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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcomputer model for  a hot gas-fluidized bed has been developed. The theoretical 
description is based on a two-fluid model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( TFM) approach in which both phases 
are considered to be continuous and fully interpenetrating. Local wall-to-bed heat- 
transfer coefficients have been calculated by the simultaneous solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the TFM 
conservation of mass, momentum and thermal energy equations. Preliminary cal- 
culations suggest that the experimentally observed large wall-to-bed heat-transfer 
coefficients, frequently reported in literature, can be computed from the present 
hydrodynamic model with no turbulence. This implies that there is no need to explain 
these high transfer rates by additional heat transport mechanisms (by  turbulence). 

The calculations clearly show the enhancement of the wall-to-bed heat-transfer 
process due to the bubble-induced bed-material refreshment along the heated wall. 
By providing detailed information on the local behavior of the wall-to-bed heat- 
transfer coefficients, the model distinguishes itself advantageously .from previous 
theoretical models. Due to the vigorous solids circulation in the bubble wake, the 
local wall-to-bed heat-transfer coefficient is relatively large in the wake of the bubbles 
rising along a heated wall. 

Introduction 

Because of their favorable heat-transfer properties fluidized 
beds find a widespread application in highly thermal processes. 
Many of these applications involve the transfer of heat between 
the bed and immersed surfaces but yet it is very difficult to 
predict values for the corresponding heat-transfer coefficients 
with confidence. Many empirical correlations for bed-wall and 
bed-immersed tube heat-transfer coefficients have been pro- 
posed in the literature but the use of these expressions is limited 
to the experimental conditions on which they are based: pre- 
dicted heat-transfer coefficients may differ by almost two or- 
ders of magnitude from the actual coefficients in some cases 
(Gelperin and Einstein, 1971). Thus, the designer of fluidized- 
bed heat-transfer systems should cautiously use such corre- 
lations in estimating heat-transfer coefficients. From a sci- 
entific point of view, these empirical correlations are less 
attractive because they generally do not contribute to the un- 
derstanding of the fundamental transport mechanisms. 

Therefore, several investigators have developed mechanistic 
models for the prediction of heat-transfer coefficients, the most 
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useful type being based upon transient conduction between the 
particles and the surface. These type of mechanistic models 
can roughly be divided into single particle models and emulsion 
phase models. 

Single-particle models 
In single-particle models the fluidized bed is considered as 

a heterogeneous system consisting of a continuous phase (that 
is, the fluidizing medium) and a discrete phase (that is, the 
solid particles). The heat-transfer process for single particles 
during their residence at the heat exchanging surface is de- 
scribed in terms of two separate transient heat conduction 
equations. 

This model type was developed in its simplest form by Bot- 
terill and Williams (1963). They considered an isolated particle, 
surrounded by a stagnant fluid (that is, a gas or a liquid), and 
in contact with a heat-transfer surface for a certain time, during 
which heat was transferred to it. An explicit finite difference 
technique was used to solve the transient heat conduction equa- 
tions. Botterill and Williams (1963) compared their model pre- 
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dictions with experimental data obtained from a mechanically 
stirred fluidized-bed heat exchanger under closely controlled 
particle residence time conditions. Their theoretical predictions 
deviated considerably from the experimental data and in order 
to remove this shortcoming of the model, they introduce a gas 
film or gas gap with a thickness of approximately 0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIdp between 
the particle and the surface. The modified model showed then 
good agreement between the predicted and experimental data 
for short particle residence times. However, the assumption 
of such a gas gap does not correspond to the physical reality 
and has been criticized, among others, by Schlunder (1971). 

Besides, the single particle model of Botterill and Williams 
(1963) fails if the heat from the transfer surface penetrates 
beyond the first layer of particles which is the case at relatively 
long particle residence times. 

