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+e tooth surfaces of beveloid gears have different topography features due to machining methods, manufacturing accuracies, and
surface wear, which will affect the contact state of the tooth surface, thereby affecting time-varying mesh stiffness between mating
gear pairs. +erefore, a slice grouping method was proposed in this paper on the basis of potential energy to calculate the total
meshing stiffness of beveloid gears with the surface topography. +e method in this paper was verified by finite element method
(FEM). Compared with the calculation results of this paper, the relative error is 5.9%, which demonstrated the feasibility and
accuracy of the method in this paper. +en, the influence of parameters such as pressure angle, helix angle, pitch angle, tooth
width, fractal dimension, and fractal roughness on meshing stiffness was investigated, of which results show that pressure angle,
pitch angle, tooth width, and fractal dimension have an incremental impact on the mean value of mesh stiffness. However, the
fluctuating value of mesh stiffness has also increased as the pressure angle, tooth width, and pitch cone angle increase. Both the
helix angle and the fractal roughness have a depressive impact on the total stiffness. But the difference is that, with the increase of
the helix angle, the fluctuation of meshing stiffness has been decreased. Conversely, with the increase of the fractal roughness, the
fluctuation of meshing stiffness has been increased.

1. Introduction

Involute beveloid gears, which were first proposed byMettitt
in 1954, have the variable profile shift modification coeffi-
cient along axes direction. Beveloid gears can be used to
realize the transmission form of parallel shafts, intersected
shafts, and crossed shafts, which can be used in four-wheel-
drive transfer cases andmarine gearboxes with a down angle.
However, due to beveloid gears having different addendum
circles, dedendum circles, and pressure angles on different
cross-sections, it is difficult to calculate the total mesh
stiffness of beveloid gears. Furthermore, due to machining
methods, manufacturing accuracies, and surface wear, the
tooth surface of beveloid gears is always not smooth, and the
surface topography features will affect the contact state of
beveloid gears, thereby affecting time-varying mesh stiffness
between mating gear pairs and changing the dynamic

characteristics of transmission systems. +erefore, research
on the time-varyingmeshing parameters of the beveloid gear
is beneficial to improve the meshing characteristics of the
beveloid gear and enhance the transmission stability of
beveloid gears.

To accurately and efficiently calculate the time-varying
meshing stiffness of gears, domestic and foreign scholars
have done a lot of research. +e current methods for cal-
culating the time-varying meshing stiffness of gears gen-
erally include the potential energy method and the finite
element method (FEM) from the literature in recent years.
For the FEM, Tang proposed the gear meshing stiffness
calculation method based on the finite element numerical
calculation and gave the relationship between the modifi-
cation parameters and the mesh stiffness of the modification
gear [1]. Fatih Karpat developed an improved numerical
method for the mesh stiffness calculation of spur gears with
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asymmetric teeth based on the theory of finite element
analysis [2]. Hao applied the loaded tooth contact analysis
methods to obtain the time-varying meshing stiffness of
planets gear and analyze the influence of time-varying
meshing stiffness on the load-sharing characteristics of the
aeronautical two-stage five-branching planets gear train [3].
Xue et al. used a two-dimensional finite element model to
calculate the torsional stiffness of the external gear pairs and
the internal gear pairs of the planetary gear set [4]. For the
analytical method, a so-called potential energy method
which was first presented by Yang and Lin in 1987 can
calculate the mesh stiffness conveniently and effectively,
which divided the potential energy between the meshing
teeth into Hertz potential energy, bending potential energy,
and axial compression potential energy [5]. Based on Yang’s
theory, the shear potential energy of teeth was considered
and this method was applied to the investigation of gear
dynamics [6]. Wang et al. proposed an improved time-
varying mesh stiffness model of a helical gear pair, which
considers the influence of the axial mesh force component
[7]. Chen and Shao [8] and Chaari et al. [9] considered the
energy effects of other gear teeth and calculated the time-
varying meshing stiffness of normal gear teeth and cracked
gear teeth. Based on the unloaded tooth contact analysis
(TCA) and the nonlinear Hertzian contact theory, Li et al.
[10] presented a new method to calculate the mesh stiffness
considering the effects of tooth profile modification and
eccentricity error. Mengjiao et al. [11] proposed an improved
method for solving the time-varying meshing stiffness of
helical gear pairs based on the slicing method. In addition,
Han et al. also investigated the influence of helix angle, tooth
width, and friction coefficient on the time-varying meshing
stiffness [12]. Song et al. proposed the potential energy-based
slice grouping method to calculate the mesh stiffness for
straight beveloid gears with parallel axes [13]. In recent
years, some scholars have carried out research on the contact
stiffness of rough surfaces based on the fractal model pro-
posed byWeierstras andMandelbrot. Li and Zhu proposed a
new method for predicting the tooth surface wearing of
involute gears based on an actual tooth surface model and an
improved fractal method [14]. Mo and Gong conducted the
precise model of complex tooth surface microtopography
and analyzed the influence of tooth surface friction and
meshing frequency on the dynamic characteristics of the
system [15]. Liu and Zhang combined the W-M fractal
model with the FEM to calculate the local contact stiffness of
involute spur gears [16].

