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Abstract. In this special issue contribution, I provide a per-

sonal view on the role of bifurcation analysis of climate mod-

els in the development of a theory of climate system variabil-

ity. The state of the art of the methodology is shortly outlined,

and the main part of the paper deals with examples of what

has been done and what has been learned. In addressing these

issues, I will discuss the role of a hierarchy of climate mod-

els, concentrate on results for spatially extended (stochastic)

models (having many degrees of freedom) and evaluate the

importance of these results for a theory of climate system

variability.

1 Introduction

The climate system, comprised of the atmosphere, ocean,

cryosphere, land and biosphere components, displays vari-

ability on a broad range of temporal and spatial scales.

Much information on this variability has become available

from observations (both instrumental and proxy) over the

last decades. Through these observations, many specific

phenomena of variability have been identified, such as the

interannual-timescale El Niño–Southern Oscillation (ENSO)

in the equatorial Pacific (Philander, 1990) and the millennial-

timescale Dansgaard–Oeschger cycles (Clement and Peter-

son, 2008).

In classical meteorology, the weather is defined as the vari-

ability on a timescale of a few days, and climate is the “aver-

age weather” where usually an averaging time of 30 years

is taken. However, such a concept of climate is not very

useful as the climate system displays variability over many

timescales. Hence, in modern climate dynamics an often used

concept is that of the climate system variability which in-

cludes the weather and also variability in the ocean, land,

biosphere and ice components. Much of this variability in

the climate system is intrinsic (or internal), indicating that

it would exist even if the insolation from the Sun were con-

stant. Intrinsic variability arises through instabilities, in most

cases associated with positive feedback processes. There is

also variability through radiative forcing variations associ-

ated with the diurnal and seasonal cycle and variations of the

Earth’s orbit (Milankovitch forcing). If we do not consider

human activities to be part of the climate system, then the

changes in atmospheric composition due to anthropogenic

emissions are also considered as a forcing. The same can be

done with lithospheric processes such that volcanic activity

is also a forcing component.

Natural climate variability is then all variability due to

natural processes (both intrinsic and forced), and anthro-

pogenic climate change is only that part due to human ac-

tivities. To reliably project future climate change, a thorough

knowledge of the natural variability is required. At the mo-

ment, there appear to be two different paradigms of natu-

ral climate variability (Fig. 1). One is the classical “back-

ground and peaks” framework (Mitchell, 1976), where the

peaks are associated with specific phenomena (Ghil, 2002)

such as ENSO (Fig. 1a). Another view is that variability con-

stitutes a continuum of fluctuations with scaling behavior;

hence “peaks”, apart from the diurnal and annual cycle, are

less relevant (Lovejoy and Schertzer, 2013). In this paradigm,

several different scaling regimes exist up to multi-millennial

timescales, e.g., the weather, macro-weather and climate
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Figure 1. (a) The “background and peaks” paradigm as an artist’s

view of climate system variability (figure slightly modified from

Mitchell, 1976; see Ghil, 2002, for details). This figure panel is

from Dijkstra and Ghil (2005) and reproduced with permission from

AGU. (b) A composite temperature spectrum (figure from Lovejoy

et al., 2013; see their Fig. 2 for details) to illustrate the “scaling”

paradigm.

regimes (Fig. 1b). The “background and peaks” paradigm

clearly has a problem with the explanation of the background

signal and also regarding the amplitude of the variability on

longer than millennial timescales (Lovejoy, 2015). On the

other hand, the scaling paradigm needs a better connection

to physical processes beyond the weather regime (Franzke

et al., 2019). Both paradigms are also limited to temporal

variability and do not address spatial patterns associated with

the climate system variability.

To understand the results of the observations, i.e., to relate

them to elementary well-established physical principles, the

observations themselves are in most cases not enough and

models are needed. Fortunately, a hierarchy of such models,

from conceptual ones (capturing only a few elementary pro-

cesses or scales) to global climate models (which are multi-

scale and multi-process representations), is available. Tradi-

tionally, climate system modeling is seen as an initial value

problem. The model equations are integrated in time from

a specific initial condition (or an ensemble of them), and

then the transient behavior is analyzed. A subsequent sta-

tistical analysis is performed on the results using in general

uni- or multivariate statistical methods. Often, parameters in

the model are varied to study the sensitivity of the results to

physical processes (associated with the parameters) and to

determine mechanisms of specific phenomena from the sta-

tistical analyses.

