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We report a computer-simulation study of the rate of homogeneous crystal nucleation and the
structure of crystal nuclei in a Lennard-Jones system at moderate undercooling. The height of the
nucleation barrier has been determined using umbrella sampling, whereas the barrier crossing rate
is calculated using molecular dynamics simulation. The simulations clearly show that the barrier
crossing is a diffusive process. Nevertheless, the kinetic prefactor in the nucleation rate is found to
be some two orders of magnitude larger than predicted by classical nucleation theory. The height of
the barrier is in good agreement with the theoretical prediction. Although the Lennard-Jones system
has a stable face-centered cubic~fcc! phase below the melting line, the precritical nuclei are found
to be mainly body-centered cubic~bcc! ordered. As they grow to their critical size, they become
more fcc ordered in the core. However, the critical and postcritical nuclei retain a high degree of bcc
ordering in the interface. Furthermore it is found that in the interface the density falls off faster than
the structural order parameter, which is in agreement with the predictions of density functional
calculations.@P. Harrowell and D. W. Oxtoby, J. Chem. Phys.80, 1639~1984!#. © 1996 American
Institute of Physics.@S0021-9606~96!02224-6#

I. INTRODUCTION

The formation of a crystalline solid from the bulk liquid
phase is generally believed to be an activated process. The
height of the free-energy barrier that separates the solid from
the ~supercooled! liquid is determined by two factors; on the
one hand the difference in bulk chemical potential between
liquid and solid and, on the other, the interfacial free energy
of the crystallite. For small clusters, the interfacial free en-
ergy will dominate and hence the free energy will initially
increase with cluster size. However, eventually the bulk term
will win and sufficiently large crystallites will grow sponta-
neously.

Although crystal nucleation has been the subject of ex-
tensive experimental and theoretical study,1,2 our understand-
ing of crystal nucleation at the microscopic level is still lim-
ited. One important reason why our knowledge of crystal
nucleation is incomplete is precisely because it is an acti-
vated process. Experimentally, crystallization rates are typi-
cally expressed in units of number of events per second per
cubic centimeter. However, the time an incipient crystallite
spends at the top of the nucleation barrier is ‘‘microscopic’’
~picoseconds to nanoseconds for atomic, or simple molecular
systems!. Hence, it is extremely unlikely to find the system
exactly at the top of the nucleation barrier. Yet it is exactly
the structure and dynamics in this region that plays a crucial
role in all theories of crystal nucleation. It is for this reason
that computer simulation is a natural tool to study crystal
nucleation.

The most straightforward application of molecular dy-

namics simulations to crystal nucleation would be to super-
cool the system and then simplywait for nuclei to appear.
However, this approach cannot be used to study nucleation
under typical experimental conditions~at '20% undercool-
ing with respect to the melting temperature1!. In computer
simulations, we are limited to studying relatively small sys-
tems ~say, of the order of a million particles or less!. This
means that the volume of the simulation box is less than
10216 cm3. Experimentally observable nucleation rates of the
order of one nucleus per cm3 per s, would correspond to the
formation of one nucleus per 1016 s in our simulation box. If
we take a typical value of 10214 s for the length of the
molecular dynamics time step, then to observe on average
one nucleation event, 1030 time steps would be needed in a
simulation of 106 particles. As the nucleation barrier de-
creases as 1/DT2, whereDT is the degree of supercooling,
very large supercoolings~in the order of 40%! have to be
imposed to observe spontaneous crystal nucleation in a con-
ventional simulation.

However, in the present work, we are interested in crys-
tal nucleation at moderate, i.e., more realistic undercooling.
We therefore separate the problem into two parts;~1! the
computation of the free-energy barrier for crystal nucleation
and ~2! the computation of the rate at which this barrier is
crossed. For the computation of the free-energy barrier that
separates the solid phase from the undercooled liquid, we use
the scheme developed by Van Duijneveldt and Frenkel.3 The
rate at which this barrier is crossed is computed using the
Bennett–Chandler scheme to simulate barrier crossing
rates.4–7
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As an application, we study crystal nucleation in the
Lennard-Jones system. There are two reasons to study this
specific system. First of all, there is a considerable body of
numerical data available on the phase behavior of this sys-
tem, while also crystal nucleation under conditions of large
supercooling has been studied. The second reason is that the
nucleation mechanism in this system has been the subject of
debate for several decades. Below, we briefly sketch the
background of this debate.

A. Background

At the end of last century Ostwald8 formulated his so-
called ‘‘step rule,’’ which states that the phase that is formed
from the melt need not be the most stable phase, but rather
the phase that is closest in free energy to the liquid phase.
Stranski and Totomanow9 re-examined this rule and argued
that the nucleated phase is the phase that has the lowest
free-energy barrier of formation, rather than the phase that is
globally stable under the conditions prevailing. More re-
cently Alexander and McTague10 extended the Landau free
energy expansion to freezing transitions that are weakly first
order and concluded from general symmetry considerations
that, in three dimensions, formation of the body-centered-
cubic phase~bcc! phase is uniquely favored for simple fluids.
A theoretical study by Klein and Leyvraz11 also suggests that
a metastable bcc phase can easily be formed from the under-
cooled liquid. In experiments on rapidly cooled metal melts,
which have a stable face-centered-cubic~fcc! phase below
the melting line, nucleation of a metastable bcc phase has
been observed.12–14

However, when the formation of metastable bcc nuclei
was investigated on a microscopic scale using computer
simulation, the picture that emerged was not fully in agree-
ment with the Alexander–McTague scenario. Although in
some studies nucleation of the metastable bcc phase was
observed,3,15–17most studies found evidence for the forma-
tion of the stable fcc phase.18–23 Of particular interest is a
simulation study by Swope and Andersen23 of a one million
particle Lennard-Jones system, which has a stable fcc phase
below the melting line. This study showed that although both
bcc and fcc crystallites are formed in the early stages of the
nucleation process, only the fcc nuclei grow and become
postcritical. What should be stressed, however, is that they
performed their simulation at a very large degree of under-
cooling ~of more than 40% with respect to the melting tem-
perature!. At such a large degree of undercooling one should
expect the free-energy barrier to vanish for essentially all
possible crystalline phases. It is therefore not obvious that
crystal nucleation at large undercooling will proceed in the
same way as close to coexistence.

In the present work we study homogeneous nucleation in
the Lennard-Jones system for two different pressures closer
to the freezing point, i.e., at 20% supercooling. The aim of
our study was to compute not only the nucleation barrier and
the nucleation rate, but also to examine the structure of the
precritical, critical, and postcritical nuclei.

B. Summary of results

Our simulations suggest that the small precritical nuclei
have a bcc-like structure rather than the stable fcc structure.
However, as the crystallites grow to the critical size, their
cores become increasingly fcc ordered. Nevertheless, a high
degree of bcc ordering in the interface is retained. This may
explain why in earlier simulations on small systems nucle-
ation of a metastable bcc phase was observed,3,15–17while in
similar simulations on larger systems the formation of the fcc
nuclei was observed.18–23 In the smaller systems the critical
nuclei will be so small that their structure is almost com-
pletely surface dominated, leading to a high degree of bcc
ordering.

Our simulations show that, although the density in the
core of the critical nuclei is slightly lower than the density in
the bulk solid, the structural order parameter reaches a bulk
solid value in the core. The interface between the crystal
nuclei and the surrounding liquid is diffuse—both the den-
sity and the structural order parameter decay smoothly to a
liquidlike value. Moreover, our simulations support the pre-
diction from density-functional theory1 that the density falls
off faster than the structural order parameter.

We compare our numerical results with the predictions
of classical nucleation theory for the height of the barrier and
the rate of barrier crossing. On the whole, the computed bar-
rier height is in quite good agreement with classical nucle-
ation theory. The present study clearly shows that the
barrier-crossing is a diffusive process. This is in agreement
with the low Zeldovich factor given by classical nucleation
theory. The simulations yield a kinetic prefactor that is two
orders of magnitude larger than the one predicted by classi-
cal nucleation theory. To our knowledge, the present simu-
lations provide the first ‘‘atomistic’’ calculation of a crystal-
nucleation rate at moderate undercooling.

