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NUMERICAL CALCULATION OF TWO-PHASE FLOWS

by

John R. Travis
Francis H. Harlow
Anthony A. Amsden

ABSTRACT

The theorntical study of time-varying two-phase flow prob-
lems in several space dimensions introduces such a complicated
set of coupled nonlinear partial differential equations that
numerical soluvtion procedures for high-speed computers are re-
quived in almost all but the simplest examples. Efficient at-
tainment of realistic solutions for practical problems reguires
a finite-difference formuiation that is simultaneously implicit
in the treatment of mass convection, equations of state, and the
mamentum coupling between phases. We describe such a method,
discuss the equations on which it is based, and illustrate its
properties by means of examples. In particular, we emphasize
the capability for calculating physical instabilities and other
time-varying dynamics, at the same time avoiding numerical in-
stability. The computer code is applicable to problems in re-
actor safety anmalysis, the dvnamics of fluidized dust teds,
raindrops or aerosol transport, and a variety of similar cir-
cumstances, including the effects of phase transitions and the

release of latent heat or chemical energy.

I.  INTRODUCTION

Some important circumstances of fluid flow in-
volve the interpenetratinn of several different ma-
terials. Examples are the passage of raindrops
through air, of bubbles or sediments through water,
and of gas througsh a fluidized dust bed. If the em-
bedded material is a single particle, drop, or bubble,
then its dynamics ard concurrent reaction back onto
the fluid may be amenable to relatively simpie an-
alysis through the use of a drag function for momen-
tum exchange, a phase transition function for mass
exchange, and a heat transfer function for energy
exchange. 1f there are numerous separate pieces of
the embedded material, then the dynamics must also
inciude coliective effects, which can complicate the
theoretical flow analysis almost to intractability.

The usual procedure for a many-particle analysis
is to represent the dynamics of each matewrial by
means of field variables., Consider a mixture of air

and water in Fproportions that can vary from small
bubbles in a fluid to small droplets in a gas. In
each extreme, the disperse material may be closely
tied ("frozen in") to the motion of the surrounding
contiiyous phase, so that there is no relative
motion, or drift, between them. For intermediate
proportions, the added complications include the re-
tarded drift of the dispersed phase, the induced
currents in the continuous phase, condensation and
evaperation from or to the water vapor in the air,
the release or absorption of latent heat, and the
resultant effects of buoyancy. At the same time,
collective effects profoundly modify the dynamics
from what would occur if the dispersed bubbles or
droplets were independent. (ollisions and interact-
ing wakes alter the momentum exchange, change the
mean size scale of the dispersed material, and dis-
tort the droplets or bubbles to large departuras

from sphericity. The variables necessary to describe



these interacting procesces must include two diffar-
ent fields of velocity vectors, a void-fraction or
porosity function, two fields of temperature, and
two {or possibly one) fields of pressure.

¥ore generally, the effects of a spectrum ¢f
size scale for the dispersed phase leads to the re-
quirement for a continuum of Tield velocities, or al-
ternatively for a distribution function like the
Maxwell-Boltzmann distribution for molecular veloci-
ties in a gas. [t is easy to see that the complexi-
ties for the analysis of such a system can grow al-
most without bound, aspecially if the dispersed phase
consists of a vuriety of different miterials with the
potentiality for chemical or nuclear reactions accur-
ring during the dynamics. It is therefore easily
realized that numerical solutfons with high-speed
computer offer the only opportunity for realistic
thecretical analysis of any but the most simple mul-
tiphase flow problems.

