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system at moderate undercooling
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We report a computer-simulation study of the rate of homogeneous crystal nucleation and the
structure of crystal nuclei in a Lennard-Jones system at moderate undercooling. The height of the
nucleation barrier has been determined using umbrella sampling, whereas the barrier crossing rate
is calculated using molecular dynamics simulation. The simulations clearly show that the barrier
crossing is a diffusive process. Nevertheless, the kinetic prefactor in the nucleation rate is found to
be some two orders of magnitude larger than predicted by classical nucleation theory. The height of
the barrier is in good agreement with the theoretical prediction. Although the Lennard-Jones system
has a stable face-centered culfitc) phase below the melting line, the precritical nuclei are found

to be mainly body-centered cubibcc) ordered. As they grow to their critical size, they become
more fcc ordered in the core. However, the critical and postcritical nuclei retain a high degree of bcc
ordering in the interface. Furthermore it is found that in the interface the density falls off faster than
the structural order parameter, which is in agreement with the predictions of density functional
calculations[P. Harrowell and D. W. Oxtoby, J. Chem. Phg6, 1639(1984]. © 1996 American
Institute of Physicg.S0021-960806)02224-§

I. INTRODUCTION namics simulations to crystal nucleation would be to super-
cool the system and then simplyait for nuclei to appear.
The formation of a crystalline solid from the bulk liquid However, this approach cannot be used to study nucleation
phase is generally believed to be an activated process. Théder typical experimental conditioriat ~20% undercool-
height of the free-energy barrier that separates the solid froring with respect to the melting temperattreln computer
the (supercoolepliquid is determined by two factors; on the simulations, we are limited to studying relatively small sys-
one hand the difference in bulk chemical potential betweenems (say, of the order of a million particles or lges3his
liquid and solid and, on the other, the interfacial free energymeans that the volume of the simulation box is less than
of the crystallite. For small clusters, the interfacial free en-10"6 cm®. Experimentally observable nucleation rates of the
ergy will dominate and hence the free energy will initially order of one nucleus per énper s, would correspond to the
increase with cluster size. However, eventually the bulk ternformation of one nucleus per 10s in our simulation box. If
will win and sufficiently large crystallites will grow sponta- we take a typical value of 184 s for the length of the
neously. molecular dynamics time step, then to observe on average
Although crystal nucleation has been the subject of exone nucleation event, ¥dtime steps would be needed in a
tensive experimental and theoretical stddyur understand- simulation of 16 particles. As the nucleation barrier de-
ing of crystal nucleation at the microscopic level is still lim- creases as AT?, whereAT is the degree of supercooling,
ited. One important reason why our knowledge of crystalvery large supercoolingén the order of 40% have to be
nucleation is incomplete is precisely because it is an actiimposed to observe spontaneous crystal nucleation in a con-
vated process. Experimentally, crystallization rates are typiventional simulation.
cally expressed in units of number of events per second per However, in the present work, we are interested in crys-
cubic centimeter. However, the time an incipient crystallitetal nucleation at moderate, i.e., more realistic undercooling.
spends at the top of the nucleation barrier is “microscopic” We therefore separate the problem into two pafis;the
(picoseconds to nanoseconds for atomic, or simple molecularomputation of the free-energy barrier for crystal nucleation
system& Hence, it is extremely unlikely to find the system and (2) the computation of the rate at which this barrier is
exactly at the top of the nucleation barrier. Yet it is exactlycrossed. For the computation of the free-energy barrier that
the structure and dynamics in this region that plays a cruciadeparates the solid phase from the undercooled liquid, we use
role in all theories of crystal nucleation. It is for this reasonthe scheme developed by Van Duijneveldt and FreARéle
that computer simulation is a natural tool to study crystalrate at which this barrier is crossed is computed using the
nucleation. Bennett—Chandler scheme to simulate barrier crossing
The most straightforward application of molecular dy- rates*~’
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As an application, we study crystal nucleation in theB. Summary of results
Lennard-Jones system. There are two reasons to study this Our simulations suggest that the small precritical nuclei

specific system. First of all, there is a considerable body ofaye a hec-like structure rather than the stable fec structure.
numerical data available on the phase behavior of this sygjowever, as the crystallites grow to the critical size, their
tem, while also crystal nucleation under conditions of largecores become increasingly fcc ordered. Nevertheless, a high
supercooling has been studied. The second reason is that thegree of bcc ordering in the interface is retained. This may
nucleation mechanism in this system has been the subject ekplain why in earlier simulations on small systems nucle-
debate for several decades. Below, we briefly sketch thation of a metastable bcc phase was obsefved: while in
background of this debate. similar simulations on larger systems the formation of the fcc
nuclei was observetf~2In the smaller systems the critical
nuclei will be so small that their structure is almost com-
At the end of last century Ostwdldormulated his so- pletely surface dominated, leading to a high degree of bcc
called “step rule,” which states that the phase that is formedbrdering.
from the melt need not be the most stable phase, but rather Our simulations show that, although the density in the
the phase that is closest in free energy to the liquid phase&ore of the critical nuclei is slightly lower than the density in
Stranski and TotomanoWwe-examined this rule and argued the bulk solid, the structural order parameter reaches a bulk
that the nucleated phase is the phase that has the loweslid value in the core. The interface between the crystal
free-energy barrier of formation, rather than the phase that iguclei and the surrounding liquid is diffuse—both the den-
globally stable under the conditions prevailing. More re-Sity and the structural order parameter decay smoothly to a
cently Alexander and McTaglftextended the Landau free quu?dlike value. I\/_Ioreover_, our simulations support the pre-
energy expansion to freezing transitions that are weakly firsgiction from density-functional theotythat the density falls
order and concluded from general symmetry consideration@ff faster than the structural order parameter. o
that, in three dimensions, formation of the body-centered- W& compare our numerical results with the predictions
cubic phasébcd phase is uniquely favored for simple fluids. of classical nucleation theory for the height of the barrier and

A theoretical study by Klein and Leyvrizalso suggests that the rate of barrier crossing. On the whole, the computed bar-

a metastable bcc phase can easily be formed from the undere height is in quite good agreement with classical nucle-

A . . ion theory. The presen learly shows that th
cooled liquid. In experiments on rapidly cooled metal melts ation theory e present study clearly shows that the

hich h table f tered . h bel 'barrier-crossing is a diffusive process. This is in agreement
which have a stable lace-centere -Cuifm) phase below with the low Zeldovich factor given by classical nucleation
the melting line, nucleation of a metastable bcc phase h

4 at‘fﬁeory. The simulations yield a kinetic prefactor that is two

been observetf _ orders of magnitude larger than the one predicted by classi-

However, when the formation of metastable bce nucleicy nycleation theory. To our knowledge, the present simu-
was investigated on a microscopic scale using computgtions provide the first “atomistic” calculation of a crystal-
simulation, the picture that emerged was not fully in agreencleation rate at moderate undercooling.
ment with the Alexander—McTague scenario. Although in  The rest of this paper is organized as follows. In Sec. I
some studies nucleation of the metastable bcc phase wag describe the numerical techniques to calculate the free-
observed;*>~*"most studies found evidence for the forma- energy barriers and the nucleation rates. The method of iden-
tion of the stable fcc phas&-? Of particular interest is a tifying solidlike particles and determining the crystal struc-
simulation study by Swope and Anderé&nf a one million  ture of the nuclei is presented in Sec. IlI. In Sec. IV we give
particle Lennard-Jones system, which has a stable fcc phagige computational details of the simulation and in Sec. V we
below the melting line. This study showed that although botrdiscuss the results. Part of these results were presented in a
bee and fee crystallites are formed in the early stages of th@reliminary report of this stud§!
nucleation process, only the fcc nuclei grow and become
postcritical. What should be stressed, however, is that they
performed their simulation at a very large degree of underll- NUMERICAL TECHNIQUE
cooling (of more than 40% with respect to the melting tem- A. Free-energy barriers

peraturg. At such a large degree of und_ercooling one-should In order to compute the free-energy barrier that separates
expept the free—.energy barner.to vanish for esseqt|a||y allhe liquid from the crystalline phase, we should first define a
possible crystalline phases. It is therefore not obvious thatreaction coordinate” that connects the two phases. It is
crystal nucleation at large undercooling will proceed in themost convenient to choose as the reaction coordinate an, as

same way as close to coexistence. __yet unspecified, order parametdr, that is sensitive to the
In the present work we study homogeneous nucleation ijjegree of crystallinity in the system. The Gibbs free energy
the Lennard-Jones system for two different pressures closgj the system@G, is a function of this order parameter,
to the freezing point, i.e., at 20% supercooling. The aim of
®)=constant-kgT In[P(P)], (1)

our study was to compute not only the nucleation barrier and G(
the nucleation rate, but also to examine the structure of thevhere P(®) is the probability per unit interval to find the
precritical, critical, and postcritical nuclei. order parameter around a given valuelaof Below the freez-