The rest of this paper is organized as follows. In Sec. II
we describe the numerical techniques to calculate the free-
energy barriers and the nucleation rates. The method of iden-
tifying solidlike particles and determining the crystal struc-
ture of the nuclei is presented in Sec. III. In Sec. IV we give
the computational details of the simulation and in Sec. V we
discuss the results. Part of these results were presented in a
preliminary report of this study.24

II. NUMERICAL TECHNIQUE

A. Free-energy barriers

In order to compute the free-energy barrier that separates
the liquid from the crystalline phase, we should first define a
‘‘reaction coordinate’’ that connects the two phases. It is
most convenient to choose as the reaction coordinate an, as
yet unspecified, order parameterF, that is sensitive to the
degree of crystallinity in the system. The Gibbs free energy
of the system,G, is a function of this order parameter,25

G~F!5constant2kBT ln@P~F!#, ~1!

whereP(F) is the probability per unit interval to find the
order parameter around a given value ofF. Below the freez-
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ing point P(F) is strongly peaked around a finite, solidlike
value ofF, whereas above the freezing pointP(F) will be
peaked around a low, liquidlike value. At coexistence
P(F) is double-peaked and the area under the two peaks
should be the same. This expresses the fact that, at coexist-
ence, the system is equally likely to be in the solid or liquid
phase.

In the isobaric–isothermal ensemble (NPT-ensemble!
the probabilityP(F)dF that the system has a value between
F andF1dF is given by

P~F!5
*dV*dqN exp$2b@U~qN!1PV#%d@F2F~qN!#

QNPT
,

~2!

whereb[1/kBT is the reciprocal temperature,T is the tem-
perature,kB is the Boltzmann constant,N is the number of
particles,U(qN) is the potential energy of the configuration
with coordinatesqN, V is the volume,P is the applied pres-
sure, andQNPT is the configurational part of the partition
function.QNPT is given by

QNPT5E dVE dqN exp$2b@U~qN!1PV#%. ~3!

As P(F) is an equilibrium property of the system it can
be obtained both by Monte Carlo~MC! and molecular dy-
namics~MD! simulations. In order for Eq.~1! to be useful,
one should computeP(F) for all values ofF between the
solid and liquid. In particular, one should obtain an accurate
measure ofP(F) near the top of the nucleation barrier. But
this is precisely the point whereP(F) will be very small. As
a consequence, Eq.~1! cannot be used to calculateG(F) in
a conventional simulation. To circumvent this problem and
to obtain good statistics onP(F) for intermediate values of
F, the umbrella sampling technique of Torrie and Valleau26

is used. The basic idea of this scheme is to bias the sampling
of configuration space in such a way that configurations with
a large free energy will be sampled frequently.

We can bias the sampling of configuration space by add-
ing a fictitious potential to the true potential-energy function
of our model system. Clearly, the optimum choice for the
biasing potential would be2G(F), because in that case all
values ofF are sampled with the same probability. But, of
course, we do not knowG(F) as it is precisely the quantity
that we wish to compute. The approach of Van Duijneveldt
and Frenkel3 and Lynden-Bellet al.27 was to construct the
biasing potential step-by-step. An initial, local, estimate of
G(F) is obtained from an unbiased simulation of the liquid
phase~say!. This estimate is then extrapolated to higher val-
ues ofF and used to construct the biasing potential for the
next run~at higher values of the order parameter!, and so on.
The disadvantage of this approach is that if simulations are
performed on a large system with a steep free-energy barrier,
it becomes difficult to obtain a good estimate for the free-
energy barrier. In the present paper, we therefore use a
slightly different approach in that we chose our biasing po-
tentialW(F) to be a harmonic function ofF,

W@F~qN!#5
1

2
kF@F~qN!2F0#

2. ~4!

The result of introducing such a potential is that in each run
a certain window of values of the order parameter will be
sampled. Note that the width and ‘‘location’’ of this window
depend onkF and F0 . The window will be wider if the
harmonic constantkF is smaller. By changing the center
value of the harmonic potential,F0 , we can change the crys-
tallinity in our system.

B. Nucleation rates

With umbrella sampling it is in principle possible to
compute the free-energy barrier that separates the liquid from
the solid phase, but it does not provide us with any dynami-
cal information. In order to calculate the nucleation rate, we
exploit the fact that nucleation is an activated process and
that the rate of nucleation can therefore be considered as the
product of two terms, namely,~1! the probability to find the
system at the top of the free-energy barrier to nucleation and
~2! the rate at which this activated state~a ‘‘transition state’’
in the Eyring picture of chemical reactions28! transforms into
a stable crystalline phase. Denoting the transition state sepa-
rating the liquid from the solid state byF* , we consider
configurations for whichF,F* as liquid and configura-
tions for whichF.F* as solid. We now apply standard
linear-response theory29 to calculate chemical rate constants,
to compute the actual transition rate from the liquid to the
solid state.5,6 This transition ratek(t) is given by5

k~ t !5
^Ḟd~F2F* !u@F~ t !2F* #&

^u~F*2F!&
, ~5!

whereu is the Heaviside function. Equation~5! is obtained
under the assumption that the actual time scale on which
crystallization takes place is very long compared to the time
that it takes a critical nucleus to move away from the top of
the barrier. It should also be noted that it is somewhat sus-
pect to apply the~equilibrium! linear-response formalism to
a system that has been prepared far from equilibrium
~namely, in the metastable liquid phase!. However, we con-
sider an ensemble of systems, most of which will be in the
crystalline state, while a small fraction will be in the meta-
stable liquid. The linear-response theory then tells us how
the system relaxes after an initial, weak perturbation has
changed the number of systems in the metastable liquid
phase. It is in the spirit of the Onsager regression
hypothesis29 to assume that this relaxation rate is precisely
the crystallization rate that we are interested in.

In what follows, we make the assumption that the rate-
limiting step in the crystallization rate is the barrier crossing,
rather than for instance, the subsequent crystal growth.
Therefore, we can identify the crystallization rate with the
nucleation rate.
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It is convenient to rewrite Eq.~5! as

k~ t !5
^d~F2F* !&

^u~F*2F!&

^Ḟd~F2F* !u@F~ t !2F* #&

^d~F2F* !&

5P0~F* !R~ t !. ~6!

It is seen thatk(t) is the product of two contributions. The
first contribution isP0(F* ), which is given by

P0~F* !5
P~F* !

*0
F*dFP~F!

5
exp@2bG~F!#

*0
F*dF exp@2bG~F!#

.

~7!

Noting that ifF,F* the system is in the liquid state, it is
clear thatP0(F* ) is the probability of finding the system at
the top of the barrier divided by the probability of finding it
in the liquid state. It is an equilibrium quantity and can be
measured both by Monte Carlo and by molecular dynamics
as indicated above.

The second contribution tok(t) is R(t), which gives the
average flux over the top of the barrier, provided that the
system was prepared at the top of the barrier.R(t) is a dy-
namical quantity and can only be measured by molecular
dynamics. The basic idea to separate the simulation into a
calculation of the barrier height and a dynamic simulation of
trajectories starting at the top of the barrier, was formulated
by Bennett4 and Chandler.5 As explained in Ref. 5 the initial
ratek(t→01) corresponds to the transition-state theory ap-
proximation for the rate constant,

kTST5 lim
t→01

k~ t !5
^Ḟd~F2F* !u@Ḟ#&

^u~F*2F!&
. ~8!

Transition-state theory assumes that all trajectories initially
heading from the top of the barrier towards the solid state
will indeed end up in the solid state and all trajectories head-
ing towards the liquid, will end up in the liquid. This as-
sumption is only correct if no trajectories recross the top of
the barrier. In the present case, recrossing turns out to be
quite significant and, as a consequence, we will find that
k(t) decays to a value that is much smaller thankTST. It is
conventional to express the reduction ofk(t) due to recross-
ings in terms of the transmission coefficientk, defined as

k5
k~ t !

kTST
5

R~ t !

R~01!
. ~9!

As explained in the previous section, we use umbrella
sampling to calculate the free-energy barrier and hence,
P(F* ). To compute the crossing rateR(t), we make use of
the so-called ‘‘blue-moon ensemble’’ technique of Refs. 6
and 7. In this technique, constrained MD simulations are
used to generate a sequence of uncorrelated configurations of
the system under the constraintF5F* ~i.e., at the top of the
barrier!. We use conventional constraint-MD~Ref. 30! to
keep the system at the top of the barrier. However, it should
be noted that the quantity that we constrain is a global order
parameter that depends on the positions ofall the particles in
the system. The configurations at the top of the barrier that
are generated in the constrained-MD simulations are then

used as initial states to compute the time correlation function
in R(t). However, as explained in Refs. 6,7, the use of a
constrained MD introduces a bias in the sampling of states at
the top of the barrier. It is possible to correct for this bias by
giving the trajectories starting from the top of the barrier an
appropriate weight in the averaging,

R~ t !5
^Ḟu@F~ t !2F* #uHu21/2&c

^uHu21/2&c
. ~10!

The subscriptc denotes that we are using a constrained ini-
tial state. In the general case of a system with many con-
straints,uHu is the determinant of a matrixH. However, in
the present case, there is only one constraint andH reduces
to a scalar

H5(
i51

N

mi
21S ]F

]r i
D 2. ~11!

