifold of co-dimension
one. Edge tracking will then select this state among all the lower-branch states [107]; an
example is shown in Fig. 5.
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Figure 5: Edge tracking and coherent structures in plane Couette flow. Frame (a) shows the energy of the
flow as a function of time. For negative times the time-evolution is unconstrained, and for positive time edge
tracking is applied. The different colors indicate different segments that approximate the edge state. The flow
fields represented by the surface where the downstream velocity component vanishes are shown in frames (b)
and (c): for the initial turbulent state the surface is rough, indicating the small scale turbulence, but for the
final state it is smooth (figure from [107]).

4.2 Thin film flows

Micro- and macrofluidic flows involving free surfaces, e.g., film flows along inclined
walls or the motion of drops on homogeneous or heterogeneous substrates, can often
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be described by the thin film or lubrication equations. These are obtained from the full
Navier-Stokes description via a long-wave approximation [86]. The equations are usu-
ally combined into a single evolution equation for the fluid thickness profile h(r,t):

∂t h=∇·{Q(h)∇p(h,r)−µ(h)ex}, (4.3)

where r=(x,y) is the position on the surface below the fluid, ex is the unit vector in x-
direction and t is time. Furthermore, p(h,r) is a generalized pressure and Q(h) is the fluid
flux, or mobility function. For Poiseuille flow without slip at the substrate, Q(h)=h3/3η,
where η is the dynamic viscosity of the fluid. In Eq. (4.3), µ(h) represents a general lateral
driving force, e.g. µ(h)=αgρQ(h) for a gravitational acceleration g driving the flow along
an incline of small inclination angle α, and liquid density ρ.

Continuation techniques have been successfully applied to the class of equations (4.3)
in cases when they can be reduced to ODEs, in which case the package AUTO can again
be used. Non-uniform solutions emerge from the trivial flat film state via a Hopf bifur-
cation [123] and continuation is normally started there. This allows one to use AUTO
to obtain various families of (i) periodic solutions that correspond to travelling waves,
and arrays of sitting or sliding drops; (ii) homoclinic orbits that correspond to soli-
tary waves, and individual drops; (iii) heteroclinic orbits that correspond to fronts; (iv)
self-similar solutions related to film rupture; and to track the various occurring bifurca-
tions [101–103,122,123,125,132]. Other continuation packages are used as well [23,24,61].
Some ready-to-run examples can be found in the supplementary material of [58]. A set of
AUTO tutorials and ready-to-run files for sitting and sliding drop solutions of thin film
equations, can be obtained via www.uwethiele.de.

At present, much less is known about the solution and bifurcation structure in the
three-dimensional case, i.e., with two spatial dimensions as in Eq. (4.3). Here, most
publications focus on studies of thin film dynamics by time integration, e.g., for heated
films [11, 52, 84], and the dewetting of partially wetting films [10, 85, 110]. To our knowl-
edge only [6] have developed suitable continuation tools, presenting a common frame-
work to perform time-stepping and continuation tasks for thin film equations containing
a bi-Laplacian. The time stepping is based on an exponential propagation scheme and re-
quires the computation of the exponential of the Jacobian matrix. The exponential of the
matrix is not directly computed, but its action on vectors is estimated using projections
on small Krylov subspaces [93]. For the continuation, a tangent predictor/secant correc-
tor scheme is used, leading in both steps to linear systems involving the Jacobian matrix.
This system is reduced using the Cayley-Arnoldi method, as also employed in the expo-
nentiation of the Jacobian [75, 141]. Furthermore, knowledge of the leading eigenvalues
facilitates the stability analysis and allows one to detect bifurcations.

The package developed by [6] has up to now only been applied to three-dimensional
liquid ridges and drops on an inclined heterogeneous substrate [4, 5]. Typical examples
of a bifurcation diagram and corresponding steady profiles of stable and unstable drops
are given in Fig. 6. In particular, Fig. 6 shows spanwise invariant ridges (thin red lines),
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Figure 6: (a) Bifurcation diagram for steady ridges (SR, thin red lines), and steady drops (SD, black lines)

pinned by a hydrophobic line defect of strength ǫ = 0.3 for L = 27.8 showing the L2 norm ||δh|| of steady
solutions as a function of the driving force µ. Solid (dashed) lines denote stable (unstable) solutions. The SD3
branch becomes stable in a Hopf bifurcation at µ=0.064 (not shown). Downward and upward pointing triangles
indicate stick-slipping ridge (SSR) and stick-slipping drop (SSD) solutions, respectively, as obtained by time
integration. For the remaining parameters, explanation of the remaining symbols, details of the pressure term
and further analysis of the system see [5]. (b) Steady states at locations indicated by open squares in Fig. 6a in
terms of contours of constant h(x,y), (left panel) at µ=0.00082 on the drop branch SD1, (left middle panel)

on the drop branch SD1 at µ= 0.00110, (right middle panel) at the saddle-node µ3d
sn2 = 0.00582 on SD1, and