A. Background
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ing point P(®) is strongly peaked around a finite, solidlike N 1 \ )
value of®, whereas above the freezing pot®) will be WLP(q7) 1= 5 ke[ P(q7) — Po]". (4)
peaked around a low, liquidlike value. At coexistence

P(®) is double-peaked and the area under the two peakppeq regyit of introducing such a potential is that in each run
should be the same. This expresses the fact that, at COeXigf-certain window of values of the order parameter will be
ence, the system is equally likely to be in the solid or liquidg,mpieq. Note that the width and “location” of this window
phase. depend onkg and ®,. The window will be wider if the

In the .i_sobaric—isothermal ensemblBlRT-ensemble 15 onic constankg is smaller. By changing the center
the probabilityP(®)dd that the system has a value betweenvauue of the harmonic potentiab, , we can change the crys-

® and®+d@ is given by tallinity in our system.

N _ N . N
P(@):fdvqu exp{— BLU(q) +PV]} o[ @~ D(q n

QNPT
2
B. Nucleation rates
whereB=1/kgT is the reciprocal temperatur€,is the tem- ) S o )
perature kg is the Boltzmann constanly is the number of With umbrella sampling it is in principle possible to

particles,U(q") is the potential energy of the configuration cOmMpute the free-energy barrier that separates the liquid from

with coordinatesy™, V is the volumeP is the applied pres- the solid phase, but it does not provide us with any dynami-
sure, andQupr is the configurational part of the partition €@l information. In order to calculate the nucleation rate, we

function. Qupr is given by exploit the fact that nucleation is an activated process and
that the rate of nucleation can therefore be considered as the
product of two terms, namelyl) the probability to find the

QNPT:f de dq™ exp{— B[U(qY) + P V]}. (3)  system at the top of the free-energy barrier to nucleation and

(2) the rate at which this activated stdee*‘transition state”

in the Eyring picture of chemical reactidfistransforms into

a stable crystalline phase. Denoting the transition state sepa-

rating the liquid from the solid state b$*, we consider

configurations for which® <®* as liquid and configura-

téions for which®>®* as solid. We now apply standard

linear-response theotyto calculate chemical rate constants,

to compute the actual transition rate from the liquid to the

solid state>® This transition ratek(t) is given by

As P(®) is an equilibrium property of the system it can
be obtained both by Monte Carl®C) and molecular dy-
namics(MD) simulations. In order for Eq.l) to be useful,
one should comput®(®) for all values ofd between the
solid and liquid. In particular, one should obtain an accura
measure oP(®d) near the top of the nucleation barrier. But
this is precisely the point wheie(d) will be very small. As
a consequence, E¢l) cannot be used to calcula@®(®P) in
a conventional simulation. To circumvent this problem and
to obtain good statistics oR(®) for intermediate values of
®, the umbrella sampling technique of Torrie and Valf®au
is used. The basic idea of this scheme is to bias the sampling
of configuration space in such a way that configurations withwhere 0 is the Heaviside function. Equatigb) is obtained
a large free energy will be sampled frequently. under the assumption that the actual time scale on which

We can bias the sampling of configuration space by adderystallization takes place is very long compared to the time
ing a fictitious potential to the true potential-energy functionthat it takes a critical nucleus to move away from the top of
of our model system. Clearly, the optimum choice for thethe barrier. It should also be noted that it is somewhat sus-
biasing potential would be-G(®), because in that case all pect to apply th€equilibrium) linear-response formalism to
values of® are sampled with the same probability. But, of a system that has been prepared far from equilibrium
course, we do not knovis(®) as it is precisely the quantity (namely, in the metastable liquid phasklowever, we con-
that we wish to compute. The approach of Van Duijneveldtsider an ensemble of systems, most of which will be in the
and Frenkel and Lynden-Bellet al?” was to construct the crystalline state, while a small fraction will be in the meta-
biasing potential step-by-step. An initial, local, estimate ofstable liquid. The linear-response theory then tells us how
G(®) is obtained from an unbiased simulation of the liquidthe system relaxes after an initial, weak perturbation has
phase(say). This estimate is then extrapolated to higher val-changed the number of systems in the metastable liquid
ues of® and used to construct the biasing potential for thephase. It is in the spirit of the Onsager regression
next run(at higher values of the order paramétend so on.  hypothesi&’ to assume that this relaxation rate is precisely
The disadvantage of this approach is that if simulations ar¢he crystallization rate that we are interested in.
performed on a large system with a steep free-energy barrier, In what follows, we make the assumption that the rate-
it becomes difficult to obtain a good estimate for the free-limiting step in the crystallization rate is the barrier crossing,
energy barrier. In the present paper, we therefore use mather than for instance, the subsequent crystal growth.
slightly different approach in that we chose our biasing po-Therefore, we can identify the crystallization rate with the
tential W(®) to be a harmonic function ob, nucleation rate.

(DS(D—D*) g D (1) —D*])

O ey ®
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It is convenient to rewrite E(5) as used as initial states to compute the time correlation function
. in R(t). However, as explained in Refs. 6,7, the use of a
(8(D—D*)) (DS(D—B*) B[ D(1) — D* ) W g

k(t)= constrained MD introduces a bias in the sampling of states at
(6(P* — D)) (o(D—D*)) the top of the barrier. It is possible to correct for this bias by
— Py(®*)R(1). 6) giving the trajectories starting from the top of the barrier an

appropriate weight in the averaging,
It is seen thak(t) is the product of two contributions. The . . _1
first contribution isPo(®*), which is given by R(t)= (PO[D(1)—D*][H| V2,

) (I N (10
P(®*) ex — BG(®)]
Po(®*)= —= = : The subscript denotes that we are using a constrained ini-
o dPP(®) o d® exg—BG(P)] tial state. In the general case of a system with many con-
(@) straints,|H| is the determinant of a matrid. However, in
Noting that if ® <®d* the system is in the liquid state, it is the present case, there is only one constrainttanméduces
clear thatPy(®*) is the probability of finding the system at to a scalar
the top of the barrier divided by the probability of finding it N
in the liquid state. It is an equilibrium quantity and can be H=> m;
measured both by Monte Carlo and by molecular dynamics i=1

as indicated above. _ o The weighting factors in the ratio in E¢LO) would cancel if
The second contribution t(t) is R(t), which gives the  he reaction coordinatd were a linear function of the car-

average flux over the top of the barrier, provid_ed that theagian coordinates. However, in the present cdsis a non-
system was prepared at the top of the barf{t) is a dy- jinear function of all coordinates and its influence cannot be

namical quantity and can only be measured by moleculajynsred, More computational details will be discussed in
dynamics. The basic idea to separate the simulation into g.¢ 31

calculation of the barrier height and a dynamic simulation of
trajectories starting at the top of the barrier, was formulate
by Bennett and Chandler.As explained in Ref. 5 the initial

ratek(t—0") corresponds to the transition-state theory ap-  Both for the calculation of the nucleation barrier and for

ar,; (1)

&@)2

cb Order parameters

proximation for the rate constant, the computation of the crossing rate, we need to define a
) . : “reaction” coordinate that measures the degree of crystallin-
krer= lim k(t)= (PS(P—-D )G[CI):D. (8 11y of the system as it moves from the liquid to the solid
ST o (6(D* — D)) phase. We have to choose as our reaction coordinate an order