This failure of the single particle model has been recognized 
by Botterill and Butt (1968) and Gabor (1970) who proposed 
respectively a model with two spherical particles normal to the 
heat-transfer surface and a model with a string of spherical 
particles of infinite length normal to the heat-transfer surface. 
In both studies a finite difference technique was used to solve 
the transient heat conduction equations on the multiple particle 
domain. Satisfactory agreement between the theoretical pre- 
dictions and the experimental data was obtained in both studies 
under closely controlled particle residence time conditions. 
Gabor (1970) also proposed, as an alternative to his “string 
of spheres model,” a computationally less complicated model 
based on transient heat conduction through a series of alter- 
nating gas and solid slabs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Emulsion-phase models 

The emulsion-phase or packet-renewal models are in some 
respects similar to the continuum approach adopted in the 
present study and use the analogy between a fluidized bed and 
a liquid. Here the emulsion phase is considered to be the con- 
tinuous phase and the bubbles to be the discrete phase. Mickley 
and Fairbanks (1955) proposed such a packet renewal model 
postulating that heat is transferred by “packets” of emulsion 
phase which are periodically replaced from the heat-transfer 
surface by bubbles. According to the packet renewal model 
the local instantaneous heat-transfer coefficient hi is given by: 

where, t p  is the time for which the packet was in contact with 
the heat-transfer surface. In terms of the packet renewal models, 
the thermophysical properties within the packet are considered 
to be uniform and are usually evaluated at bed conditions 
corresponding to incipient fluidization. However, due to the 
bed voidage variation near the constraining heat-transfer sur- 
face, the thermophysical properties of the packet close to the 
surface will differ from those in the bulk of the emulsion phase. 
In fluidized beds the principal voidage variation occurs within 
one particle diameter from the surface (Korolev et al., 1971) 

which implies that the thickness of the surface layer of altered 
thermophysical properties is approximately one particle di- 
ameter. Most probably, the effect of this surface layer or packet 
heterogeneity is negligible for packets with a heat penetration 
depth 6>> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdp, thus for packets with relatively large residence 

times. However, at relatively short packet residence times the 
effect of this surface layer becomes increasingly important and 
the simple emulsion phase model fails. Therefore, this model 
type has been refined by several workers (Baskakov, 1969; 

Kubie and Broughton, 1975) to extend its validity to relatively 
short packet residence times. 

Baskakov (1969) introduced the concept of a time-inde- 
pendent contact resistance to account for the spatial voidage 
variation near the surface. Kubie and Broughton (1975) mod- 
ified the simple packet renewal theory to allow for property 
variations near the heat-transfer surface. They used simple 
geometrical considerations to model the spatial voidage vari- 
ation normal to the heat-transfer surface and subsequently used 
the resulting expression for the voidage profile to describe the 
corresponding property variations. Despite their simplicity, the 
use of these (refined) emulsion phase models has limited ap- 
plicability, because they all require information regarding the 
actual packet residence times that exist in fluidized beds. Un- 
fortunately, such hydrodynamic parameters cannot easily be 
obtained by experimental methods. Ozkaynak and Chen (1980) 

reported measurements of the particle residence time distri- 
bution on a vertical tube immersed in a fluidized bed, obtained 
by a fast response capacitance probe mounted in the surface 
of the tube. They obtained good agreement between experi- 
mentally determined heat-transfer coefficients and the predic- 
tions according to the packet renewal model provided that the 
measured root-square-mean packet residence times were used 
in the model. From a scientific point of view, their approach 
is less satisfactory because it requires the use of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII posteriori 
empirical constant. 

The two-fluid model (TFM) approach, adopted in the pres- 
ent study, has the advantage over previous models reported in 
literature that it does not require the input of empirical pa- 
rameters such as the average particle or packet residence time; 
the bed hydrodynamics evolves naturally from the solution of 
the TFM conservation of mass and momentum equations. 
However, to account for microscale (that is, on the scale of a 
representative unit cell of particles and interstitial fluidum) 
momentum and heat transfer between the phases, the present 
mesoscale model incorporates two empirical expressions for 
respectively the interphase momentum transfer coefficient and 
the interphase heat-transfer coefficient. For the further de- 
velopment of the mesoscale model, mechanistic models should 
be developed which describe momentum and heat transfer on 
microscale. 

Previous work has shown that the hydrodynamic model can 
predict bubble sizes (Kuipers et al., 1991) and void distributions 
(Kuipers et al., 1992b) in a cold-flow two-dimensional gas- 
fluidized bed satisfactorily without the use of any fitted pa- 
rameters. These results provide an indirect experimental val- 
idation of the empirical expression for the interphase 
momentum transfer coefficient. In the present study, the wider 
applicability of this model to predict wall-to-bed heat-transfer 
coefficients in gas-fluidized beds will be explored. It must be 
emphasized, that the present model should be considered as a 
learning model and not as the most efficient way to predict, 
for example, average wall-to-bed heat-transfer coefficients. 