(right panel) at the sniper bifurcation at µ3d
sn4=0.00724 on SD2 (figures from [5]).

and spanwise modulated or drop solutions (heavy black lines). Stable and linearly un-
stable solutions are indicated by solid and dashed lines, respectively. Downward and
upward pointing triangles indicate stick-slipping ridge (SSR) and drop (SSD) solutions,
respectively [5].

The limitations of the presently available tools for thin film equations are also well-
illustrated by the example in Fig. 6: Although the steady states can be continued, no
tools exist to continue time-periodic solutions on the branches of stick-slipping drops
and ridges. This leaves important open questions, such as the detailed bifurcation struc-
ture related to the emergence of the spanwise invariant SSR branch from the SR1 branch
(cf. [124]). At the chosen parameters the SR1 becomes unstable through a subcritical
Hopf bifurcation; therefore not all branches of time-dependent solutions can be obtained
through time integration. At other parameter values the SSD branch emerges from the
SSR branch through a subcritical bifurcation, whose details are also not known. Contin-
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uation of the time-periodic solutions of large period would also allow for a better under-
standing of the observed transitions between sniper and homoclinic bifurcations, which
is also relevant for depinning transitions in the context of deposition patterns.

4.3 Channel and shoal development in tidal embayments

Tide-dominated inlet systems, such as those located in the Wadden Sea, display complex
channel and shoal systems [42]. To gain insight into the physical mechanisms responsible
for these patterns, and their sensitivity to parameter values, a two-dimensional nonlin-
ear idealized model is developed and analyzed using a bifurcation analysis [120]. The
geometry of the tidal inlet is taken to be rectangular with width B and length L. The local
water depth is given by H−h+ζ, where H is the depth at the entrance, h the bed level
and ζ the tidal elevation. The sea bottom of the basin consists of uniform fine sand.

The evolution of this coastal system is described by a coupled system of equations that
describes the water motion, sediment transport and bed update. Focussing on transport
of suspended sediment by diffusive processes only, and assuming that the bed profile
only changes due to tidally averaged erosion and deposition, the resulting dimensionless
equations are given by (see [120] for details)

ζt+[(1−h)u]x+[(1−h)v]y=0, (4.4a)

ζx =0, (4.4b)

ζy =0, (4.4c)

vxt−uyt=−
[

ru

1−h+h0

]

x

+

[

rv

1−h+h0

]

y

, (4.4d)

a
{

Ct−κCxx−κCyy

}

=u2+v2−C, (4.4e)

hτ+〈C〉=−〈

u2+v2
〉

+µ
〈

[

h−heq

]

xx
+
[

h−heq

]

yy

〉

. (4.4f)

The depth-averaged dimensionless velocities are represented by u and v in the longitu-
dinal (x) and lateral (y) direction, respectively. The quantity C is the depth-integrated
suspended sediment concentration and h is the bed level.

In this system of equations two time scales appear: the short time scale (denoted by
t) with a typical period of 12.5 hours and the much larger morphodynamic time scale
(denoted by τ) in the order of years. The parameter r denotes the dimensionless friction
parameter, h0 is introduced to normalize bottom friction when approaching zero water
depth, a is the ratio of the deposition time scale over the tidal time scale, and κ is the
horizontal eddy diffusivity coefficient. Tidal averaging of physical quantities is denoted
by 〈·〉.

As the coastlines are fixed, there are no normal fluxes of water or sediment through
these boundaries. The bed is assumed fixed at the entrance, and the water motion is
driven by a prescribed vertical tide consisting only of the M2 tidal constituent, i.e., ζ =
cos(t).
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The temporal dependence of the variables on the fast time scale is discretized by using
two tidal constituents and a residual component (a Fourier expansion in time, truncated
after the second Fourier mode); their spatial dependence is discretized using a Galerkin
approach (25 Fourier modes in the lateral direction and 30 Chebychev polynomials in
the longitudinal direction). Hence M and L in (2.1) are of size 4500×4500, with M a
singular matrix and L a full matrix.