+e motivation of this paper is to provide a numerical
calculation method of meshing stiffness for the beveloid gear
with the surface topography. +e current researches on the
meshing stiffness of beveloid gears were based on the as-
sumption that the tooth surface is absolutely smooth. But in
fact, due to machining methods, manufacturing accuracies,
and surface wear, the tooth surface of beveloid gears is al-
ways not smooth. In view of this, the slicing idea was used in
this paper to discretize the thickness of the beveloid gear
teeth and comprehensively analyzed the influence of the
tooth surface friction and the tooth surface topography on
themeshing stiffness throughout themeshing operation.+e

slice groupingmethod was proposed on the basis of potential
energy to calculate the total meshing stiffness of beveloid
gears with the rough surface topography.

+e sections of this paper are arranged as follows.
Section 1 is a brief introduction. In Section 2, the calculation
model of mesh stiffness for beveloid gears with the surface
topography was established based on fractal theory. In
Section 3, a mathematical model was derived to describe
local topography features of actual tooth surfaces of beveloid
gears, and the proposed method in this paper was verified by
FEM. In Section 4, the influence of the geometry parameters
and surface topography features of beveloid gears on the
meshing stiffness was investigated. Section 5 shows some
crucial conclusions.

2. Calculation Model of Mesh Stiffness for
Beveloid Gears Based on Fractal Theory

In the traditional potential energy method, the total po-
tential energy stored in the mesh gear systemwas assumed to
include five components: Hertzian energy Uh, bending
energyUb, shear energyUs, axial compressive energyUa, and
base body potential energy Uf. +ey can be used to calculate
Hertzian mesh stiffness kh, bending mesh stiffness kb, shear
mesh stiffness ks, axial compressive stiffness ka, and fillet-
foundation stiffness kf, respectively. +rough the knowledge
of elastic mechanics, the five parts are separately calculated
for the stiffness components. And then, the five stiffness
components are combined to obtain the total mesh stiffness.
However, because of the special tapered tooth shape of
beveloid gears, the traditional potential energy method
cannot calculate the mesh stiffness directly. Besides, the
conventional potential energy method does not consider the
influence of tooth surface friction and tooth surface to-
pography. In summary, an improved potential energy
method based on fractal theory was proposed to calculate the
total meshing stiffness for beveloid gears of a rough surface
in this paper.

Because the axis-direction modification coefficient of
beveloid gears changes linearly, the beveloid gear can be
regarded as a continuous superposition of a certain number
of slices with the same thickness and different modification
coefficients. As shown in Figure 1, each piece of beveloid
gears is regarded as a modified cylindrical spur gear. +e
mesh stiffness for each slice can be calculated using the
potential energy method. Finally, the mesh stiffness for all
the slices along the axial direction is combined to obtain the
total mesh stiffness of the beveloid gear pairs.

To accurately calculate each slice’s meshing stiffness, the
teeth of beveloid gears are simplified into a variable cross-
sectional cantilever beam with variable linear along the axial
direction. In Figure 2, the micrometeor area is Ai, and the
cross-sectional modulus is Ii, the distance between any
meshing point j. +e gear origin O is xb. rb is the base circle
radius. ra and rf are the addendum circle radius and the
dedendum circle radius. yb is the half tooth thickness at any
meshing point j. Fn is the normal meshing force on the tooth
surface. Fx and Fy are the partial force of the normal meshing
force Fn along the directions x and y, respectively.
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Based on the potential energy method and the slice
grouping method, the five components of the potential
energy of each slice under the action of normal meshing
force Fin can be expressed as

Uin �
Fin( )2
2Kih

,

Uib �
Fin( )2
2Ki

b

,

Uis �
Fin( )2
2Kis

,

Uia �
Fin( )2
2Kia

,

Uif �
Fin( )2
2Ki

f

,

(1)

where the contact stiffness is kin, the bending stiffness is kib,
the shear stiffness is kis, the axial compressive stiffness is kia,
and the fillet-foundation stiffness is kif, respectively.

According to the cantilever beam model and the
knowledge of elastic mechanics, the stored bending potential
energy, shear potential energy, and compressive potential
energy of each slice are expressed as

Uib � ∫xb
xd

M2

2EIx
dx,

Uis � ∫xb
xd

1.2F2
y

2GAx
dx,

Uis � ∫xb
xd

F2
x

2EIx
dx,

(2)

where the component force in the x-axis direction can be
expressed as

Fx � Fn sin αk + μ(t)cos αk( ), αk < α0,
Fx � Fn sin αk − μ(t)cos αk( ), αk ≥ α0.

{ (3)

+e component force in the y-axis direction can be
expressed as

Fy � Fn cos αk − μ(t)sin αk( ), αk < α0,
Fy � Fn cos αk + μ(t)sin αk( ), αk ≥ α0.