Theoretical Model 

The present heat-transfer model is based on a TFM approach 
in which both phases are considered to be continuous and fully zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Table 1. Two-Fluid Model Conservation of Mass, Momentum 
and Thermal Energy Equations in Vector Form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Continuity Equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fluid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAphase: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w+ ( V  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.+) = o  
at 

(T l - I )  

Solid phase: 

a [ ( 1  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ) p S I  + [ v . ( 1  - E)P,ij] = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 (Tl-2) 
at 

gomenlum Equations 
Fluid phase: 

Solid phase: - 
a [ ( l -C )~~U~+[V . ( l -€ )p ,uT ; ]=  - ( l - € ) v p  

at 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-5) - G ( 6 )  VC + ( I  - ~)p,g (Tl-4) 

Thermal Energy Equations 
Fluid phase: 

specification of the constitutive equations which define the 
remaining variables in terms of the basic variables. Here, the 
porosity E ,  the pressure p ,  the fluid phase temperature Tf, the 
solid phase temperature T,, the fluid phase velocity vector Ti 
and the solid phase velocity vector 5 constitute the basic vari- 
ables. The additional constitutive equations provide the nec- 
essary empirical information. The major empirical input in the 
hydrodynamic model is the interphase momentum transfer 
coefficient (3 which was obtained from well-established liter- 
ature correlations (Kuipers et al., 1992a). Only the constitutive 
equations associated with the thermal energy equations will be 
considered here. 

Internal energies If and I, 

respective temperatures by the caloric equations of state: 
The internal energies of both phases are related to their 

and 

+ (V .EKJV T’) -a (  TJ- T,) (TI-5) 

Solid phase: where C,,f and C,,s represent respectively the fluid phase and 
solid phase heat capacity. In the present study, both are as- 
sumed to be independent of the temperature. 

Interphase heat-trans fer coefficient a 

1 a(i - 
a [ ( l - + J J + [ V . ( l  - E ) p S J i j ] =  - p  - + [V . ( 1  -€)El 

at i at 
+ [ V - € ) K s V  Ts] + a( TI- T,) (Tl-6) 

The interphase heat-transfer term in equations (T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1-5) and 
(Tl-6) is written in standard form as the product of a transfer 

interpenetrating’ 
and 

shows the TFM mass, momentum 
energy conservations equations for both phases 

coefficient 01 and a driving force (T,- T,). Here, a represents 
the volumetric interphase heat-transfer coefficient which equals 

in vector form. As evident from these equations, the present 

our point of view (which is supported by experimental evidence) 
the macroscopic (that is, on the scale of the size of bubbles) 

the product of the specific interfacial exchange area and the 

spherical particles a can be obtained from: 

hydrodynamic does not contain terms* In fluid-particle heat-transfer coefficient f fp .  For mono-+ized 

turbulent transport in dense gas-solid systems such as gas- 
fluidized beds does not constitute a dominant transport mech- 
anism. This has been demonstrated in a qualitative sense (Rowe, 
1971) by injecting a tracer gas (NOz) in a bubbling two-di- 
mensional gas-fluidized bed. In these experiments no appre- 
ciable lateral mixing of the injected NO2 could be observed 
which implies the absence of turbulence in the gas phase and 
therefore the absence of turbulence in the solid phase since the 
motion of solid particles in gas-fluidized systems is driven by 
the gas motion and not vice versa. However, for very dilute 
systems turbulent transport becomes more important due to 
the low concentration of particles which dampen the gas phase 
turbulence. 

In addition it should be noticed that the viscous stresses in 
both momentum equations have been omitted. This approx- 
imation is valid due to the fact that the interphase momentum 
transfer coefficient /3 is the dominant term in the momentum 
equations. Our computational experience has revealed that the 
sensitivity of the models predictions (that is, calculated bubble 
parameters such as shape and size) with respect to the value 
of the solid phase viscosity is low. 

