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NUMERICAL CALCULATION OF TWO-PHASE FLOWS

by

John R. Travis
Francis H. Harlow
Anthony A. Amsden

ABSTRACT

The theoretical study of time-varying two-phase flow prob-
lems in several space dimensions introduces such a complicated
set of coupled nonlinear partial differential equations that
numerical solution procedures for high-speed computers are re-
quired in almost all but the simplest examples. Efficient at-
tainment of realistic solutions for practical problems requires
a finite-difference formulation that is simultaneously implicit
in the treatment of mass convection, equations of state, and the
momentum coupling between phases. Me describe such a method,
discuss the equations on which it is based, and illustrate its
properties by means of examples. In particular, we emphasize
the capability for calculating physical instabilities and other
time-varying dynamics, at the same time avoiding numerical in-
stability. The computer code is applicable to problems in re-
actor safety analysis, the dynamics of fluidized dust beds,
raindrops or aerosol transport, and a variety of similar cir-
cumstances, including the effects of phase transitions and the
release of latent heat or chemical energy.

I. INTRODUCTION
Some important circumstances of fluid flow in-

volve the interpenetration of several different ma-
terials. Examples are the passage of raindrops
through air, of bubbles or sediments through water,
and of gas through a fluidized dust bed. If the em-
bedded material is a single particle, drop,or bubble,
then its dynamics and concurrent reaction back onto
the fluid may be amenable to relatively simple an-
alysis through the use of a drag function for momen-
tum exchange, a phase transition function for mass
exchange, and a heat transfer function for energy
exchange. If there are numerous separate pieces of
the embedded material, then the dynamics must also
include collective effects, which cen complicate the
theoretical flow analysis almost to intractability.

The usual procedure for a many-particle analysis
is to represent the dynamics of each material by
means of field variables. Consider a mixture of air

and water in proportions that can vary from small
bubbles in a fluid to small droplets in a gas. In
each extreme, the disperse material may be closely
tied ("frozen in") to the motion of the surrounding
continuous phase, so that there is no relative
motion, or drift, between them. For intermediate
proportions, the added complications include the re-
tarded drift of the dispersed phase, the induced
currents in the continuous phase, condensation and
evaporation from or to the water vapor in the air,
the release or absorption of latent heat, and the
resultant effects of buoyancy. At the same time,
collective effects profoundly modify the dynamics
from what would occur if the dispersed bubbles or
droplets were independent. Collisions and interact-
ing wakes alter the momentum exchange, change the
mean size scale of the dispersed material, and dis-
tort the droplets or bubbles to large departures
from sphericity. The variables necessary to describe
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these interacting proces&es must 'Include two differ-
ent fields of velocity vectors, a void-fraction or
porosity function, two fields of temperature, and
two (or possibly one) fields of pressure.

More generally, the effects of a spectrum of
si2e scale for the dispersed phase leads to the re-
quirement for a continuum of field velocities, or al-
ternatively for a distribution function like the
Maxwell-Boltzmann distribution for molecular veloci-
ties in a gas. It is easy to see that the complexi-
ties for the analysis of such a system can grow al-
most without bound, especially if the dispersed phase
consists of a vuriety of different materials with the
potentiality for chemical or nuclear reactions occur-
ring during the dynamics. It is therefore easily
realized that numerical solutions with high-speed
computer offer the only opportunity for realistic
theoretical analysis of any but the most simple mul-
tiphase flow problems.

The purpose of this report is to describe a re-
cently developed numerical solution procedure called
the Implicit, Multi-Field (IMF) technique, Khirh is
applicable to the study of Mme-varying {1 nitf<• 1 -
value) problems in several space dimensions, in which
the continuous phas is a liquid or gas flowing at
any Mflch number from zero (the incompressible limit)
to well <>bove unity (the supersonic limit), and the
dispersed chase is formed of microscopically incom-
pressible particles or droplets all with the same

scale. Because ti\? details of the numerical
technique.1 And associated computer code have been dis-
cussed elsphfiere , ' this report concentrates on
a discussion of the fundamental equations, and on the
interpretation and accuracy of the numerical solu-
tions.

In cartiular. we show an alternative derivation
of the momentum equations, which avoids some diffi-
culties encountered by previous authors in formula-
ting the pressure-gradient terras. We also discuss
the stability of the equations from botr. the contin-
uum antl numerical (finite-diinference) points of view.
!n this regard, three aspects of the matter are of
importance:

1. The high-frequency instabilities of the dif-
ferential equations, which make the formulation "ill-
posed," and cannot, in any case, be resolved by the
finite-difference equations.