 (4)

Equivalent bending moment can be expressed as

Min � Fn cos αk − μ(t) sin αk( )xb − Fn sin αk + μ(t) cos αk( )yb, αk < α0,
Min � Fn cos αk + μ(t) sin αk( )xb − Fn sin αk − μ(t) cos αk( )yb, αk ≥ α0,

{ (5)
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Figure 2: Geometry diagram of beveloid gear teeth.
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Figure 1: Slicing diagram of beveloid gears.
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where μ(t) is the friction coefficient, αk is the working
pressure angle at any meshing point k, and α0 is the pressure
angle at the pitch point.

Due to the relative sliding speed, the rolling ratio and
other parameters are constantly changing. +e tooth surface
friction coefficient has changed with time, and the direction
of tooth surface friction has changed at the pitch point. Xu
and Kahraman [17] used the EHL model to conduct a large
number of simulation tests on the friction coefficient be-
tween the gear teeth, and the tooth surface friction coeffi-
cient μ(t) can be expressed as

μ(t) � ef SRk ,Phk ,v0 ,Ra( )P
b2
hk|SRk|

b3V
b6
ekV

b7
0 R

b8
k , (6)

where v0 is the absolute viscosity and Vek is the entrainment
velocity. S is the tooth surface roughness. bi(i� 1∼9) is the
regression coefficient. SRk is the rolling ratio. Phk is the tooth
surface contact pressure, and Rk is the combined radius of
curvature at any meshing point k. +e calculation param-
eters are detailed in the literature [17].

Moreover, due to the fact that the effective contact part of
the beveloid gear teeth can be regarded as the trapezoidal
section in the axial direction, the calculation formula of Ii,Ai,
and G can be expressed as

Ii �
B

48
Sib + Sis( ) S2ib + S2is( ), (7)

Ai �
Sib + Sis( )B

2
, (8)

G �
Ee

2(1 + ])
, (9)

where Sib and Sis are the tooth thickness of the large section
and the small section of beveloid gears. ] is Poisson’s ratio. Ee
is the equivalent modulus of elasticity. B is the tooth width.

+e bending stiffness kib of each slice can be expressed as

1

kib
�

∫xc
xd

cos αk − μ sin αk( )xb − sin αk + μ cos αk( )[ ]2
2EIi

dy,

∫xb
xc

cos αk + μ sin αk( )xb − sin αk − μ cos αk( )[ ]2
2EIi

dy.


(10)

+erefore, the bending stiffness of beveloid gears can be
expressed as

1

kb
�∑n
i�1

1

kib
� ∑n

i�1

∫xc
xd

cos αk − μ sin αk( )xb − sin αk + μ cos αk( )[ ]2
2EIi

dydL,∑n
i�1

∫xb
xc

cos αk + μ sin αk( )Sij − sin αk − μ cos αk( )[ ]2
2EIi

dydL.


(11)

Similarly, the shear stiffness ks and compressive stiffness
ka of beveloid gears can be expressed as

1

ks
�∑n
i�1

1

kis
�

∑n
i�1

∫xc
xd

1.2 cos αk − μ sin αk( )2
2GAi

dydL,

∑n
i�1

∫xb
xc

1.2 cos αk + μ sin αk( )2
2GAi

dydL,


(12)

1

ka
�∑n
i�1

1

kia
�

∑n
i�1

∫xc
xd

sin αk + μ cos αk( )2
2EAi

dydL,

∑n
i�1

∫xb
xc

sin αk − μ cos αk( )2
2EAi

dydL.


(13)

+e fillet-foundation stiffness kf of beveloid gears can be
calculated by the following equation:

1

kf
�
cos β2

EL
L∗

uf

Sf
( )2

+M∗
uf

Sf
+ P∗ 1 + Q∗tan2 β( ) ,

(14)

where μf and Sf are shown in Figure 2, L∗,M∗, P∗, andQ∗ are
constants related to Ra, Rf, and θf. +e calculation method is
detailed in the literature [11].

Generally, Hertz’s theory holds that the tooth surfaces in
contact with each other are frictionless, and the contact
deformation of the meshing area has a linear relationship
with the normal meshing force. Due to machine body error,

4 Mathematical Problems in Engineering



installation error, deformation error, and other factors, the
tooth surface is generally uneven and rugged, and the
machined surface can be characterized by continuity,
nondifferentiability, and statistically self-affinity. As shown
in Figure 3, the tooth surface comprises a series of randomly
distributed asperities, and the actual contact area is only a
tiny part of the theoretical contact area. And the asperities
deform elastically, elastic-plastically, or plastically when two
rough tooth surfaces contact each other.

Miao and Huang [18] proposed the expression equation
of the total contact stiffness based on the fractal model and
suggested critical indices to distinguish the deformation
forms at each length scale. +e elastic critical index can be
defined as

nec � int
log 8/π2( )(πKH/2E)2 1/G2D− 2( )

2(D − 1)log c
 , (15)

where int[] is the integer part of the value in the parentheses,
K is the hardness coefficient related to the Poisson ratio of
the material, H is the hardness of the material, and E is the
elastic modulus. D is the fractal dimension, G is the fractal
roughness, c is the spatial frequency of the rough surface,
and c is generally taken as 1.5.