The weighting factors in the ratio in Eq.~10! would cancel if
the reaction coordinateF were a linear function of the car-
tesian coordinates. However, in the present case,F is a non-
linear function of all coordinates and its influence cannot be
ignored. More computational details will be discussed in
Ref. 31.

C. Order parameters

Both for the calculation of the nucleation barrier and for
the computation of the crossing rate, we need to define a
‘‘reaction’’ coordinate that measures the degree of crystallin-
ity of the system as it moves from the liquid to the solid
phase. We have to choose as our reaction coordinate an order
parameter that is only sensitive to the overall degree of crys-
tallinity of the system, but fairly insensitive to the differ-
ences between the various possible crystal structures. This
requirement is important because otherwise we would force
the system to go towards a specific crystal structure. A sec-
ond requirement is that the order parameter should be insen-
sitive to the orientation of the crystal in space. Van Duijn-
eveldt and Frenkel3 have shown that a particular set of bond-
order parameters introduced by Steinhardtet al.32 are
particularly suited to act as the reaction coordinate. These
order parameters are sensitive to the degree of spatial orien-
tational correlation of the vectors that join neighboring par-
ticles. In a liquid where there is only local orientational or-
der, these correlations decay rapidly and, as a consequence,
all bond-order parameters are small~zero in the thermody-
namic limit!. In a crystal, the orientation of vectors joining
neighboring atoms are correlated throughout the solid and
hence the bond-order parameter is large@of O ~1!#.

In Appendix A we briefly summarize the definition of
the bond-order parameters used in our simulations. In Table
I values for several of these order parameters are given for
simple cluster geometries. As can be seen from Table I,Q6

has the desirable feature that it vanishes in the bulk liquid
phase, while it is large@O ~1!# for the simple crystal lattices
of interest. We therefore useQ6 as the crystalline order pa-
rameter. The reaction coordinate from isotropic fluid to crys-
tal then corresponds to a path of increasingQ6 . By increas-
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ing Q6 from the liquid we do not favor a specific crystalline
structure. Rather, the system is allowed to select its ‘‘own’’
specific reaction path from the fluid to one of the crystal
structures listed in Table I. The other order parameters listed
in Table I were used to analyze the configurations and dis-
tinguish between different crystal structures.

III. STRUCTURE ANALYSIS

Although the concept of a crystal nucleus is intuitively
clear, it is not easy to give an unambiguous numerical crite-
rion that will identify atoms as either solid- or liquidlike. In
fact, a great variety of criteria to identify solidlike clusters in
the liquid have been proposed. Here, we briefly review those
criteria that are based on the structure~rather than the dy-
namics! of crystalline nuclei. In the earliest simulation stud-
ies of nucleation in a Lennard-Jones system, Mandellet al.15

used the ‘‘local’’ structure function in order to identify crys-
talline nuclei. The main disadvantage of the method is that it
does not have high spatial resolution and, more seriously,
can be rather sensitive to the orientation of the crystal nuclei.
The structure analysis used by Honeycutt and Andersen33 is
based on the observation34 that there are many nearly collin-
ear triplets of neighboring particles in the Lennard-Jones
solid, whereas there are comparatively few such triplets in
the liquid. The criterion used by Honeycutt and Andersen for
deciding whether a given atom was solidlike, was that the
atom must have at least five distinct pairs of its nearest
neighbors with which it forms a triplet whose angle is greater
than a specified cutoff angle near 180°. However, they ob-
served that the size of the critical nucleus strongly depends
on the cutoff angle used. Yanget al.35 adopted a criterion
that is based on the observation that crystalline solids, unlike
liquids, can be constructed by periodically repeating a unit
cell. In Ref. 35 solidlike regions are identified by searching
for such periodically repeating units.

A more widely used technique for studying both crystal-
line and amorphous structures is the Voronoi-analysis of the
topology of the environment of a given particle.3,16,17,19,21,23

The Voronoi polyhedron associated with a given particle is
defined as the set of all points of space that are closer to that
particle than to any of the others. In a perfect crystal, the
Voronoi polyhedron reduces to the Wigner–Seitz cell. It is
customary to define the signature of a Voronoi polyhedron as
a set of integers (n3 ,n4 ,n5 ,...), wherenl is the number of

l -sided faces of the polyhedron. For example, the Voronoi
polyhedron of a perfect fcc structure, the rhombic dodecahe-
dron~that has twelve lozenge-shaped faces!, is denoted by~0
12 0 0 ...!, while the Voronoi polyhedron of a particle in a
body-centered-cubic~bcc! structure, is denoted by~0 6 0 8 0
...! ~six squares, eight hexagons!.

In practice, the Voronoi signatures of the particles in a
crystal will be modified by the thermal vibrations. For in-
stance, the characteristic Voronoi polyhedron of the fcc lat-
tice, the rhombic dodecahedron, will be removed by theti-
niest thermal motion. Of the 14 vertices of the rhombic
dodecahedron there are six wherefour faces meet. Any ther-
mal motion will make these fourfold vertices break up into
sets of threefold vertices connected by short edges. The re-
sult is that a variety of polyhedra such as~0364!, ~0365!,
~0446!, ~0447! occur in a thermally equilibrated fcc crystal.
Such tiny displacements of particles do not affect the signa-
ture of the bcc Voronoi polyhedron, because it has only
threefold vertices. This is why it is often said that the bcc
Voronoi polyhedron is stable against thermal distortions.
However, although this may be true for cold bcc crystals, we
find that a bcc crystal close to melting has many other
Voronoi signatures in addition to the characteristic~06080!.
Hence, Voronoi signatures can only be used in a statistical
sense to identify solidlike particles.

A. Identification of crystalline clusters

In the previous section, we described how we compute
the degree of crystallinity of the system using global bond-
order parameters.3 We have extended this technique to iden-
tify individual solidlike particles and hence solid clusters.
The advantage of the scheme is that it is rather insensitive to
the crystal structure of the cluster.

To identify solidlike particles, we make use of the local
orientational order parameterq̄lm( i ) as defined in Eq.~A1!.
From theq̄lm( i ) we can construct local invariants,

ql~ i ![F 4p

2l11 (
m52 l

l

uq̄lm~ i !u2G1/2 ~12!

and

ŵl~ i ![wl~ i ! YF (
m52 l

l

uq̄lm~ i !u2G3/2, ~13!

with wl( i ) given by

wl~ i ![ (
m1 ,m2 ,m3

m11m21m350

S l l l

m1 m2 m3
D

3q̄lm1
~ i !q̄lm2

~ i !q̄lm3
~ i !. ~14!

These local order parameters are measures for the local order
around particlei . However, the local order is large not only
in the solid, but also in the liquid. Hence, both in the liquid
and in the solid thelocal order parametersql( i ) are nonzero,
see Fig. 1. The reason that nevertheless aglobal order
parameter, such asQ6 , vanishes in the liquid, is that
all q̄6m( i ) add up incoherently. In the solid, theq̄6m( i ) add
up coherently and, as a consequence, the global order param-

TABLE I. Bond orientational order parameters for a number of simple
cluster geometries. fcc, face-centered-cubic structure; hcp, hexagonal close-
packed structure; bcc, body-centered-cubic structure, and sc, simple cubic
structure.

Q4 Q6 Ŵ 4 Ŵ 6

fcc 0.191 0.575 20.159 20.013
hcp 0.097 0.485 0.134 20.012
bcc 0.036 0.511 0.159 0.013
sc 0.764 0.354 0.159 0.013
Icosahedral 0 0.663 0 20.170
~liquid! 0 0 0 0
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eters are nonzero. It is this coherence of local bond-order
parameters that we use to identify solidlike particles.

To every particle i we attribute a normalized
(23611)-dimensional complex vectorq6( i ), with compo-
nents

q̃6m~ i ![
q̄6m~ i !

F (
m526

6

uq̄6m~ i !u2G1/2. ~15!

We can now define a dot product of the vectorsq6 of neigh-
boring particlesi and j ,

q6~ i !•q6~ j ![ (
m526

6

q̃6m~ i !q̃6m~ j !* . ~16!