2. The low-frequency instabilities of the dif-
ferential equations, which represent important phys-
ical processes in the time-varying dynamics, and

3. Instabilities that might be introduced by
the numerical solution procedure, whose avoidance by
implicitness of the formulation or the introduction
of dissipation itmst not be accomplished at the ex-
pense of damping the dynamics of interest.

These topics are discussed from an analy*is.al
viewpoint, and illustrated by means of results from
some computer calculations.

II. STATISTICAL DFRIVATIOM OF THE FIELD EQUATIONS
The field equations for multiphase flow have

been derived by many investigators, usually by means
of applying the conservation e^uaUons for mass, mo-
mentum, and energy to the dynamics in some control
volume. Difficulties arise in such derivations fron
the manner by which cuts are made through the mate-
rial of one phase in order to integrate over tne
volume of the other, and by the way in which area
and volume integrals over a single phase are trans-
formed to integrals arounc or over the entire con-
trol region. Ingenious techniques have been used to
accomplish the averaging implied by these transfor-
mations, but controversy persists in the literature
as to which procedures are correct. In particular,
there is disagreement regarding the formulation of
the pressure gradient terns in the momentum equa-
tions, and controversy continues concerning the re-
quirement for terms included to ensure that the for-
mulation is well poseiJ.

In this section we show that an alternative
type of derivation can be employed, avoidinq the
ambiguities that arise from control-volume tech-
niques. We employ a Liouville equation for the dis-
tribution of scale and velocity, and show that mo-
ments of the equation enable e. relationship to be
found between the field properties and the detailed
interactions anong phases. In addition to avoiding
some of the previous derivation difficulties, the
Liouville approach forms a consistent basis for the
inclusion of various complicated extensions to che
field equations, such as dose-packed momentum trans-
fer, the effects of a local spectrum of scales, and
fluctuational pressure from the disperse phase.



We outline a special cjse of the derivation

from whicn the extended and more general forms can

be constructed. The central function in the deriva-

tion is N(r, x, u, t ) , which is defined in such a way

that N dr dx du is the probable number of solid par-

t ic les with size (e .g . , radius) r in the interval dr,

position x within the interval dx, and velocity u in

the interval du. a* time t . In addition, m(r) is the

ina&s of a part icle witl,- si«> r [ e .g . , infr) ' 4 - r r/3,

in which >• is the microscopic density of the par t i -

culate (dispersed) phese]. Froir these functions,

the following raiments can be formed:

U in dr du

. "u^ z \\ flmu. dr dii

(1)

(2)

:.t SXj V dt dt

in which the total time derivatives are along

dynamically and kinematic.ally allowable paths

individual part icles. Thus, for Eq. (5),

i
dt

- -dt -' FJ

= o,

(5)

the

of the

(6)

(7)

and

and dr/dt is determined from the rate function for

phase transit ion and the geometrical configuration

of the part ic le. Assuming that tre particles ore

spheres, we can write

N -. jj Ndrdu - (3)

These functions of position and time describe the

mass of participate niatt'rtal ptr unit total volume,

. ' , the iiuss-averaged component of velocity in direc-

t ion x . t "ui., and the number density of the part ic les,

N . Note that the void fraction is given by

l - ( , 7 . ) .

The fundamental equation for our derivation ex-

presses the conservation of trie tutal number of par-

t ic les in any volume of r, i, u space moving with the

part icles. Thus we neglect fragmentation, coales-

cence and other processes that would alter the number

of part ic les, the effects of which could be added as

a source term to the particle-number conservation

equation,

^ / / /Ndrdudx = 0 . (4)

It is important to note that the total mass of par-
ticles in the arbitrary hyperspace volume is not
conserved by our expression.

By means of the usual rules for differentiation
of an integral, and the condition that the volume of
integration is arbitrary, Eq. (4) can be transformed
to the following equivalent Liouvflle Equation:

dr

wh'cl: will allow the mass transfer rate to be re-
lated to the rate of change of radius. Indeed, be-
cause of the unique relationship in this case be-
tween m and r, the distribution function could as
well have been N(m, x, u, t).

