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ARTICLES 

Numerical calculation of axisymmetric non-neutral plasma equilibria 
Ross L. Spencer, S. N. Rasband, and Richard R. Vanfleet 
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602 

(Received 7 May 1993; accepted 9 August 1993) 

Efficient techniques for computing axisymmetric non-neutral plasma equilibria are described. 
These equilibria may be obtained either by requiring global thermal equilibrium, by specifying 
the midplane radial density profile, or by specifying the radial profile of sn dz. Both splines and 
finite-differences are used, and the accuracy of the two is compared by using a new 
characterization of the thermal equilibrium density profile which gives a simple formula for 
estimating the radial and axial gradient scale lengths of thermal equilibria. It is found that for 
global thermal equilibrium 1% accuracy is achieved with splines if the distance between 
neighboring splines is about two Debye lengths while finite differences require a grid spacing of 
about one-half Debye length to achieve the same accuracy. 

I. INTRODUCTION 

The equation which determines cylindrically symmet- 
ric non-neutral plasma equilibria of the kind studied by 
Malmberg and others’** is simply Poisson’s equation in the 
form 

v21$= -% n(r,z> =f(r,#> (1) 

(see, for example, Ref. 2). In this equation C$ is the elec- 
trostatic potential, q is the particle charge, n is the particle 
density, r is the radial coordinate, z is the axial coordinate, 
and e. is the permittivity of free space. The right-hand side 
of this equation is generally a nonlinear function of 4, mak- 
ing it similar to the Grad-Shafranov equation in the study 
of magnetohydrodynamic equilibrium.3 These problems 
have been solved for years by various iteration schemes, 
and two of these schemes have been found to be particu- 
larly simple and effective in the present problem: (i) Picard 
iteration with splines and underrelaxation, and (ii) simul- 
taneous overrelaxation (SOR) with finite-differences and 
Newton’s method (Newton SOR). These two methods as 
applied to Eq. ( 1) are the subject of this paper. We find 
that the finite-difference representation with Newton SOR 
is the simplest to use if only moderate accuracy is required. 
For high accuracy calculations, however, the spline repre- 
sentation is better because a good approximation to the 
solution is obtained with a relatively small number of 
splines, and the splines naturally provide a high-order in- 
terpolation method. Also, under conditions of comparable 
accuracy, spline equilibria run about 50% faster. 

The cylindrical geometry for these computations is 
shown in Fig. 1, where both density and potential contours 
in the r-z plane are shown. The computation region has 
radius a and length b. As is usual in these systems we 
assume that the plasma is axisymmetric and that it is con- 
fined radially by a strong magnetic field parallel to the axis 

of the cylinder and axially by voltages applied to conduct- 
ing end rings. The boundary conditions on 4 are 

a4 s=O at r=O; (2) 

a4 ~‘0 at z=O; (3) 

#=O at z=b. (4) 

Also, at the conducting wall #I =4(a,z) is zero except at 
the location of the confining ring. Note that these bound- 
ary conditions are appropriate for computing an axisym- 
metric half-equilibrium with reflection symmetry about 
z=O, as shown in Fig. 1. Full equilibria can also be com- 
puted by the techniques described here. Finally, a special 
condition must be placed on the function f(r,#) on the 
right-hand side of Eq. (l), namely, that it is zero beyond 
the confining rings. The exact way in which this condition 
is implemented is somewhat a matter of taste, but without 
it every algorithm we have tried converges to a state with 
plasma beyond the rings. 

In this paper we discuss three different ways of obtain- 
ing equilibria, each corresponding to a different way of 
specifying the right-hand side of Eq. ( 1): (i) global ther- 
mal equilibrium,2 (ii) choosing a midplane density profile, 
n( r,z=O), and (iii) choosing a line density profile, 
g(r) = s$z( r,z)dz. These are discussed in Sec. II. We then 
discuss how to calculate these equilibria using splines and 
Picard iteration in Sec. III and how to calculate them with 
finite-differences using simultaneous overrelaxtion with 
Newton’s method (Newton SOR) in Sec. IV. Finally, in 
Sec. V we test both calculation methods by comparing 
them with well-known properties of thermal equilibria2p4p5 
and with a new formula for the density gradient scale 
length. Section VI concludes the paper. 
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FlG. 1. Non-neutral plasma geometry with contours of constant potential 
and density both shown. The plasma is confined radially by a strong axial 
magnetic field and axially by potentials applied to end rings. For conve- 
nience, only one-quarter of the full geometry is shown here. The potential 
applied to the outer cylinder is zero, except at the confining rings. The 
cylinder radius is e=0.04 m, the Iength is b=0.2 m, and the coil lies 
between 2=0.12 m and z=O.15 m; it has a voltage of - 100 V. The 
plasma radius (half-density radius) is 0.036 m, the peak density is 
8.632X 10” me3, and the temperature is T=O.Ol eV. This rather odd 
shape, characteristic of non-neutral plasmas of large radius, is also dis- 
played in Ref. 2. 

