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Résumé. — Dans une récente note, nous avions proposé une méthode qui permet de déterminer la partie impaire
de la fonction de texture a partir des domaines nuls de figures de pdles expérimentales [3].

Afin de prouver la validité de cette méthode, des calculs numériques ont été effectués a partir d’'une fonction de
texture théorique du type gaussienne ; ensuite, la méthode a été appliquée pour déterminer la fonction de texture

totale d’un échantillon de cuivre laminé.

Abstract. — In a recent letter a method was proposed how to determine the odd part of the texture function from

the null domains of experimental pole figures [3].

In order to prove the validity of this method, numerical calculations have been done from a theoretical texture
function of a gaussian type ; then, the method has been applied to determine the complete texture function of a

rolled copper sample.

The orientation distribution function ODF of
crystallites in a polycrystalline sample can be cal-
culated from experimental pole figures by a series
expansion method [1]
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In the case of centrosymmetric crystals or by virtue
of Friedel’s law [2, 3] the odd part of this series f?(g)
does not contribute to the experimental pole figures.
Hence, it cannot be determined from pole figure
measurements as can the even part f°(g). Nevertheless,
there may be some information on the odd part
contained in pole figures, if the pole figures and hence
the ODF contain zero ranges Z°. From the general
positivity condition

flg) = fg9) + f*9) =0 )
it follows
f4(g) =— f(g9) VgeZ°. (3)

Since f°(g) is known by classical methods, f%(g)
is known in Z° f?(g) may then be approximated in
Z° by a series equation (1) (with odd terms only). This
series defines an approximation to f*(g) in the whole
orientation space. Two different approximation condi-
tions have been proposed. In the first method of reso-

lution [3], which may be called « global method »,
the even part f5(g) in equation (3) is made up for an
odd series which globally contains all the C™" coeffi-
cients of odd degree; and this, from the degree [,
at which appear the first odd coefficients (I, = 9
in the case of cubic symmetry), up to the maximal
degree L, in the series expansion of f*(g) :
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Af, represents the contribution, in f?(g), of the odd
degree .

In the second method of resolution [4], which may
be called «iterative method », the minimization
equation (4) is realized in a recurring way :
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Thus, for the determination, by the condition equa-
tion (5), of the odd coefficients of a given I degree, the
known part of the texture function, f*(g), is complet-
ed with the odd part already determined in the pre-
vious steps, up to the degree | — 2; the iterative cal-
culations can be stopped at the maximal degree L,
of the odd series f?*(g). Both approximation condi-
tions will work the better the larger the zero range Z°
is. The applicability of the method thus depends on
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the actual shape of the ODF, especially on the size
of the zero range Z°.

1. Theoretical texture function of a gaussian type. —
To convice ourselves by the validity of the zero range
method, we tested it with a theoretical model-func-
tion. We defined a gaussian type distribution function
corresponding to the {011} <211 ) component,
typical of the rolling texture of brass; this orientation
had been previously chosen by Matthies and Pos-
piech [5] in a recent work, which aimed to show the
effect of the odd part of the texture function. In the
case of this model function, we could calculate the
even and the odd coefficients C;™ of the texture func-
tion equation (1). On the other hand, these even coef-
ficients have been used to calculate four pole figures
corresponding to the diffraction of the planes (111),
(200), (220) and (311). Out of these pole figures the
null domain Z° in the orientation space could be deter-
mined and the odd coefficients were then calculated
by the zero range method.

The obtained results are concisely presented in the
two first figures. The odd texture coefficients calculat-
ed by the global method are in a striking agreement
with the expected « theoretical » coefficients; the
mean values of the relative differences AC)/| C, |
are less than 2 % (Fig. 1). The iterative method leads
to similar results, although the obtained odd coeffi-
cients are systematically smaller than those calculat-
ed by the first method (Fig. 2), which only will be
considered in the following. Figure 1 shows that in
the case of a gaussian function, the mean values of the
odd coefficients take on as high values as the mean
values of the even ones. Indeed, the respective conver-
gence curves of the odd and even order coefficients
cross each other.