[108] and [121] investigated this model, and found semi-analytic width-invariant
morphodynamic equilibria. When the bottom friction parameter is increased above a
critical value, these equilibria become unstable. Using a simple continuation technique,
they constructed bifurcation diagrams showing the number of nonlinear morphody-
namic equilibria and their stability as a function of the bifurcation parameter r. An exam-
ple is shown in Fig. 7, in which the equilibrium bed profiles are shown on the different
branches.
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Figure 7: Bifurcation diagram for an embayment with a width of 1 kilometer. In (a) the amplitude corresponding
to lateral mode 2 is plotted. The equilibrium bed level (bottom panel) and deviation from the constantly sloping
trivial solution (top panel) for r∼0.2 and r=0.24 are given in (b) and (c), respectively.
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4.4 Rayleigh-Bénard convection

Rayleigh-Bénard convection is probably the earliest example of an analytical solution of
a stability problem for viscous flow. The classical problem considers an infinite hori-
zontal layer whose boundaries are maintained at constant temperatures, with the lower
boundary considered hot and the upper one cold. The base state is motionless, with a
linear temperature profile between the boundaries. When the temperature difference ex-
ceeds a critical value, the motionless state becomes unstable via a pitchfork bifurcation
and slightly supercritical convective motion appears as pairs of counter-rotating two-
dimensional convective rolls [62].

Buoyancy convection flows are usually described in the framework of the Boussinesq
approximation [22]. This approximation consists of neglecting the temperature depen-
dence of the fluid parameters, except for the density in the buoyancy term, which is
assumed to vary linearly with temperature. The dimensionless equations are given by

Pr−1(
dv

dt
+v·∇v)=−∇p+∇2v+RaTez , (4.5a)

∇·v=0, (4.5b)

dT

dt
+v·∇T=∇2T, (4.5c)

where v is the velocity field, T the temperature, p the pressure and ez the unit vector in
vertical direction. The parameters in these equations are the Prandtl number Pr = ν/κ,
the Rayleigh number Ra= gβ∆TH3/νκ, and geometric relations, e.g., aspect and width
ratios. Here ν is the kinematic viscosity, κ is the thermal diffusivity, g is the gravitational
acceleration, β is the thermal expansion coefficient, ∆T is the characteristic temperature
difference, and H is the characteristic length, e.g., the height of the horizontal fluid layer.

For convection in the Rayleigh-Bénard configuration, which allows for a quiescent
base state, it can be shown that the instability threshold is defined only by the Rayleigh
number. The onset of secondary instabilities, however, depends strongly on the Prandtl
number and the geometry. This dependence is the most common objective of stability
studies of convective flows. Several variants of the classic Rayleigh-Bénard problem in
an infinite horizontal layer can be defined by the boundary conditions at the upper and
lower bounding plates on the velocity, which can be either stress-free or no-slip.

A detailed analysis of the stability properties of the two-dimensional Rayleigh-Bénard
convection problem can be found in [65]. The academic case of two stress-free boundaries
has a simple analytic solution, which yields Racr =27π4/4≈657.511. The most unstable
disturbance is two-dimensional with a critical spatial wavenumber of αcr=π/

√
2≈2.221.

The physically achievable no-slip condition on either the lower or on both boundaries is
slightly more complicated. The well-known results are Racr=1100.657, αcr=2.682 for no-
slip lower and stress-free upper boundaries and Racr=1707.762,αcr=3.117 for two no-slip
boundaries. These three pairs of critical values are the necessary preliminary benchmark
results for any stability solver dealing with convective flows. The numerical problem
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is formulated in a rectangle of width 2π/αcr and unit height with periodic horizontal
boundary conditions. Alternatively, taking into account that the instability sets in as a
pair of counter-rotating symmetric rolls, one can consider a smaller problem, with the
width set to π/αcr, and reflection-symmetric horizontal boundary conditions.

A large number of experimental and computational studies have been carried out of
the primary and secondary instabilities. The reader is referred to books [46, 62, 70] and
review papers [12, 16, 68, 69, 74]. Some benchmark-quality results on primary Rayleigh-
Bénard instability for two-dimensional flows are available [45] as well as for three-
dimensional flows [21, 45, 88]. Here, the system of PDEs are reduced to systems of ODEs
through Galerkin expansions. Examples of three-dimensional spatial structures of the
temperature perturbation at the first bifurcation point are shown in Fig. 8.