Changes in parameters can lead to qualitatively different

behavior; for example, oscillatory behavior appears or tran-

sitions occur. When relatively strong changes occur under

small changes of a parameter, critical conditions associated

with so-called tipping behavior may have been crossed.

In particular regarding issues of qualitative changes in

model behavior once parameters are varied, there is a com-

plementary methodology available from dynamical systems

theory, which is targeted to directly compute the asymptotic

(long-time) states (attractors) of the model. In the most sim-

ple autonomous models (steady forcing), these attractors are

fixed points and periodic orbits. Non-autonomous models are

studied through pullback attractor analysis (Ghil et al., 2008).

Methodology from ergodic theory can be used to study the

decay to the attractor of correlations between different ob-

servables (Chekroun et al., 2011).

A canonical problem of transition behavior in fluid dynam-

ics is the flow between two concentric cylinders of which

only the inner cylinder rotates with an angular frequency �,

the Taylor–Couette flow (Koschmieder, 1993). An overview

of the regimes of flow behavior and dynamical systems

methodology that can be applied is presented in Fig. 2. Here,

the rotation rate of the inner cylinder � is used as the main

parameter which is changed. In the case of small �, numer-

ical bifurcation theory can be applied to study the steady

states of these models and to determine mechanisms of tran-

sition through instabilities. The transient behavior, as shown

in time series in Fig. 2, can also be visualized in phase/state

space where time is implicit (displaying trajectories). Once

� is increased, a collective interaction between the differ-

ent instabilities can lead to variability which cannot be un-

derstood as a single bifurcation. Basically, here the realm of

complex systems science is entered, which deals with emer-

gent properties due to such collective interactions. For large

�, eventually a turbulent regime is reached where (actually

surprisingly) multiple large-scale statistical steady states can

be observed (Huisman et al., 2014).

The main issue addressed in this paper is hence whether

such a dynamical systems analysis of models of (parts of)

the climate system is useful to understand the variability of

this system. In Sect. 2, the model hierarchy is sketched and

a short overview will be given of the basic techniques focus-

ing on the application to large-dimensional dynamical sys-

tems generated from discretized (stochastic) partial differ-

ential equations. In Sect. 3, I will discuss results of stud-

ies where dynamical systems analysis has been performed

on spatially extended climate models, focusing on what has
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Figure 2. Sketch of dynamical systems concepts and approaches for the Taylor–Couette flow (as modified from Abraham and Shaw, 1992).

Time series, trajectories and the geometrical view of attractors are sketched. Transition behavior at small values of � can be addressed by

bifurcation theory; for large values of � it can be tackled using ergodic theory.

been done so far and what has been learned. This is followed

by Sect. 4, where an outlook is given for the role of dynam-

ical systems analysis in developing an overarching theory of

climate variability.

2 Methodology

2.1 Model hierarchy

In Dijkstra (2013), I suggested to classify climate models ac-

cording to the two traits “scales” and “processes” (Fig. 3).

Here the trait “scales” refers to both spatial and temporal

scales as there exists a relation between both: on smaller spa-

tial scales usually faster processes take place. “Processes”

refers to either physical, chemical or biological processes

taking place in the different climate subsystems. Models with

a limited number of processes and scales are usually referred

to as conceptual climate models. Examples are box mod-

els of the ocean circulation (Stommel, 1961) and models

of glacial–interglacial cycles (Crucifix, 2012), all formulated

by small-dimensional systems of ordinary differential equa-

tions. Limiting the number of processes, scales can be added

by discretizing the governing partial differential equations

spatially up to three dimensions. A higher spatial resolution

and inclusion of more processes will give models located in

the upper right part of the diagram, so-called Earth system

models (ESMs). Between the conceptual models and ESMs

are so-called intermediate complexity models which are spa-

tially extended (described by partial differential equations)

but with fewer scales and/or processes (Fig. 3).