2. Calculations out of experimental pole figures. —
The method has been applied to the rolling texture
of 95 9% cold rolled copper of which the (111), (200),
(220) and (311) pole figures had been determined by
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Fig. 1. — Gaussian model-function : mean values of the even and
odd C-coefficients.
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Fig. 2. — Gaussian model-function : mean values of the odd
coefficients obtained by the two approximations of the zero range
method (global and iterative resolution).

neutron diffraction in steps of 2.5 x 2.4°. The zero
range Z,,,, has been chosen by N < 2,/Ng,,, where
N is the number of counts already corrected from the
background scattering Ng,,,. The (111) pole figure is
shown in figure 3. From the zero ranges of the four
pole figures the zero range Z° of the ODF was deter-
mined. In steps of 5° x 50 x 50 all orientations g
were tested whether or not there was an (hk/)-
pole falling into the zero range Z{,, of the corres-
ponding pole figure. As an example the section ¢, =15°
of the so-obtained zero range is shown in figure 4.
The whole zero range amounts to about 2/3 of all
orientation points in the whole orientation space
(Euler space). The calculation of the even part of the
texture function was carried out by the classical
method up to L.,., = 34. The coefficients C/™ of
the odd part were then determined by the two appro-
ximation methods up to L4, = 21. The results of the
two methods are similar so that we present only, in
the following, the numerical results of the global
resolution method, the results of which have been

TD

Fig. 3. — (111)-normalized pole figure measured by neutron dif-
fraction in steps of 2.5° x 2.4°, The zero range Z{, ,, is indicated ;
the levels are multiples of random distribution (copper sample).
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Fig. 4. — The section ¢, = 15 of the zero range Z° in the orien- () s
tation space, for the rolled copper sample. ?5 ko =fp +1g
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the most satisfying. In figure 5 the mean values of the
coefficients C™ of even and odd order respectively
are shown along with the errors of the even coeffi-
cients. The odd coefficients turn out to be sensibly 90°
smaller than the even ones, although they remain in 0’ h—> 90*

the same order of magnitude. This was not to be
expected beforehand and is thus one of the results
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Fig. 5.— Mean values of the coefficients C/™ and the errors
AC™ as function of [, for the rolled copper sample.

Fig. 6. — The section ¢, = 15° of the total texture function and
its even part, for the rolled copper sample.

of the present numerical calculation. Indeed, contrary
to the case of the gaussian model-function, the conver-
gence curve of the odd coefficients always lays dis-
tinctly below the even one. A good convergence of the
odd coefficients, like that presented in figure 5, must
be expected a priori in order to be considered as
significant, for their contribution to the total texture
function. Furthermore, the odd coefficients are in
their order of magnitude, markedly higher than the
errors of the even coefficients. Thus, the odd part
f?(g) of the texture function, although it is lower than
the even part f°(g), contributes significantly to the
features of the total texture function.

As an example in figure 6 the section ¢, = 15°
of the total texture function and its even part are
shown. It must be emphasized that the contribution
of the odd part may be larger in other textures although
two other calculations using single orientation mea-
surements which are not inflicted by the blotting out
of the odd part [6] also showed smaller values of the
odd part, than the even one.

The method used here, based on the positivity
condition equation (2) yields the maximum informa-
tion obtainable from pole figure measurements. On
the other hand, it has been suggested to determine
the odd part in such a way that the total texture func-
tion becomes a Gaussian distribution function [7].
This method is correct if one knows that the total
function really is of Gaussian shape. In general,
however, this is not the case. The rolling texture of



L-144

the f.c.c. type has been approximated by three Gaus-
sian type components [8], a decomposition which is
in no way unique. A different decomposition of the
same even part of the function may thus give rise to
different odd parts. Hence, the odd part will not be
completely predetermined by the even part as it
would be implicitly assumed by an unique decomposi-
tion into Gaussian components [7].
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