The purpose of this report is to describe a re-
cently developed numerical soluytion procedure called
the Implicit, Mylti-Field (IMF) technique,’ whirh is
applicable to the study of *time-varying (initiil-
value) problems in several space dimensions, in which
the continuous phas. is a liquid or gas flowing at
any Mach number from zero (the incompressible Vimit)
to well aboye unity (the supersonic limit). and the
dispersed phase is formed of microscopically incom-
pressible particles or droplets all with the same
size scale. Because the details of the numerical
technique and associatd compucer code have been dis-
cussed elspwnere.z this report concentrates oan
a discussion of the fundamental equations, and un the
:nterpretation and accuracy of the numerical solu-
tions.

in carticalar, we show an alternative derivaticn
of the momentum eguations, which avoids some Aiffi-
culties encountered by provious authors in formula-
ting the pressure-gradient terms. We also discuss
the stability of the eguationg from both the contin-
uum and numerical (finige-di¥ference) points of view.
In this regard, three aspects of the matter are cof
importance:

1. The high-frequency instabilities of the dif-
ferential eyuations, which make the formulation "ill-
posed," and cannot, in any case, be resslved by the
finite-dirference equations,

[

2. The low-treguency instabilities of the dif-
ferential equations, which reorésent important phys-
ical processes in the time-varying dynamics, dand

3. Instabilities that might be introduced by
the numerical solution procedure, whose avoidance by
implicitness of the formulation or the introduction
of dissipation must not be accomplished at the ux-
pense of damping the dynamics of interest.

Thecz topics are discussed from an analy*ical
viewpoint, and illustrated by means of results from

some computer calculations.

151. STArISTICAL DFRIVATIGN OF THE FIELD EQUATIONS

The field equations for multiphase flow have
been derived by many investigators, usually by means
of applying the cgnservation equations for mass, mo-
mentum, and energy to the dymamics in some control
volume. Difficulties arise in such derivations froa
the manner by which cuts are made through the mate-
rial of one phase in order to integrate over tne
volume of the other, and by the way in which area
and volume integrals cver a single phase are trans-
fermed to integrals arounc ur over the entire con-
trol region. Ingenious techniques have been used to
accomplish the averaging implied by ithese transfor-
mations, but controversy persisty in the fiterature
as to which procedures are corrcct. In particuler,
there is disagreemen: regarding the formulation of
the pressure gradient terms in the momentum equa-
tions, and controversy continues concerning the ve-
quirenent for terms included to ensure that the for-
mulation is well posed.

In this section we show that an alternative
type of derivation can be employed, avoiding the
ambiquities that arise from control-volume tech-
nigues. We employ a Liouville equation for the dis-
tribution of scale and velocity, and show that mo-
ments of the equation enable ¢ releiionship to be
found hetween the field properties and the detailed
interactions among phases. In addition to avoiding
some of the previous derivation difficulties, the
Liguville approach forms a consistent basis for the
inclusion of various complicated extensions to che
field equations, such as close-packed momentum trans-
fer, the effects of a local spectrum of scales, and
fluctuaiional pressure from the disperse phase.



We outline a special cuse 5f the derivation
from whicn the extended and more generel forms can
be constructed. The central function in the deriva-
tion is N(r, x, u, t}, which is defined in such a way
that N dr dx du is the prebable number of solid par-
ticles with size {e.g., radius) r in the interval dr,
position % within the interval dx, and velocity u in
the interual du, at time t. In addition, m(r} is the
mass of a particle witis size v [2.q., m{r) =4~ rar/3.
in whicth .- is the microscopic density of the parti-
culate (dispersed) phese]. Fror these functians,
the following moments can be formed:

S wmara M

cug E [ timuyordd (2)
and

M, o [ Nardi . (3)

These functions of position and time describe the
mass of particulate material per unit total volume,

. '« the mass~averaged component of velocity in direc~
tion v Ui‘ and the number density of the particles.
NO. Note that the void fraction is qiven by

- ')

The fundamental equation for our derivdtion ex-
presses the conservation of trne total number of par-
ticles in any volume of r, X, u space moving with the
particies, Thus we neqglect fragmentation, coales-
cence and other procasses that would aiter the number
of particles, the effects of which could be added as
a source term to the particle-number conservation

equation,

S lnordici -0 . (4)
It is important to note that the total mass of par-
ticles in the arbitrary hyperspace volume is not
conserved by our expression.