II. THREE EQUILIBRIUM TYPES 

There are probably many different ways of choosing 
the density function on the right-hand side of Eq. ( 1) . We 
choose here to describe three which are of particular inter- 
est in theoretical and experimental studies of non-neutral 
plasmas. We first discuss the case of global thermal equi- 
librium, as described by O’Neil and Driscol14 and by 
Prasad and O’Neil.2 We next discuss equilibria for which 
the midplane radial density profile is chosen, and the cor- 
responding two-dimensional distribution of density and po- 
tential is to be found. These equilibria are potentially of 
interest in calculating the effect of finite-length on the dy- 
namics of plasmas whose properties, assuming infinite 
length, are known (plasmas with hollow density profiles, 
for example). Finally, we discuss equilibria for which the 
radial profile of line density, Jn (r,z)dz, is known. These 
equilibria are of special interest to experimenters for whom 
the measurement of this profile by means of dumping the 
plasma onto end rings is a standard diagnostic. 

In all three of these cases the nonlinear Eq. ( 1) is 
solved iteratively, making it possible to make changes in 
the form of the function f(r,$) during calculation to ob- 
tain equilibria with various desired properties. Each of 
these cases and the adjustments to f( r,4) peculiar to each 
one will now be discussed in turn. 

A. Thermal equillbrlum 

The properties of non-neutral plasmas in global ther- 
mal equilibrium have been discussed by O’Neil and 
Drisc011,~ by Prasad and O’Neil,2 and by Peurrung and 
Fajans.’ In this case the right-hand side of Eq. ( 1) takes 
the form 

f(M) =A exp i -& 4(r,z) +G ?w(o+o,)), 
(5) 

where m is the particle mass, o, is the cyclotron frequency, 
including the sign of the charge, and o is related to the 

canonical angular momentum of the system, as discussed 
by Prasad and O’Neil.2 Following O’Neil and Driscoll, we 
rewrite this function in the form 

fb+,$) = -Texp( -&(+$w) -,t), (6) 

where & is the potential at the center of the plasma and 
where ar is a constant to be determined. One advantage of 
this form is that the central density, no, may simply be 
specified at the outset. A second advantage is that we can 
choose the radius of the plasma in the midplane rp (defined 
to be the radius at which the density has fallen to half of its 
central value) by iteratively solving Eq. ( 1) with cz read- 
justed at each step of the iteration according to the formula 

In 2 
a= -&(lp(r,,O) -W,O~) +7. 

P P 

B. Midplane radial profile 

It is often desirable to find an equilibrium with a spec- 
ified midplane radial density profile. This may be accom- 
plished by using for the right-hand side function 

f(r,$) = -Fh(rhp( -&Cf$(r,zl -$(r,O) )), 

(8) 

where &r,O) is the electrostatic potential in the midplane 
of the equilibrium. The radial profile function h(r) is cho- 
sen to have value unity at r=O so that no is the central 
density. We find that equilibria of this kind are the easiest 
to calculate numerically. 

C. Line density profile 

When attempting to match an equilibrium calculation 
to data obtained from dumping a non-neutral plasma onto 
charge-collection rings, it is desirable to find an equilib- 
rium which matches a specified radial profile of the line 
density, 

This may be accomplished by using the same form for 
f(r,g5) as used in the midplane radial profile case [see Eq. 
(S)] but with the radial profile function at the nth iteration 
level given by 

g(r) 
ndt”(r)=Jiexp[ -(q/kT)(f$“(r,z)--ij’(r,O))]dz’ 

(10) 
This calculation does not perform as well as the thermal 
equilibrium and midplane radial profile calculations, tak- 
ing about twice as many iterations to converge. This is 
presumably because of the added complication of folding 
the line density into the iteration. 