As discussed in Kuipers et al. (1992a), the solution of the 
balance equations, listed in Table 1, involves the specification 
of the so-called “primary” or basic variables and subsequent 

6(1- E )  
ffP 

ff=- 

dP 
(3) 

where 01, has to be estimated from empirical correlations. There 
are a large number of empirical correlations available for the 
estimation of both packed bed and fluidized bed fluid-particle 
heat-transfer coefficients. In the present study, the correlation 
proposed by Gunn (1978) was selected to obtain an expression 
for the fluid-particle heat-transfer coefficient a,. This corre- 
lation relates the Nusselt-number Nu, to the Reynolds number 
Re, and the Prandtl number Pr for heat transfer to fixed and 
fluidized beds of particles within the porosity range of 0.35- 
1.00. Experimental data are correlated up to Re,= lo5. 

a d  

K f J J  

Nu,=>=(7- 10e+5c2)[1 +0.7(Re,)0~2(Pr)”31 

+ (1.33 - 2.406 + 1 .20~’) (Re,)’.’ (Pr)”? (4a) 

where 

EP/lF - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 I dp 
Re, = - 

Pf 
(4b) 
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As expected, the Nusselt number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANu,, given by Eq. 4a ap- 
proaches 2 for an isolated particle in an infinite stagnant 
fluidum: 

Several other, less evident, asymptotic conditions have also 
been incorporated in Eq. 4a. For a detailed discussion refer 
to the paper by Gunn (1978). 

The use of Eq. 4a inevitably introduces some inaccuracies 
in our model. However, due to the large volumetric interphase 
heat-transfer coefficient the difference in temperature between 
the phases will remain small which implies that the error due 
to the introduction of this empiricism can probably be ne- 
glected. Trial simulations predicted, as expected, rapid quench- 
ing of hot fluidizing air flowing into a cold fluidized bed of 
glass beads. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Thermal conductivities KJ and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus 

The proper specification of the constitutive equations for 
the thermal conductivities Kfand K, poses a major difficulty in 
the theoretical formulation. In terms of the TFM approach K/ 

and K, must both be interpreted as effective transport properties 
which means that the corresponding microscopic transport 
coefficients K ~ , ,  and K , , ~  cannot be used. Both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~f and K> are 
expected to depend on E ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKf,o, K ~ , ~  and the particle geometry, 
where the functional dependency must be specified partly by 
recourse to experimental data. 

To derive the corresponding expressions it is necessary to 
consider the heat conduction terms in the thermal energy equa- 
tions (TI-5) and (Tl-6) in more detail. These equations show 
that Fourier’s law of heat conduction has been used to represent 
the conductive heat transport in both phases. Accordingly the 
expressions for the conductive heat fluxes 3f and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs,, in the 
fluid and the solid phase, respectively, should be formulated 
as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

and 

In terms of the theoretical model, the total conductive heat 
flux 3 can be written as follows: 

which reduces to: 

- 
@ =  - ( t K f + ( l - € ) K S )  V T =  -KmVT ( 6 4  

in case of thermodynamic equilibrium ( Tf= T, = T )  between 
the phases. Thus, according to Eq. 6d the “mixture conduc- 
tivity” K, is defined as: 

This mixture conductivity K, corresponds to the familiar “ef- 
fective bed conductivity” Kb which can be determined exper- 
imentally. In the most general case, as discussed by Gelperin 
and Einstein (1971), this mixture or bed conductivity ( K @ ~  or 
Kb) includes conductive, convective and radiative components. 
However, due to its insignificance at the conditions of the 
present study, radiative heat transfer will not be considered 
further. Because, the convective transport components are ac- 
counted for separately in the thermal energy equations (TI -5) 
and (Tl-6), they neither need further consideration. The re- 
maining conductive transport mechanism is a very complex 
phenomenon involving contact conductance among the par- 
ticles and conduction through a fluid layer surrounding each 
particle. 