By construction,q6( i ) • q6( i )51.
We now consider particlesi and j to be ‘‘connected’’ if

the dot-productq6( i ) • q6( j ) exceeds a certain threshold, in
our case 0.5. It is clear that in the solid almost allq6( i ) are in
phase with one another and add up coherently to produce a
nonzeroQ̄6m . Using this criterion all particles in the solid
will turn out to be connected with one another. However, to
identify a particle as ‘‘solidlike,’’ it is not enough that its
bond-order is in phase with only one of its neighbors. After
all, even in the liquid it will frequently happen that the bond-
order of neighboring particles is in phase and hence the two
particles are considered ‘‘connected.’’ We therefore only
identify a particle as solidlike if the number of connections
with its neighboring particles exceeds a threshold value. To
illustrate this technique, Fig. 2 shows the histograms of the
number of connections per particle for the liquid, the bcc
structure and the fcc structure of the Lennard-Jones system,
all equilibrated at the fcc-liquid coexistence point. As is to be
expected, the average number of connections per particle in
the liquid is less than in either solid. More importantly, the

histogram for the liquid phase exhibits very little overlap
with the histograms of the two solid phases. We find that,
with a threshold value of seven connections per particle,
more than 99% of the particles in a fcc structure are identi-
fied as being solidlike. Even for the bcc structure, which is
rather open and disordered, this method identifies more than
97% of the particles as solidlike. In contrast, for the liquid
less than 1% of the particles were identified as being solid-
like. Thus this analysis method gives an unambiguous, local
criterion to identify solidlike particles. Once we have identi-
fied the individual solidlike particles, we can perform stan-
dard cluster analysis to recognize crystallites. We apply the
criterion that any two solidlike particles that are neighbors
belong to the same solid cluster.

B. Crystal-structure determination

As discussed above, the typical Voronoi polyhedra of
the different crystal structures will be distorted by thermal
vibrations of the particles around their lattice positions. As a
consequence, a given structure will be characterized by a
distribution of signatures, rather than a single one. In fact,
each crystal structure has its own unique distribution of
Voronoi signatures. Similarly, every structure has its own
unique distribution of local bond-order parameters. We can
useeither distribution as a ‘‘fingerprint’’ that enables us to
identify the crystal structure of crystalline nuclei.

To see how this method of analysis works, consider, for
instance, the Voronoi histogram of a solid cluster. We rep-
resent this histogram as ann-dimensional unit vectorv̂,
where the number of components (n) corresponds to the
number of ‘‘bins’’ of the histogram. We then decompose the
vector v̂ corresponding to the cluster in a linear combination
of the corresponding vectors for the equilibrated liquid, bcc
and fcc structures. That is, we minimize

D25@ v̂cl2~ f liqv̂liq1 f bccv̂bcc1 f fccv̂fcc!#
2, ~17!

FIG. 1. Probability distribution functions of the local order parameters, as
defined in Eqs.~12! and ~13!, in a Lennard-Jones system for a thermally
equilibrated liquid, bcc and fcc structure at 20% undercooling (P55.68,
T50.92). The distribution functions are based on averages over 50 indepen-
dent atomic configurations.

FIG. 2. Distributions of the number of connections per particle in a
Lennard-Jones system for a thermally equilibrated liquid, bcc and fcc struc-
ture at coexistence (P55.68, T51.15). The distributions are based on av-
erages over 50 independent atomic configurations.
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wherev̂cl , v̂liq , v̂bcc and v̂fcc are the vectors associated with
the histograms of the cluster, the liquid, the bcc structure,
and the fcc structure, respectively. Clearly, the coefficients
f liq , f bcc and f fcc are indicative of the type of crystal struc-
ture of the cluster. The value ofD2 is an indication of the
quality of the fit. For instance, if we were to apply our analy-
sis to an equilibrated fcc crystal, we would findf fcc51,
f bcc50, f liq50, andD50.

Analogously, we can interpret the histogram of the prob-
ability distribution function of the local bond-order param-
eters as a multidimensional vector. Figure 1 shows the prob-
ability distribution functions of the most interesting
orientational order parameters for the liquid, bcc and fcc
structures. The important thing to note is that, although the
distributions of the local order parameters are quite broad, in
particular in the liquid phase, there is still a considerable
difference between the distributions that correspond to dif-
ferent phases. For instance, the distribution ofŵ6( i ) is
strongly peaked in either solid phase, but not in the liquid.
The distribution ofq4( i ) has a characteristic double-peaked
structure in the fcc phase, but not in the bcc or liquid phases.
We found that the probability distribution ofŵ4( i ) of the bcc
phase is almost identical to that of the liquid. It could still
be used to distinguish fcc structures from liquid or bcc.
However, we found that the information contained in
the ŵ4-distribution function did not add to the information
obtained by using theq4 , q6, andŵ6 distributions. It is only
the latter distributions that we have used in our structure
analysis. To be more precise, we first concatenate the distri-
bution functions ofq6( i ), q4( i ), andŵ6( i ) for each structure
to form a single, unique distribution function. With the his-
togram of this distribution function we then associate a~nor-
malized! vector. As with the Voronoi histograms, we can
then decompose the order-parameter histogram of our solid
cluster in the components corresponding to pure fcc, bcc, and
liquid.

When comparing the structure analysis based on
Voronoi histograms with the local bond-order parameter
method, we found that the Voronoi method was not very
robust; a slight disordering of a bcc crystal led to a strong
change in the Voronoi histogram@for instance, the character-
istic ~0608! signature is almost completely destroyed# and
the Voronoi signatures of the disordered bcc and fcc struc-
tures end up looking quite similar. For this reason we have
only used the more sensitive bond-order histogram method
in our structure analysis.

IV. SIMULATIONS

All simulations were performed in the isobaric–
isothermal ~constantNPT) ensemble. Both Monte Carlo
simulations and molecular dynamics simulations were per-
formed. The advantage of MD is that it facilitates equilibra-
tion through collective particle motions. Moreover, MD is
essential to study thekineticsof crystal nucleation. The ad-
vantage of Monte Carlo simulations is that it is particularly
suited for umbrella sampling. In what follows, we use re-

duced units, such that the Lennard-Jones well depthe is the
unit of energy, while the Lennard-Jones diameters is the
unit of length.

In the Monte Carlo simulations each trial move consisted
either of an attempted displacement of a particle or a trial
volume change. The choice between trial volume moves and
trial particle moves was made at random, with 92% probabil-
ity for the latter. The acceptance ratio of the particle moves
was maintained at 25%, while that of the volume moves was
kept at 50%. For more details of the Monte Carlo scheme,
see Refs. 3,36. In order to keep the pressure and temperature
constant in our molecular dynamics simulations, we applied
the extended system method proposed by Nose´ and
Andersen.37 The equations of motion were integrated by a
predictor-corrector version of the velocity Verlet algorithm30

and the time step used in the molecular dynamics simulations
was in the range 0.005–0.01t, wheret is the unit of time.
This was adequate for energy conserving dynamics.

The cutoff radius for intermolecular interactions was
chosen such thatr c52.5. For the calculation of bond-order
parameters, the cutoff distance for nearest-neighbor
‘‘bonds’’ was chosen atr q51.5, which corresponds approxi-
mately to the first minimum ofg(r ) in a fcc crystal at coex-
istence~in the Monte Carlo simulations the cutoff radii scale
with the linear dimensions of the simulation box, but this is a
small effect!. To minimize the anisotropy in the system due
to the periodic boundary conditions, we used a truncated
octahedral simulation box.38 To speed up the simulation, we
used a Verlet neighbor list to calculate energies and forces
and a linked list30 to update the neighbor list. In Appendix B
we describe how we combined the linked list method with
truncated octahedral boundary conditions.

All simulations were started from a liquid configuration,
obtained by melting a crystal. The first run in a series of
umbrella samplings was performed without any weighting
function. By changing the biasing potential, the next simula-
tion was performed in an adjacentQ6 interval. In this way
we could slowly increase the crystallinity in the system and
cross the free-energy barrier that separates the liquid phase
from the solid phase. Once we had crossed the top of the
barrier, we checked whether the path was reversible by low-
eringQ6 . We observed no significant hysteresis at the top of
the barrier, although very long simulations were required to
equilibrate the system.

As the equilibration time and the order-parameter fluc-
tuations are much larger at the top of the barrier than on
either side of it, we tuned the biasing potential in such a way
that, at the top of the barrier, only narrow windows inQ6

were sampled. A typical simulation in a given window con-
sisted of an equilibration period of 10 000–50 000 cycles
~MC!/time steps~MD!, followed by a production run of
25 000–75 000 cycles/time steps.

The individual probability distribution functionsP(Q6)
obtained in different runs were fitted simultaneously to a
polynomial.3 We used a polynomial fit rather than the self-
consistent procedure of Ferrenberg and Swendsen,39 because
a good polynomial fit can be obtained even when the adja-
cent histograms do not overlap or overlap only slightly. The
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reason is that even a very narrow histogram yields an esti-
mate of the localderivativeof the free energy. From this
local information, the global free-energy barrier can then be
reconstructed using a polynomial fit.

Having determined the free energy barrier, we used con-
strained MD to generate a sequence of configurations at
Q6* , the position of the top of the barrier. The duration of
this MD simulation was of 100t ~25 000 time steps! and
from this run we kept 50 independent configurations sepa-
rated by 2t ~500 time steps! to be used as initial states for
the computation of the barrier crossing fluxR(t), as given by
Eq. ~10!. At the beginning of the unconstrained MD runs to
computeR(t), all particles were given a velocity drawn from
a Maxwell–Boltzmann distribution. The duration of these
runs was 5t, which appeared long enough for the system to
reach a stationary state. In order to improve the statistics, we
assigned different initial velocities to the same configura-
tions, and we also made use of the time reversal property,

R~ t !5 2
^Q̇6u@Q6~2t !2Q6* #uHu21/2&

^uHu21/2&
52R~2t !.