8y means of the usual rules for differentiation
of an integral, and the condition that the volume of
integration is arbitrary, Eq. (4) can be transfurmed
to the following equivalent Liouville fquation:

. . dx. . du. .
oN , 3. A __J_) ET (<L I
ot ¥ A, Q‘ dg) * e G‘ g/ v Nae) s o

in which the total time derivatives are along the
dynamicaliy and kinematically allowable paths of the

individual particles. Thus, for Eq. (5),

dz .
""l ULy (6)
dt ]
du .
m—a = F (7)

and dr/dt ix determined from the rate function for
phase transition and the geometrical configuration
of the particle. Assuming that tfe particles are

spheres, we can write

dn
dr

=8 .r°,

which will allow the mass transfer rate to be re-
lated to the rate of change of radius. Indeed, he-
cause of the unique relationship in this case be-
tween m and r, the distribution function could as
well have been N(m, x, u, t).

Equation (5) describes the dynamics of the
single-particle distribution function, and depends
only on expressions for the kinematics and dynamics
of a single particle. HNevertheless, there are two
ways by which this equation can be considered to re-
present the multiparticle effects of the dispersed
phase. One of these is through the force function,
FJ. which represents the time-varying force on a
single particle, but can contain in its formulation
a representation of the average effects on that par-
ticle to be expacted from surrounding particles.
Although this is only an approximate representation
of collective effects, which could be improved by
the inclusion of integrals over a two-particle dis-
tribution function as a source to £q. (5), we shall
se@¢ that the present version is entirely sufficient
to illustrate the derivation of a correct expression
for the pressure-gradient effects in the field equa-
tions for momentum. This is because the second way
in which Eq. (5) represents the multiparticle



dynamics of the dispersed phase can be demonstrated -

by certain selected moments of ine equation.

In particular, multiply £q. (5) by m(r) and"
m(r)u and integrate over the entire range of r and
u values. The results are

3;; (. ") “m-- (-t)drdu = 0
and

Bg'ui

3 0T -
T+ 'a—x— ]mNui ujdrdu

" s .
+U " 'Zﬁf; (NF ;/m) dr dd

+ffmug & (0§ ) arai <o

Using fntegration by parts and reducing ‘the results,
we can rearrange these mass and momentum equations
to the following

¥ s }j— T e [N arai (8)
and ‘
30'G ', 0 . R )
1 19 3 e - .
3 e ] jie uy cugdrad

+ [f Ny drdd

ffNui M drdy ) (95

o

in which Su; = ug -G, .

Equations (B) and (9) are now in the form of
field equations for the dispersed phase, derived !
without recourse to splits or cuts of a control voi“

ume into the domains occupied by each Dhase. They X

nevertheless. express conservation of mass and momen
tum for any fixed: total control volune in space tha
one wishes to choose. An integral of tq. (8) over
such a control volume shows that the three tergls re

fer, respectively, to the rate ot change of dis< ’
persed-phase makss, in the volume, tne convective flux
" of that mass through the edges of the volume, and
the rate of mass conversion to the dispersed phase
by means of phase transitions within the volume.
We have, for example, arrived at dan expression for
convective flux without the explicit reguirement for -
assuming that tie volume per unit total volume of
 the dispersed phase is equa! o the area per uni;
area open for convection. Inm smmilar fashion, the
terms in Eq.?‘j‘)) can be interpreted as the rate of
change of total dispersed-phase momentun, the con-
Eribution to n}pmentum change from the mean onveec-
tive flux, the fluctuatiural contribution 4ndlogous
to a Reynolds stress in tirbulent flow. the effoect
of smgle-'\artu_le torces on the field momentum, and
the conversion rate Lo dispersed-phase mowentum from
phase transitions,

Eiuations (2] and (2' nave (onsidersable poten-
tiality for interpretation and eatensions, some of
m{ich will be reported elsewhere. For our present
purpose, we Limit the discussinn to the special case~

in which | ;
Nir, Ao us t) ‘ el a .'f‘;_-t)/lh(l')
nowhich case, bg. oL be e
R |
W'y N
o', ) .yt dm (10) ‘

"t x jodt . !

