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Thermodynamic quantities such as specific heat and magnetic susceptibility are calculated 
numerically for the one-dimensional spin-1/2 Heisenberg-Ising model at .d =0, ±0.5, ±1/ v2. 
We use a set of nonlinear integral equations which is derived from the Bethe ansatz and 
from some assumptions on the distribution of quasi-momenta. In the same way we 
calculate the specific heat of the one-dimensional X-Y-Z model in zero field, putting various 
values into the coupling constants (Jz, J., J,). 

§ 1. Introduction and methods of numerical calculation 

In a previous paper1l we gave integral equations for the free energy of one- I 
dimensional spin-t Heisenberg-Ising model at /.::1/ <1 in the magnetic field which 
is parallel to anisotropy axis and for the free energy of the X-Y-Z model in 
zero field. The Hamiltonians of these models are 

N N 
3C=J 1.:.:, {S/'St'+t + S/Sl'+t + .::1 (S/St+t-t)}- 2f1.0H"i.:, S/ (1a) 

i=l i=l 

and 

N 

3C = 1.:.:, {JxS/' S/'+1 + JyS/ Sl'+t + J,S/ St+t} (1b) 
i=l 

under the condition /J:c/ <Jv<J.. The set of integral equations given in the pa­
per1l can be reduced to those with finite unknown functions, when rc/8 or Kz/t;, 
is a rational number. Here, 8, r:;, and l are defined by 

.::1 =cos 8, en (2t;,, l) = J:c/ J, and dn (2t;,, l) = Jyj J, . (1c) 

K 1 is a complete elliptic integral of the first kind with modulus l. In this paper 
we carry out numerical calculations in the case of rc/8 or Kz!t;, being an integer 
3 or 4, putting J or J, into ± 1. We obtain the free energy, energy, entropy, 
specific heat and magnetic susceptibility of the Heisenberg-Ising model at fJ.oH = 0 
as functions of temperature. Magnetization curves (M-H curves) of this model 
at fixed temperature are also calculated. The specific heat of the X-Y-Z model 
is calculated as a function of temperature. 

In the case of J=cos(rc/n) (n=3,4, ···),the set of integral equations is 
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ln(1+7J0 (x)) = -2nJsin(n/n)T-1(J(x), 

ln 7J 1 (x) = s1 * ln (1 + 7J 1_ 1 (x)) (1 + 7J J+l (x)) ; j = 1, 2, 0 0 0
, n - 3 , 

ln7Jn-2(x) =s1* ln(1+7Jn-s(x)) (1+2 ch n/J.oH tc(x) +tc2(x) l, 
T I 

(2a) 

The free energy per' site at temperature T and magnetic :field H is given by 

(2b) 

where 

s1(x) = (1/4)sech(nx/2) and s1*g(x) = J_00

00
SJ(x-x')g(x')dx'o 

We transform this set of equations as follows: Putting t = sin-1 (th (nx/2)), 

ln (1 + 7j1) =hi> ln (1 + tc exp (n1J.0H/T)) = hn-l and ln (1 + tc exp (- n1J.0H/T)) = hn, and 

considering that the h/s are symmetric functions of t, we have 

ho(t) = -2nJsin(n/n)T-1(J(t), 

h1 (t) = F ( f 12 S (t, t') (h1_1 (t') + hJ+1 (t')) dt'); j = 1, 2, 0 0 o, n- 3 , 

hn-2 (t) = F( r12 s (t, t') {hn-S (t') + hn-1 (t') + hn (t')} dt')' 

I rn/2 niJ. H) 
hn-1 (t) = F~ Jo S (t, t') hn-2 (t') dt' +---;}- , 

hn(t) =F( r12S(t, t')hn_ 2 (t')dt'- nt;;H ), (3a) 

T in/2 
f(T, H) =/(0, 0) -- h1(t)dt, 

n o 
(3b) 

where 

(3c) 

F(x) =ln(1+expx)o (3d) 

In order to obtain energy (e), entropy (S), specific heat (C), magnetization (m) 

and magnetic susceptibility (X) per site, we use the following thermodynamic 

identities: 

e= -T2 _1_ (T-lj(T H)) S=T-1(e-f) C= ae m=IJ. -I af 
aT ' ' ' aT ' o aH 

and 
_ a"i(T, H) 

x- aH2 . (4) 
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From Eqs. (3b) and (4) we see 

e=f(O, 0) + T 2n-1 r12 (oh1 (t) /oT)dt. 