~18!

This means that the flux was computed by averaging over the
trajectories obtained propagating forwards and backwards
our set of initial configurations obtained from a constrained
run at the top of the barrier. The results that we present here
for the rate were averaged over 200 trajectories.

V. RESULTS AND DISCUSSION

We studied the formation of a critical nucleus and the
rate of nucleation for a Lennard-Jones system at 20% under-
cooling with respect to the melting temperature. Although
this degree of supercooling is appreciably less than what is
used in ‘‘brute force’’ simulations of crystal nucleation, it is
still large compared to the degree of supercooling that can be
reached experimentally for simple liquids such as argon. In
our choice of this particular degree of supercooling we tried
to strike a compromise between making the supercooling as
small as possible and, at the same time, keeping the critical
nucleus much smaller than the system size. As we studied a
system ofO (104) particles, we tried to ensure that the super-
cooling was strong enough to make the critical nucleus at
least one order of magnitude smaller. A rough estimate,
based on classical nucleation theory, suggests that the size of
the critical nucleus is about 100 particles for 20% undercool-
ing. However, several studies indicate that, although the core
of the nucleus might be quite small, the interface between the
liquid and the solid is rather diffuse,15,33,40,41so in practice
the number of solidlike particles may be appreciably larger.
After testing the method on a small system, we performed all
production runs on a system of 10 648 particles.

We performed the simulations at two different reduced
pressures,P50.67 and P55.68. We used the data of
Hansen and Verlet42 to estimate the location of the melting
points~see Table II!. Figure 3 shows the free-energy barriers
computed for these two pressures. Let us first describe quali-
tatively what happens as the system crosses the barrier. Ini-

tially, the system is in the metastable liquid phase. Due to
spontaneous fluctuations, some small solidlike clusters are
present in the liquid. We find that the solidlike clusters rarely
comprise more than 16 particles. WhenQ6 is increased from
the liquid, both the number and size of these solidlike clus-
ters in the liquid increase. The reason why there are, initially,
several small solidlike clusters is that is is entropically favor-
able for the system to distribute a given amount of crystal-
linity over several clusters. For a given overall degree of
crystallinity, there is a competition between translational en-
tropy, favoring the formation of many small clusters, and
surface free energy, which favors the formation of a single
large crystallite. When the top of the barrier is approached,
the surface free energy dominates and the small solidlike
clusters merge. Indeed, at the top of the barrier only one
cluster, the critical nucleus, is observed, apart from a number
of small solidlike fluctuations that are always present in the
liquid. This implies that the Gibbs free energy of the system
at the top of the barrier corresponds to the Gibbs free energy
of the critical nucleus, the nucleation barrier.

In the following we first discuss the structure of the nu-
clei as a function of our ‘‘reaction coordinate.’’ Next, we
consider the structure of the critical nucleus in more detail by
examining the radial profiles for the density and our struc-
tural order parameters. We will only present the results of the
structure analysis for the system atP55.68, as the ones for
P50.67 are qualitatively similar. Finally, we discuss the
transition rate and make a comparison with classical nucle-
ation theory.

TABLE II. Transition data for the Lennard-Jones system at the reduced
pressuresP50.67 andP55.68. From Hansen and Verlet~Ref. 42!.

P T r liquid rcrystal

0.67 0.75 0.875 0.973
5.68 1.15 0.936 1.024

FIG. 3. The Gibbs free energy of a Lennard-Jones system as a function of
crystallinity (Q6) at 20% undercooling for two different pressures, i.e.,
P55.68 (T50.92) andP50.67 (T50.6). The Gibbs free-energy barriers
are approximately 25.1kBT at P55.68 and 19.4kBT at P50.67.
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A. Crystallite structure

As mentioned in the previous section, only small crys-
tallites are observed on the liquid side of the barrier. The size
of the largest crystallites ranges from 16 particles in the
metastable liquid to 26 particles as the top of the barrier is
approached. Previous theoretical,43 experimental,44 and com-
puter simulation studies44–46 indicate that for small clusters
of Lennard-Jones atomsin vacuothe icosahedral structure is
more stable than any of the crystalline structures. Besides, it
has been suggested32 that long-ranged icosahedral order
would be favored in strongly supercooled liquids. When we
applied a conventional Voronoi analysis to our system in the
liquid state, we could identify on average 1% of the atoms as
being icosahedrally surrounded. However, the larger crystal-
lites that were present in the liquid never contained any atom
with the characteristic~0 0 12 0! signature of an icosahedron.
Also an examination of the local bond order parameter
ŵ 6 , which is most sensitive to icosahedral order~see Table
I!, supported the conclusion that the largest crystallites do
not contain icosahedrally ordered atoms. In fact, the bond-
order analysis indicates that the larger solidlike clusters in
the metastable liquid have appreciable bcc character,
whereas at the top of the barrier and beyond, they are pre-
dominantly fcc-like. To make this analysis more quantitative,
we determinedf liq , f bccand f fcc as defined in Eq.~17! for the
largest cluster in the system.

Figure 4 shows the structural ‘‘composition’’ of the larg-
est cluster in the system, as a function of the ‘‘reaction co-
ordinate,’’ Q6 . The figure shows that the precritical nuclei
are predominantly bcc- and liquidlike. However, near the top
of the barrier, atQ650.025, there is a clear change in the
nature of the solid nuclei from bcc- and liquidlike to mainly
fcc-like. The fact that the precritical nuclei are rather liquid-
like is not surprising as they are quite small and almost all
interface. The important point to note is that these nuclei
have clearly more bcc than fcc character. This suggests that,
at least for small crystallites, we find the behavior predicted
by Landau theory.10 Yet, as the critical and postcritical clus-

ters are predominantly fcc-like, the present results are also
compatible with the findings of Swope and Andersen,23 who
observed that nucleation proceeded through fcc crystallites.
In fact, the nucleation process as observed in the present
simulations might be interpreted as a manifestation of the
Ostwald step rule.8 First, a metastable, bcc, phase is nucle-
ated, which is then transformed into a more stable, fcc,
phase. What is remarkable is that we find that the transfor-
mation from bcc to fcc takes place before the critical nucleus
is reached.

B. Critical nucleus

Visual inspection of the critical and postcritical nuclei
showed that the nuclei at this moderate degree of undercool-
ing are fairly compact, more or less spherical objects~see
Fig. 5!. This finding appears to be in contrast to what is
found in simulations of crystal nuclei at large
supercooling33,35 where ramified structures were observed.
Although we find the critical nucleus to be fairly spherical,
rudimentary facets can be distinguished. Facetting of crystal
nuclei was also observed by Ba´ez and Clancy,47 who studied
the growth and dissolution of critical fcc nuclei implanted in
a liquid at 26% undercooling. Ba´ez and Clancy found that
during the earliest stages of growth the nuclei are distinctly
octahedral, with facets corresponding to the~111! planes of
the fcc crystal.

In order to quantify the degree of nonsphericity of the
critical nucleus, we expand the mass distribution of the crys-
tallite in rank four spherical harmonics (Y4m) and con-
structed quadratic invariants, denoted byS4~cl!. For a spheri-
cal clusterS4~cl! is, of course, zero. But for an octahedral
cluster it has a value of 0.11. We find that, both for the
critical and postcritical nuclei,S4~cl! is much smaller than is
compatible with an octahedral shape. Hence the critical and
postcritical nuclei in our simulations are indeed quite spheri-
cal, which supports the assumption of classical nucleation
theory. However, this finding seems hard to reconcile with

FIG. 4. Structural composition of the largest cluster in a Lennard-Jones
system, indicated byf liq , f bcc, f fcc , and D2, as a function ofQ6 ~the
reaction coordinate! at 20% undercooling (P55.68,T50.92). This figure is
based on averages over 50 independent atomic configurations. FIG. 5. Snapshot of the critical nucleus at 20% undercooling (P55.68,

T50.92) in a Lennard-Jones system.
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the strong faceting of crystal nuclei that was observed by
Báez and Clancy.47 It should be recalled that Broughton and
Gilmer, who have computed the interfacial free energy of a
Lennard-Jones system for three different orientations of the
fcc crystal-liquid interface,48 found the surface free energies
for the ~111!, ~100!, and~110! faces to be equal to within the
statistical error. If the interfacial free energy is indeed com-
pletely isotropic, one should expect to see a spherical crystal
nucleus. Slight anisotropies in the interfacial free energy
might lead to fairly spherical crystal shapes, such as the trun-
cated octahedron. It should be stressed, however, that inter-
facial free energies only determine the equilibrium crystal
shape and not the nonequilibrium shape that develops during
growth. It is conceivable that the strongly octahedral crystal
shape found in Ref. 47 is determined by kinetics.