N ) ___ parameter that is only sensitive to the overall degree of crys-
Transition-state theory assumes that all trajectories initiallytg|linity of the system, but fairly insensitive to the differ-

heading from the top of the barrier towards the solid statgnces between the various possible crystal structures. This
will indeed end up in the solid state and all trajectories headrequirement is important because otherwise we would force
ing towards the liquid, will end up in the liquid. This as- {he system to go towards a specific crystal structure. A sec-
sumption is only correct if no trajectories recross the top ofpng requirement is that the order parameter should be insen-
the barrier. In the present case, recrossing tumns out to bgtve to the orientation of the crystal in space. Van Duijn-
quite significant and, as a consequence, we will find thapye|dt and Frenkdhave shown that a particular set of bond-
k(t) decays to a value that is much smaller thagr. Itis  order parameters introduced by Steinharettal? are
conventional to express the reductionkgt) due to recross-  particularly suited to act as the reaction coordinate. These
ings in terms of the transmission coefficientdefined as  order parameters are sensitive to the degree of spatial orien-
k(t) R(1) tational correlation of the vectors that join neighboring par-
K=T—=—=—7+. (9) ticles. In a liquid where there is only local orientational or-
kst R(07) der, these correlations deca idly and
, y rapidly and, as a consequence,
As explained in the previous section, we use umbrellaall bond-order parameters are sm@ero in the thermody-
sampling to calculate the free-energy barrier and henceyamic limit). In a crystal, the orientation of vectors joining
P(®*). To compute the crossing raRt), we make use of neighboring atoms are correlated throughout the solid and
the so-called “blue-moon ensemble” technique of Refs. 6hence the bond-order parameter is lafge(1)].
and 7. In this technique, constrained MD simulations are  In Appendix A we briefly summarize the definition of
used to generate a sequence of uncorrelated configurationstbie bond-order parameters used in our simulations. In Table
the system under the constrafbt=®* (i.e., at the top of the | values for several of these order parameters are given for
barrien. We use conventional constraint-MIRef. 30 to simple cluster geometries. As can be seen from Tab@sl,
keep the system at the top of the barrier. However, it shouldhas the desirable feature that it vanishes in the bulk liquid
be noted that the quantity that we constrain is a global ordephase, while it is largé(1)] for the simple crystal lattices
parameter that depends on the positionalbthe particles in  of interest. We therefore uggg asthe crystalline order pa-
the system. The configurations at the top of the barrier thatameter. The reaction coordinate from isotropic fluid to crys-
are generated in the constrained-MD simulations are thetal then corresponds to a path of increasipig By increas-
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TABLE |. Bond orientational order parameters for a number of simple|-sided faces of the polyhedron. For example, the Voronoi
cluster geometries. fcc, face-centered-cubic structure; hcp, hexagonal C'Osﬁ'olyhedron of a perfect fcc structure, the rhombic dodecahe-
packed structure; bcc, body-centered-cubic structure, and sc, simple cub&ron (that has twelve Iozenge-shaped facesdenoted b)(O
structure. . - ) )

12 0 0 ..), while the Voronoi polyhedron of a particle in a
Q4 Qs W, We body-centered-cubithco) structure, is denoted bp 6 0 8 0

...) (six squares, eight hexagdns

fcc 0.191 0.575 —0.159 -0.013 . heié . :
hcp 0.097 0.485 0.134  —0.012 In practice, the Voronoi signatures of the particles in a
bce 0.036 0.511 0.159 0.013 crystal will be modified by the thermal vibrations. For in-
SC 0.764 0.354 0.159 0.013  stance, the characteristic Voronoi polyhedron of the fcc lat-
'(ﬁgii;‘)edra' 00 00-663 00 —%170 tice, the rhombic dodecahedron, will be removed by tihe

niest thermal motion. Of the 14 vertices of the rhombic
dodecahedron there are six whéoer faces meet. Any ther-
mal motion will make these fourfold vertices break up into

ing Qg from the liquid we do not favor a specific crystalline sets _of threefold yertices connected by short edges. The re-
structure. Rather, the system is allowed to select its “own”Sult is that a variety of polyhedra such €364, (0369,
specific reaction path from the fluid to one of the crystal(0440, (0447 occur in a thermally equilibrated fcc crystal.
structures listed in Table I. The other order parameters liste@Uch tiny displacements of particles do not affect the signa-

in Table | were used to analyze the configurations and disturé of the bcc Voronoi polyhedron, because it has only
tinguish between different crystal structures. threefold vertices. This is why it is often said that the bcc

Voronoi polyhedron is stable against thermal distortions.

However, although this may be true for cold bcc crystals, we

lll. STRUCTURE ANALYSIS find that a bcc crystal close to melting has many other
Although the concept of a crystal nucleus is intuitively Voronoi signatures in addition to the characteri¢06080.

clear, it is not easy to give an unambiguous numerical criteHence, Voronoi signatures can only be used in a statistical

rion that will identify atoms as either solid- or liquidlike. In sense to identify solidlike particles.

fact,_a great variety of criteria to identify soli_dlike clqsters iN A |dentification of crystalline clusters

the liquid have been proposed. Here, we briefly review those

criteria that are based on the structrather than the dy- In the previous section, we described how we compute

namics of crystalline nuclei. In the earliest simulation stud- the degree of crystallinity of the system using global bond-

ies of nucleation in a Lennard-Jones system, Maretedil 1° order parameterS$We have extended this technique to iden-

used the “local” structure function in order to identify crys- tify individual solidlike particles and hence solid clusters.
talline nuclei. The main disadvantage of the method is that it "€ advantage of the scheme is that it is rather insensitive to
does not have high spatial resolution and, more seriouslyih€ crystal structure of the cluster.

can be rather sensitive to the orientation of the crystal nuclei. T identify solidlike particles, we make use of the local
The structure analysis used by Honeycutt and Andéfsen Ofientational order parameteyy(i) as defined in Eq(AL).
based on the observatifrthat there are many nearly collin- From theq;m(i) we can construct local invariants,

ear triplets of neighboring particles in the Lennard-Jones 4 12
solid, whereas there are comparatively few such triplets in  q;(i)= TF1 2 |q|m(i)|2} (12
the liquid. The criterion used by Honeycutt and Andersen for m= -1

deciding whether a given atom was solidlike, was that theand
atom must have at least five distinct pairs of its nearest | 312
neighbors with which it forms a triplet whose angle is greater  , (j)=w,(i) /{ > |am(i)|2} , (13)
than a specified cutoff angle near 180°. However, they ob- =-I
served that the size of the critical nucleus strongly dependg;itn, w,(i) given by
on the cutoff angle used. Yanet al>® adopted a criterion
that is based on the observation that crystalline solids, unlike w(i)= ( ' | ' )
liquids, can be constructed by periodically repeating a unit ! mmy,my  \Mp My mg
cell. In Ref. 35 solidlike regions are identified by searching my+my+mg=0
for such periodically repeating units. — i L

A more widely used technique for studying both crystal- > Gimy (1) Qim, (1) Gim (1) (149
line and amorphous structures is the Voronoi-analysis of th&hese local order parameters are measures for the local order
topology of the environment of a given partiété®1"1921.23  around particlé. However, the local order is large not only
The Voronoi polyhedron associated with a given particle isin the solid, but also in the liquid. Hence, both in the liquid
defined as the set of all points of space that are closer to thaind in the solid théocal order parameterg (i) are nonzero,
particle than to any of the others. In a perfect crystal, thesee Fig. 1. The reason that neverthelesglabal order
Voronoi polyhedron reduces to the Wigner—Seitz cell. It isparameter, such afg, vanishes in the liquid, is that
customary to define the signature of a Voronoi polyhedron asll gg,(i) add up incoherently. In the solid, tlg,(i) add
a set of integersr(3,n4,Nns,...), wheren, is the number of up coherently and, as a consequence, the global order param-
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02 FIG. 2. Distributions of the number of connections per particle in a

Lennard-Jones system for a thermally equilibrated liquid, bcc and fcc struc-

ture at coexistenceR=5.68, T=1.15). The distributions are based on av-

FIG. 1. Probability distribution functions of the local order parameters, aserages over 50 independent atomic configurations.

defined in Eqs(12) and (13), in a Lennard-Jones system for a thermally

equilibrated liquid, bcc and fcc structure at 20% undercooliRg=6.68,

T=0.92). The distribution functions are based on averages over 50 indepen-

dent atomic configurations. histogram for the liquid phase exhibits very little overlap
with the histograms of the two solid phases. We find that,
with a threshold value of seven connections per particle,

eters are nonzero. It is this coherence of local bond-ordeggre than 99% of the particles in a fcc structure are identi-

parameters that we use to identify solidlike particles. fied as being solidlike. Even for the bce structure, which is

To every particlei we attribute a normalized rather open and disordered, this method identifies more than