Ill. BICUBIC SPLlNES WITH UNDERRELAXATION 

We now discuss the solution of Eq. ( 1) using bicubic 
splines. Although more difficult to program than finite- 
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differences on a grid, this method provides high accuracy 
with a relatively small number of splines in the T and z 
directions, and it also provides a high-order interpolation 
scheme for representing the potential and density at arbi- 
trary points in (T,z). This calculation splits naturally into 
two parts: first, the operator on the left-hand side of Eq. 
( 1) must be represented in such a way that it can be in- 
verted, and second, an algorithm must be designed to cope 
with the nonlinear right-hand side. We will discuss the 
representation of the operator first. 

A. Spline representation of V* 

For the spline approximation to the potential field 
4( r,z) we use a rectangular subdivision of the region of 
interest, partitioning the axial interval into n, elements and 
the radial interval into n, elements. We then use a tensor 
product spline representation of the potential: 

(p(r,z)= C cij+i(r)$j(z>, (11) 
ii 

where the functions $i(r),$j(z) are cubic B-splines, 
Bk( * ), with compact support or linear combinations of 
them at the boundaries. These spline functions are normal- 
ized and computed in recursive fashion as described in 
Schumaker.6 The boundary conditions are handled by put- 
ting appropriate conditions on the coefficients of splines 
near the boundaries in the usual way. The expansion coef- 
ficients Cij are determined by using a Galerkin method: 
substitute Eq. ( 11) into Eq. ( 1 ), multiply the resulting 
equation by $l(r)$,Jz), for splines in the interior, and 
integrate over the region of interest. After an integration by 
parts, an equation of the form 

A-c=b (12) 
results where the elements of the matrix A are integrals 
over spline functions. These integrals can be done just once 
and the matrix A can be put in lower-triangular-upper- 
triangular (LU) form, making efficient iteration possible. 
Note that the overlap integrals used in this method make 
the matrix A a banded matrix. 

The banded coefficient matrix in Eq. (12) requires 
8(n,+1)(n,+2)(6nr+ 19) bytes of storage, and at first 
glance it would appear that these wide bands would make 
this method less desirable than a simple finite-difference 
method requiring a smaller operator. This difficulty is 
made less severe by the higher accuracy of the splines, 
which makes it possible to get high accuracy with a rela- 
tively small number of knot points. It is true, however, that 
if storage limitations are an issue, then it is better to use a 
simple finite-difference scheme like the simultaneous over- 
relaxation algorithm discussed in Sec. IV. 

B. Picard iteration with underrelaxation 

We will now discuss how the spline-representation of 
the operator discussed above can be used to solve Eq. ( 1) 
by using successive substitution (often called Picard itera- 
tion) with underrelaxation. This scheme is given by 

vZ4*=fhY), (13) 

(v+‘=(l-E)~+Er$*, (14) 
where c$* is to be found by inverting the spline representa- 
tion of V2, as discussed above, and where f is chosen to be 
small enough that the algorithm converges. To make an 
estimate of how small E must be, it is necessary to do the 
standard linear eigenvalue analysis of the iterated map 
given by Eqs. ( 13) and ( 14). This analysis is facilitated by 
replacing the rather complicated function df/&$ by a sim- 
ple estimate of its magnitude, 

4f tin0 1 -- 
i@ -eokT-z’ (15) 

where A,, is the Debye length corresponding to the maxi- 
mum density in the equilibrium. Making this approxima- 
tion and computing the eigenvalues of V2 in the cylindrical 
computation region gives the following estimate for the 
eigenvalue which makes simple successive substitution into 
Eq. ( 13) diverge: 

-1 
A,= 

[ (~/22)~+ (2.4048/~~)~]1; * (16) 

If the particles in the equilibrium are to form a plasma, 
then the Debye length must be small compared to the di- 
mensions of the plasma, making ;1, a large negative num- 
ber. Underrelaxation [Eq. ( 14)] simply remaps the eigen- 
values according to the formula 