Any spatially extended climate model consists of a set of

conservation laws, which are formulated as a set of coupled

partial differential equations, that can be written in general

form as (Griffies, 2004)

Mλ

∂u

∂t
= Lλu +Nλ(u) +Fλ(u), (1)

where L and M are linear operators, N is a nonlinear opera-

tor, u is the state vector, F contains the forcing of the system,

and λ indicates the dependence of the operators on parame-

ters. Appropriate boundary and initial conditions have to be

added to this set of equations for a well-posed problem.

When Eq. (1) is discretized, eventually a set of differen-

tial equations with algebraic constraints arises, which can be

written as

Mλ

dx

dt
= Lλx + Nλ(x) + Fλ(x), (2)

where x ∈ R
n is the state vector, n its dimension, Mλ is a

(often singular) matrix of which every zero row is associated

with an algebraic constraint, Lλ is the discretized version of

Lλ, and Fλ and Nλ are the finite-dimensional versions of the

forcing and the nonlinear operator, respectively.

When noise is added, the evolution of the flow can gener-

ally be described by a stochastic differential-algebraic equa-

tion of the form

MλdXt = f λ (Xt )dt + gλ (Xt )dW t , (3)
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Figure 3. Organization of climate models according to the two model traits: number of processes and number of scales (Dijkstra, 2013).

where Xt is now the stochastic state vector, f λ(Xt ) contains

the linear and nonlinear processes, and the forcing. The quan-

tity W t ∈ Rnw is a vector of nw-independent standard Brown-

ian motions (Gardiner, 2009) and gλ (Xt ) ∈ Rn×nw . Here, we

use the Itô interpretation to represent unresolved processes

but the Stratonovich interpretation can also be used (depend-

ing on the nature of processes represented).

2.2 Continuation methods

These methods form part of the numerical bifurcation anal-

ysis toolbox; here we are restricted to a single parameter λ.

Finding steady states of the system (Eq. 2) versus λ amounts

to solving

f λ(x) = Lλx + Nλ(x) + Fλ(x) = 0. (4)

The idea of pseudo-arc-length continuation (Keller, 1977;

Seydel, 1994) is to parametrize branches of solutions Ŵ(s) ≡

(x(s),λ(s)) with an arc-length parameter s (or an approx-

imation of it, thus the term “pseudo”) and choose s as the

continuation parameter. An additional equation is obtained

by approximating the normalization condition of the tangent

Ŵ̇(s) =
(

ẋ(s), λ̇(s)
)

to the branch Ŵ(s), where the dot refers

to the derivative with respect to s, with
∣

∣Ŵ̇
∣

∣

2
= 1. More pre-

cisely, for a given solution (x0,λ0), the next solution (x,λ)

is required to satisfy the constraint

ẋT
0 (x − x0) + λ̇0 (λ − λ0) − 1s = 0, (5)

where Ŵ̇0 =
(

ẋ0, λ̇0

)

is the normalized direction vector of the

solution family Ŵ(s) at (x0,λ0) and 1s is an appropriately

small step size. Equation (5) stipulates that the projection

of (x,λ) − (x0,λ0) onto (ẋ0, λ̇0) has the value 1s. Efficient

solution methods for high-dimensional systems of the form

(Eqs. 4–5) are presented in De Niet et al. (2007) and Thies

et al. (2009).

Suppose that the deterministic part of Eq. (3) has a stable

fixed point x∗
λ for a given range of parameter values. Then

linearization of Eq. (3) around the deterministic steady state

yields, with Y t = Xt − x∗
λ (Kuehn, 2012),

MλdY t = Aλ(x
∗
λ)Y tdt + Bλ(x

∗
λ)dW t , (6)

where Aλ(x) ≡
(

Dxf λ

)

(x) is the Jacobian matrix and

Bλ(x) = gλ(x).