'y, v U, u ' . .
S e [F, {Fe 5o uat) ¢ ay g'{‘]

Y i r) (1)

" Auppose for eaxample, that |

F‘. T mgy - ,nipdq {17)

in wh:;.n g, ts the qmvﬁutnnml acceleration, pis |
the pressure of @h« LUnLTAGaUS phdase, and ng 15 an
cutwdrd unit normal vector on the particle surface
‘at the element of arca, da. [f the local flyid
velocity, Vi differs from that of the particle
veloeity, then the pressure integral cam be expanded



as a power series in (v, - Gi). such that

Fi =mg; - /n, p,da+brr (v; - "i)

+ %‘n 72 Cp «g Lvg - u,.)l‘vi = Ui, {13)
in which p, is the pressure in the continuous pﬁa}(
in the absence of relative motion between phases.
The Stokes-drag term contains n, the fluid visco-

© sity, and the fom drag&em contains o, the fluid
density, and cn. the drag{coeff}cient. Omitted are
contributions such as the virtual mass teim, which
depends on the relative acceleration between fields,

and can be systenucally included in this deriva-
tion.

1f an individual particle is small compared
with the scale of pressure variations in the con-
tinuous phase, then we can agoroximate

e )
z - -0 sy = - m .o
'ﬁi s da ﬂl. av oAy

(18)

Note, however, that if the continuous phase is tur-
bulent, then this approximation may not be valid.
In that case /n; P, da must b2 split into two con-
tributions. one frm the mean-flow pressure and the
other representing the statistical effects of the
small-scale pressure fluctuations, analogous to
thote of Brownian motion. In any case, the trans.
fmtlon\’in €q9. (14} is over 2 sinqle perticle,

rather than & set of particles in contro) uohnr. /

and it s this crucial difference from’ contnh d
volume derivations that ellows us to dvaid the aif-

* ficulties previously sssociated with Capressing the
pressuve-gradient effects in the -ulnmn-ﬂu
momentum equattons.

With these considornim. €. ‘Hl) be-dmes

e,  wp'u U w, g
ati * = j-j - ('.u) .9 * ) 91 -_1 \Jz

3‘\ (l.n) |

"“T“ (vy = 3y) (3",; |

o
.2y, - B, p) 115

which shows the void fraction function correctly
outside of the pressure gradient term.

To obtain the momentum equation for the contin-
uous phase, one writes the equation for total mo-
mentum anid subtracts £q. (15).

111, \DRIFT-FIEILR APPROXIMAT JON

The field equations for the fluid and particles
are now written with subscripts f and p, respective-
1y, as follows

ERY Sr.‘ U, :

w0
B aw'u,
K- (an
FY . 3 .. .. 8P

STt g Lt veg) T8 e g

+ K(upi - uﬂ). (18)

o . T P

R ] oy P Ypi Ypi! * 9 'p. g

. K(u“ - l.lm)e {19)
in which K 15 a d\r:ag function, phase transitions
fave been neglected, and overbars plus the sub-

, %cript on p, have bee: omitted.

We now define s

‘tVei Uf Ve *op Ypi

fn such a way that ry 15 the total mass per unit
volume of both phases, and u, is the mass  average
velocity 50 that oy . carries tne total momentum
of the fluid. Then tgs. {(16) and (17) can be added
to give

d an
¢ Tt (20)

3xi .