In the previous section we found that the critical nucleus
has mainly fcc character. Yet it still has considerably liquid-
like and bcc-like character. In fact, it is not surprising that
the critical nucleus has some liquidlike character. After all, it
consists only of some 642 particles and has therefore a large
surface-to-volume ratio. However, the bcc-like character is
more intriguing. We have therefore studied the local order of
the critical nucleus in more detail.

Given the spherical shape of the critical nucleus it is
meaningful to calculatef liq , f bcc, andf fcc in a spherical shell
of radiusr around the center-of-mass of the cluster. Figure 6
shows the radial profile of the local order of the critical
nucleus. As expected, we find that the core of the nucleus is
almost fully fcc-ordered and that far away from the center of
the nucleus,f fcc decays to zero andf liq approaches unity.
More surprisingly however, is thatf bcc increases in the inter-
face and becomes even larger thanf fcc , before it decays to
zero in the liquid. Hence, the present simulations suggest that
the fcc-like core of the equilibrated nucleus is ‘‘wetted’’ by a
shell which has more bcc character. This finding explains
why Fig. 4 shows that even fairly large nuclei do not have a
pure fcc signature; there is always a residual bcc signature
due to the interface. It also explains the strong bcc character
of the small clusters, such as appear on the liquid side of the

barrier; they are so small that their structure is strongly
surface-dominated.

As can be seen from Fig. 6 the interface between the
nucleus and the surrounding liquid is quite diffuse~some
four atomic layers!. Such a diffuse interface is predicted by
recent theories of homogeneous nucleation.40,41 In contrast,
classical nucleation theory assumes a sharp interface. A more
specific prediction about the solid–liquid interface of crystal
nuclei is made in the density functional theory of Harrowell
and Oxtoby.40 This theory predicts that the density profile of
the clusters reaches liquidlike valueswell beforethe order-
parameter profile does. In other words, this theory predicts
that there exists a ‘‘shell’’ with liquidlike density but solid-
like order around the nucleus. To test this prediction we plot-
ted both the density and the ‘‘degree of crystallinity’’ as
measured by the number of bond-order connections per par-
ticle ~NCP! ~see Sec. III A!. The number of such connections
per particle is a measure for the local bond orientational or-
der and can be used as a structural order parameter. Figure 7
shows the density and the number of connections per particle
as a function ofr . We see that the density in the core of the
nucleus is somewhat lower than the density of the bulk fcc
solid under similar conditions. In contrast, the structural or-
der parameter reaches the same value in the core of the
nucleus as in the bulk solid. This finding is in agreement
with the density functional calculations of Ref. 40.

The figure also shows that both the density and the struc-
tural order parameter decay smoothly to a liquidlike value
outside the nucleus. Moreover, as predicted theoretically,40

the density falls off faster than the structural order parameter.
The latter profile appears to be displaced by some 0.7s with
respect to the density profile. Hence the cluster is indeed
surrounded by a thin layer that is liquidlike in density, but
solidlike in structure. In fact, in the density-functional theory
of Oxtoby49 the density change varies quadratically with the
structural order parameter. Figure 8 shows the relation be-

FIG. 6. Structure of the critical nucleus, indicated byf liq , f bcc, f fcc , and
D2, as a function ofr , the distance to its center-of-mass, at 20% undercool-
ing (P55.68,T50.92) in a Lennard-Jones system. This figure is based on
averages over 50 independent atomic configurations.

FIG. 7. The density and the number of connections per particle~NCP! as a
function of r , the distance to the center-of-mass, for the critical nucleus in a
Lennard-Jones system at 20% undercooling (P55.68, T50.92). The
coordinate-axes are such that they range from a liquid to a bulk solid value,
both for the density and the structural order parameter.RCNT is the radius of
the critical nucleus as given by classical nucleation theory. Based on aver-
ages over 50 independent atomic configurations.
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tween the square of the structural order parameter variation
and the change in density, as obtained in the simulation. We
should point out that our definition of the solid order param-
eter is not equivalent to the one used by Oxtoby.49 Still, the
figure suggests that, at least far from the core~i.e., where the
crystallinity and density is low! the quadratic relation be-
tween order parameter and density seems to be satisfied.

Both the diffuseness of the solid–liquid interface and the
difference in the density and order-parameter profiles, make
the definition of thesizeof the critical nucleus ambiguous.
For instance, if we choose to locate the surface of the critical
nucleus at the point where the order parameter is halfway
between its bulk-solid and liquid values, then the radius of
the nucleus would be 4.9s and the number of particles in the
critical nucleus would be 630. But if we use the halfway
point of the density to define the crystallite surface, then we
find a radius of 4.2s, corresponding to 412 particles in the
critical nucleus. A direct comparison of the size of the criti-
cal nucleus with the prediction of classical nucleation theory
is therefore not very meaningful.

As the nucleus grows beyond its critical size, it retains
its spherical shape and the core retains the same~fcc! crystal
structure. More interestingly, the structure of the interface
does not change either. The postcritical nuclei retain a high
degree of bcc ordering at the interface and the density decays
faster than the structural order parameter. In fact, as can be
seen in Fig. 9, the width of the interface remains essentially
constant. We have also studied the solid–liquid interface in
the limit of an ‘‘infinitely large’’ crystal-nucleus, i.e., a pla-
nar interface. To this end, we brought the (100)-face of a
slab of a thermally equilibrated fcc crystal in contact with a
liquid and equilibrated the interface in a constant-NVT mo-
lecular dynamics simulation (r50.978, T51.15, N5
10532!. Figure 10 shows that, just as with the small nuclei,

f fcc decreases monotonically in the interface whilef bcc peaks
there. The bcc-like structure of the fcc-liquid interface ap-
pears to be quite general and should be observable experi-
mentally.

C. Nucleation rate

Up to this point, we have only discussed the static as-
pects of crystal nucleation. Let us now consider the actual
barrier crossing process. Most of the previous computer-
simulation studies of nucleation rates were performed by
rapidly quenching a liquid to temperatures well below its
freezing point, and then measuring the time-lag until the first
signs of crystallization appear.15,19–21,36,46,47This method, al-
though straightforward, has some disadvantages. First and
foremost, as the nucleation rate depends exponentially on the
degree of undercooling, the brute-force method only works

FIG. 8. Square of the scaled structural order parameter as a function of the
scaled density for the critical nucleus in a Lennard-Jones system at 20%
undercooling (P55.68,T50.92!. The scaled structural order parameter is
given by NCPsc[ (NCP2NCPliq /NCPsol2NCPliq) , and the scaled density
is given by densitysc[ ~density2densityliq /densitysol2densityliq) , where
NCP is the number of connections per particle, and liq and sol denote that
the quantities are computed in the bulk liquid and bulk solid, respectively.
The solid line is the result from the simulations, and the dashed straight line
is the prediction of the density functional theory of Oxtoby~Ref. 49!. Based
on averages over 50 independent atomic configurations.

FIG. 9. The density and the number of connections per particle~NCP! as a
function of r , the distance to the center-of-mass, for the critical nucleus and
several postcritical nuclei in a Lennard-Jones system, at 20% undercooling
(P55.68, T50.92). Based on averages over 50 independent atomic con-
figurations.

FIG. 10. The structural composition, indicated byf liq , f bcc, f fcc , andD2, of
the Lennard-Jones system with the planar fcc-liquid interface, equilibrated
at coexistence (r50.978,T51.15). Thez-coordinate, in units ofs, is the
coordinate perpendicular to the planar interface. Based on averages over 50
independent atomic configurations.
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under conditions of extreme supercooling. Moreover, the
method lumps two times together. The first is theinduction
time, i.e., the time it takes the cluster-size distribution to
respond to the temperature quench. In the stable liquid, only
small clusters appear, whereas in the supercooled liquid there
is an enhanced~although still very small! probability to ob-
serve larger clusters. The second is the actual time it takes to
cross the nucleation barrier, given a~quasi! Boltzmann dis-
tribution of precritical nuclei. Finally, even in a strongly su-
percooled system, nucleation remains a rare event, and hence
the statistics on the nucleation rate is usually poor.

We therefore did not use the ‘‘brute-force’’ approach to
compute the nucleation rate. Rather, we employed the fact
that nucleation is an activated process and that the rate is
given by Eq.~6!. The advantage of this approach is that we
do not have to wait for the critical nucleus~or the activated
state! to form spontaneously; we prepare the system at the
top of the free energy barrier and simply measure the time
correlation between the initial order-parameter velocity and
the probability of finding the system in the solid side of the
barrier at a later timet. This correlation function is expected
to reach a plateau value relatively quickly~at least, compared
to the actual times involved in the nucleation process! and
hence the nucleation rate can be determined from compara-
tively short runs. By performing many runs, we can improve
the statistical accuracy of the measurement of the nucleation
rate. Even so, the simulations become quite time-consuming.