Figure 8: Isosurfaces of the temperature perturbation of primary Rayleigh-Bénard instability in three-dimensional
rectangular containers with different height and width ratios. (a) Ax= Ay=1; Racr =4347; (b) Ax = Ay=1.5;
Racr = 2506; (c) Ax = Ay = 3; Racr = 1728; (d) Ax = Ay = 6.5; Racr = 1597; (e) Ax = Ay = 6; Racr = 1598; (f)
Ax=4, Ay=1; Racr=2645. The Rayleigh-Bénard instability turns a motionless non-uniformly heated fluid into
a convective flow organized in ascending/descending motion called convective rolls. Depending on the aspect
/ width ratio and initial conditions the rolls can have different symmetries and can be aligned either parallel
to a wall, parallel to a diagonal, or “centralized” with 90◦ rotational symmetry. The temperature perturbation
isosurfaces shown in the figure repeat the flow symmetry (reprinted with permission from [45]).

The importance of convective flows in many scientific and technological areas has
led to their intensive study in various configurations, under many different heating con-
ditions, and sometimes with additional forcing, such as an applied magnetic field. An
impressive collection of results, including state-of-the-art stability and path-following
studies, can be found in the recent book of [70].

4.5 Convection mitigated thermal runaway

In this application, a chemical reactor is considered with an exothermic chemical reac-
tion. To remove the heat, the walls of the reactor are cooled and the fluid is stirred. If
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the stirring mechanism breaks down, then the fluid will develop a hot spot away from
the cooled walls. Due to the exponential increase in reaction rate with respect to tem-
perature, thermal runaway can occur and lead to explosion. Natural convection due to
the temperature differences can induce a flow that will circulate the fluid near the cooled
walls and delay or prevent the explosion compared to a situation where there is no flow.
In this problem, bifurcation analysis can provide guidance on the design of the reactor
by delineating regimes in parameter space where the un-stirred reactor will explode and
where the passive convection behavior will be enough to prevent explosion.

The model often used comes from previous studies of explosion and natural convec-
tion [78]. The full model includes the Navier-Stokes equations for the flow and coupled
heat and chemical species balances. To reduce the number of dimensionless parameters
that govern the problem, it was assumed that reactant depletion is negligible (eliminating
the species balance) and the Frank-Kamenetskii representation of Arrhenius kinetics [44]
as an exponential dependence on temperature (removing the dependence of the chemical
reaction activation energy) is used. The equations are the same as (4.5) except for an extra
term proportional to the Frank-Kamentskii number FK in the right hand side of (4.5c).

With the Boussinesq approximation for the density dependence on temperature, and
assuming other physical properties are independent of temperature, focus is on the be-
havior of the flow while varying two dimensionless parameters: the Rayleigh number
Ra representing the ratio of buoyancy forces to stabilizing viscous and conduction ef-
fects, and FK which is the ratio of the heat generated by reactions to the dissipation of
conduction.

The problem was studied for a cylinder with unit aspect ratio, no-slip boundary con-
ditions for the velocity on all sides, a cold outer wall held at dimensionless tempera-
ture T = 0, and adiabatic top and bottom surfaces. The problem was discretized with
a pressure-stabilized Galerkin Finite Element methods, a mesh of hexahedral elements,
and with trilinear basis functions for all unknowns. The Jacobian matrix was constructed
analytically using Automatic Differentiation, specifically the Sacado package in Trilinos.
The parallel data structures, linear solver, preconditioner, nonlinear solver, eigensolver,
continuation, and bifurcation tracking algorithms all come from the packages within the
Trilinos solver framework.

Fig. 9a shows vertical velocity contours on half the domain, with a hot spot at the
center and cooling at the walls generating a recirculation. For a fixed value of Ra= 106,
a continuation run was done for the reaction rate parameter FK, and shown in Fig. 9b. A
fold point located near FK=16 shows that, for a fluid and geometry corresponding to this
Ra, a reaction rate over this critical value would result in thermal runaway. More design
information comes from the fold-tracking calculation in Fig. 9c, where the curve of fold
points is calculated as a function of the Rayleigh number. The curve intercepts the Ra=0
axis at the known analytic solution of a critical value of FK =2, below which conduction
alone is enough to remove the heat and prevent explosion. Here the regions in parameter
space with qualitatively different behaviors (whether or not the reactor explodes) are
delineated by a single bifurcation-tracking continuation calculation. This is exactly the
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Figure 9: (a) Contour plot of vertical velocity variable for the convection mitigated thermal runaway problem.
This natural convection pattern is driven by heat generated by a chemical reaction and cooling at the outer
walls. (b) The result of a pseudo-arclength continuation run for the convection mitigated thermal runaway

problem. For a fixed value of Ra=106, the solution curve, parameterized by the dimensionless reaction rate FK,
shows a fold point corresponding to thermal runaway. (c) A fold-tracking run for this same problem directly
delineates the regions in two-parameter space between safe and unsafe designs.

type of plot needed by engineers to know how to design and operate the reactors so
that, in the event of a failure in the stirring mechanism, the system will avoid thermal
runaway.