A”,,= 1 -E+&,d (17) 

so a small positive E can map /2, to a value a little bigger 
than - 1. If E is made too small, however, then the small 
eigenvalues of Eq. ( 13) will be changed by Eq. ( 17) to 
values near + 1, which gives slow convergence. About the 
best we can do is to make the absolute magnitudes of the 
eigenvalues corresponding to 1, and zero be the same, giv- 
ing 

2 
=:2--;1, - (18) 

Numerical experiments confirm that this is indeed a good 
rough estimate of how small E must be to obtain conver- 
gence. Naturally it is desirable to find the value of E which 
gives the best convergence, and in practice we often find 
that we get better results with a value of E which is higher 
by 50%, or so, than the value given by Eq. ( 18). 

As discussed in Sec. II, there are often other quantities 
besides 4 which must in included in the iteration, i.e., the 
constant a which determines the plasma radius for global 
thermal equilibrium and the function h(r) which is used in 
the calculation of line-density equilibria. These quantities 
are simply updated appropriately after each direct solve. 

This algorithm works quite well, giving accurate re- 
sults for a surprisingly small number of splines. We find 
that to compute an equilibrium to 1% accuracy it is nec- 
essary to have the spline knot points spaced no more than 
about two Debye lengths apart. This is to be contrasted 
with the finite-difference algorithm, discussed in the next 
section, which requires about two grid points per Debye 
length for comparable accuracy. 
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IV. FINITE-DIFFERENCES WITH NEWTON SOR 

We now discuss the solution of Eq. ( 1) using the 
finite-difference approximation and simultaneous overre- 
laxation with Newton’s method (Newton SOR). We have 
chosen this method because it is simple, uses very little 
memory, and is adequate for equilibrium calculations. We 
would not recommend this stodgy method for use in a 
simulation, for example, where it would be necessary to 
solve for 4 thousands of times. In such a case something 
more sophisticated, like a direct matrix method, a multi- 
grid method, etc., would be called for. But in an equilib- 
rium calculation with a severe nonlinearity, like the expo- 
nential one which occurs in Eq. ( 1 ), more powerful 
methods must usually be slowed down (by underrelaxing, 
for instance) to the point where they may be no faster than 
good old SOR. In addition, the simplicity of SOR makes it 
relatively easy to respond to the novel changes of geometry 
invented by creative experimenters. With the addition of 
Newton’s method to efficiently handle the nonlinearity, 
SOR becomes a very simple and powerful way to solve 
these nonlinear equations. 

This method begins by subdividing the computation 
region into rectangular cells with n, divisions in the radial 
direction and n, divisions in the axial direction. The equi- 
librium potential, 4, is represented by its value in the center 
of each cell. In the discussion that follows, bij is the value 
of $ in the cell with radial index i and axial index j whose 
center is at (r+rj). A straightforward implementation of 
SOR, as described in Ref. 7, to Eq. (I ) gives 

0 

4b+l=2( 1/A?+ l/A& 

(19) 
where Ar=a/n,, where A.z=b/n,, and where w is an ac- 
celeration factor with a value between 1 and 2. In practice 
we find that a good estimate for the best value of w is the 
same value given in Ref. 7 for Poisson’s equation with 
Dirichlet boundary conditions on a rectangle: 

(20) 

ti cos(r,‘n,) +A? cos(&n,) 
P= ILzz+ArZ 

(211 

Note that the mix of iteration levels on the right-hand side 
of Eq. ( 19) is simply the result of using updated values of 
4 as soon as they become available. Here we have assumed 
that the algorithm starts in the cell in the lower left-hand 
corner of Fig. 1 and proceeds radially first. (The red- 
black, or odd-even, ordering recommended in Ref. 7 for 
SOR does not improve the convergence of the nonlinear 
problems discussed in this paper,) 

This algorithm can be improved, for nonlinear prob- 
lems like the ones discussed here, by trying to put f( r;#) at 
the nf 1 iteration level, as follows 

(22) 

The term containing $nf* is moved to the left-hand side of 
the iteration equation to obtain the NewtonSOR algo- 
rithm: 

w 

‘;*r=2( l/A?+ l/d) +4f-,&$$ 

x [(l+Ar/2ri)~~+t,,j+(l-Ahr/2ri)~~~,iiI 

( A? 