(5]



(18) and (19) can be added to yield

and Eqs.
Te i, s .ol )« oyg, - <P
3t °f Uei U5 T p Ypi Upy! T 9 T
(2n)

With some manipulation, the convective flua ‘term in
parentheses can be vewritten

i Ve um.) (ufj - upj). (22) -

- Z.f.iP. (u -
Ft fi
showing that the effect of relative velocity between
the phases can be isolated in one term, the right-
hand term in Expression (22). To express this ef-
fect in a different way, the two separate momentum:

equations are rewritten &

gy Jogg 13

K
Tl * 8, I (TIPS
3t 3 MJ .;f ELTI pic Tfi
and ’
/7'/’

. k] . v .
—pi oy R N K -
3t * Yy Gy 9 YA e Ypa)e

P p
in which ,", “vg and ", {1=n) 'y the unprimed

quantities being the microscopic material densities.
We subtract these equations from each other and
then apply the assumption of quasi-equilibrium,
sccording to which the entire left side of the re-
sult is considered negligible. With some algebraic
reouction, the result is

“{1-0) (o 0t

:-..—__—_..

‘e

Ypi " Vg o
Comdining €g. (23) with Expressmn\(zz) and inserg-
ing into £q. (21) results in the drift-flux approxi-
mation for the mean momentum equation. Alterna-
tively, £q. {23) can be used in Eqs. (18) and (19)

to eliminate the drag function K, or, after.eliniqa-
tion of the density derivatives. the results can be

put in the especially simple forms o,
a“, au
1 —pi -
it ' "pJ axj * 9 Py ax;:-'»[ ¢ : (2‘ )

<

and

. W,
Jugy Ugi !

R IR . P .
I 3] e 8 Ty )
V. STABIL:TY OF THE EQUAT [ONS

Consider the simplest two-phise flow with rela-
tive velocity tetween the phdses, namely a homogen-
eous configuration in which the density of each
fleld is constant in space and tire, and equlhbrlum
is maintained by a balance among uniform pressure
gradient, constant gravity, and a constant drag ’
force between the materiai.  As an example. such a4
flcw could be realized in an ideal fluid)zed dust
bed, in which the particies are suspended by thad up-
ward motion of &4 fluid or gas through the field of
dust. Suppuse that a one-dimensional perturbation
were introduced along the }ine of flow of the con-
tinuous phase. 7 The question arises regarding Lhe
stability of such a perturbation.

Physical rdasoning suggests that the perturbas
tion amplitude would grow. Mhere the particles are
“clumped” or closely pached together, the tluid nust
flow more rapidly through them than nearby where the
' Bernoully’s
I

pdrttculdate density is more spai‘se.
law indicates that the pressure would be fower
such & region bfclunplpg. just as it is in the
throat of a Venturi contraction. As a result, ‘
particles would accelerate towards the region of
clumping and the perturbation amplitude increase,
This is a longitudinal variant of the transyesrsy
Helmhaltz instapility, which is driven by a similar
variation in pressure along the streamlines on eitner
side of an irregular interface. ‘

A getailed tinear stability analysis confirms
the intuitive reasoning, and shows in more detail
both the growth and propagation of such longitu-
dinal perturbations. In the absence of viscous'
dissipation, the equations exhibil an instability
growth rate that becomes infinite as the perturba-
tion wave length becomes vanishincly small. As a
result, the .equations,are classed as i1 posed,

] 'and therefore not applicable to the solution of ini-

tial-vatue problems.
. In physical reality, the il1-posed nature 'is
precluded by dissipative processes, which are es-

"pecially effective in damping the highest frequency

components. of any perturbation, at the same time

o
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Lurstances
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naving rt‘luulvcly Ittle effect on the larger scale
fluctudtions, hqurtztgyl illustretes sbch a process

tarough o comparicon of tnstability growth rate as
& > :