Similarly, the plastic critical index can be defined as

npc � int
2 log c + log 4/π2( )(πKH/2E)2 1/G2D− 2( )

2(D − 1)log c
  + 1.

(16)
+e asperities are in elastic deformation when

nmin< n< nec, and the contact stiffness Knec in the elastic
regime can be expressed by integrating into the whole
contact surface as

Knec � ∑n�nec
n�nmin

∫an
an+1′
knn ar( )dar

�
2
�����
(2/π)

√
EaD/2

max

(1 −D)

π

8
l2( )(1−D)/2 1 − c

D− 1( ).
(17)

+e asperities are in elastic-plastic deformation when
nec< n< npc, and the contact stiffness Knpc in the elastic-
plastic regimes can be expressed by integrating into the
whole contact surface as

Knpc � ∑n�npc
n�nec

∫an
an+1′
knn ar( )dar

�
2
�����
(2/π)

√
EaD/2

max

(1 −D)

1

π

πKH

2E
( )2 l2D

G2D−2
( )(1−D)/2 − π

8
l2( )(1−D)/2 .

(18)
+e asperities are in plastic deformation when

npc< n< nmax, and the contact stiffness in the plastic regimes
should take 0.

It follows that the total contact stiffness based on the
fractal model can be given by

Kn � Knpc + knec. (19)

+erefore, the total mesh stiffness of the beveloid gear
can be given by combining the five stiffness components as

K �∑n
i�1

Ki
� ∑n
i�1

1

1/Kin( ) + 1/Ki
b1( ) + 1/Ki

s1( ) + 1/Ki
a1( ) + 1/Kif1( ) + 1/Kib2( ) + 1/Ki

s2( ) + 1/Ki
a2( ) + 1/Ki

f2( ). (20)

3. Comparison and Verification of Mesh
Stiffness Based on the FEM

3.1. 8e Mathematical Model of Beveloid Gears with the
Surface Topography. According to the space meshing
principles and the processing method of beveloid gears, the
tooth face equations of working tooth surface and the tooth
root surface of beveloid gears are derived utilizing the virtual

rack cutter’s tooth face equations. As shown in Figure 4, the
normal section of the virtual rack cutter consists mainly of
two parts, including the fillet curves BC and the straight
edges CD that generate the working tooth surface and the
tooth root surface of the beveloid gear respectively.

(1) In the coordinate system Sn, the tooth face equation
of the straight edges CD of the virtual rack cutter can
be expressed as

1

2

Ar

Aa

Figure 3: Rough tooth surface contact diagram.
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f1
n(l) �

x1nx

y1ny

z1nz


 �

l cos αn − h
∗
αnmn

l sin αn − h
∗
αnmn tan αn −

πmn

4
( )

0




.

(21)

(2) In the coordinate system Sn, the tooth face equation
of the fillet curves BC of the virtual rack cutter can be
expressed as follows:

f2
n(θ) �

x2nx

y2ny

z2nz


 �

ρ sin αn − h
∗
αnmn − ρ cos θ

± h∗αnmn tan αn + ρ cos αn +
πmn

4
− ρ sin θ( )

0




.

(22)

Figure 5 shows a schematic of the coordinate relation-
ship between the normal section of the virtual rack cutter
and the generated beveloid gear. Based on the space meshing
principles, the rack cutter’s tooth face equations can be
expressed by using a series of transformation matrices given
by Sn⟶ Sp⟶ Sc. +en, the virtual rack cutter surfaces can
be expressed in coordinate system Sc as follows:

Mcn �Mcp ·Mpn �

cos δ −sin β sin δ cos β sin δ u sin β sin δ

0 cos β sin β u sin β

−sin δ −cos δ sin β cos β cos δ u cos β cos δ

0 0 0 1


, (23)

f1
c(u, l) �Mcn · f

1
n(l) �

x1cx

y1cy

z1cz

  �
f1
nx(l)cos δ − f

1
ny(l)sin δ sin β + u sin δ cos β

f1
ny(l)cos β + u sin β

−f1
nx(l)sin δ − f1

ny(l)cos δ sin β + u cos δ cos β


, (24)

f2
c(u, θ) �Mcn · f

2
n(θ) �

x2cx

y2cy

z2cz

  �
f2
nx(θ)cos δ − f

2
ny(θ)sin δ sin β + u sin δ cos β

f2
ny(θ)cos β + u sin β

−f2
nx(θ)sin δ − f2

ny(θ)cos δ sin β + u cos δ cos β


. (25)

+e tooth face equations of the rack cutter in the co-
ordinate system S1 can be derived from the tooth surface
equation of the rack cutter in coordinate system Sc by using a

series of transformation matrices given by Sc⟶ S0⟶ S1.
+e tooth face equations can be expressed in coordinate
system S1 as follows:

M1c �M10 ·M0c �

cos ϕ1 −sinϕ1 0 r1 cos ϕ1 + ϕ1 sinϕ1( )
sinϕ1 cos ϕ1 0 r1 sinϕ1 − ϕ1 cos ϕ1( )
0 0 1 0

0 0 0 1


, (26)

f1
1 u, l,ϕ1( ) �M1c · f

1
c(u, l) �

x11x

y11y

z11z

  �
f1
cx(u, l)cos ϕ1 − f

1
cy(u, l)sin ϕ1 + r1 cos ϕ1 + ϕ1 sinϕ1( )

f1
cx(u, l)sin ϕ1 − f

1
cy(u, l)cos ϕ1 + r1 sinϕ1 + ϕ1 cos ϕ1( )

f1
cz(u, l)


, (27)

A
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Figure 4: Normal cross section of a rack cutter.
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f2
1 u, θ, ϕ1( ) �M1c · f

2
c(u, θ) �

x21x

y21y

z21z

  �
f2
cx(u, θ)cos ϕ1 − f

2
cy(u, θ)sin ϕ1 + r1 cos ϕ1 + ϕ1 sinϕ1( )

f2
cx(u, θ)sin ϕ1 + f

2
cy(u, θ)cos ϕ1 + r1 sinϕ1 − ϕ1 cos ϕ1( )

f2
cz(u, θ)


. (28)

+rough the relative movement of the rack and pinion,
the tooth surface equation of the beveloid gear can be de-
rived from the tooth surface equation of the rack cutter in
the coordinate system S1. And the beveloid gears working
tooth surfaces can be expressed as follows:

f1 u, l, ϕ1( ) �
x1x

y1y

z1z


 �

r1 cosϕ1 − ϕ1 sin ϕ1( ) − yc sinϕ1 + xc cos ϕ1

r1 sinϕ1 − ϕ1 cos ϕ1( ) − yc cosϕ1 + xc sin ϕ1

zc


,

(29)

ϕ1 �
ycy n
→
cx − ycx n

→
cy

r1 n
→
cx

, (30)

where xc, yc, and zc are the position vector of the working
surface of the rack in the coordinate system Sc. n

→
cx and n

→
cy

are the unit normal vector of the working surface of the rack
in the coordinate system Sc.

+e rough tooth surface topography can be considered a
series of randomly distributed asperities superimposed on
the theoretical tooth surface’s normal direction. +erefore,
the mathematical model of beveloid gears considering the
surface topography characteristics can be expressed as

f1 u, l,ϕ1( ) �
x1x

y1y

z1z

  �
r1 cos ϕ1 − ϕ1 sinϕ1( ) − yc sinϕ1 + xc cos ϕ1 + n

→
1xZ(x, y)

r1 sinϕ1 − ϕ1 cos ϕ1( ) − yc cos ϕ1 + xc sinϕ1 + n
→

1yZ(x, y)

zc

 . (31)

+e height of the asperities on the rough tooth surface
can be given as

Z(x, y) � G Dx−1( )
x ∑∞

n�ni

c
− 2−Dx( )n1 cos 2πcnx( )

+ G
Dy−1( )

y ∑∞
n�ni

c
− 2−Dy( )n2 cos 2πcny( ),

(32)

where Dx and Dy are the fractal dimension of the rough
surface in the directions x and y, Gx and Gy are the fractal

roughness of the rough surface in the directions x and y,
respectively, and n1 and n2 are the number of sampling
points within a finite length of the rough surface in the
directions x and y, respectively.

As shown in Figures 6(a)–6(e), the rough surface to-
pography characteristics under different fractal parameters
based on fractal theory were simulated in this paper. It can be
seen obviously that as the value of the fractal dimension D
increases, the simulated rough surface topography gradually
becomes more complicated, and the fractal dimension is D
positively correlated with the complexity of the rough

xp

x1

ω1 r1

φ1

yn

y0

z0(1)

yc(p)
y1

xn

x0
zp

zc

xc

δ

Figure 5: Coordinate relationship between the normal cross section of virtual rack and the beveloid gear.
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surface. +e fractal roughness G does not affect the com-
plexity of the rough surface. Still, as the value of the fractal
roughness G increases, the amplitude of the simulated rough
surface topography gradually increases, and the fractal
roughness G is positively correlated with the flatness of the
rough surface.

3.2. 8e Solid Model of Beveloid Gears with the Surface
Topography

3.2.1. Rough Surface Topography Measurement and Fractal
Parameter Calculation

Material and Specimens. Geometric parameters of beveloid
gear specimens are listed in Table 1. As shown in Figure 7(b),
tooth surfaces of beveloid gear specimens present prominent
topography characteristics after the long-term meshing
operation. Tooth surface measurements of the specimens
were performed by a coordinate measuring machine to
accurately describe the tooth surfaces’ topography charac-
teristics, as shown in Figure 7(a). Measurement results of
tooth surfaces of the specimens are shown in Figure 7(c).
Extract the roughness value of the tooth width direction and
the tooth profile direction from the measurement results,
respectively, and the results are shown in Figure 8.