In the special case that Mλ is a non-singular matrix, the

Eq. (6) can be rewritten (dropping the arguments and sub-

scripts on the matrices) in Itô form as

dY t = M−1AY tdt + M−1BdW t , (7)

which represents an n-dimensional Ornstein–Uhlenbeck pro-

cess. The corresponding stationary covariance matrix C is

then determined from the generalized Lyapunov equation:

ACMT
+ MCAT

+ BBT
= 0. (8)

The Gaussian probability density function at the fixed point

can then be computed directly from C. When M is singular,

special methods have been devised to cope with the singular

part (Baars et al., 2017); also in this case, a generalized Lya-

punov equation determines the covariance matrix C. Efficient

solution methods for high-dimensional versions of Eq. (8)

are presented in Baars et al. (2017).
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3 Main issues

Numerical bifurcation methodology has been mostly applied

to dynamical systems with small n, typically n < 10, result-

ing from conceptual climate models. However, I will focus

here solely on results of studies using intermediate complex-

ity models with typically n = 104–105, because then also

spatial information on the bifurcation behavior is obtained.

From elementary bifurcation theory (Guckenheimer and

Holmes, 1990) it is known that only four bifurcations can

generically occur when a single parameter is varied: the

saddle-node bifurcation, the transcritical bifurcation, the

pitchfork bifurcation and the Hopf bifurcation. Because the

transcritical bifurcation (solution needed for all values of

the parameter) and the pitchfork bifurcation (reflection sym-

metry needed) require special conditions, the only generic

cases are the saddle-node and the Hopf bifurcations. Of

these, saddle-node bifurcation only occurs in pairs (because

of boundedness of solutions), and hence one often refers to a

back-to-back saddle-node bifurcation.

The back-to-back saddle-node bifurcation structure is

canonical for tipping points, which we will discuss in

Sect. 3.1 below. Although the dynamical system is high-

dimensional, the behavior of the system can be dominated

by only a few (even only one) positive feedbacks, and hence

transitions occur in a low-dimensional space. The Hopf bi-

furcation is canonical for the occurrence of spontaneous os-

cillatory behavior associated with one eigenmode of the lin-

earized dynamical system, which is often referred to as the

leading mode. A Hopf bifurcation needs the presence of

both positive and negative feedbacks; when only a few dom-

inate the dynamical behavior these can be found in high-

dimensional systems as discussed in Sect. 3.2. In models

where a sequence of Hopf bifurcations occurs, the resulting

behavior can in general no longer be described using low-

dimensional dynamics. In this case, collective interactions

occur and this cannot be captured in a single bifurcation and

associated pattern. This case will be discussed in Sect. 3.3

below.

3.1 Tipping points

An overview of possible tipping elements in the Earth’s sys-

tem is given in Lenton et al. (2008) and Steffen et al. (2018)

and includes the Arctic winter sea ice, the marine ice sheets

(MISs), the Amazon rainforest and the Atlantic Meridional

Overturning Circulation (AMOC). Several of the associated

transitions are thought to be associated with the existence

of a multiple equilibrium regime associated with a back-to-

back saddle-node structure, in particular the collapse of the

AMOC and that of the MIS.

For a back-to-back saddle-node bifurcation there are two

transition scenarios possible, called (i) bifurcation tipping

and (ii) noise-induced tipping (Ditlevsen and Johnsen, 2010).

In case (i) the parameter crosses a value at one of the saddle-

node bifurcations, and in case (ii) a finite amplitude pertur-

bation in the state vector causes a transition (even for a fixed

value of the parameter). In the non-autonomous case also

rate-induced tipping (Ashwin et al., 2012) is possible. For

both cases (i) and (ii), it is crucial to determine the extent of

the multiple equilibrium regime (Fig 4): this has been investi-

gated in detail in spatially extended models for the following

problems.

– AMOC. In a substantial number of papers, the

bifurcation diagrams for both spatially two- and

three-dimensional (intermediate complexity) ocean-

only models of the AMOC have been determined (see

chap. 6 in Dijkstra, 2005). The most advanced result

is for a global ocean model coupled to an energy bal-

ance atmospheric model (den Toom et al., 2012), cap-

turing ocean–atmosphere feedbacks, where also a back-

to-back saddle-node structure was found.