Equation (5) describes the dynamics of the
single-particle distribution function, and depends
only on expressions for the kinematics and dynamics
of a single particle. Nevertheless, there are two
ways by which this equation can be considered to re-
present the multiparticle effects of the dispersed
phase. One of these is through the force function,
F., which represents the time-varying force on a
single particle, but can contain in its formulation
a representation of the average effects on that par-
ticle to be expected from surroundinp particles.
Although this is only an approximate representation
of collective effects, which could be improved by
the inclusion of integrals over a two-particle dis-
tribution function as a source to Eq. (5), we shall
see that the present version is entirely sufficient
to illustrate the derivation of a correct expression
for the pressure-gradient effects in the field equa-
tions for momentum. This is because the second way
in which Eq. (5) represents the multiparticle



dynamics of the dispersed phase can be demonstrated
by certain selected moments of ihe equation.

In particular, multiply Eq. (5) by m(r) and
"'{r}Uj and integrate over the entire range of r and
u values. The results are

£ drdu* * 0

and

ff m i'iu: dr du

Using Integration by parts and reducing the results,

we can rearrange these mss and momentum equations

to the following

(8)

and

du"•

I jut i drdu

jjfNu, f^drdJ (9)

in which Su^ = u^ - u^. . a

Equations (8) and (9) »r« now in the form of
field equations for the dispersed phase, derived
without recourse to splits or cuts of a control vo!
ume into the domains occupied by each phase. They
nevertheless express conservation of mass and momen
tuns for any fixer* total control volume in space tha
one wishes to choose. An integral of Eq. (8) over
such a control volume shows that the three terms re

fe r , respectively, to the rate ot ihanye of dis-

persed'phase mass in the volume, tiie convective f lux

of that mass through the edges of the volume, and

the rate of mass conversion ti> the dispersed phase

by means of phase transitions within the volume.

We have, for example, arrived at an expression for

convective :flux"without ih»> expl ic i t requirement for

assuming that the volume per unit total volume of

the dispersed phase is ei)Mjl i r the area per unit

area open for convection. In similar fashion, the

terms in Eq.'^9) can be interpreted as the rate of

change of total dispersed-ptta >e momentum, the con-

tr ibut ion to womentwp chanqe from the ntf'.in . orivet-

t ive f lux , the fluctuatiui-«1 contribution analogous

to a Reynolds stress urt . tr t iul twt flow, the effect

of single-part icle tore*1-., on the f i e ld momentum, and

the conversion rate to dispi.-rsed-phase iwmentuni from

phase transit ions.

1'iudtions <>') and ()' tiave considerable poten-

t i a l i t y for interpretation and extensions, some of

Vihich w i l l be reported eNewlure. lor our present

purpose, we l imit the divussinn to the special case

in which i •. .

S(r , « , u, t ! 1 , t -

in which i.asi, i . | . \ '•',< (»•

'.; . T«'.

(10)

and Eq. (9) beconioi

Suppose for e«ant(il(-,

- . n.pda

(ID

il?)

in whu.n i) is the (jravitat lunal di.i.cicration, p is

thp (jie'.jijru of th«- coritiniiijus (Jdrfst-, and iij 14 do

outward unit nomil vr . t i i r ors tr»> par t i i l e surface

at the element of ArcA, rla. I f the local f lu id

volo< i t y , VJ . diff4'rs from that of tftc part ic le

v l f f r i t y , then tlie pressure integral can be expanded



as a power series in (vf - u { ) , such that

Fi * i po da

*tf r c o;'f

In which p Q is the pressure in the continuous phase
In the absence of relative motion between phases.
The Stokes-drag tern contains u, the fluid visco-
sity, and the form drag term contains :,f, the fluid
density, and C Q. the drag coefficient. Omitted are
contributions such as the virtual M S S term, which
depends on the relative acceleration between fields,
and can be systematically included in this deriva-
tion.

If an Individual particle is small compared
with the scale of pressure variations in the con-
tinuous phase, then we can approximate

which shows the void fraction function correctly

outside of the pressure gradient term.

'g obtain the momentum equation for the contin-

uous phase, one writes the equation for total mo-

mentum and subtracts Eq. (15).

I I I . DRIFT-FLUX APPROXIMATION

The field equations for the fluid and particle;

are now written with subscripts f and p, respective-

ly, as follows

o. (16)

(17)

:

(14) (18)

Note, however, that if the continuous phase is tur-
bulent, then this approximation may not be valid.
In that case /n{ p Q da must be split into two con-
tributions, one from the mean-flow pressure and the
other representing the statistical e'ft-cts of the
small-scale pressure fluctuations, analogous to
those of Brownian motion. In any cast, the trans-
formation in Eq. (1«) is over a single particle,
rather than a set of particles in a control volume,
and it is this crucial difference from control;
volume derivations that allows ut to avoid tne dif-
ficulties previously associated wit* e»*r»*un« the
pressure-gradient effects in the «ulti»M»

ntuM equations.
With these considerations. In. Ill) b

'9 P.1
•t

u . u •}upi u p j ;

•K(u
f1

(19)

in which K is a drag function, phase transitions

have been neglected, and overbars plus the sub-

script on p0 have beei omitted.