This relatively straightforward calculation required a few hours on 128 processors for
a discretization of over one million unknowns, and little human intervention. This is in
stark contrast with the human and computational resources that would be needed to ex-
tract this same information by repeated transient simulations covering the two-parameter
space.

4.6 Swirling flows in Francis turbines

Due to the variable demand on the energy market and the limited storage capabili-
ties, modern turbines are often forced to operate far from optimal efficiency point. The
swirling flow exiting the runner of the turbine is further ingested by the draft tube where
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it is decelerated in order to convert as much as possible the excess of dynamic pressure
into static pressure. The deceleration of the swirling flow in the draft tube may lead to
the occurrence of vortex breakdown with the development of a central quasi-stagnation
region or severe pressure fluctuations associated with a precessing helical vortex. The
onset of vortex breakdown is characterized by a transition between a jet-like profile and
a wake-like profile with a local minimum on the axis [83]. Understanding the mechanism
of vortex breakdown is extremely important in developing flow control techniques.

Numerical simulations of three-dimensional turbulent swirling flow in the particular
case of a flow downstream from a Francis turbine runner, using very powerful available
computer resources, take about two months for the investigation of only one operating
point. One way to help interpret the significant amount of data is the application of
stability and bifurcation analysis in order to recover the most relevant information using
much less computation time for each set of parameters.

The equations of motion in the primitive variable formulation for an incompressible
flow are the Navier-Stokes equations in cylindrical coordinates. The computational do-
main corresponds to the diffuser shape (Fig. 10a) with the wall radius rwall given with
respect to the inlet radius, Rinlet=

√
2, as [119]

rwall(z)

Rinlet
=1+

1

2

(

1−cos
(πz

6

))

, for 0≤ z≤6. (4.6)

There are two cylindrical segments of radius Rinlet for −2≤ z≤0 and of radius 2Rinlet for
6≤z≤8, added upstream and downstream of the diffuser. The inlet swirl corresponds to
a Burgers vortex, with velocity components given by

Vzin=1; Vrin=0; Vθin(r)=
ΩR2

r

(

1−e
− r2

R2

)

, (4.7)

where Ω is the angular velocity at the axis, R is the vortex characteristic radius and Vzin,
Vrin, Vθin are the inlet axial, radial and swirl components of the velocity. The asymptotic
behavior of the swirl velocity is

Vθ ≈ΩR
r

R
if r≤R and Vθ ≈ΩR

R

r
if r≥R, (4.8)

corresponding to the forced vortex and free vortex, respectively. The characteristic radius
is taken as constant R= 0.4, but the swirl intensity is increased as ξ = 2ΩRinlet/Vzin and
for our purpose takes the values 1, 2 or 3. A simple radial pressure equilibrium condition
on the outflow section, ∂p/∂r= ρV2

θ /r, is used in the numerical computations, although
its accuracy deteriorates when a vortex ring is convected downstream through the outlet
section.

Steady axisymmetric flows in Francis turbines and their linear stability were investi-
gated in [36] and [119]. When the swirl intensity is ξ=1, the streamlines in a meridional
half-plane for a low swirl intensity (Fig. 10b) reveal a steady flow: no vortex breakdown
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Figure 10: (a) Schematic of the vortex flow leaving the runner of the Francis turbine [77]. (b) Steady swirling
flow without vortex breakdown for the swirl intensity ξ=2ΩRinlet/Vzin=1. (c) Steady swirling flow with central
stagnation region for ξ=2. (d-e) Two snapshots of the streamlines for unsteady swirling flow showing distinct
vortex rings for ξ=3 (figure from [119]).

occurs. As the swirl intensity increases to ξ =2, steady axisymmetric vortex breakdown
occurs at the end of the diffuser, with the development of a central stagnation region
(Fig. 10c). We recognize vortex breakdown as an internal separation away from a solid
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boundary. The streamline originating close to the axis in Fig. 10c displays severe flow
deceleration as the fluid particles approach the tip of the stagnation region, then the ve-
locity practically vanishes. The streamline originating at the vortex characteristic radius
on the inlet section, separating the inner so-called viscous core from the outer inviscid-
like flow, is shown as a thick red solid line. When the swirl intensity is further increased,
a Hopf bifurcation can occur and the flow becomes highly unsteady, with periodic vortex
rings development and convection downstream. The streamlines in the meridional half
plane (Fig. 10d-e) for ξ=3 at consecutive moments in time show the formation of periodic
vortex rings. The phenomenon is also associated with a significant shifting in time of the
radial discharge distribution on the outlet section.