Numerical bifurcation analyses provided the basis for

the stability indicator 6 = Ms
ov − Mn

ov of the multi-

ple equilibrium regime of the AMOC (Huisman et al.,

2010). Here, Mov is the AMOC-induced freshwater

transport, and the superscripts n and s indicate the north-

ern and southern boundaries of the Atlantic, respec-

tively. Although the central idea was already formu-

lated in Rahmstorf (1996) and de Vries and Weber

(2005), only bifurcation analysis of high-dimensional

discretized ocean models provided more rigorous sup-

port for the use of this indicator. Although this stabil-

ity indicator has its problems (Gent, 2018) and needs to

be extended in a coupled ocean–atmosphere context, it

is often used to investigate the stability of the AMOC

(Hawkins et al., 2011).

For a spatially two-dimensional ocean-only model, the

covariance matrices C were determined from solving

the Lyapunov equation in Eq. (8) in Baars et al. (2017)

for the case of noise in the freshwater forcing. While

here it served only to test the new Lyapunov equa-

tion solver (RAILS), the methodology was extended re-

cently to compute (noise-induced) transition probabil-

ities of the AMOC and to relate that probability to the

stability indicator 6 (Castellana et al., 2019). Such tran-

sitions are thought to be involved in the Dansgaard–

Oeschger (DO) events (Ditlevsen and Johnsen, 2010).

– MIS. The explicit computation of the bifurcation struc-

ture of a spatially one-dimensional marine ice-sheet

model (with a moving grounding line) has been car-

ried out only recently (Mulder et al., 2018). Here also a

back-to-back saddle-node structure is found, of course

compatible with the many initial value problem studies

of this model (Schoof, 2007). The gravitational effect

of a marine ice sheet on sea level has a stabilizing in-

fluence on the ice sheet as seen through a shift in the

bifurcation diagram. While this was found in many dif-
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Figure 4. The canonical bifurcation diagram with the back-to-back

saddle node indicating two stable states (a, c) and an unstable

state (b). Bifurcation tipping occurs when the parameter λ crosses

the value at L1 or L2. Noise-induced tipping (e.g., from state a to

state c) can occur through a perturbation in the state vector (for fixed

λ).

ferent model studies (Gomez et al., 2010), the precise

mechanism could be deduced from the bifurcation dia-

gram shift (Mulder et al., 2018). For a stochastic MIS

model, the covariance matrices C were determined for

each stable state in Mulder et al. (2018). Typical noise

in the accumulation leads to grounding line variations

on the order of 1000 m, while for sea level noise this

is about 100 m. In the multiple equilibrium regime, the

study of the transition probabilities indicated that, for

both noise types, it is more likely to jump from a large

ice sheet state to a small ice sheet state than vice versa.

In high-dimensional climate models, also so-called edge

states or Melancholy states have been computed, for exam-

ple in a coupled atmospheric sea-ice model investigating ice-

covered/ice-free multi-stability (Lucarini and Bódai, 2017).

This edge state is a saddle embedded in the boundary be-

tween the two basins of attraction of the stable climate states.

3.2 Patterns of sea surface temperature (SST)

variability

It is remarkable that on interannual-to-multidecadal

timescales the variability in sea surface temperature is

organized in large-scale patterns (Fig. 5). These patterns

have been detected by using multi-variate analysis on

long data sets, such as the HadISST, for example through

principal component analysis where the patterns are then

contained in the empirical orthogonal functions (EOFs).

Well-known and much-studied patterns are those of the

El Niño–Southern Oscillation (ENSO), the Atlantic Mul-

tidecadal Oscillation (Enfield et al., 2001) and the Pacific

Decadal Oscillation (PDO) (Mantua et al., 1997), as shown

in Fig. 5.

Numerical bifurcation analysis has been applied to several

spatially extended models, in particular ENSO, PDO and the

AMO.