M[j+*+6;j-J a.f- +---p---f(Tt4;) +q 4; 

+(l-dgj. (23) 

Changing the algorithm in this way improves the conver- 
gence markedly, and is, in fact, Newton’s method, as dis- 
cussed in Ref. 8. In practice, however, the algorithm does 
not exhibit the usual sensitivity to initial conditions ex- 
pected of Newton’s method, perhaps because SOR propa- 
gates information so slowly across the grid. 

As discussed in Sec. II, there are often other quantities 
besides (b which must be included in the iteration, i.e., the 
constant a which determines the plasma radius for global 
thermal equilibrium and the function /Z(I) which is used in 
the calculation of line-density equilibria. These quantities 
are simply updated as described in Sec. II after each 
Newton-SOR pass over the entire grid. 

We find that this algorithm is surprisingly robust, find- 
ing equilibria successfully even if the Debye length is small 
or if the density is high enough to push the plasma nearly 
past the confining coil. We find that to obtain 1% accuracy 
it is necessary to have two grid points per Debye length in 
the r and z directions, four times the resolution (in each 
direction) required by the bicubic spline algorithm. New- 
ton SOR has modest memory requirements, is simple to 
use, and is easy to modify. Its simplicity has allowed us to 
mold it into a rather versatile tool, allowing a wide range of 
choices for boundary conditions and even the presence of 
arbitrarily shaped conductors inside the cylinder. This 
code is available upon request. 

In the next section we describe tests we have made 
with both the spline and finite-difference algorithms, com- 
paring them with each other and with known properties of 
the most-studied non-neutral plasma equilibrium: global 
thermal equilibrium. 

V. COMPARISONS WITH GLOBAL THERMAL 
EQUlLlBl?lUM 

In this section we compare the results of both the 
spline algorithm and the finite-difference algorithm with 
the known properties of global thermal equilibria. We also 
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FIG. 2. The density and potential contours of a low temperature thermal 
equilibrium non-neutral plasma with large radius and a weak confining 
voltage is displayed. T’he parameters are the same as in Fig. 1 except that 
the voltage on the ring is only -12 V. This plasma is ill confined, and hence 
has a neck that extends into the confining cylinder, as discussed in Ref. 5. 

present a new characterization of these equilibria which is 
especially useful in testing the accuracy of numerical cal- 
culations. 

As a first example, consider Fig. 1. This displays the 
density contours of a large-radius thermal equilibrium 
computed using the spline algorithm with nr=25 and nz 
= 125. The temperature is 0.01 eV and the central density 
is no=8.632X 10” rnm3; this density value is chosen to 
make the radius of the conducting wall be 50 Debye 
lengths (using the central density). The rather odd shape 
shown in this figure is the same as that shown in Ref. 2. An 
equilibrium with such a small Debye length is difficult to 
calculate, yet this equilibrium required less than an hour 
on an RS/6000 workstation. 

As a second example, consider Fig. 2. In addition to 
the difficulties of Fig. 1, we have made the plasma ill- 
confined, as discussed by Peurrung and Fajans.’ Note that 
the center of the plasma has bulged toward the weak po- 
tential hill that just barely holds it in. This finite-difference 
calculation is less accurate than that in Fig. 1 since it uses 
finite differences and only a 50 X 250 grid was used, but the 
overall plasma shape is still quite accurate. This calculation 
also took less than an hour on an RS/6000. 

To examine the accuracy of these computed equilibria 
more closely, it is helpful to have detailed information 
about the shape of the density fall-off region of global ther- 
mal equilibria. Such information can, of course, be ob- 
tained by numerically integrating the appropriate differen- 
tial equation, as discussed in Ref. 4, but an analytic way of 
characterizing this region would be more useful. To obtain 
such a result we begin with the equilibrium equations given 
by O’Neil and Drisc011.~ Translated into our notation [see 
our Eq. (6)] their quantity t,!~ is given by 

tct= +4-d&a? 
and the differential equation, appropriate for describing the 
radial distribution of density in an infinitely long non- 
neutral plasma in global thermal equilibrium, is 

where p = r/Lo, where the prime denotes a derivative with 

respect to p, and where y=4a$,-- 1. When the plasma 
radius is large compared to the Debye length O’Neil and 
Driscoll show that 

y-,ln 2 $&+-PP, (26) 

with pp= r/An. 
We characterize the density fall-off region by comput- 

ing the gradient scale length of the density, n a exp $, at 
the half-density point, 