The first step in the computation of the flux is to identify
the ‘‘transition state’’ from our knowledge of the shape of
the free energy barrier. We denote this point byQ6* . We
then performed a MD simulation of the system under the
constraintQ65Q6* , to generate a set of independent con-
figurations at the top of the barrier. Note that constraining
Q6 does not necessarily imply that the size of the critical
nucleus is constrained. However, a structure analysis of the
configurations at the top of the barrier showed that the aver-
age size of the largest cluster did not change significantly
during the constrained run. The set of configurations ob-
tained in this way was used as initial state for the computa-
tion of R(t) from Eq. ~10!.

Figure 11 shows the transmission coefficientk, as de-
fined in Eq.~9! for P50.67. The figure shows that initially
the transmission coefficient decreases rapidly from the value
k51 at t50. This is due to recrossing at short times. How-
ever, after a short transient relaxation period of approxi-
mately 0.5t, k(t) appears to reach a plateau value~shown as
a dashed line in the graph!. As it is clear from the figure, the
statistical accuracy ofk(t) is rather poor, even though aver-
ages over 200 trajectories were taken. A direct analysis of
the trajectories of the system inQ6-space showed that its
behavior is distinctly diffusive. The system does not clearly
fall into either minima~solid or liquid one! in the duration of
the run, but remains close to the top of the barrier in most
cases. The largest cluster present in the system, the critical
cluster, did not grow or shrink monotonically, but its size
fluctuated, although in most cases a clear tendency to the
liquid or to the solid minimum could be observed. Hence, to
speak in the language of chemical kinetics, crystal nucleation

is closer to the Kramers limit of diffusive escape over a
barrier50 than to the ‘‘ballistic’’ crossing of Eyring’s
transition-state theory.28

Indeed, due to the diffusive nature of the barrier cross-
ing, the plateau value of the transmission coefficient is quite
small, k;0.05 for P55.68 andk;0.2 for P50.67. The
prediction of transition-state theory~TST! for the rate can be
obtained by combining the initial value of the forward flux,
R(01), with the earlier results for the barrier height. It was
found from the simulations that for P55.68,
R(01)55.85•1023t21, and hencekTST57.35•10214t21.
From kTST and the plateau value of the transmission coeffi-
cient we can then get the full nucleation rate, which is found
to bek54.04•10215t21. In the low pressure case the values
werekTST52.40•10211t21 andk54.79•10212t21.

The rates obtained in our simulation are measured in
units ofQ6 per unit time, as the quantity computed was the
flux of Q6 . Nucleation rates are usually measured in number
of solid particles produced in the unit volume per unit time.
To get such a quantity for the results of the simulation we
would have to multiplyk by r liqdNsol/dQ6 , wherer liq is the
density of the liquid andNsol is the number of solid particles.
We assume that there is a linear relationship betweenQ6 and
the number of solid particles~this is certainly true for large
crystallites!. We then can write

dNsol

dQ6
5
Nsol* 2Nsol

liq

Q6*2Q6
liq ,

where the superscript liq denotes that the corresponding
quantity is evaluated in the liquid minimum. Taking into
account the results of the previous sections we finally obtain
kTST52.23•1029s23t21, k51.23•10210s23t21 for
P55.68 and forP50.67 we getkTST54.09•1027s23t21,
k58.19•1028s23t21.

The value of the ratek implies that in order to observe
nucleation in a system of 10 648 particles at 20% undercool-
ing atP55.68, a simulation time of the order of 106t would
be required~this estimate is obtained by taking the inverse of

FIG. 11. Transmission coefficient as a function of time at 20% undercooling
(P50.67, T50.6!. The dotted line shows the plateau value that is estab-
lished after 0.5t. This figure is based on averaging over 200 trajectories.
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k and dividing the result by the volume of the system!. Tak-
ing into account that a time step in a MD simulation is typi-
cally of the order of 1022t, runs of a duration of at least
108 time steps would have to be performed. This is not in
disagreement with previous studies that were not able to see
crystallization in liquids with a degree of undercooling
smaller than about 26% during runs of a duration of
;1000t.47

D. Comparison with classical nucleation theory

Turnbull and Fisher51 applied the Becker–Do¨ring for-
malism to nucleation in condensed systems and derived the
following expression for the nucleation rate,1,51

k5A~T!e2DG* /kBT, ~19!

whereDG* is the nucleation barrier andA(T) is a kinetic
prefactor. We are now in a position to test the predictions of
classical nucleation theory, both concerning the height of the
free-energy barrier to nucleation and the value of the kinetic
prefactor. As argued in the previous section, predictions con-
cerning the size of the critical nucleus are harder to test, as
the size of the critical nucleus, as computed in the simula-
tions, is ill defined.

In classical nucleation theory the height of the free-
energy barrier is given by1

DG*5
16pg3v2

3~Dm!2
, ~20!

where g is the surface free energy per unit area of the
liquid–crystal interface,v is the volume per particle in the
solid, andDm is the difference in chemical potential between
the bulk solid and bulk liquid.

Two problems arise when applying Eq.~20!. The first is
that we do not know the solid–liquid interfacial free energy
for Lennard-Jones crystals in contact with a supercooled liq-
uid. However, as already mentioned above, Broughton and
Gilmer48 have calculated the surface free energy for three
different orientations of the fcc crystal–liquid interface.
They performed their calculations at coexistence, near the
triple point ~i.e., low pressure!, and found the surface free
energies to be equal within their error bars. In our compari-
son we will use the average of their estimates for the surface
free energies of the different faces.

The second problem is that we do not know the differ-
ence in chemical potential between the bulk solid and bulk
liquid at 20% undercooling. However, close to coexistence
the difference in chemical potential can be approximated by1

Dm'Dh~Tm2T!/Tm , ~21!

whereDh is the enthalpy change per particle on freezing at
coexistence andTm is the melting temperature. We have
taken the enthalpy change per particle in the liquid–solid
transition at coexistence from the data of Hansen and
Verlet.42 In Table III we have collected for both pressures
the average value of the surface free energies estimated by
Broughton and Gilmer,48 the enthalpy change per particle on
freezing at coexistence,42 the estimated difference in chemi-

cal potential between the bulk fcc solid and bulk liquid at
20% undercooling and the volume per particle in the bulk fcc
solid at 20% undercooling.

Using the data shown in Table III, classical nucleation
theory yields the following predictions for the nucleation
barriers: G/kBT517.4 at P50.67 and G/kBT58.2 at
P55.68. We find from our simulations thatG/kBT'19.4
for the lower pressure andG/kBT'25.1 for the higher pres-
sure~see Fig. 3!. As Broughton and Gilmer have calculated
the surface free energy at a temperature and pressure which
are closer to the temperature and pressure of the simulation
atP50.67, we expect the agreement between the theoretical
prediction and the results of the simulation to be better for
this lower pressure than for the higher pressure,P55.68. In
fact, for the lower pressure the agreement between the pre-
dicted height of the barrier and the height of the barrier as
computed in our simulation is surprisingly good if one takes
into account the crude approximations made in classical
nucleation theory. The discrepancy for the higher pressure
between the prediction of classical nucleation theory and the
results of the simulation is most likely mainly due to the fact
that the surface free energy at this higher pressure and tem-
perature is somewhat larger than the Broughton and Gilmer
estimate. As the surface free energy comes in with the third
power in the theoretical expression for the height of the bar-
rier, a difference of only 40% in the surface free energy
could account for the discrepancy between theory and simu-
lation. If we make the assumption that the surface free en-
ergy is proportional to the latent heat1 ~which increases with
pressure!, then we arrive at an estimate for the barrier height
at the higher pressure that is within 20% of the simulation
results.

In classical nucleation theory the radius of the critical
nucleus is given by1

R*5
2gv
uDmu

. ~22!

Using the data from Table III, classical nucleation theory
gives the following predictions for the radius of a critical fcc
nucleus: 2.7s for P50.67 and 2.3s for P55.68. We have
indicated this radius for the critical nucleus at the higher
pressure in Fig. 7. Although the exact boundary between the
core and the interface of the nucleus is not clear, it seems
that classical nucleation theory significantly underestimates
the size of the critical nucleus.

TABLE III. Data used to calculate the nucleation rate as given by classical
nucleation theory; the average of the surface free energies,g, calculated by
Broughton and Gilmer~Ref. 48!, the enthalpy change per particle on freez-
ing, Dh, at coexistence~Ref. 42!, the estimated difference in chemical po-
tentialDm between the bulk fcc solid and bulk liquid at 20% undercooling,
and the volume per particle in the bulk fcc solid at 20% undercooling,
v fcc , both forP50.67 andP55.68.