– ENSO. The cornerstone intermediate complexity model

is the Zebiak–Cane (ZC) model of which the behavior

has been extensively analyzed (Zebiak and Cane, 1987).

Numerical bifurcation analysis of different versions of

the ZC model were performed (see chap. 7 in Dijkstra,

2005), and in each of them a Hopf bifurcation occurs

once the coupling strength between the equatorial ocean

and atmosphere crosses a critical value. The period of

the leading mode is in the interannual range and deter-

mined by basin modes, just as in the recharge–discharge

oscillator model (Jin, 1997). The spatial pattern of the

leading mode is localized into the cold tongue region

of the mean (steady) state and shares many similarities

with the first EOF from observations.

– AMO. One of the intermediate complexity models

which has been used is a spatially three-dimensional

model of the North Atlantic (see chap. 8 in Dijkstra,

2013). The mean (steady) state is generated by a hori-

zontal atmospheric surface buoyancy field which drives

a meridional overturning circulation in the ocean model.

Numerical bifurcation analysis of this model has shown

that the background state destabilizes through a multi-

decadal leading mode, and hence a Hopf bifurcation oc-

curs. The timescale of the leading mode can be linked

to the basin crossing time of temperature anomalies,

and its spatial pattern shares many features with the ob-

served pattern (Kushnir, 1994) when a representation of

the continents is considered. The variability can be eas-

ily excited through noise in the heat flux, even when the

leading mode is decaying in the deterministic case (see

chap. 8 in Dijkstra, 2013).

– PDO. The same bifurcation analysis as for the AMO

was applied to a model of two ocean basins which

are connected by the Southern Ocean (von der Heydt

and Dijkstra, 2007). It was found that the PDO can-

not be related to a single mode of variability which

arises through a Hopf bifurcation (as for ENSO and the

AMO). The key here is that destabilization of the mean

(steady) flow can only occur when there is sinking (by

the AMOC) in the northern part of the basin. Such sink-

ing is absent in the North Pacific for the present-day cli-

mate. Indeed, modern views of the PDO indicate that

several different mechanisms are likely important for

the existence of PDO variability (Newman et al., 2016).

Nonlin. Processes Geophys., 26, 359–369, 2019 www.nonlin-processes-geophys.net/26/359/2019/
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Figure 5. Overview of patterns of climate variability (AMO, PDO and ENSO) as determined in Deser et al. (2010) with accompanying time

series.

My interpretation of these results is that several of these

SST patterns (but not all) appear through a normal mode

which destabilizes the mean state through positive feedbacks;

the presence of negative feedbacks causes the oscillatory be-

havior. In this case, the associated Hopf bifurcation (of a spa-

tially extended model) provides both the dominant timescale

of variability and its spatial pattern. The elegant structure of

leading modes in ocean models and the ZC model was pre-

sented in Dijkstra (2016). The key to why normal modes can

be dominant in this variability may be that the nonlinearity in

these models is rather weak (it involves advection of heat/salt

and not of momentum). Hence the mean state is not modified

(rectified) much due to the nonlinear interactions (contrary to

the processes shown in the next section).

3.3 Collective interactions and emergent behavior

In the previous two subsections climate system variability

phenomena were attributed to low-order dynamics. However,

there are many phenomena which are intrinsically caused by

the collective interaction of multiple instabilities. Clearly, the

role of numerical bifurcation theory becomes quite limited

in determining the behavior of these (in general) chaotic dy-

namical systems; I briefly describe below two examples.

– Ocean western boundary current variability (WBC). In

pure wind-driven barotropic shallow-water models, the

bifurcation structure consists of an imperfect pitchfork

bifurcation followed by several Hopf bifurcations con-

taining two types of modes: Rossby modes and so-

called gyre modes. These gyre modes are eventually

responsible for homoclinic orbits which lead to ultra-

low-frequency behavior (see chap. 5 in Dijkstra, 2005).