The diagrams reveal the swirling flow characteristic for increasing intensity of the
swirl very distinctly. These secondary structures are of great practical and theoretical im-
portance for Francis turbines operating at partial discharge, where the bifurcation of the
solution leads to the formation of an unsteady helical vortex breakdown in the draft tube
cone. Vortex breakdown, which appears as a jump bifurcation due to structural instability
of swirling flows when the solution locally fails to exist, is associated with severe pres-
sure fluctuations and mechanical vibrations. In the presence of viscosity, these structures
are related to global bifurcations for dynamical systems. Control of such recirculation
zones is therefore necessary and suitable methodologies to control their generation are
crucial for the design of new devices.

4.7 Flow in a diverging channel

We consider the stability of the flow in a channel with non-parallel walls, which has
obvious applications to the internal transport of fluids in regions where the containing
vessels exhibit variations in internal dimension. That said, our principal interest is in
a more fundamental question: are (mathematically) simple similarity solutions useful
predictors of nonlinear behaviour?

The classic Jeffery-Hamel similarity solution describes the flow of an incompressible,
Newtonian fluid through a (two-dimensional) diverging wedge of infinite extent with
fixed separation angle 2α. The bifurcation structure of this flow is well understood and
the first bifurcation with increasing Reynolds number is a subcritical pitchfork that breaks
the mid-plane symmetry [118]. The bifurcation structure of the flow through diverging
channels of finite extent is not as well understood and there is contradictory evidence
in the literature, albeit often inferred from IVP methods. Although the critical Reynolds
number in finite domains is close to the predictions of the similarity solution, the criti-
cality and even the nature of the bifurcation is disputed. The aim of the work reported
in detail in [54] was to use bifurcation detection and tracking techniques to perform a
comprehensive analysis of the bifurcation structure for the flow in a diverging channel of
finite extent and to determine its connection, if any, to that of the Jeffery-Hamel similarity
solution. The work is part of a larger research programme with the aim of understand-
ing whether the complex behaviour found in similarity solutions of the Navier-Stokes



34 H. A. Dijkstra et al. / Commun. Comput. Phys., 15 (2014), pp. 1-45

α
θ

r

Ri

Ro

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10  15  20  25  30  35  40  45  50  55

Re

α Q C−

BT

Q
C−

BT

Figure 11: (a) Two parallel walls separated by a fixed angle 2α for which Ri ≤ r ≤ Ro, where r is the radial
coordinate of a set of polar coordinates centred at the (virtual) intersection of the two walls. (b) Location of
pitchfork (solid), limit-point (dashed) and Hopf (dotted) bifurcations in the (Re,α) plane. We conjecture that
there is an infinite nested sequence of similar curves. Here C− denotes a coalescence point, Q denotes a quartic
point and BT denotes a Bogdanov-Takens point. Results are for Ro/Ri=100, with a quadratic inlet profile and
a pseudo-traction free outlet (reprinted with permission from [54]).

equations, which are typically defined over semi-infinite domains, is ever relevant in
physically-realisable finite domains.

The Navier-Stokes equations were solved in a wedge of finite extent via a plane polar
coordinate system (Fig. 11a), and using a second-order accurate Galerkin method. No
slip, zero velocity, boundary conditions were imposed on the wedge sidewalls and a va-
riety of different inlet and outlet conditions were considered. For the results presented
here, we imposed an ad hoc quadratic profile as a Dirichlet inlet condition and allowed
the outlet to remain pseudo-traction free (the natural boundary condition for our finite
element formulation). The discrete form of the governing equations was assembled and
solved by oomph-lib [55]. Bifurcations were detected by solving the associated general-
ized eigenproblem with an Arnoldi method (ARPACK) and then tracked by forming the
appropriate extended system and continuing in a second parameter.