It can be seen that the surfaces of beveloid gear speci-
mens present prominent topography characteristics, which
are a series of ravines and ridges in Figure 7(c). However, it
needs to be emphasized that the fluctuation amplitude of the
interface contour curve in the tooth profile direction is
greater than the tooth width direction, which means that the
interface contours in the tooth width direction are more
smooth than the tooth profile direction.

According to Qi et al. [19], the fractal parameters could be
obtained based on the structure-function method (SFM), the

SFM considers the interface contour curve as a time series (x),
and then the time series with fractal characteristic satisfies

S(t) �〈[Z(x + t) − Z(t)]〉2 � Cst
4− 2Ds , (33)

where t denotes the interval between data points, S(t) is a
function of t, x is the abscissa on the contour curve, Z(x) is
the contour height corresponding to the coordinate x, and
[Z(x+ t)−Z(t)]2 represents the arithmetic mean of the
difference.

+e double logarithmic plot of log (S) and log (t) is
shown in Figure 9. +en the fractal dimension D and fractal
roughness G can be calculated by equations (34) and (35),
and the calculation result is shown in Table 2.

Ds � 2 −
α

2
, (34)

Cs �
c 2Ds − 3( )sin 2Ds − 3( )π/2[ ]

2 −Ds

G2 Ds−1( )
s , (35)

where Cs is scale coefficient (0<Cs< 1). α is the slope of the
fitting line on the double logarithmic plot.

3.2.2. 8e Solid Model of Beveloid Gears with the Surface
Topography. +e tooth surfaces of beveloid gears have
different topography characteristics due to different ma-
chining methods, manufacturing accuracies, and surface
wear, and they are always not smooth. And the rough tooth
surface topography characteristics can be considered a series
of randomly distributed asperities superimposed on the
theoretical tooth surface’s normal direction. Based on the
fractal parameters in Table 3, the asperities’ height on tooth
surface with the rough topography can be calculated through
equation (33). +en the coordinates of the points on the
rough tooth surface of beveloid gear could be obtained by
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Figure 6: Simulation of three-dimensional surface topography under different fractal parameters: (a) Dx�Dy and Gx�Gy, (b) Dx�Dy and
Gx>Gy, (c) Dx�Dy and Gx<Gy, (d) Dx>Dy and Gx�Gy, and (e) Dx<Dy and Gx�Gy.
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superimposing the height of the asperities to the theoretical
tooth surface’s normal direction based on equation (31),
shown in Figure 10(c). As shown in Figures 10(a) and 10(b),
the solid models of the beveloid gear with the anisotropic
surface topography were conducted by Solidworks software
after surface reshaping of the spatial point sets.

3.3. Comparison and Verification of Meshing Stiffness. +e
FEM was used to verify the mesh stiffness calculation model
proposed in this paper. +e main geometry parameters of
the beveloid gear pair are shown in Table 3. +e above 3D
solid models were imported into the finite element analysis
software ANSYS to conduct the mesh model for the beveloid

Table 1: Parameters and material properties.

Parameter and properties Value

Number of teeth 40
Module (mm) 4
Spiral direction Right
Normal pressure angle (deg) 20
Helix angle (deg) 8

(a) (b)
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(c)

Figure 7: Tooth surfaces topography characteristics of the gear specimen with uniform wear. (a) Tooth surface measurement processes of
the beveloid gear. (b) +e beveloid gear specimens. (c) Measurement results of tooth surfaces of the specimens.
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gear. To ensure the accuracy of the calculation, we refined
the mesh of the tooth surface with topography character-
istics, as shown in Figure 11. +e material is defined with
Young’s modulus 209GPa and Poisson’s ratio 0.26. +e
rotating speed is 500 Rpm, and the loaded torque is 600 Nm.
+e type of element in the finite element analysis is Tetra-
hedrons, and the number of nodes is 1253538. +e calcu-
lation flowchart diagram for the total mesh stiffness of the
beveloid gear is shown in Figure 12.

Figure 13 shows the distribution of the contact stress
on the rough tooth surface, and it is not difficult to find
that the rough surface contact area can be seen as a set of
discrete contact areas. +en, the mesh stiffness can be
solved by [20]

K �
Fn
λel
, (36)

where F is the total contact force between the gear teeth, λ is
the equivalent radius, λ�M/F, M is the total torque in the
direction of axis, and el is the transmission error.

Figure 14 shows the time-varying mesh stiffness of the
beveloid gear pairs with the surface topography based on the
potential energy method and FEM method. +e maximum
value of single tooth meshing stiffness is 14.63N/mm. +e
maximum value of single tooth meshing stiffness is 14.63N/
mm, and the minimum value is 13.92N/mm. +e relative
error is 5.1%. +e maximum value of the total mesh stiffness
is 26.89N/mm, and the minimum value is 25.38N/mm.+e
relative error is 5.9%.