P g Dh (T5Tm) Dm (T50.8Tm) v fcc (T50.8Tm)

0.67 0.35 21.31 20.262 0.998
5.68 0.35 21.46 20.292 0.948
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Let us next consider the kinetic prefactor. The following
expression forA(T) has been proposed1:

A~T!5Zr liq
24Dn* 2/3

l2 . ~23!

D is the diffusion coefficient,r liq is the density of the liquid,
n* is the size of the critical nucleus, andl is the atomic
jump distance in the liquid.Z is the Zeldovich factor, which
relates the number of solid clusters in the steady state with
the equilibrium value,

Z5S uDG9~n* !u
2pkBT

D 1/2, ~24!

whereDG9(n* ) is the second derivative of the Gibbs free
energy with respect to the cluster size atn* . Using the ex-
pression of classical nucleation theory forDG we get

Z5S uDmu
6pkBTn*

D 1/2. ~25!

When making the comparison between the classical nucle-
ation theory prediction forA(T) and the value obtained from
the simulations, we use the value ofn* obtained in the simu-
lation. For P55.68 we obtained in the simulation
n*;642, so Eq.~25! leads to a value of the Zeldovich factor
of Z55.12•1023, while for P50.67, n*;500 and
Z56.81•1023. Similar values are obtained if we use Eq.
~24! directly, although in this case the statistical accuracy is
poor. The appearance of the Zeldovich factor in the expres-
sion for the rate-constant is a consequence of the fact that the
barrier crossing is considered as adiffusive rather than a
ballistic process.1 It is precisely this diffusive behavior near
the top of the barrier that leads to recrossings and hence to a
reduction ofk(t). The small value of the Zeldovich factor,
as given by Eq.~24!, is in qualitative agreement with the
strong reduction ofk due to recrossings, as found in the
simulations.

The diffusion coefficient in the supercooled liquid was
computed in a separate simulation and was found to be
D'1•1022s2t21, for both pressures. The atomic jump dis-
tance was approximated byr liq

21/3, which givesl'1.0s for
P55.68 andl'0.97s for P50.67. This leads to a predic-
tion of the kinetic prefactor ofA58.76•1022s23t21 for
P55.68 andA50.113s23t21 in the low pressure case. The
value of the kinetic prefactor in the simulation can easily be
obtained by dividing the value of the ratek by
exp(2DG* /kBT). The resulting value isA59.78s23t21 for
P55.68 andA521.83s23t21 for P50.67. This means that
the kinetic prefactor obtained in the simulation is about two
orders of magnitude larger than the one predicted by classi-
cal nucleation theory, leading to a larger value of the nucle-
ation rate.

Broughton et al.52,53 performed a simulation study of
crystal growth of a Lennard-Jones fcc crystal in contact with
the melt. They observed that the~100! face crystallized two
to three times faster than the~111! face. In fact, they found
that for the~100! face the energy barrier for crystallization
vanishes and that the rate is not limited by the mobility of

atoms in the liquid, but is determined by the ideal gas ther-
mal velocity, (3kBT/m)

1/2. If we assume that the growth
mechanism of the critical nucleus is that of the~100! face,
and takeA(T) to be

A~T!5Zr liq
4n* 2/3~3kBT/m!1/2

0.4a
, ~26!

wherea is the interatomic spacing,52,53 then we get a pre-
dicted prefactor of 6.45s23t21 for the higher pressure and
6.31s23t21 for the lower pressure. Note that the agreement
with the simulation results is much better, although the mea-
sured prefactors are still higher than the predicted ones. Most
experiments also indicate that the kinetic prefactor is signifi-
cantly larger than predicted by classical nucleation theory.1

However, it is interesting to note that in recent experiments
by Brugmanset al.54 the opposite was found; a kinetic pref-
actor that is many orders of magnitude smaller than the es-
timate of classical nucleation theory.

Finally, we should point out that the nucleation rate at
20% supercooling, although very small on the time scale of a
computer simulation, is still very large from an experimental
point of view. If we use the values of argon fors andt, and
express the nucleation rate atP55.68 in the usual units, we
find k51.44•1024 cm23 s21. This means that liquid argon
at 20% undercooling would crystallize essentially instantly.
Indeed, argon cannot be supercooled by 20%~in fact, it is
notoriously difficult to supercool liquid argon!.
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APPENDIX A: ORDER PARAMETER DEFINITION

First we define the set of neighbors of a particlei as all
particles j that are within a given radiusr q from i . The
vectorsr i j joining neighbors are called bonds. The unit vec-
tor r̂ ij specifies the orientation of the bondr i j . In a given
coordinate frame, the orientation of the unit vectorr̂ ij
uniquely determines the polar and azimuthal anglesu i j and
f i j . In order to construct invariants, we first consider the
spherical harmonicsYlm(u i j ,f i j ) [ Ylm( r̂ ij ). We can now
characterize the local structure around particlei by

q̄ lm~ i ![
1

Nb~ i !
(
j51

Nb~ i !

Ylm~ r̂ i j !, ~A1!
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where the sum runs over allNb( i ) bonds that particlei has
with its neighbors. Theq̄lm( i ) are still local order param-
eters. By calculating the average ofq̄lm( i ) over all N par-
ticles, we obtainglobal orientational order parametersQ̄lm

Q̄lm[
( i51
N Nb~ i !q̄lm~ i !

( i51
N Nb~ i !

. ~A2!

TheQ̄lm still depend on the choice of reference frame. How-
ever, from theQ̄lm , rotationally invariant combinations can
be constructed,

Ql[S 4p

2l11 (
m52 l

l

uQ̄lmu2D 1/2 ~A3!

and

Ŵ l[Wl YS (
m52 l

l

uQ̄lmu2D 3/2, ~A4!

with Wl given by

Wl[ (
m1 ,m2 ,m3

m11m21m350

S l l l

m1 m2 m3
D Q̄lm1

Q̄lm2
Q̄lm3

. ~A5!

Ql andWl are the second-order and third-order invariants,
respectively. The term in parentheses in Eq.~A5! is a
Wigner-3j symbol.

The order parameterQ6 as defined above and used in
Ref. 3 is not suited for constraint MD simulations, because
the presence of a cutoff radiusr q means thatQ6 is not a
continuously differentiable function of all particle coordi-
nates. This problem can be remedied by attributing a weight
a(r i j ) to the contribution of a given pairi j to the Qlm ,
where a(r ) is a function that goes to zero smoothly at
r5r q . In the present simulations, we have chosena(r ) to be
a quadratic function that has its minimum atr q and equals
one atr i j5s,

a~r i j ![S r i j2r q
s2r q

D 2. ~A6!

The corresponding definitions ofq̄lm( i ) is

q̄ lm~ i ![
( j51
Nb~ i !Ylm~ r̂ i j !a~r i j !

( j51
Nb~ i !a~r i j !

, ~A7!

andQ̄lm becomes

Q̄lm[
( i51
N ( j51

Nb~ i !Ylm~ r̂ i j !a~r i j !

( i51
N ( j51

Nb~ i !a~r i j !
. ~A8!

We find that the present definition ofQ6 leads to values that
differ little from those obtained with the definition ofQ6

used in Ref. 3.

APPENDIX B: LINKED LISTS FOR OCTAHEDRAL
BOUNDARY CONDITIONS

We use a truncated octahedral periodic unit cell in our
simulations. At first sight, it would seem that a truncated

octahedron is not a convenient shape to use when setting up
a mesh of cubic cells for the linked list that we use to speed
up the computation. However, it should be noted that the
truncated octahedron is a Wigner–Seitz cell of a bcc lattice.
The unit cell of this cubic lattice has twice the volume of the
truncated octahedron. Clearly, it is easy to partition this cu-
bic unit cell into small cubic mesh cells. However, we should
take care to avoid double counting, i.e., there should be a
one-to-one correspondence between every point in the trun-
cated octahedral box and one of the cubic mesh cells. To this
end, we map all particles in the right half (x.0) of the
truncated octahedron to their periodic image that is in the left
half (x,0) of the cubic unit cell. This mapping is unique.
And, as the volume of the truncated octahedron is equal to
half the volume of the cube, we have thus mapped the posi-
tion of every particle in our simulation box to the left half of
the cube. Once we have mapped all particles to the left half
of the cube, we can divide that volume into 0.5M3M3M
cells and use the conventional techniques to construct the
linked list.30 Figure 12 shows a two-dimensional analog of
this procedure. In the two-dimensional analog, all particles in
areaA are mapped to areaA8 and all particles in areaB to
areaB8.
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