A sparse direct solver (SuperLU) was used to solve the linear system that arises at
each step of the global Newton method and our standard resolution was approximately
45,000 degrees of freedom for the base flow. The number of degrees of freedom is ap-
proximately doubled when continuing limit points and pitchfork bifurcations and ap-
proximately tripled when continuing Hopf bifurcations. Non-uniform spatial adaptivity
was used to minimize the number of degrees of freedom required for an accurate solu-
tion. Typical memory usage was 200Mb–1.2Gb depending on the overall problem size
(the greatest memory usage occurs when continuing Hopf bifurcations) and the bifurca-
tion diagram shown in Fig. 11b can be generated in a few hours on a standard commodity
PC. For the user, the most time-consuming operation is validating the computations and
designing the logic to detect and switch the tracking for the different bifurcation types,
which is not done automatically.
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The bifurcation structure in the finite domain is complex, exhibiting an entire family
of nested curves, each corresponding to a supercritical pitchfork bifurcation. Nonethe-
less, the outermost such curve approaches the path of the Jeffery-Hamel subcritical pitch-
fork bifurcation, Re∼3π/α, as α→0. In addition, isolated solution branches (not shown
in Fig. 11b) were also found that correspond to wave-like solutions found in the infi-
nite domain by [60]. Asymptotic analysis revealed that in the limit of small α, the critical
eigenfunction in the finite domain can be constructed by the superposition of two infinite-
domain eigenfunctions, which is enough to ensure that the inlet and outlet boundary con-
ditions are satisfied. This result provides the connection between the finite and infinite
domains and explains the change in criticality of the bifurcation. Moreover, the supercrit-
ical bifurcation was found to be the generic behaviour, unless the boundary conditions
were specifically chosen to force the similarity solution. In summary, the use of numeri-
cal bifurcation methods allowed us to bring together and explain previous discrepancies
in the stability of the flow through a diverging channel within a consistent framework.

4.8 The Atlantic ocean circulation

Over the last decade, the application of dynamical systems methods to a hierar-
chy of models of the ocean circulation has become an important complementary ap-
proach for understanding the origin of spatio-temporal variability of mid-latitude three-
dimensional ocean flows. Canonical situations are flows in a single-hemispheric spher-
ical sector representing the North Atlantic, forced by an idealized steady double-gyre
wind-stress field (with a typical amplitude τ), a restoring heat flux (with a typical pole-
to-equator temperature difference ∆T), and a prescribed freshwater flux (with a typical
amplitude σ). In the context of the decadal-to-interdecadal variability, two different limits
have been well studied [30]. One of these limits, τ=0, represents purely buoyancy-forced
flows with focus on instabilities and transitions (multiple equilibria) of the meridional
overturning circulation [32, 90, 91, 127]. The other well-studied limit, ∆T = σ= 0, is that
of purely wind-driven flows with a prescribed density field [31, 113, 114]. In [7–9], Jaco-
bian matrix-free methods are used to compute bifurcation diagrams with existing ocean
models.

In the matrix-based THCM ocean model [28] flows in a spherical domain bounded by
longitudes φw and φe and by latitudes θs and θn with continental boundaries introduced
by a land mask are considered. The ocean basin has a bottom topography hb and is
hence bounded vertically by z =−D+hb(φ,θ) and a nondeformable ocean-atmosphere
boundary at z= 0. The flows in this domain are forced by a heat flux QH (in Wm−2), a
zonal wind stress field (τφ,τθ) (in Pa) and a virtual salt flux QS (in ms−1). Both the fluxes
QH and QS are of restoring type where the surface temperature and salinity are restored
to prescribed functions TS and SS, using restoring time scales τT and τS, respectively. The
wind-stress forcing (τφ,τθ) is prescribed from data.

Temperature and salinity differences in the ocean cause density differences accord-
ing to the linear equation of state ρ=ρ0(1−αT(T−T0)+αS(S−S0)), where αT and αS are
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the volumetric expansion coefficients and T0, S0 and ρ0 are reference quantities. The full
(dimensional) equations of the primitive equation ocean model can be found in [28]. In
the model, Laplacian friction is used where AH and AV are the constant horizontal and
vertical momentum (eddy) viscosities, respectively. Although the general tracer mixing
equations (including isoneutral mixing and the Gent-McWilliams representation of eddy
mixing) were formulated in [28], in most cases constant horizontal and vertical diffusiv-
ities KH and KV , respectively, are used (the case ηM = ηG = 0 in [28]). Slip conditions
are assumed at the bottom boundary, while no-slip conditions are applied at all lateral
boundaries.

To compute steady flows as a function of parameters in a realistic Atlantic geometry, a
domain φ∈ [262◦,350◦], θ∈ [10◦ ,74◦]N and z∈ [−4000,0]m is chosen, with full bathymetry
from the ETOPO10 data set. Annual mean wind-stress forcing is again taken from data
of [131]. Furthermore, the restoring profiles of TS and SS are taken from the [71] data
set and a restoring time scale of 75 days is used. The restoring temperature and salinity
profiles, as well as the wind stress amplitude are multiplied by a homotopy parameter η.