(2X6+1)-dimensional complex vectayg(i), with compo- 9794 of the particles as solidlike. In contrast, for the liquid

nents less than 1% of the particles were identified as being solid-

like. Thus this analysis method gives an unambiguous, local

Qom(i)=—5 Gem(1) T (15 criterion to identify solidlike particles. Once we have identi-
2 Tem(i)]2 fied the individual solidlike particles, we can perform stan-
m=—6 Gom dard cluster analysis to recognize crystallites. We apply the

criterion that any two solidlike particles that are neighbors

We can now define a dot product of the vectggsof neigh- belong to the same solid cluster.

boring particles andj,

6

i 1) = N Y1 1\ *
Qe(l)'%(J)—mZG Gem(1)dem(1)” (16) B. Crystal-structure determination
By constructiongg(i) - qe(i)=1. As discussed above, the typical Voronoi polyhedra of

We now consider particlésandj to be “connected” if  the different crystal structures will be distorted by thermal
the dot-productyg(i) - gg(j) exceeds a certain threshold, in vibrations of the particles around their lattice positions. As a
our case 0.5. It is clear that in the solid almostglli) are in ~ consequence, a given structure will be characterized by a
phase with one another and add up coherently to produce distribution of signatures, rather than a single one. In fact,
nonzeroQg,. Using this criterion all particles in the solid each crystal structure has its own unique distribution of
will turn out to be connected with one another. However, toVoronoi signatures. Similarly, every structure has its own
identify a particle as “solidlike,” it is not enough that its unique distribution of local bond-order parameters. We can
bond-order is in phase with only one of its neighbors. Afteruseeither distribution as a “fingerprint” that enables us to
all, even in the liquid it will frequently happen that the bond- identify the crystal structure of crystalline nuclei.
order of neighboring particles is in phase and hence the two To see how this method of analysis works, consider, for
particles are considered “connected.” We therefore onlyinstance, the Voronoi histogram of a solid cluster. We rep-
identify a particle as solidlike if the number of connectionsresent this histogram as am-dimensional unit vectow,
with its neighboring particles exceeds a threshold value. Tavhere the number of components)(corresponds to the
illustrate this technique, Fig. 2 shows the histograms of th@wumber of “bins” of the histogram. We then decompose the
number of connections per particle for the liquid, the bcevectorv corresponding to the cluster in a linear combination
structure and the fcc structure of the Lennard-Jones systeraf the corresponding vectors for the equilibrated liquid, bcc
all equilibrated at the fcc-liquid coexistence point. As is to beand fcc structures. That is, we minimize
expected, the average number of connections per particle in
the liquid is less than in either solid. More importantly, the  A%=[Vy— (fiqViq+ fhedlbect FrecViee) 12, (17
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wherevV, Vjq, Vpec @and Vg are the vectors associated with duced units, such that the Lennard-Jones well degththe
the histograms of the cluster, the liquid, the bcc structureunit of energy, while the Lennard-Jones diameters the
and the fcc structure, respectively. Clearly, the coefficientanit of length.
fiq, focc @ndfe are indicative of the type of crystal struc- In the Monte Carlo simulations each trial move consisted
ture of the cluster. The value &2 is an indication of the either of an attempted displacement of a particle or a trial
quality of the fit. For instance, if we were to apply our analy- volume change. The choice between trial volume moves and
sis to an equilibrated fcc crystal, we would firfgh.=1, trial particle moves was made at random, with 92% probabil-
fpee=0, flig=0, andA=0. ity for the latter. The acceptance ratio of the particle moves
Analogously, we can interpret the histogram of the prob-was maintained at 25%, while that of the volume moves was
ability distribution function of the local bond-order param- kept at 50%. For more details of the Monte Carlo scheme,
eters as a multidimensional vector. Figure 1 shows the prolsee Refs. 3,36. In order to keep the pressure and temperature
ability distribution functions of the most interesting constant in our molecular dynamics simulations, we applied
orientational order parameters for the liquid, bcc and fcahe extended system method proposed by "Nesl
structures. The important thing to note is that, although thesnderser’’ The equations of motion were integrated by a
distributions of the local order parameters are quite broad, ipredictor-corrector version of the velocity Verlet algoritfim
particular in the liquid phase, there is still a considerableand the time step used in the molecular dynamics simulations
difference between the distributions that correspond to difwas in the range 0.005-0.91wherer is the unit of time.
ferent phases. For instance, the distribution vef(i) is  This was adequate for energy conserving dynamics.
strongly peaked in either solid phase, but not in the liquid. ~ The cutoff radius for intermolecular interactions was
The distribution ofq,(i) has a characteristic double-peaked chosen such that,=2.5. For the calculation of bond-order
structure in the fcc phase, but not in the bcc or liquid phasesparameters the cutoff distance for nearest-neighbor
We found that the probability distribution @f,(i) of the bcc  “ponds” was chosen at,= 1.5, which corresponds approxi-
phase is almost identical to that of the |IQUId It could still mate|y to the first m|n|mum og(r) in a fcc Crysta| at coex-
be used to distinguish fcc structures from liquid or bcc.ijstence(in the Monte Carlo simulations the cutoff radii scale
However, we found that the information contained inwith the linear dimensions of the simulation box, but this is a
the w,-distribution function did not add to the information small effecy. To minimize the anisotropy in the system due
obtained by using thay, ge, andwg distributions. Itis only  to the periodic boundary conditions, we used a truncated
the latter distributions that we have used in our structureyctahedral simulation bo¥ To speed up the simulation, we
analysis. To be more precise, we first concatenate the distrizsed a Verlet neighbor list to calculate energies and forces
bution functions ofg(i), d4(i), andwe(i) for each structure  and a linked Iist to update the neighbor list. In Appendix B
to form a single, unique distribution function. With the his- we describe how we combined the linked list method with
togram of this distribution function we then associat@er-  truncated octahedral boundary conditions.
malized vector. As with the Voronoi histograms, we can  All simulations were started from a liquid configuration,
then decompose the order-parameter histogram of our solightained by melting a crystal. The first run in a series of
cluster in the components corresponding to pure fcc, bee, angmbrella samplings was performed without any weighting
liquid. function. By changing the biasing potential, the next simula-
When comparing the structure analysis based oORjon was performed in an adjace@¥ interval. In this way
Voronoi histograms with the local bond-order parameterye could slowly increase the crystallinity in the system and
method, we found that the Voronoi method was not verycross the free-energy barrier that separates the liquid phase
robust; a slight disordering of a bcc crystal led to a strongrom the solid phase. Once we had crossed the top of the
change in the Voronoi histograffor instance, the character- parrier, we checked whether the path was reversible by low-
istic (0608 signature is almost completely destroyethd  eringQ4. We observed no significant hysteresis at the top of

the Voronoi Signatures of the disordered bcc and fcc structhe barrier, a|though very |0ng simulations were required to
tures end up looking quite similar. For this reason we havequilibrate the system.

only used the more sensitive bond-order histogram method  As the equilibration time and the order-parameter fluc-
in our structure analysis. tuations are much larger at the top of the barrier than on
either side of it, we tuned the biasing potential in such a way
that, at the top of the barrier, only narrow windowsQy
IV. SIMULATIONS were sampled. A typical simulation in a given window con-
sisted of an equilibration period of 10 000—50 000 cycles
All simulations were performed in the isobaric— (MC)/time steps(MD), followed by a production run of
isothermal (constanllPT) ensemble. Both Monte Carlo 25 000-75 000 cycles/time steps.
simulations and molecular dynamics simulations were per- The individual probability distribution functionB(Qg)
formed. The advantage of MD is that it facilitates equilibra- obtained in different runs were fitted simultaneously to a
tion through collective particle motions. Moreover, MD is polynomial® We used a polynomial fit rather than the self-
essential to study thkineticsof crystal nucleation. The ad- consistent procedure of Ferrenberg and Swentfseecause
vantage of Monte Carlo simulations is that it is particularly a good polynomial fit can be obtained even when the adja-
suited for umbrella sampling. In what follows, we use re-cent histograms do not overlap or overlap only slightly. The
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reason is that even a very narrow histogram yields an estitABLE II. Transition data for the Lennard-Jones system at the reduced
mate of the localderivative of the free energy. From this Pressure®=0.67 andP=5.68. From Hansen and Verl@Ref. 42.