-a function of perturbation wavelength for various
mdanitudes pt the vl'-.(,()SlLy coefficient in mnmentum

arffus
bove .
bounded, byt at the same tise not strongl, d'SL-luu:d

1an terss added to the ¢juations described a-

dith no dissipation, the yrowtsi rate 1':

trom tne inyiscid qruwtnﬂ gate 4t larger wevelengths.
Tne implications of all this for the numerical soly-
tion of the eguations i1y described 1n the next
section,
V. NOMERICAL SOLUTION OF Tig EQUATIONS

nmnlndtmn at the two-phdase flow eyuations to,
the andlysis av a specifig problenr Imds to qreat
natnematical fmplvu'v an all but the stmplest cire
For 1mis reay on. rtonas hm»n necessary
tu ﬂevolu'\ nuwrual wluthm terhm e tar nighe
Y o computers. .fwv’tabl.. suth an .m»mm M ores
autres thE rnteadu tion of aoprodiiations. usaally
o1 beth

throsin the tintte-dit fereho e ropresent gt ise
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STores tar e el the averde vl un\ow‘ Cru vards
vy treld v.un-:n.w.. N that the cuntinae RN

deaeribed by g fimite neter d¥ovalies ratrer thin

1l“iﬁ"!h-unur'lbur v";u'n-) tue the e r-e des e

2
tiaZ ot @ contingum. v add1t 1on g the ale w1 on
roceeds through a set of fimte tire tntervpls, the

X P
results tor, ecauh new step being calculated fro.
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e}
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¢ ) 0. [ ] iP
Woveilong of Pertratan
Fig. 1. lastability Growth Rate as'a Function o

Perturbation Wavelength for Various Kim
\“natic Yiscosity Coefficients.
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o

nduss1razlve ‘mechanism, for example, v\sLos.tm,

can be recognized.

those ¢! the previous step, or from tne prés:ribed#
initial conditions, by means of tne finite-differ-
ence approximations to the differcntial gquations,
Such @ finite-difference approach, descrived in
detail elsewnere,! *? imediately raises questions
concerning accuracy, for which two dis}1nct aspects
First there i, tne jyuestion. of
representing the true physical processes with real-
istic differential equations and interaction funce
tions for which several comuents have already been
made. Second, there is the question of=ihe errors
introdﬁked by the finite-difference approximations.
The numerical errors are ofweveral differents
kinds.
and c;n be mitigated by-the use o a mesh scale
that ds fine eompared wlth the spatial scale for
appreciable chianges in the f-DId variables, and by
time-step intervals that are small compared with the
Lire scale for appreciable local (nhanges. Another
15 numerlcel instability in whict the calculated
results ascillate around the des-réd solution with
away from

One arises from coarseness of resoldtion,

‘ncreasing amplitude, or otherwise dritt

the desired results, N !
Mumericgl instability can sometimes be cured
by Medns of an implicit formulaticn uf tﬁne finite-
& fference equations or by the irtrvoduction of a
The
technique we have been using empldvs both. '

5 The& implicitness is required because of our
need for flow analysis at very low Mach numbers
and/or witn strong coupling between- the fields.
This crucial feature is emphasized in tre original
reports of the technigue and is not discussed
turther in the present paper. 5

The introduction of viscosity as 4 dissipative

4

procedure must be accomplished with qreat care

since numerical siabihty often requires magnitudes
fur tne viscosity Loeffjrlent that queatly exceed
the true values for the materials. Speclf1cqjly.
the, viscosity must not be o qreat as to damp exe
cessivély the longer wavelength perturbations des-
cribed in-the previous section, For num‘*ricai>
stah:l1ty. however, the hinematic viscosity. e
aust usually exceed some constant fraction of the
produtt of fluid speed u, Snd mesh-cell size, ox,
Roughly, when the time step per cycle is appro-
priately chosen, we may estimate for the required

)

viscosity o e



X,

Thus, the smaller the cell size, the less vis-
cosity is required. At the same time, Fig 1 Shows
that the smaller the viscosity, the smdll=r is che
perturbation wavelength that is essentially ugals
tered. Thus the two considerations are compatible.
Far a given phyéica] scale to be resolved, the mesh
'scale, 3x, can be reduced, at least in principle, to
tie extent that the contortion is resolveq ‘and the
viscosity required for numerical stab!l1t% will h@vg
n2gligible effect on the scale of the contortion.