4. The Influencing Parametric Analysis on the
Time-Varying Meshing Stiffness

Time-varying mesh stiffness is one of the main reasons
leading to the vibration in a gear transmission system.
Analyzing the influencing factors of beveloid gears mesh
stiffness has great significance for improving its meshing
characteristics and transmission stability. Compared with
traditional involute cylindrical gears, beveloid gears have
different addendum circle, dedendum circle, and pressure
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Figure 8: +e contour curve fluctuation value of tooth surface: (a) the tooth profile direction and (b) the tooth width direction.
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Figure 9:+e double logarithmic plots of structure-function method (SFM) of different surface direction: (a) the tooth profile direction and
(b) the tooth width direction.

Table 2: +e fractal parameters of different tooth surface direction.

Fractal dimension D Fractal roughness G

+e tooth profile direction 1.45 6.69e−4
+e tooth width direction 1.63 3.34e−5
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angle on different cross-sections, and the meshing charac-
teristics are more complicated. +e geometry parameters of
beveloid gears mainly include pressure angle, helix angle,
pitch angle, and tooth width. We define fluctuating value as
the max–min of time-varying mesh stiffness divided by the

mean value to evaluate the fluctuation degree. In this paper,
the influence of the geometry parameters and surface to-
pography of beveloid gears on the meshing stiffness was
investigated by changing the geometry parameters shown in
Table 3.

Table 3: +e main geometry parameters of the beveloid gear pair.

Parameter and properties Pinion Gear Parameter and properties Pinion Gear

Number of teeth 40 25 Spiral direction Right Left
Module (mm) 4 Width (mm) 38 40
Pitch angle (deg) 10 0 Young’s modulus (GPa) 209
Normal pressure angle (deg) 20 20 Poisson’s ratio 0.26
Helix angle (deg) 8 1.25
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Figure 10: +e solid models of the beveloid gear with rough surface topography. (a) +e solid models of the beveloid gear. (b) +e solid
models of a single tooth. (c) +e spatial point sets of the rough tooth surface.

Figure 11: Finite element mesh model.
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4.1. Pressure Angle. Figure 15(a) shows the impact of
normal pressure angle on the total mesh stiffness of bev-
eloid gear. It can be found that the total meshing stiffness
has increased with the adding of the pressure angle, and the
total mesh stiffness improved by 6% when the pressure
angle increased from 17° to 21°. +e reasonable explanation
of this is that the tooth thickness at the root of the tooth
increases. +e radius of curvature of the tooth surface
increases as the pressure angle increases. +erefore, the
total mesh stiffness of the beveloid gear has increased.

However, as shown in Figure 15(b), the fluctuating value
has increased when the mean value of mesh stiffness in-
creases with the pressure angle increase. It may affect the
smoothness of gear transmission and may cause vibration
and noise problems.

4.2. Helix Angle. +e impacts of different helix angles on the
total mesh stiffness are shown in Figure 16(a). +e total
meshing stiffness has decreased with the increase of the helix

Basic parameters of a beveloid gear pair

Determine the fractal dimension D and the fractal
roughness G and calculate the asperitie’s height Z (x)

�e maximum of the
truncated area a′1

�e critical truncated areas
a′1c and a′2c

Define dl and slice the tooth (i = 1... n)

Total mesh stiffness: iiiiiiiii Kf2Ka2Ks2Kb2Kf1Ka1Ks1Kb1Kn

K = ∑ Ki = ∑
111111111

1

Calculate the fractal contact
stiffnesses Kne and Knep

Calculate the bending
stiffness Kbi

Calculate the shear stiffness
Ksi

Calculate the axial
compressive stiffness Kai

Calculate the fillet-
foundation stiffness Kai

FE analysis of
the beveloid gear pair

Establish the FE model
with the surface

topography

Obtain the normal
contact force Fn and the

transmission error el

�e mesh
stiffness

FnK =

�e
distribution

of the contact
stress

�e improved
potential energy method

�e FEM method

λel

n n

i=1 i=1 + + + + + + + +

Figure 12: Flowchart diagram for the total mesh stiffness of beveloid gears.
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Figure 13: +e distribution of the contact stress.
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angle, and the mean value of mesh stiffness decreased by 7%
when the helix angle varies from 0° to 12°. It can be observed
in Figure 16(b) that the single tooth contact zone increases
and the double teeth contact zone decrease, and the fluc-
tuating value of mesh stiffness has a noticeable reduction
with the increasing helix angle. +erefore, it can be con-
cluded that a larger helix angle can effectively improve the
stability of the beveloid gear transmission under the con-
dition of meeting actual working torque.

4.3. Pitch Angle. +e effects of different pitch angles on the
time-varying mesh stiffness of beveloid gears are shown in
Figure 17(a). It is not difficult to find that the pitch angle has

little effect on the mesh stiffness of beveloid gears, the pitch
angle increases by 1° each, and the mean value increases by
approximately 1.6%. However, as shown in Figure 17(b), the
fluctuating value has increased with the adding of the pitch
angle, which indicates that a larger pitch angle may cause the
vibration and noise problems of the beveloid gear
transmission.