local information, the global free-energy barrier can then bé -
. . . P T Pliquid Pcrystal
reconstructed using a polynomial fit.
Having determined the free energy barrier, we used con- 067 0.75 0.875 0.973
5.68 1.15 0.936 1.024

strained MD to generate a sequence of configurations at
Q3 , the position of the top of the barrier. The duration of
this MD simulation was of 108 (25 000 time stepsand

from this run we kept 50 independent configurations sepagy iy the system is in the metastable liquid phase. Due to
rated by 2r (500 time stepsto be used as initial states for g, haneous fluctuations, some small solidiike clusters are

the computation of t_he .barrier crossing ﬂB((t,)' as given by present in the liquid. We find that the solidlike clusters rarely
Eq. (10). At the beglnnlng of the .unconstraln_ed MD runs to comprise more than 16 particles. Wh@g is increased from
computeR(t), all particles were given a velocity drawn from o jiquid, both the number and size of these solidlike clus-

a Maxwell-Boltzmann distribution. The duration of these s i the liquid increase. The reason why there are, initially,

runs was 5, which appeared long enough for the system t0gayera| small solidlike clusters is that is is entropically favor-

reach a stationary state. In order to improve the statistics, Wy e for the system to distribute a given amount of crystal-
a_tsagned different initial velocities tq the same conﬂgura-“nity over several clusters. For a given overall degree of
tions, and we also made use of the time reversal property, o stajlinity, there is a competition between translational en-
(Qe6[Qs(—1)—QF1IH| "2 tropy, favoring the formation of many small clusters, and

R(t)= — CIRL) =—R(-1). surface free energy, which favors the formation of a single
(18) large crystallite. When the top of the barrier is approached,
the surface free energy dominates and the small solidlike

. . ay

This means that the flux was computed by averaging over thgysters merge. Indeed, at the top of the barrier only one
trajectories obtained propagating forwards and backwardg)yster, the critical nucleus, is observed, apart from a number
our set of initial configurations obtained from a constrainedss small solidlike fluctuations that are always present in the
run at the top of the barrier. The results that we present herf?quid. This implies that the Gibbs free energy of the system

for the rate were averaged over 200 trajectories. at the top of the barrier corresponds to the Gibbs free energy
of the critical nucleus, the nucleation barrier.
V. RESULTS AND DISCUSSION In the following we first discuss the structure of the nu-

) ) N clei as a function of our “reaction coordinate.” Next, we
We studied the formation of a critical nucleus and theconsider the structure of the critical nucleus in more detail by
rate Of nUCleation for a Lennal‘d-JoneS SyStem at 20% Undeé'xamining the radia| prof"es for the density and our struc-
cooling with respect to the melting temperature. Althoughtyral order parameters. We will only present the results of the
this degree of supercooling is appreciably less than what igtrycture analysis for the systemR#=5.68, as the ones for
used in “brute force” simulations of crystal nucleation, itis p=0.67 are qualitatively similar. Finally, we discuss the

still large compared to the degree of supercooling that can bgansition rate and make a comparison with classical nucle-
reached experimentally for simple liquids such as argon. Inytion theory.

our choice of this particular degree of supercooling we tried
to strike a compromise between making the supercooling as
small as possible and, at the same time, keeping the critical
nucleus much smaller than the system size. As we studied a
system of7(10%) particles, we tried to ensure that the super-
cooling was strong enough to make the critical nucleus at
least one order of magnitude smaller. A rough estimate,
based on classical nucleation theory, suggests that the size of
the critical nucleus is about 100 particles for 20% undercool-
ing. However, several studies indicate that, although the core
of the nucleus might be quite small, the interface between the
liquid and the solid is rather diffus&;**%%*so in practice
the number of solidlike particles may be appreciably larger.
After testing the method on a small system, we performed all
production runs on a system of 10 648 patrticles.

We performed the simulations at two different reduced 08005 o015 o002 0035 0045
pressures,P=0.67 and P=5.68. We used the data of 2
Ha.nsen and Verl& tq estimate the location of the melti_ng FIG. 3. The Gibbs free energy of a Lennard-Jones system as a function of
points(see Table |i. Figure 3 shows the freg-energy bamers crystallinity (Qg) at 20% undercooling for two different pressures, i.e.,
computed for these two pressures. Let us first describe qualp=s g (T=0.92) andP=0.67 (T=0.6). The Gibbs free-energy barriers
tatively what happens as the system crosses the barrier. Inire approximately 25k5T at P=5.68 and 19.KgT at P=0.67.

30.0

0.0 -
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FIG. 4. Structural composition of the largest cluster in a Lennard-Jones

system, indicated by, fpe, frec, and A2, as a function ofQgq (the

reaction coordinajeat 20% undercoolingR =5.68, T=0.92). This figure is

based on averages over 50 independent atomic configurations. FIG. 5. Snapshot of the critical nucleus at 20% undercooliRg 5.68,
T=0.92) in a Lennard-Jones system.

A. Crystallite structure ) )
ters are predominantly fcc-like, the present results are also

~As mentioned in the previous section, only small crys-qqhaiiie with the findings of Swope and Ander&mho
tallites are observed on the liquid side of the barrier. The Sizgysarveqd that nucleation proceeded through fec crystallites.
of the largest crystallites ranges from 16 particles in the, 5ct the nucleation process as observed in the present

approached. Previous theoretitiexperimentaf* and com-
puter simulation studié$“®indicate that for small clusters
of Lennard-Jones atonis vacuothe icosahedral structure is
more stable than any of the crystalline structures. Besides,
has been suggest®dthat long-ranged icosahedral order
would be favored in strongly supercooled liquids. When we
applied a conventional Voronoi analysis to our system in the .
liquid state, we could identify on average 1% of the atoms a&- Critical nucleus
being icosahedrally surrounded. However, the larger crystal-  Visual inspection of the critical and postcritical nuclei
lites that were present in the liquid never contained any atorgshowed that the nuclei at this moderate degree of undercool-
with the characteristi¢0 0 12 Q signature of an icosahedron. ing are fairly compact, more or less spherical objestse
Also an examination of the local bond order parameterFig. 5. This finding appears to be in contrast to what is
/W\e, which is most sensitive to icosahedral or@ege Table found in simulations of crystal nuclei at large
), supported the conclusion that the largest crystallites dsupercooling™*® where ramified structures were observed.
not contain icosahedrally ordered atoms. In fact, the bondAlthough we find the critical nucleus to be fairly spherical,
order analysis indicates that the larger solidlike clusters imudimentary facets can be distinguished. Facetting of crystal
the metastable liquid have appreciable bcc charactenuclei was also observed by &and Clancy! who studied
whereas at the top of the barrier and beyond, they are prehe growth and dissolution of critical fcc nuclei implanted in
dominantly fcc-like. To make this analysis more quantitative,a liquid at 26% undercooling. Ba and Clancy found that
we determined;, fyccandfy as defined in Eq17) for the  during the earliest stages of growth the nuclei are distinctly
largest cluster in the system. octahedral, with facets corresponding to thé1) planes of
Figure 4 shows the structural “composition” of the larg- the fcc crystal.
est cluster in the system, as a function of the “reaction co- In order to quantify the degree of nonsphericity of the
ordinate,” Qg. The figure shows that the precritical nuclei critical nucleus, we expand the mass distribution of the crys-
are predominantly bcc- and liquidlike. However, near the toptallite in rank four spherical harmonicsYy,) and con-
of the barrier, aiQg=0.025, there is a clear change in the structed quadratic invariants, denoted3yycl). For a spheri-
nature of the solid nuclei from bcc- and liquidlike to mainly cal clusterS,(cl) is, of course, zero. But for an octahedral
fcc-like. The fact that the precritical nuclei are rather liquid- cluster it has a value of 0.11. We find that, both for the
like is not surprising as they are quite small and almost alkritical and postcritical nucle$,(cl) is much smaller than is
interface. The important point to note is that these nuclecompatible with an octahedral shape. Hence the critical and
have clearly more bcc than fcc character. This suggests thgtpstcritical nuclei in our simulations are indeed quite spheri-
at least for small crystallites, we find the behavior predicteccal, which supports the assumption of classical nucleation
by Landau theory® Yet, as the critical and postcritical clus- theory. However, this finding seems hard to reconcile with