In the present study we use the model of Zehner and Schlun- 
der (1970) to obtain an approximate expression for the effective 
thermal bed conductivity Kb. This conductivity model was orig- 
inally developed for the estimation of the effective radial ther- 
mal conductivity in packed beds. However, it can also be 
applied to estimate the effective dense phase thermal conduc- 
tivity in fluidized beds (Biyikli et al., 1989). According to the 
Zehner and Schlunder (1970) model the radial bed conductivity 
Kb consists of a contribution Kb,f due only to the fluid phase 
and a contribution Kb., due to a combination of the fluid phase 
and the solid phase: 

Kb = Kb, f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4- Kb,s 

where 

and 

1019 

B =  1.25(?) 

for spherical particles 

A = %  
Kf*o 

w = 7.26 x 

Figure 1 shows the effective bed conductivity Kb as a function 
of the bed porosity c according to the Zehner and Schlunder 
model for spherical glass beads in air. It is interesting to note 
that in the operating region of fluidized beds (t > 0.40), Kb is 
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W/(mK) 1'20 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ax zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* 

t 
'4, 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.oo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.80 

0.60 

0.40 

0.20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.20 0.40 0.60 0.80 1.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E d  

Figure 1. Effective bed conductivity Kb as a function of 
the bed porosity c according to the Zehner and 
Schlunder (1970) model. 
Fluid-particle system: air [K,,. = 0.0257 W/(m .K)]; glass beads 
[ K ~ , ~ =  1.00 W/(m.K)]. 

significantly smaller than K , , ~ .  The desired constitutive equa- 
tions for ~f and K, can finally be obtained by comparing Eq. 
6e with Eq. 7a: 

K b J  
Kf=- 

E 

Syamlal and Gidaspow (1985) have also developed a nu- 
merical model for a hot gas-fluidized bed based on a TFM 
approach. They too used the Zehner and Schlunder model to 
obtain the constitutive equations for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK f  and K ~ .  However, their 
constitutive equations show some remarkable differences with 
the ones derived in the present study. They assumed that the 
fluid phase thermal conductivity ~f equals the corresponding 
microscopic thermal conductivity K r 0  and that the solid phase 
thermal conductivity K, equals the mixture or effective thermal 
bed conductivity K b ,  thus: 

and 

In the gas-particle system considered by Syamlal and Gi- 
daspow (1985), the bed conductivity K b  is dominated by the 
contribution of the solid phase Kb,s which implies that their 
expression for the solid phase thermal conductivity K~ differs 
approximately a factor 1/( 1 - E )  from the present one. 

Numerical Simulation 

The TFM conservation equations have been solved numer- 
ically by a finite difference technique, described in more detail 
by Kuipers et al. (1990). This technique has been embodied in 
a computer model which calculates the "primary" or basic 
variables in two-dimensional Cartesian or axisymmetrical cy- 

Y 

X 

~ x . = ( L { ) i * 6 x ;  i =  ~ . . . n - l  
1 2  

I 
hydrodynamic cell 

n-1 
Axn = Ax 

Figure 2. Subdivision of hydrodynamic computational 
cells into subcells near a heated wall. 
n = number of subcells. 

lindrical coordinates. Previous work (Kuipers et al., 1991, 
1992b) was concerned with the theoretical prediction of the 
cold-flow hydrodynamics in a two-dimensional gas-fluidized 
bed. In the present study the numerical model has been ex- 
tended to enable the additional calculation of wall-to-bed heat- 
transfer coefficients in fluidized beds. 

Preliminary calculations showed the existence of very sharp 
temperature gradients near the heated wall which necessitated 
the use of a grid refinement technique in order to accurately 
represent the temperature profiles in the thin thermal boundary 
layer. This technique was not incorporated in the basic nu- 
merical model and will be briefly discussed below. 

Grid refinement technique 
While applying a finite difference technique for the solution 

of the complex partial differential equations, the considered 
region of the two-phase flow was divided into a number of 
equally sized cells (as shown in Figure 2). The original cell 
structure of the hydrodynamic model is now refined in one 
dimension, viz normal to the heated wall, by a subdivision as 
sketched in Figure 2. As Figure 2 shows, the subcell dimension 
normal to the heated wall Ax, decreases with decreasing dis- 
tance from the wall: the finest subcells are situated immediately 
near the heated wall where the maximum temperature gradients 
are to be expected. 

Syamlal and Gidaspow (1985) have used uniform subcell 
dimensions in their numerical model. This approach is less 
efficient from a computational point of view, because the total 
number of subcells required to achieve the same degree of grid 
refinement near the heated wall is considerably higher. The 
required number of subcells n is problem dependent and should 
be found by performing a convergence study with respect to 
the numerically calculated heat-transfer coefficients. Com- 
putational experience has shown that for the conditions of the 
present study, division into 7 subcells is sufficient to establish 
a grid-independent solution. 