For these computations, a 176×128×16 grid (corresponding to 1/2◦ horizontal reso-
lution) is used [126] giving a dynamical system with 2,162,688 degrees of freedom. The
homotopy parameter η is increased from η = 0 (zero forcing) to η = 1 (realistic forcing)
giving the results in Fig. 12. To visualize the flow, the streamfunction of the zonally av-
eraged (the meridional overturning stream function, ΨM) and vertically averaged (the
barotropic stream function, ΨB) are plotted. The maximum of the meridional overturn-
ing increases with η following a power law (Fig. 12a). The pattern of the meridional
overturning streamfunction in Fig. 12b indicates a single overturning cell, but there are
regions of large gradients due to a combination of the buoyancy forcing and the bottom
topography.

Two large gyres are seen in the barotropic stream function (Fig. 12c); the sub polar
gyre with minimum ΨP and the subtropical gyre with a maximum ΨT . While the strength
of the subtropical gyre still increases approximately linearly with η, the subpolar gyre
strength depends nonlinearly on η and appears to saturate at a value just above 10 Sv
(Fig. 12a). The pattern of the barotropic streamfunction ΨB in Fig. 12c indeed shows a
very confined subpolar gyre and a much larger subtropical gyre with a flow near the
western boundary qualitatively resembling the Gulf Stream.

5 Summary and outlook

In this paper, we have given an overview of current techniques of numerical bifurcation
analysis (NBT) and their applications to fluid dynamics. As illustrated by the highlights,
one can obtain a much more detailed picture of the different solutions regimes and tran-
sitions in fluid flows than one can obtain from transient simulations (obtained through
initial value problem (IVP) methods) alone. IVP methods are, by their nature, limited to
finding only stable attracting sets. Quite often in bifurcation problems, there are more
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Figure 12: (a) Values of the maximum of the meridional overturning stream function ψM, the subtropical
gyre ψT and the minimum of the subpolar gyre ψP versus η. (b) Contour plot of the meridional overturning
streamfunction for η=1. (c) Contour plot of the barotropic streamfunction for η=1 (figures from [126]).

unstable solutions than stable ones and understanding the structure of all solutions can
give a clearer picture of what is really going on. This is not so much an argument for NBT
methods as it is for methods that are capable of finding unstable solutions. However, one
of the major advantages of NBT methods is that they can be used to partition parameter
space into disjoint regions (so-called regimes) in each of which the bifurcation diagrams
are qualitatively the same. This is a powerful idea that can save huge amounts of com-
puting time if it can be carried out successfully. Hence numerical bifurcation analysis
techniques are an important complementary research tool.

Both matrix-free and matrix-based techniques are used in applications. For both, com-
putations for substantial spatial resolutions can be performed on modern multicore hard-
ware. The choice of either of these methods for a certain application depends on the avail-
ability of the Jacobian matrix and on the preconditioning strategy that is to be applied to
solve the linear systems of equations. It is advantageous to use a numerical toolbox, for
example Trilinos, to express the problem. Using such a toolbox, a Jacobian can be con-
structed by automatic differentiation, one linear system solver can easily be replaced by
another, and the platform can also easily be changed. For matrix-based cases, efficient
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preconditioners are crucial for the application of the techniques of numerical bifurcation
analysis to fluid dynamics problems. Because of large fill-in, for example, memory usage
may become a problem. In general, the stability study of a certain steady flow requires a
good numerical resolution not only for the flow, but also for several leading eigenmodes.
This can make requirements to numerical accuracy significantly more demanding than
for a calculation of the steady state itself.

In the examples shown in Section 4 only the continuation of steady-states has been
considered. In Section 3 several references were given to recent applications of the meth-
ods to compute periodic orbits described here. Periodic orbits show a much richer dy-
namics than fixed points and traveling waves, and are important because they contain
information about the connection between the different fixed points and provide a more
natural basis in which to describe turbulent dynamics. The computational requirements
to obtain them is higher than for fixed points because each evaluation of the correspond-
ing map involves a time-dependent computation. This can be partially overcome by the
application of multiple shooting techniques. We hope to see more researchers in fluid
mechanics to use these methods in the future. Given the much higher cost of computing
invariant tori, only applications to two-dimensional problems have been considered so
far. Improvements to the methods now employed, by using parallelism, are on their way.

Finally, there are many more areas in which continuation methods are used for low-
dimensional models, such as in studies on optimization and predictability, which we
have not addressed in this paper. The numerical techniques described here may be able
to address important questions on control and predictability in high-dimensional models
more efficiently.
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