Ostwald step rulé.First, a metastable, bcc, phase is nucle-
ated, which is then transformed into a more stable, fcc,
phase. What is remarkable is that we find that the transfor-
thation from bee to fec takes place before the critical nucleus
is reached.
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FIG. 6. Structure of the critical nucleus, indicated By, fyec, fiec, and FIG. 7. The density and the number of connections per part&P) as a
A?, as a function of, the distance to its center-of-mass, at 20% undercool-function ofr, the distance to the center-of-mass, for the critical nucleus in a
ing (P=5.68,T=0.92) in a Lennard-Jones system. This figure is based on_ennard-Jones system at 20% undercoolirg=6.68, T=0.92). The
averages over 50 independent atomic configurations. coordinate-axes are such that they range from a liquid to a bulk solid value,

both for the density and the structural order param&gg; is the radius of

the critical nucleus as given by classical nucleation theory. Based on aver-
the strong faceting of crystal nuclei that was observed by?9®s °ver 50 independent atomic configurations.
Baez and Clancy! It should be recalled that Broughton and
Gilmer, who have computed the interfacial free energy of a
Lennard-Jones system for three different orientations of théarrier; they are so small that their structure is strongly
fcc crystal-liquid interfacé® found the surface free energies surface-dominated.
for the (111), (100), and(110 faces to be equal to within the As can be seen from Fig. 6 the interface between the
statistical error. If the interfacial free energy is indeed com-nucleus and the surrounding liquid is quite diffu®me
pletely isotropic, one should expect to see a spherical crystdbur atomic layers Such a diffuse interface is predicted by
nucleus. Slight anisotropies in the interfacial free energyrecent theories of homogeneous nucleaffbt.In contrast,
might lead to fairly spherical crystal shapes, such as the trunzlassical nucleation theory assumes a sharp interface. A more
cated octahedron. It should be stressed, however, that intespecific prediction about the solid—liquid interface of crystal
facial free energies only determine the equilibrium crystalnuclei is made in the density functional theory of Harrowell
shape and not the nonequilibrium shape that develops durirand Oxtoby*° This theory predicts that the density profile of
growth. It is conceivable that the strongly octahedral crystathe clusters reaches liquidlike valuell beforethe order-
shape found in Ref. 47 is determined by kinetics. parameter profile does. In other words, this theory predicts

In the previous section we found that the critical nucleusthat there exists a “shell” with liquidlike density but solid-
has mainly fcc character. Yet it still has considerably liquid-like order around the nucleus. To test this prediction we plot-
like and bcc-like character. In fact, it is not surprising thatted both the density and the “degree of crystallinity” as
the critical nucleus has some liquidlike character. After all, itmeasured by the number of bond-order connections per par-
consists only of some 642 particles and has therefore a largele (NCP) (see Sec. Il A. The number of such connections
surface-to-volume ratio. However, the bcc-like character iger particle is a measure for the local bond orientational or-
more intriguing. We have therefore studied the local order ofler and can be used as a structural order parameter. Figure 7
the critical nucleus in more detail. shows the density and the number of connections per particle
Given the spherical shape of the critical nucleus it isas a function of. We see that the density in the core of the

meaningful to calculaté;,, f,cc, andfs in a spherical shell nucleus is somewhat lower than the density of the bulk fcc
of radiusr around the center-of-mass of the cluster. Figure 6olid under similar conditions. In contrast, the structural or-
shows the radial profile of the local order of the critical der parameter reaches the same value in the core of the
nucleus. As expected, we find that the core of the nucleus isucleus as in the bulk solid. This finding is in agreement
almost fully fcc-ordered and that far away from the center ofwith the density functional calculations of Ref. 40.
the nucleusf;. decays to zero andl, approaches unity. The figure also shows that both the density and the struc-
More surprisingly however, is thdt,.. increases in the inter- tural order parameter decay smoothly to a liquidlike value
face and becomes even larger thgn , before it decays to outside the nucleus. Moreover, as predicted theoretially,
zero in the liquid. Hence, the present simulations suggest thalhe density falls off faster than the structural order parameter.
the fcc-like core of the equilibrated nucleus is “wetted” by a The latter profile appears to be displaced by some Qvith
shell which has more bcc character. This finding explaingespect to the density profile. Hence the cluster is indeed
why Fig. 4 shows that even fairly large nuclei do not have asurrounded by a thin layer that is liquidlike in density, but
pure fcc signature; there is always a residual bcc signatursolidlike in structure. In fact, in the density-functional theory
due to the interface. It also explains the strong bcc charactaf Oxtoby*® the density change varies quadratically with the
of the small clusters, such as appear on the liquid side of thetructural order parameter. Figure 8 shows the relation be-
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FIG. 8. Square of the scaled structural order parameter as a function of the

scaled density for the critical nucleus in a Lennard-Jones system at 2001/9IG 9. The density and the number of connections per pafiN@P) as a
upder<:t)00||ng P_:5'68’T:O'92)‘/ The scaled structu:jal i:)rder pl)a(;a(;nete_r 'S function ofr, the distance to the center-of-mass, for the critical nucleus and
given by NCR= (NCP—NCR; /NCP;,—NCPyg) , and the scaled density go\era) posteritical nuclei in a Lennard-Jones system, at 20% undercooling

is given by density= (density-density, /density,—density.) , where P=5.68, T=0.92). Based on averages over 50 independent atomic con-
NCP is the number of connections per particle, and lig and sol denote thqg‘gurations.

the quantities are computed in the bulk liquid and bulk solid, respectively.

The solid line is the result from the simulations, and the dashed straight line

is the prediction of the density functional theory of OxtdiRef. 49. Based

on averages over 50 independent atomic configurations. fi.c decreases monotonically in the interface wihijlg. peaks

there. The bcc-like structure of the fcc-liquid interface ap-

~_pears to be quite general and should be observable experi-
tween the square of the structural order parameter variatiopentally.

and the change in density, as obtained in the simulation. We
should point out that our definition of the solid order param-
eter is not equivalent to the one used by Oxt8bggitill, the
figure suggests that, at least far from the cé®e, where the Up to this point, we have only discussed the static as-
crystallinity and density is loyvthe quadratic relation be- pects of crystal nucleation. Let us now consider the actual
tween order parameter and density seems to be satisfied. barrier crossing process. Most of the previous computer-

Both the diffuseness of the solid—liquid interface and thesimulation studies of nucleation rates were performed by
difference in the density and order-parameter profiles, mak&apidly quenching a liquid to temperatures well below its
the definition of thesize of the critical nucleus ambiguous. freezing point, and then measuring the time-lag until the first
For instance, if we choose to locate the surface of the critica$igns of crystallization appea:*~2*344¢4This method, al-
nucleus at the point where the order parameter is halfwajhough straightforward, has some disadvantages. First and
between its bulk-solid and liquid values, then the radius offoremost, as the nucleation rate depends exponentially on the
the nucleus would be 409and the number of particles in the degree of undercooling, the brute-force method only works
critical nucleus would be 630. But if we use the halfway
point of the density to define the crystallite surface, then we
find a radius of 4.2, corresponding to 412 patrticles in the
critical nucleus. A direct comparison of the size of the criti-
cal nucleus with the prediction of classical nucleation theory
is therefore not very meaningful.

As the nucleus grows beyond its critical size, it retains
its spherical shape and the core retains the sdoegcrystal
structure. More interestingly, the structure of the interface
does not change either. The postcritical nuclei retain a high
degree of bce ordering at the interface and the density decays
faster than the structural order parameter. In fact, as can be
seen in Fig. 9, the width of the interface remains essentially
constant. We have also studied the solid—liquid interface in 00,03 50 o 00
the limit of an “infinitely large” crystal-nucleus, i.e., a pla- z
nar interface. To this end, we brought the (100)-face of a
slab of a thermally equilibrated fcc crystal in contact with aFIG. 10. The structural composition, indicatedfy, fycc, frec, andA?, of

P o . . - ~ the Lennard-Jones system with the planar fcc-liquid interface, equilibrated
liquid and equilibrated the interface in a constaht-T mo at coexistenceg=0.978, T=1.15). Thez-coordinate, in units ofr, is the

lecular dynamics simulation P(: 0-9783 T=1.15 N= _coordinate perpendicular to the planar interface. Based on averages over 50
10532. Figure 10 shows that, just as with the small nuclei,independent atomic configurations.