When another layer is added, baroclinic instabilities

lead to a range of normal modes (Simonnet et al., 2003)

which all destabilize. Hence the eventual emergent be-

havior is induced by their collective interactions. Such

behavior can lead to low-frequency behavior in the sta-

tistical steady state which has been referred to as the

turbulent oscillator (Berloff et al., 2007).

– Midlatitude atmospheric variability (MAV). Analysis of

barotropic spatially extended models of midlatitude at-

mospheric flows has shown that there are many (highly)

unstable equilibria (Legras and Ghil, 1983; Crommelin,

2003). Also here the resulting variability occurs through

www.nonlin-processes-geophys.net/26/359/2019/ Nonlin. Processes Geophys., 26, 359–369, 2019
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a collective interaction and low-frequency variability

emerges in the statistical equilibrium state (Crommelin

et al., 2004). Approaches to understand the dynamics on

the attractor have been proposed through transfer oper-

ator methods (Tantet et al., 2015).

The cases briefly described above are examples of strongly

nonlinear systems, where the nonlinearities occur in the mo-

mentum advection and where the mean state is strongly

modified through rectification. Of course, there are many

more examples of such geophysical systems, in particular

on timescales up to interannual both in the ocean (internal

waves) and the atmosphere (weather).

4 Discussion and outlook

In this paper, I have given a short overview of results of stud-

ies where continuation methods were applied to spatially ex-

tended climate models. My interpretation of these results is

that there are climate variability phenomena that can be at-

tributed to low-order behavior; only one or a few spatial pat-

terns are involved, associated with dominant feedbacks. Sev-

eral of these studies have shown that successive instability

behavior can also occur. This leads to a collective interaction

between patterns that is eventually responsible for emergent

variability in climate models. A summary of the different

phenomena based on this distinction is provided in Fig. 6,

with low-order phenomena (ENSO, AMO), emergent phe-

nomena due to collective interactions (WBC, MAV) and tip-

ping behavior (AMOC/DO, MIS). With this information, I

now come back to the two paradigms of climate variability,

as mentioned in the introduction.

This first challenge I see is to better understand processes

behind the background variability which is “red noise like” in

Mitchell (1976) and encompasses different regimes in Love-

joy et al. (2013). Franzke et al. (2019) describe the differ-

ent ways (multifractal cascading processes, state-dependent

noise, etc.) of how scaling behavior can appear in time series.

To connect scaling behavior to clear physical processes, one

idea would be to identify at each timescale range the “slow”

passive component in the climate system and the “fast” forc-

ing it receives. For example, for SST variability the Hassel-

mann (1976) model of an ocean mixed layer forced with a

rapidly fluctuating atmospheric heat flux identifies such com-

ponents, leading to a red noise background. However, when

another variable is considered, such as sea surface height,

then the background model is an ocean thermocline layer

forced with noisy wind-stress forcing, leading to a corre-

lated additive–multiplicative (CAM) noise model (Sardesh-

mukh and Sura, 2009; Castellana et al., 2018). In the “climate

regime” of Lovejoy et al. (2013), an appropriate model could

be a marine ice sheet forced with rapidly fluctuating accu-

mulation noise or sea level noise (Mulder et al., 2018), also

leading to CAM noise. This would give power law spectral

behavior (in the proxy record), being indeed very different

Figure 6. Summary of what has been learned from dynamical sys-

tems analysis of spatially extended climate models, based on the

distinction of low-order phenomena, emergent phenomena through

collective interactions and critical transitions. The “hope” is that

mechanisms of the phenomena in the green boxes can be deter-

mined from numerical bifurcation analysis of intermediate com-

plexity climate models.

from the picture of Mitchell (1976). The slope changes of

the different regimes as in Lovejoy et al. (2013) could then

maybe be related to a change in slow component in the cli-

mate system determining this background signal.

Once the physics of this background are clear, the next

challenge is to attribute spatial patterns which rise above it

to specific instabilities. Several spatial patterns of SST vari-

ability are robust over the model hierarchy. I would inter-

pret this to indicate that these spatial patterns, such as ENSO

and the AMO, are due to a single-mode destabilization of

the background induced by dominant large-scale feedbacks.