We now define

•t -f

and

•t uti upi

is the total mass per unit
and utf is the mass average

jft in such a way that ,,
volume of both phase.;,

velocity so that p( >t{ carries tne total momentum
Of the fluid. Then (qs. (16) and (17) can be added
to give

0, (20)



and Eqs. (18) and (19) c*n be added to yield and

W
Ufj 3kj

With some manipulation, the connective flux term if)

parentheses can be rewritten

"t uti utj •W (ufj (22)

Showing that the effect of relative velocity between

the phases can be isolated in one term, the right-

hand term in Expression (22). To express this ef-

fect in a different way. the two separate momentum

equations are rewritten •->

and

u f i '

it

in which

», - A & • * ; < • fl • "pi>-

(1"") • _. the unprimed. f v f «nu , p

quantities being the microscopic material densities.
We subtract these equations from each other and
then apply the assumption of quasi-equilibrium,
according to which the entire left side of the re-
sult is considered negligible. With some algebraic
reduction, the result is

•n-)upi ' ufi (23)

Combining Eq. (23) with Expression (2?) and insert-
ing into Eq. (21) results in the drift-flux approxi-
mation for the mean momentum equation. Alterna-
tively. Eq. (23/ car. be used in Eqs. (18) and (19)
to eliminate the drag function K. or, after elimina-
tion of the density derivatives, the results can tie
put in the especially simple forms " o

(2!!E
"pjlx

- j • 't " i

IV. STABILITY OF THfEiJUfeTiONS

Consider the simplest two-pluse flow with rela-

tive velocity between the phases, namely a homogen-

eous configuration in which the density of each

field is constant in space and tine, and equilibrium

is maintained by a balance among jniform pressure

gradient, constant gravity, and a constant drag

forre between the material. As an example, such a

f!c* could be realised in an idea) fluidlMd dust

bed. in which the particles ire suspended by tns up-

ward motion of a fluid or gas through tne field of

dust. Suppose that a one-dimensional perturbation

were introduced along tne }me of flow of the con-

tinuous phase. The question arises regarding the

stability of such a perturbation.

Physical reasoning suggests thai the perturba-

tion amplitude would grow. Where the particles are

"clumped" or closely packed together, jhe tluid must

flow more rapidly through mem than nearby where the

parttculate density is more sparse. Bernoulli's

law indicates that the pressure would be lower in

such a region of clumping, just as it is in the

throat of a Venturi contraction. As a result,

particles would accelerate towards the region of

clumping and the perturbation amplitude increase.

This it a longitudinal variant of the transvein:

Helmholt; instability, which is driven by a similar

variation in pressure along the streamlines on either

side of an irregular interface.

A detailed linear stability analysis confirms

the intuitive reasoning, and shows in w e detail

both the growth and propagation of such longitu-

dinal perturbations. In the absence of viscous

dissipation, the equations exhibit an instability

growth rate that becomes infinite as the perturba-

tion wave length becomes vanishincly small. As a

result, the equations are classed as ill posed,

and therefore not applicable to the solution of ini-

tial-value problems.

In physical reality, the ill-posed nature is

precluded by dissipative processes, which are es-

pecially effective in damping the highest frequency

components of any perturbation, at the same time



re la t ive ly l i t t l e effect on the larger sc*le

f luctuations. fi<]urenl i l lustrates sbth a process

torouyh a i iinjMrKtm yf instabi l i ty growth^rate as

a funit ion i»f perturbation wave length for* various

nd<initu>k-< ot trie viscosity coefficient in momentum

diffusion ten'f. added to thf rtuatiuris >fc>-,< r'1t>cd a-_.

tMiw. «lith no dissipation, the urowth rate is

bounded, hut at the âme ti'i»- not stromil / displaced

trora tne inviscid qruwth r,dte at larqer wovflenijths.

Tne inii'l teat ions of a l l this for the nui'ieri m l " solu-

t ion ot tne equations is described m trio next

section.