C. Nucleation rate
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under conditions of extreme supercooling. Moreover, the 10
method lumps two times together. The first is thduction

time i.e., the time it takes the cluster-size distribution to
respond to the temperature quench. In the stable liquid, only
small clusters appear, whereas in the supercooled liquid there

0.8

is an enhancegalthough still very smallprobability to ob- 06
serve larger clusters. The second is the actual time it takes to v
cross the nucleation barrier, given(@uas) Boltzmann dis- 04l

tribution of precritical nuclei. Finally, even in a strongly su-

percooled system, nucleation remains a rare event, and hence 0 M}M\ AVW\{\vA f\vf“ﬁ A
Yy MU

the statistics on the nucleation rate is usually poor.
We therefore did not use the “brute-force” approach to
compute the nucleation rate. Rather, we employed the fact 0.0

; . . ” 0.0 10 20 30 20 5.0
that nucleation is an activated process and that the rate is t

given by Eq.(6). The advantage of this approach is that weFIG 1T o hicient function of & £ 20% und i
. o . . 11. Transmission coefficient as a function of time a % undercooling
do not have to wait for the critical nucledsr the activated (P=0.67,T=0.6). The dotted line shows the plateau value that is estab-

statg to form spontaneously; we prepare the system at thggned after 0.5. This figure is based on averaging over 200 trajectories.
top of the free energy barrier and simply measure the time
correlation between the initial order-parameter velocity and
the probability of finding the system in the solid side of the o o
barrier at a later timé. This correlation function is expected 'S cl_osg,-r to the Kramers limit of diffusive escape over a
to reach a plateau value relatively quickbt least, compared barrlgr‘j’ than to the “ballistic” crossing of Eyring's
to the actual times involved in the nucleation progemsd  transition-state theorsf. o .
hence the nucleation rate can be determined from compara- [ndeed, due to the diffusive nature of the barrier cross-
tively short runs. By performing many runs, we can improveln9; the plateau value of the transmission coefficient is quite
the statistical accuracy of the measurement of the nucleatiopmall, x~0.05 for P=5.68 and«x~0.2 for P=0.67. The
rate. Even so, the simulations become quite time-consumingrediction of transition-state theoy ST) for the rate can be
The first step in the computation of the flux is to identify obtained _by comblm_ng the initial value of _the fo_rward flux,
the “transition state” from our knowledge of the shape of R(0%), with the earlier result; for the barrier height. It was
the free energy barrier. We denote this point@j. we ~ found — from 7”3‘971 simulations  that  for P=>68,
then performed a MD simulation of the system under theR(07)=5.8510""7"% and hencekrsr=7.3510""7"".
constraintQg=Q} , to generate a set of independent Con_F'rom ktst and the plateau value of the transmls_smr) coeffi-
figurations at the top of the barrier. Note that constrainingC'€nt we can the_’lg%tlthe full nucleation rate, which is found
Qe does not necessarily imply that the size of the criticall© P€k=4.0410 T |1n the low Pressure case the values
nucleus is constrained. However, a structure analysis of th&W€r€krsr=2.4010"""7"~ andk=4.79 107"~ _
configurations at the top of the barrier showed that the aver- 1he rates obtained in our simulation are measured in
age size of the largest cluster did not change significantiMits 0f Qe per unit time, as the quantity computed was the
during the constrained run. The set of configurations obflux of Qg. Nucleation rates are usually measured in number

tained in this way was used as initial state for the computa®f Solid particles produced in the unit volume per unit time.
tion of R(t) from Eq. (10). To get such a quantity for the results of the simulation we

Figure 11 shows the transmission coefficiantas de- Would have to multiplyk by pqdNse/dQg, wherepig is the
fined in Eq.(9) for P=0.67. The figure shows that initially density of the liquid ands, is the number of solid particles.
the transmission coefficient decreases rapidly from the valu¥V/e assume that there is a linear relationship betviggand
k=1 att=0. This is due to recrossing at short times. How-the number of solid partlcleé_thls is certainly true for large
ever, after a short transient relaxation period of approxiCrystallites. We then can write
mately 0.5, «(t) appears to reach a plateau valsbown as dNg N&,— N!‘J,.
a dashed line in the graphAs it is clear from the figure, the [ = of Qi
statistical accuracy ok(t) is rather poor, even though aver- 6 6 6
ages over 200 trajectories were taken. A direct analysis ofvhere the superscript lig denotes that the corresponding
the trajectories of the system iQg-space showed that its quantity is evaluated in the liquid minimum. Taking into
behavior is distinctly diffusive. The system does not clearlyaccount the results of the previous sections we finally obtain
fall into either minima(solid or liquid ong in the duration of  krgr=2.2310 %3771,  k=1.2310% 371  for
the run, but remains close to the top of the barrier in mosP=5.68 and forP=0.67 we getk;g7=4.09 10 ‘o 3771,
cases. The largest cluster present in the system, the critick=8.19 10 803771,
cluster, did not grow or shrink monotonically, but its size The value of the raté& implies that in order to observe
fluctuated, although in most cases a clear tendency to theucleation in a system of 10 648 particles at 20% undercool-
liquid or to the solid minimum could be observed. Hence, toing atP=5.68, a simulation time of the order of %Owould
speak in the language of chemical kinetics, crystal nucleatiobe requiredthis estimate is obtained by taking the inverse of
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k and dividing the result by the volume of the sys)effak— TABLE_III. Data used to calculate the nucleation rate as given by classical
ing into account that a time step in a MD simulation is typi- nucleation theoryi the average of the surface free energlesalpulated by

2 . Broughton and Gilme(Ref. 48, the enthalpy change per particle on freez-
Ca”y_Of the order of 10°7, runs of a duration OT a_t leaSt_ ing, Ah, at coexistencéRef. 42, the estimated difference in chemical po-
10 time steps would have to be performed. This is not inential A . between the bulk fec solid and bulk liquid at 20% undercooling,
disagreement with previous studies that were not able to sesd the volume per particle in the bulk fcc solid at 20% undercooling,
crystallization in liquids with a degree of undercooling vt both forP=0.67 andP=5.68.

smaller than about 26% during runs of a duration of

~1000r.%" P y  Ah(T=T,) Au(T=0.8Ty) v (T=0.8T,)
0.67 0.35 —-1.31 —0.262 0.998
5.68 0.35 —1.46 —0.292 0.948

D. Comparison with classical nucleation theory

Turnbull and Fishet applied the Becker—L¥ing for-
malism to nucleation in condensed systems and derived the
following expression for the nucleation rate’ cal potential between the bulk fcc solid and bulk liquid at
_ CAG*/KaT 20% undercooling and the volume per particle in the bulk fcc
k=A(T)e g (19) solid at 20% undercooling.
where AG* is the nucleation barrier and(T) is a kinetic Using the data shown in Table I, classical nucleation
prefactor. We are now in a position to test the predictions otheory yields the following predictions for the nucleation
classical nucleation theory, both concerning the height of théarriers: G/kgT=17.4 at P=0.67 and G/kgT=8.2 at
free-energy barrier to nucleation and the value of the kinetid®=5.68. We find from our simulations th&/kgT~19.4
prefactor. As argued in the previous section, predictions confor the lower pressure ar@/kgT~25.1 for the higher pres-
cerning the size of the critical nucleus are harder to test, asure(see Fig. 3. As Broughton and Gilmer have calculated
the size of the critical nucleus, as computed in the simulathe surface free energy at a temperature and pressure which

tions, is ill defined. are closer to the temperature and pressure of the simulation
In classical nucleation theory the height of the free-atP=0.67, we expect the agreement between the theoretical
energy barrier is given By prediction and the results of the simulation to be better for
3 2 this lower pressure than for the higher pressire,5.68. In
167y v
AG =", (200 fact, for the lower pressure the agreement between the pre-
3(Aw) dicted height of the barrier and the height of the barrier as

where v is the surface free energy per unit area of thecomputed in our simulation is surprisingly good if one takes
liquid—crystal interfacep is the volume per particle in the into account the crude approximations made in classical
solid, andA  is the difference in chemical potential between Nucleation theory. The discrepancy for the higher pressure
the bulk solid and bulk liquid. between the prediction of classical nucleation theory and the
Two problems arise when applying EQQ). The first is results of the simulation is most likely mainly due to the fact
that we do not know the solid—liquid interfacial free energythat the surface free energy at this higher pressure and tem-
for Lennard-Jones crystals in contact with a supercooled ligPerature is somewhat larger than the Broughton and Gilmer
uid. However, as already mentioned above, Broughton an@stimate. As the surface free energy comes in with the third
Gilmer*® have calculated the surface free energy for threPower in the theoretical expression for the height of the bar-
different orientations of the fcc crystal—liquid interface. rier, a difference of only 40% in the surface free energy
They performed their calculations at coexistence, near thgould account for the discrepancy between theory and simu-
triple point (i.e., low pressurg and found the surface free lation. If we make the assumption that the surface free en-
energies to be equal within their error bars. In our compari€rgy is proportional to the latent héatvhich increases with
son we will use the average of their estimates for the surfacBressurg then we arrive at an estimate for the barrier height
free energies of the different faces. at the higher pressure that is within 20% of the simulation
The second problem is that we do not know the differ-results.
ence in chemical potential between the bulk solid and bulk [N classical nucleation theory the radius of the critical
liquid at 20% undercooling. However, close to coexistencelucleus is given by