" In practice, this necessary finenéss of mesh
scale can, indeed, be realized with present compu-
tars for many, but not all, problems of interest.
Tne next section describes and illustrates several
examples.

D

-

NUMERICAL EXAMPLES
In erder to demonstrate trat. long-wavelength-
instability cun be accurately calcuiated, despite -
t1e mitigation of very short-uavelength igszabi\ity
by means of numerical dissipation, we consider the -
configuration of a fluidized dust bed in which
gnysical instability is well known to occur. Figure
2 illustrates the physical slugging flow fay such a )
dust bed. The calculation commenced from a s)ightly
perturbed equilibrium and developed the oscilla%ory
behavior in a spontaneous and natural fashion. . Void
fraction as a fdncc#on of height from the floor of
the bed shows a progression of propagating waves

with exponentially groﬁiﬁgpamplitude (in éxcellgnt:
agreement with linearized étability-qna1ysis pre- °

a

Vi,

ors -
§osol— B
2 osot—-—
i
- 028 L
e o
Fig. 2. Void Fraction vs Height from the fldor 6f = -
a Function of Perturbation Wavelength for, =~ °
Various Ki~amatic Viscosity COefficient4
.8 < )
<

in the core re910n high vapar pressure can develop, .

e

: -

gictions) in the;lbuer redions, and dn awpitude

that is bounded by nonlinear effects in tne upper
This example demonstrates that shysical
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regions.
instabilrties can indeed be accurately calculdted
with neither the disastrous manifestation. of short«
wavelength instability nor excess smouthing for the™
dynamics of interest.

< Our second example is designed to exanine a
posdibie, but nighly improbable, scenario of an ex-
tremely simplified hypothetical liquid metal fast
breader reactor (LM?BR),disassemnly accident., A iy-
pical configuration af the core-reflectqr-p!enuﬁ re-,
gion jn cylindrical coordinates is diagramued inFig,
3. The vnid contains sodium vapor while the remain-
ing vo]uue is filled un1fonn|y with uranlum-d\ux1de
and steel drop1ets in the core and steel dropiets
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resulting in g pressure-driven expaksion. The hot- V11. CONCLUSIONS g N

tom and right-nand boundaries are fonsidered rigid, i T Because most Two- p‘mse flow urob]ems are s¢

while material is allowed to eﬁter and exit through 4 naturally complicated, mg-l-,pegd c1q.1a! computers

the top. A Cﬂﬂﬂo'ﬂ,t,é of the various fields and = . gre ‘being emploved t¢ solve the coupled nonhneur

their time evolution is presented’in Fig. 4. The partial différential equations thdat™ df_-srrwe tne

marker-particle configuration depicts the distribu- dynamics of such a comples pnysical system. Tne .

tion and density of the various materials through- formulation of these equations, a~;"‘reported in the -

out the computationa) mesh. Foe] and steel droplets ©  original work, is shown, to-be correct by a defriva-

dare represented respectively by the square ang plus tion from a statistical viewpoint, which is byseq

signs, wnile sodium vapor is represented by the on the momefits of a Liouxille eguation. - ahesg crf-

dots. The velocity fields «re normalized to t‘fe ferential fielg equétions governing the ﬁ»ctiop,of
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The calculation proqresses with an intense ) example we see tnat the dynamcs of resolvable flow

shock developing in front of the sodlum vapor ex- | contortions can be Succescfully cdlculeted without ’

. panding out Of the pressurized ‘core "eg'ﬁn Bel . requiring excessive dissipation or smoothing, ard ’

cause of the gmhp coupling between the vapor and’ .4t the same time avoiding fire scale instabilities

droplet fields, the droplet motion is icitially al- that otherwise would aesi'roy the validity of tne’

H
most-coincident with the vapor expansion. The snock results.
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