V. "JiJHfHICAL SOLUTION Or fi l l I'JllATIONS

Application nt the two-phase flow e d i t i o n s to^

t»n- analysis of a S|JC-I i f n , problen leads to <jreat

watnematiial complexity rui . i l l but the si^plei t c i r -

iu' 'Sta' i i i" for tnis rea^'r>n. <l hjs heen nvios<,ar\

tu ileveloji nui'ierxa). solutiim l e i h m j j i " , tor «n<jti-

•."i.e<J lonputws. !m>V> table, suth .«r. ,t.»i>roai »i rv-

•juiivs the^'intrMttui t inn j f j l. 1 /.at li-ns. usually

t h r i u i ' i the » m i t t — i t : t f v n . f i . •.• t<-;

scact' and 11?:)•• d e r i v a t i v e . K'r

s;>a' r)d! ((ocian. ,-f mf i . re - . '= i . if•

" f i fiV-i^tat inn i ! i . i '11' , . *•!,• , v ' l

•,t.ir,.-s t a r ,:n« i t ' l l ' Vx- . t w t . t i f

• >„> f i e l d ViiM<<|i!es, ',.> vi . t t t - ie

•1t"i r i i i e i l dv >t f i n i t e n u S r i - .if tv

.iriv-r.

, r a t r « ' r T

M I M I - . 1 le-itht l i f f i n l t f imriber re.<ii."re.l tur

tint^Mt a iuntrnuui'i. i'i adilit ion,11 tii,; • al i - i l i^l i i i i '

pront'ds through a sot of f m i t o t !f.e ir.tt 'rval'. . the

r e s u l t s Otor i>atti new step beini) ca lcu la ted f n v . 0

i

r\q. 1. Instability0Growth Rate as a Function o
Perturbation Wavelength for Various Kim
•Mtic Viscosity Coefficients.

those c' the previous step, or from tne prescribed,,

in i t ia l conditions, by means of t'Je f in i te-di f fer -

entc iipproximations to the differential ^nuations.

Such a finite-difference approach, described in

detail elsewhere, ' immediately raises questions

conterninq accuracy, for which two distinct aspects

can be recognized. First there i-, tne question, of

representing tlie trufe physical processes with real-

istic differential equations and interaction func-

tions for which several connients have already been

made. Second, there is the question ofc^he errors

introduced by the f initerdif ferenue approximations.

The numerical errors are of'.everdl different;

kinds. One arises from coarseness of resolution,

and can be mitigated by the use o- a mesh scale

a that tis fine eompared with the sp<itial scale for

appreciable changes in the fi,?ld variables, and by

tine-step intervals that are sinaU compared with the

otine scale for appreciable local changes. Another

is numerical instabil ity in whitt, thu calculated

resglts oscillate aroundthe di's-red solution with

increasinq amplitude, or otherwisi dr i f t away from

thf desired results. ->

'iurierical instability can sonietimes He cured

r. "wans of an implicit fonnulatun uf tne f in i te -

difference equations or by the irtroduction of a

= dissipativt* mechanism, for example, v iscosi ty The

tetfinique we have been usinq employs both.

i Th«? inplicitness is required because of our

ni'od fur flow3 analysis at very low Hach numbers •'

and/or witn strong coupling between?the fields.

This crucial feature 1s0 emphasi-red in t ie original

reports of the technique and is not discussed

further in the present paper. ' , "

The introduction of viscosity iis <t disstpattve

procedure must be accomplished witn qreat care

since numerical stabi l i ty often requires magnitudes

fur tne viscosity coefficient t.ljat <ireatly exceed = =

tho true values for the materials. Specifically,

tHif, viscosity must not bo so ureat as to damp ex-

cessively the" longer wavelength perturbations des-

cribed in the previous section, Ftir nunwrica/^)

stabi l i ty , however, the kinematic viscosity, , ,

;»ust usually exceed some constant fraction of the

product of f luid speed u0 and mosh-cell size, ; i ,

Roughly, when the time step per cycle is appro-

priately chosen, we my estimate for the required

viscosity ••,, J



Thus, the smaller the cell size, the less vis-
cosity is required. At the same time. Fig. 1 siiô s
that the snaller the viscosity, the smaller is the
perturbation wavelength that is essentially unal-
tered. Thus the two considerations are compatible. ,
Fir a given physical scale to be resolved, the mesh
seals, ox, can be reduced, at least in principle, to
tie extent that the contortion is resolved/and the
viscosity required for numerical stability will haye
nsgligible effect on the scale of the contortion.

In practice, this necessary fineness of mesh
scale can, indeed, be realized with(lpresent compu-
ters for many, but not all, problems of interest.
Tne next section describes and illustrates several
examples.