the difference in chemical potential can be approximatéed by 2yv
*

Ap~AR(Ty=T)/Tp, (21) R = Taal

whereAh is the enthalpy change per particle on freezing atUsing the data from Table l1ll, classical nucleation theory
coexistence and,, is the melting temperature. We have gives the following predictions for the radius of a critical fcc
taken the enthalpy change per particle in the liquid—solichucleus: 2.¢ for P=0.67 and 2.3 for P=5.68. We have
transition at coexistence from the data of Hansen andhdicated this radius for the critical nucleus at the higher
Verlet* In Table Il we have collected for both pressures pressure in Fig. 7. Although the exact boundary between the
the average value of the surface free energies estimated lopre and the interface of the nucleus is not clear, it seems
Broughton and Gilmef® the enthalpy change per particle on that classical nucleation theory significantly underestimates
freezing at coexistend®,the estimated difference in chemi- the size of the critical nucleus.

(22
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Let us next consider the kinetic prefactor. The following atoms in the liquid, but is determined by the ideal gas ther-

expression foA(T) has been proposéd mal velocity, (XgT/m)Y2 If we assume that the growth
aDp* 203 mechanism of the critical nucleus is that of 00 face,
A(T)=Zp|iq—)\2—. (23) and takeA(T) to be
4n*23(3kgT/m) Y2
D is the diffusion coefficientpy, is the density of the liquid, A(T)=2Zpijq 0.4a ; (26)

n* is the size of the critical nucleus, andis the atomic _ . _ .
jump distance in the liquidZ is the Zeldovich factor, which Wherea is the interatomic spacirg;> then we get a pre-

: . i -3_-1 i
relates the number of solid clusters in the steady state witdicted prefactor of 6.45™ 7~ for the higher pressure and
the equilibrium value, 6.310 37! for the lower pressure. Note that the agreement

" with the simulation results is much better, although the mea-
_ |[AG"(n*)| sured prefactors are still higher than the predicted ones. Most
 2mkeT ' experiments also indicate that the kinetic prefactor is signifi-

here AG"(n*) is th .  th . ; cantly larger than predicted by classical nucleation théory.
where AG"(n*) is the second derivative of the Gibbs free yyqaver, it is interesting to note that in recent experiments

energy with resp_ect to the c_Iuster sizerdt. Using the ex- by Brugmanset al5* the opposite was found: a kinetic pref-
pression of classical nucleation theory i we get actor that is many orders of magnitude smaller than the es-
|Ap| |12 timate of classical nucleation theory.
ZZ(w) (29 Finally, we should point out that the nucleation rate at
7kgTn . .
20% supercooling, although very small on the time scale of a

When making the comparison between the classical nuclesomputer simulation, is still very large from an experimental
ation theory prediction foA(T) and the value obtained from point of view. If we use the values of argon ferand r, and
the simulations, we use the valuerof obtained in the simu- express the nucleation rate Rt 5.68 in the usual units, we
lation. For P=5.68 we obtained in the simulation find k=1.4410°* cm 3 s 1. This means that liquid argon
n* ~642, so Eq(25) leads to a value of the Zeldovich factor at 20% undercooling would crystallize essentially instantly.
of Z=5.12102%, while for P=0.67, n*~500 and Indeed, argon cannot be supercooled by 2@%4fact, it is
Z=6.81:-10 3. Similar values are obtained if we use Eq. notoriously difficult to supercool liquid argen
(24) directly, although in this case the statistical accuracy is
poor. The appearance of_the Zeldovich factor in the eXPres; ~ N OWLEDGMENTS
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value of the kinetic prefactor in the simulation can easily b
obtained by dividing the value of the rat& by
exp(— AG*/kgT). The resulting value ifn=9.78 371 for First we define the set of neighbors of a particles all
P=5.68 andA=21.83 371 for P=0.67. This means that particlesj that are within a given radius, from i. The
the kinetic prefactor obtained in the simulation is about twovectorsr;; joining neighbors are called bonds. The unit vec-
orders of magnitude larger than the one predicted by classtor Fij specifies the orientation of the bomg . In a given
cal nucleation theory, leading to a larger value of the nuclecoordinate frame, the orientation of the unit vectoy
ation rate. uniquely determines the polar and azimuthal anglgsand

Broughton et al>*** performed a simulation study of ¢;. In order to construct invariants, we first consider the
crystal growth of a Lennard-Jones fcc crystal in contact withspherical harmonic¥|(6;j,#ij) = Yim(F;j). We can now
the melt. They observed that ti£00) face crystallized two characterize the local structure around partichey

(24)

CAPPENDIX A: ORDER PARAMETER DEFINITION

to three times faster than tt{&@11) face. In fact, they found Ny (i)

that for the(100 face the energy barrier for crystallization T = S v(F Al
. . o - qlm(l)_ 0 Im(ru)a ( )

vanishes and that the rate is not limited by the mobility of Np(i) =1
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where the sum runs over ally(i) bonds that particlé has
with its neighbors. Theg,(i) are still local order param-
eters. By calculating the average f,(i) over allN par-
ticles, we obtairglobal orientational order paramete®,,

— _ ZL4Np()qm(i)
™ 2N

(A2)

The Q) still depend on the choice of reference frame. How-

ever, from theQ,,,, rotationally invariant combinations can FIG. 12. The two-dimensional analog of the translation of all particles in the

be constructed right half of the truncated octahedron, our simulation box, to the space
! between the left half of the truncated octahedron and the containing cube

| (containing the truncated octahedypm order to set up the cell list. The

1/2
Q= 4w 2 |Q_ |2 (A3) rotated square in the middle corresponds to the truncated octahedron and the
! 20+ 1= Im containing square corresponds to the containing cube. In this analog the
translation of the particles corresponds to a translation of all particles in area
and A to the areaA’ and all particles in areB to the areaB’.
| 3/2
W=w > Quml? (A4) i | i
! I et im ' octahedron is not a convenient shape to use when setting up
_ _ a mesh of cubic cells for the linked list that we use to speed
with W, given by up the computation. However, it should be noted that the
| ___ truncated octahedron is a Wigner—Seitz cell of a bcc lattice.
W, = Qim. Qim.Qim.- (A5)  The unit cell of this cubic lattice has twice the volume of the
my ,my,ms m; my, Mg 1 2 3

truncated octahedron. Clearly, it is easy to partition this cu-
bic unit cell into small cubic mesh cells. However, we should
Q; and W, are the second-order and third-order invariantsiake care to avoid double counting, i.e., there should be a
respectively. The term in parentheses in HA5) is a one-to-one correspondence between every point in the trun-
Wigner-3 symbol. cated octahedral box and one of the cubic mesh cells. To this
The order parameteQg as defined above and used in end, we map all particles in the right halk¥0) of the
Ref. 3 is not suited for constraint MD simulations, becaus&runcated octahedron to their periodic image that is in the left
the presence of a cutoff radiug means thaQg is not a  half (x<0) of the cubic unit cell. This mapping is unique.
continuously differentiable function of all particle coordi- And, as the volume of the truncated octahedron is equal to
nates. This problem can be remedied by attributing a weightalf the volume of the cube, we have thus mapped the posi-
a(r;;) to the contribution of a given pailj to the Q,,  tion of every particle in our simulation box to the left half of
where a(r) is a function that goes to zero smoothly at the cube. Once we have mapped all particles to the left half
r=rq. In the present simulations, we have choa€n) to be  of the cube, we can divide that volume into BLX M XM
a quadratic function that has its minimumratand equals cells and use the conventional techniques to construct the

my+my+mz=0

one atrj;=o, linked list° Figure 12 shows a two-dimensional analog of
ro—r.\2 this procedure. In the two-dimensional analog, all particles in
a(rij)z( . q) (A6)  areaA are mapped to ared’ and all particles in areB to
7 Tq areaB’.
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