4.4. ToothWidth. +e effects of different tooth widths on the
time-varying mesh stiffness of beveloid gears are shown in
Figure 18(a). It can be found that the total mesh stiffness
increased in step with the adding of the tooth width, and the
total mesh stiffness of beveloid gears improved by 6% when
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Figure 15: Impacts of pressure onmesh stiffness: (a) a time-varying value of mesh stiffness and (b) mean value and fluctuating value of mesh
stiffness.
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the tooth width increased from 22mm to 30mm. +e
reasonable explanation is that the length for the contact line
is increased, which means that the adding of the tooth width
will reduce the unit load under constant torque, so it
contributes to enhancing the capability of tooth resisting
deform. However, it can be seen from Figure 18(b) that the
fluctuating value of mesh stiffness has an obvious increase
with the adding of mean value, which means that the adding
of tooth width may increase the vibration of beveloid gear
transmission.

4.5. Fractal Dimension. According to Mandelbrot’s fractal
theory, the value of fractal dimension D is between 1 and 2,
and the number 2 means that the machined surface is ab-
solutely smooth. Figure 19(a) shows the total mesh stiffness
of beveloid gears when the fractal dimension D varies from
1.4 to 1.8. And it is not difficult to find from Figure 19(b) that
the total mesh stiffness has increased with the adding of the
fractal dimension D, and the mean value of mesh stiffness
increases by about 1.4% with each increment 0.1 for the
fractal dimension D. It needs to be emphasized that the
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Figure 16: Impacts of helix angle on mesh stiffness: (a) a time-varying value of mesh stiffness and (b) mean value and fluctuating value of
mesh stiffness.
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Figure 17: Impacts of pitch angle on mesh stiffness: (a) a time-varying value of mesh stiffness and (b) mean value and fluctuating value of
mesh stiffness.
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fluctuating value of mesh stiffness has an obvious decrease
with the adding of mean value, which indicates that more
smooth surface may decrease the vibration of gear
transmission.

4.6. Fractal Roughness. Figure 20(a) shows the total
meshing stiffness of beveloid gears with different fractal
roughness G. Converse to the fractal dimension, the total

mesh stiffness of beveloid gears has decreased with the
adding of the fractal roughness G, and the mean value of
mesh stiffness decreased by 8.6% when the fractal
roughness varies from 2.0E−6 to 1.0E−5. And it can be
seen from Figure 20(b) that the fluctuating value of mesh
stiffness has an obvious increase with the adding of
fractal roughness, which indicates that the roughness of
the tooth surface is one of the causes of vibration and
noise.
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Figure 19: Impacts of fractal dimension on mesh stiffness: (a) a time-varying value of mesh stiffness and (b) mean value and fluctuating
value of mesh stiffness.
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Figure 18: Impacts of tooth width on mesh stiffness: (a) a time-varying value of mesh stiffness and (b) mean value and fluctuating value of
mesh stiffness.
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5. Conclusion

+is paper concerns the numerical calculation method of
meshing stiffness for the beveloid gear with the surface
topography, and the influence of the geometry parameters
and surface topography parameters of beveloid gears on the
meshing stiffness was investigated. +e following conclu-
sions are drawn:

(1) In this study, an improved potential energy method
based on the slice grouping method was presented to
calculate the mesh stiffness for beveloid gears with
the tooth surface topography. +e proposed method
in this paper was verified by FEM. Compared with
the calculation results of this paper, the relative error
is 5.9%, which demonstrated the feasibility and ac-
curacy of the method in this paper.

(2) Based on fractal theory and the space meshing
principles, a mathematical model was derived to
describe local topography features of actual tooth
surfaces of beveloid gears, and the fractal param-
eters were calculated by the SFM. +e analytical
results show that fractal dimension D has an ob-
vious positive impact. +e larger the fractal di-
mension, the smoother the tooth surface.
Conversely, the larger the fractal roughness, the
rougher the tooth surface.

(3) +e analytical results show that pressure angle, pitch
angle, tooth width, and fractal dimension have an
incremental impact on the total stiffness of beveloid
gears. However, the fluctuating value of mesh stiff-
ness has also increased as the pressure angle, tooth
width, and pitch cone angle increase. It is worth
emphasizing that, with the increase of the fractal
dimension, the mean value of meshing stiffness has

been improved, but the fluctuation of meshing
stiffness has been decreased.

(4) Both the helix angle and the fractal roughness have a
depressive impact on the total stiffness of beveloid
gears. But the difference is that, with the increase of
the helix angle, the fluctuation of meshing stiffness
has been decreased, which means that the increase of
the helix angle can improve the gear transmission’s
stability. Conversely, with the increase of the fractal
roughness, the fluctuation of meshing stiffness has
been increased, which indicates that the roughness of
the tooth surface is one of the causes of vibration and
noise.
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