These spatial patterns can already be captured in detail in

intermediate complexity models, such as the ZC model for

ENSO. Capturing the temporal variability involves repre-

sentation of small-scale processes (noise) and possibly non-

normal growth (Penland and Sardeshmukh, 1995; Farrell and

Ioannou, 1996; Tziperman et al., 2008), and one may need

more detailed models than intermediate complexity models.

Another case where a low-order explanation may be appro-

priate is centennial variability. The timescale here arises by

buoyancy anomalies which propagate over the AMOC loop

(also called overturning modes and loop oscillations). These

can be excited in this model by applying noise, e.g., in the

freshwater flux or in the heat flux (Dijkstra and von der

Heydt, 2017).

Other spatial patterns (such as the MAV and WBC vari-

ability) arise through a collective interaction of instabilities

and hence can only be captured in detail through models high

in the hierarchy (representing a multitude of scales). This

holds for example for the path variability of the Kuroshio
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Current, where it is known that the interactions of the

barotropic instabilities of the current and the (baroclinic)

mesoscale eddy field are important (Qiu and Chen, 2005).

Such collective interactions may eventually also be needed

to explain the PDO. Furthermore, analysis of high-resolution

(near-eddy resolving) ocean model has indicated that a new

type of multidecadal variability emerges through a collec-

tive interaction, the Southern Ocean mode. A Lorenz type

energy analysis has indicated (Jüling et al., 2019) that eddy–

mean-flow interaction is crucial for the existence of this type

of variability. Also in this case, there is no single (normal)

mode of variability which determines the dominant time and

spatial pattern.

Apart from the internal variability introduced by single

normal (oscillatory) modes and collective phenomena, also

clear large-scale tipping phenomena (in the sense of critical

transitions) can affect climate variability. The canonical be-

havior is a back-to-back saddle-node bifurcation appearing

generically in conceptual models. It was shown here that for

models of the AMOC and MIS, indeed such bifurcation be-

havior is found in high-dimensional models. Transition be-

havior hence may occur when critical conditions are crossed

or through noise in the multiple equilibrium regime. A third

challenge I see is to show that such transitions remain robust

once small-scale processes are included; work in this direc-

tion has been initiated (Lucarini and Bódai, 2017).

All of the results of continuation methods described above

were obtained under stationary forcing and this seems dis-

joint from the real climate system, which is obviously forced

by a non-stationary insolation component (on diurnal, sea-

sonal and orbital timescales). For the present-day climate

system, there is also the non-stationary anthropogenic com-

ponent of climate change. A fourth challenge is to understand

the relevance of these diurnal and seasonal non-stationary pe-

riodic components in natural internal variability on longer

timescales. While one may argue that they are irrelevant and

are averaged out, few detailed results are available. Proba-

bly only on interannual timescales can there be an interaction

between the seasonal cycle and internal variability, for exam-

ple, with the ENSO mode (due to nonlinear resonances). On

very large timescales, however, certainly the non-stationary

orbital forcing is crucial for the observed variability such as

glacial cycles. The modification of natural variability under

climate forcing is of course also a challenging issue.

Has the end point been reached of the models for which

bifurcation analysis can be applied? Since starting with this

endeavor in the early 1990s, I have been repeatedly asked

this question. When we showed results for spatially two-

dimensional ocean models, we were asked if we could do

this for three-dimensional models. When we did, the ques-

tion was on the application to ocean–atmosphere models. Al-

though there are certainly still interesting details to be inves-

tigated in the ocean-only context, I think the main challenge

with these models is to develop theory for internal variability

in the geological past (Zachos et al., 2001). In the last few

years my group has turned to develop techniques to incorpo-

rate sea ice and land ice and to be able to change the geome-

try of the ocean basin during the continuation (Mulder et al.,

2017). With a carbon cycle model still to be implemented, I

think that the resulting methodology will be suited to tackle

what processes determined the background states in the past

and which variability can possibly be attributed to low-order

dynamics. It will also be possible to investigate explicit bi-

furcation behavior arising from carbon-cycle feedbacks.
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