Thus for the calculation of e we are sufficient to obtain u1 (t) = T 2oh1 (t) joT, 
the equations of which are derived from the differentiation of Eqs. (3): 

u0 (t) =2Jn sin(n/n)O'(t), 

Uj(t) = (1-e-"J(t>) 1~12 S(t, t') (uj-1(t') +uJ+1(t'))dt';j=1, ... , n-3' 

Un-2 (t) = (1- e-"n-•<t>) 1~12 S (t, t') {un-s (t') + Un-1 (t') + Un (t')} dt' , 

Un-1 (t) = (1- e-"n-•(t>) ( 1~12 S (t, t') Un-2 (t') dt'- nf10H) , 

(5) 

These equations are coupled linear integral equations for u1 (t), inhomogeneous 
terms of which are the r.h.s. of the first equation and the last terms of last 
two equations. In the same way, for obtaining the specific heat, magnetization 
and magnetic susceptibility, one derives from Eqs. (3) set's of equations for 

(8 /oT) T 2 (oh1 (t) /oT), oh1 (t) /oH and o2h1 (t) /oH2. 
These are all linear integral equations with the same homogeneous terms and 
with different inhomogeneous terms from those of Eqs. (5). At the first stage 
of the numerical calculation, we solve nonlinear integral equations (3a) for given 
temperature and magnetic field. Then substituting the value of h1 (t) into (5), 
we solve this set of linear integral equations for u1 (t). Functions 

are also calculated in a similar way. Though, of course, these thermodynamic 
quantities can be calculated by numerical differentiation of f(T, H), we do not 
adopt this method because it sometimes causes large numerical errors. 

For the X-Y-Z model in zero field, the set of integral equations in the case 
of Kz/( = n is the same as Eqs. (2), if we replace the r.h.s. of the first equa­
tion by -nnJ,T-1Kz-1 sn(2Kz/n, l)O'(x), /loH by zero, s1(x) by s1(x) =Kk,jn 
X dn(K/x, k'), s1*g (x) by f~Qs1 (x-x') g (x')dx' and r.h.s. of (2b) by f(O, 0)- T 
xf~Qs1 (x)ln(1+1J1 (x))dx, where Q and k are determined by 

Q = Kk/ K/ = nKz' I Kz. 
Putting t =am (Kk' x, k'), which is the elliptic amplitude function, we find that 
in Eqs. (3) S (t, t') is replaced by 

(6) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/51/5/1348/1938250 by U

.S. D
epartm

ent of Justice user on 17 August 2022



Numerical Calculation of Thermodynamic Quantities 1351 

Then we obtain a set of equations similar to Eqs. (3). The procedure of cal­

culating the energy and specific heat is essentially the same as that for the 

Heisenberg-Ising model. 