VI. NUMERICAL EXAMPLES
In order to demonstrate W a t long-wavelength*

instability cjn be accurately calculated, despite
tne mitigation of very short-wavelength instability
by means of numerical dissipation, we consider the
configuration of a fluidized dust bed in which
cnysical instability is well known to occur. Figure
2 illustrates the physical slugging flow fair such a
djst bed. The calculation commenced from a slightly
perturbed equilibrium and developed the oscillatory
behavior in a spontaneous and natural fashion. Void
fraction as a function of height from the floor of
cnt bed shows a progression of propagating waves l

witfc exponentially growing amplitude (in excellent
agreement with linearized stability-analysis pre-

mo 200

Fig. 2. Void Fraction vs Height from the"floor of
a Function of Perturbation Wavelength for
Various Kl*-»"iatic Viscosity Coefficient"

(fictions) in the lower regions, and an MlA H'jii.'
that is bounded by nonlinear effects in tni" upper
regions, this example demonstrates that Miyskal
instabilities can indeed be accurately calculated
with neither the disastrous manifestation, of short-
wavelength instability nor excels smouthimi for the'>
dynamics of interest.

c Our second example is designed to examine a
possible, but highly improbable, scenario of an ex-
tremely simplified hypothetical liquid metal fast
breeder reactor (LMFBR) disassembly accident. A i</-,
pical configuration of the core-reflector-plenum re-
gion in cylindrical coordinates is diagrammed in Fig.
3. The void contains sodium vapor while th<? remain-
ing volume is filled uniformly with iiranium-dionide
and steel droplets in the core and steel droplets*
everyfcihere else. Due to nondissipdtim; power increases
in the core region, high vapor pressure can develop, „ ">

220

Plenum
6 'fQ7\

Upper Axial Reflector
0 * 0 . 4 4

a"

Core
9*0.41

Lower Axial Reflector
8 «0.44

Radial
Reflector
0*0.14

, \60
l Distonc*, cm

Fig. i. A^typical LMFBR Core-Reflector-Plenum Con-
a ° figuration, o denotesthe Void Fraction.

"o .



resulting in a pressure-driven expansion. The bot-
tom dud right-hand boundaries dre Considered r iq id ,

r,

while material is dl lowed to enter and exit throuqn
the top. A composite of the various fields and " ,
their .time evolution is presented in Fiq. S. The
marker-particle configuration depicts the distribu-
tion and density of the various materials through-
out the compi/tational ir*sh. Fuel and steel droplets
dre repneiented respectively l>y the square ana "plus
signs, wnile sodium vapor is represented by the
dots. The velocity fields are normalized to the
maximum velocity on the mesh for that particular
field. ~ °

The calculation proqresses with an intense
shock developinq in front of the sodium vapor ex-
panding out of the pressurized core region. Be-, -
cauce of the tiiht coupling between the vapor and
droplet fields, the droplet motion is ii itially al-
most coincident with the vapor expansion. The snock
defortt,s and compresses the reflector reqions before
first impacting the lower boundary and then the
right-hand boundary This results in droplets pi 1- ;
ing up against these boundaries and developing to-
tal1/ incompressible reqions shown by the low or
•• - 0.0 contour line in the voia fraction,field. o

The shock reflects off the boundaries, and the sod-
ium vapor streams towards low pressure regions
dragging droplets along. In the final stages of the
calculation, material is shown to be rapidly e«it-
ing the lop boundary, jnd the central region be-
comes h.MjtOy voided. Although this example repre-
sents an idea Hied hypothetical IMrBR disassembly
accident, it clearly demonstrates the capability of
calculating interpenetrating materials in two-phase
flow problem^. , , i

VII. CONCLUSION'- -ii ,, - '
Because most twtj-phase flow problems irt r.c

naturally complicated, hig«i-speed fligital c
ire being employed to solve the coupled nonjinear
partial differential equations that"describe t'ifc ,
dynamics of such a complex physical system. Tne
formulation of these equations, a-; reported ih the
original work, is shown to be correct by a deriva-
tion fron a statistical viewpoint, which is basea
on the roooients of a Liouw 1 le equntion. These fif-
ferential field equations governing thr roctiofiof
two-phase interactions are "well posed" as illus-
trated by a fluidized dust bed calculation, [n this;
example we see that the dynamics of resolvable flow
contortions can be successfully calculated without
requiring excessive dissipation or s-TOOthinr), ar.d
at the same time avoiding fire scale instabilities
that otherwise would destroy the validity of tie
results.
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