1 dn/dp 
-=-=ftQp,), 
PS n (27) 

where this scale length is in units of the Debye length. We 
begin by ignoring y and the l/p term in Eq. (25), since 
pp) 1. We then multiply Eq. (25) by t,Y and integrate to 
obtain 

$‘=: &(exp(*) - l-*). (28) 

Evaluating this at the half-density point, $= -In 2, gives 

(29) 

which is a good approximation for the radial gradient scale 
length if r,)& . Because we have dropped the l/p term in 
Eq. (25), the differential equation in p is the same as the 
axial differential equation in z/An, making this formula an 
even better approximation for the axial gradient scale 
length at the end of the plasma, provided that the radius of 
curvature of the plasma at the end is much greater than 
/zo . (It would not be a good approximation at the tip of the 
equilibrium shown in Fig. 2, for example; these issues are 
discussed by Peurrung and Fajans.‘) We may obtain a 
correction of order l/p, by keeping the term containing 
l/p in Eq. (25), but replacing l/p by l/p, and by replac- 
ing $’ by the expression in Eq. (28) to obtain 

G $“=e@--l++~ Jexp($)-l-q, (30) 

where we have ignored y because it is much smaller than 
l/p,. We again multiply by $’ and integrate from the 
half-density point where $= --In 2 to the top of the density 
profile where $=O: 

1 
T-2ln2-l+- 
PS 

fJT2 dad@. (31) 

Numerically performing the definite integral and rearrang- 
ing gives, to first order in l/p,,, 

PG (32) 

The difference between this formula and Eq. (29) gives a 
good estimate of how self-similar the density fall-off will be 
around the edge of a plasma in global thermal equilibrium. 
For the case discussed by Prasad and O’Nei12 pP= 10 
which means that the density profiles discussed in their 
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paper should only be self-similar to within about 5%; this 
estimate is consistent with the variation in 4’ displayed in 
their Fig. 4. 

We have made extensive tests of this formula against 
numerical solutions of Rq. (25) and we find that it is ac- 
curate to better than 1% for pp> 10. We have also tested 
both the spline algorithm and the finite-difference algo- 
rithm against these formulas and find excellent agreement, 
if enough splines or grid points are taken. We find that to 
obtain an accuracy of 1% in the computation of the gra- 
dient scale length it is necessary that the splines be spaced 
not more than about two Debye lengths apart and that the 
grid points in the finite difference calculation must be no 
larger than d&2. This is a rather rigorous test since it 
depends on the gradient of the potential; more global quan- 
tities like plasma potential, total number of particles, and 
plasma shape are computed even more accurately by both 
codes. If one is only interested in such quantities, the re- 
strictions on spline separation and grid spacing may be 
further relaxed. 

Finally, we have compared the speed of the finite- 
difference and spline algorithms by comparing the times 
required by each code to achieve the same accuracy on the 
same machine. The number of grid points in the radial and 
axial directions in the finite-difference code was four times 
the corresponding number of splines to achieve comparable 
spatial accuracy as discussed above. We found that the 
spline code was about 50% faster than the finite-difference 
code. 

VI. cONCLUSrON 

We have found and extensively tested two algorithms 
for computing three different kinds of non-neutral plasma 

equilibria: (i) plasmas which are in thermal: equilibrium, 
(ii) plasmas whose midplane radial density profiles are 
specified, and (iii) plasmas whose line density profiles, 
[$z (r,z)dz, are specified. For high-accuracy calculations 
we prefer to use Picard iteration and sphnes with underre- 
laxation, provided that many megabytes of computer mem- 
ory are available. If large amounts of memory are unavail- 
able, or if high accuracy is not as important as having a 
relatively simple algorithm which gives good results if a 
fine enough grid is used, then we prefer SOR with finite- 
differences and Newton’s method. Finally, we have ob- 
tained a formula for the gradient scale length at the half- 
density point, including a first-order correction in the ratio 
of the Debye length to the plasma radius, which makes it 
relatively easy to test the accuracy of equilibrium calcula- 
tions. 
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