§ 2. Results and discussion 

We have calculated the free energy, energy, entropy, specific heat and mag­

netic susceptibility per site in zero _magnetic field as functions of temperature 

for the one-dimensional Heisenberg-Ising model at J = 0, ± 0.5, ± 1/ .J2 and J>O. 

eiT)-e(OI 

l(a) l(b) 

SIN 
£n2 -.------------------------------------- -.==, 

0.6 

0.4 

T T 
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l(c) l(d) 

Fig. 1. (Figure captions are printed on the next page) 
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Fig. 1. Various thermodynamic quantities as functions of temperature of the Heisenberg­
Ising model in the case of zero field and J=l. Here G), ®, @, @and ® correspond to 
4 = -0.707, -0.500, 0, 0.500 and 0.707, respectively. 
1 (a) Free energy minus ground state energy per site. 
1 (b) Energy minus ground state energy per site. 
1 (c) Entropy per site. 
1 (d) Specific heat per site. 
1 (e) C/T. Symbols Q9 denote theoretical values predicted in Ref. 3). Symbol X are 

numerically calculated values. 
1 (f) Magnetic susceptibility. Symbols Q9 denote theoretical values at zero temperature 

given by Yang and Yang.4> 

The case £1 = 0 corresponds to the isotropic X-Y model and the method of cal­
culation of its thermodynamic quantities is well known.2l Equations (2) or (3) 
are applicable only to the cases ,d = 0.5, 1/ v'2, · · ·. Then for the analysis of the 
cases ,d = -0.5 and -1/ v'2, we use the fact that f(T, H) is invariant under the 
transformation (J,£1)~(-J, -£1). Specific heat behaves as aT+bT 8 at T4:._J 
and the coefficient a coincides with the result of the latest paper :3l 

lim lim C /T = 2() /3J sin () . (7a) 
H--+0 T--+0 

It behaves as cT-2 at T'};>J and has the maximum at T"'"'J. Magnetic suscep­
tibility behaves as a+bT 2 at T4:._J and as /J.NT at T'};>J. The value of a co­
incides with the susceptibility at T = 0 which was calculated by Yang and Yang :4) 
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lim lim x=4ep.NJCn-e) sine. (7b) 
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Fig. 3. Specific heat of one-dimen-

sional X-Y-Z model in zero field. 

3(a) Case Kz/t;=3 and J,=l. 
The values of (J,, J.) are (0, 

0) for CD, (0.182, 0.223) for ®, 
(0.342, 0.519) for ®, and (0.5, 
1) for@. 

3(b) Case Kz/(K1 -t;) =3 and 

J, = 1. The values of (J •• J.) 
are (0, 0) for CD, ( -0.182, 

0.223) for ®, ( -0.342, 0.519) 

for ®, and ( -0.5, 1) for @. 
Thermodynamic quantities in 

this case can be calculated 

from those in the case Kz/t;=3 
and J, = -1, because the free 
energies in both cases are the 

same. 

2(a) 

1.5 

c 

Magnetic susceptibility has the 

maximum at T~J, the position 

of which approaches zero if 

.::1~ -1. Though the values of 

limT~o limH~oC/T and limT~o 

limH~oX have not been analyti­

cally calculated, the numerical 

results shown in Figs. 1 (e) and 

1 (f) coincide with (7a) and 

(7b), respectively. 

Magnetization curves for 

various temperatures are also 

calculated at .::1 = ± t. The mag­

netization curve for zero tem­

perature has a kink at 2p.0H 

Fig. 2. Magnetization curves of the 

Heisenberg-Ising model for va­
rious temperatures. 
2 (a) .d = -0.5. 
2(b) 4=0.5. 
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1354 M. Takahashi 

=J (1 +.d). This singularity disappears at finite temperatures. 
The specific heat of the X-Y-Z model is shown in Figs. 3 (a) and 3 (b). 
The line Q) corresponds to the Ising model, and the line @ to the Heisen­

berg-Ising model. The characteristic fact at Jv=\c-J. is that specific heat behaves 
as Ta exp (- a/T), therefore all the derivatives by T become zero at T ~o. 
The value of a is given theoretically in the Ref. 3). In the limit z~o (namely 
Jv=J.), the value of a becomes zero and the specific heat curve shows T-linear 
dependence in the region J.>T>a. 

The numerical calculations were performed by the NEAC-500 computer at 
Osaka University. The author thanks the Sakkokai foundation for the financial 
support. 
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