Fluid-particle system 
For the theoretical calculations reported in this article, the 

fluid-particle system consisted of air as the fluidizing medium 
and mono-sized spherical glass beads as the fluidized solid 
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Table 2. Numerical Data of the Fluid-Particle System zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
hmf 

hmf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

F M z i n g d i u m :  air at room temperature and 1 bar 
Density ideal gas law 
Thermal conductivity 0.0257 W/(m.K) 

Fluidized solid parfirles: Spherical glass beads 
Particle diameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 . 0 0 ~  1 0 - ~  m 
Density 2,660 kg/m3 
Thermal conductivity 1 .OO W/(m.K) 

Heat Capacity 994.0 J/(kg.K) 

Heat capacity 737.0 J/(kg.K) 

freeboard 
4 

b 
W 

particles. The numerical data used for the computations have 
been summarized in Table 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Geometry and initial conditions used for  the numerical 
computations 

Figure 3 shows the bed geometry and the initial conditions 
used for the numerical computations. Other relevant data are 
listed in Table 3 .  Two-dimensional Cartesian coordinates were 
used for all computations reported in this article. Unless oth- 
erwise stated, the lateral and vertical dimensions of the hy- 
drodynamic computational cells were respectively zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAax= 0.0075 
m and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASy = 0.0100 m (required number of computational cells: 
38 x 100 = 3,800). The time step was typically 2.5 x s. Sim- 
ilar to our previous work, the initial condition of minimum 
fluidization was used for all computations. 

A freeboard of the same size as the initial bed height hmf 
was provided to allow for bed expansion. At zero time, the 
velocity of the air injected through the orifice near the right 
wall was increased from minimum fluidization velocity umf to 
the required orifice velocity u,. Together with the injection of 
the additional fluidizing air through the orifice, the temper- 
ature of the right wall was stepwise increased from 293.0 K to 
373.0 K. These sudden changes in boundary conditions, im- 
posed at the confining walls, caused the simultaneous for- 

I T = (0, 0)  
I ~ 

mf & = &  

Tf= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, = 293.OK 
- 
u = (0, urn{ern,3 

7 = (0, 0) 

Figure 3. Bed geometry and initial conditions used for 
the numerical computations. 
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Table 3. Bed Geometry and Initial Conditions Used for the 
Computations 

Initial bed height 0.500 m 
Bed width 0.285 m 
Orifice diameter 1.50X lo-’ m 
Minimum fluidization porosity 0.402 
Minimum fluidization velocity 0.250 m/s 
Initial freeboard pressure 101,32S.O Pa 
Bed temperature 293.0 K 

mation of bubbles and the penetration of heat into the fluidized 
bed. 

Boundary conditions for  the hydrodynamic equations 
The left and right walls were modelled as impermeable free 

slip rigid walls for both phases. At the bottom wall the influx 
of fluidizing air was prescribed and for the solid phase a free 
slip rigid wall was assumed. 

At the top of the bed a continuative outflow wall and an 
impermeable free slip rigid wall were assumed for the fluid 
phase and the solid phase respectively. The mathematical rep- 
resentation of the boundary conditions for the hydrodynamic 
equations is shown in Figure 4a. 

Boundary conditions for  the thermal energy equations 
The left wall was considered to be an adiabatic wall for both 

phases. At the right wall a temperature Tw=373.0 K was im- 
posed for both phases. At the bottom wall the inlet temperature 
of the fluidizing air and the temperature of the solid particles 
were prescribed as T,= Ts=293.0 K. At the top of the bed a 
continuative outflow wall was assumed for the fluid phase and 
for the solid phase an adiabatic wall was assumed. The math- 
ematical representation of the boundary conditions for the 
thermal energy equations is shown in Figure 4b. 

Resu I ts 

It will be evident that it is impossible to present an extensive 
number of simulations due to the large number of parameters 
which can be varied. Furthermore, each simulation requires a 
huge amount of computer time which imposes a practical con- 
straint to keep the total computational time reasonable. There- 
fore, only a few typical situations have been studied. 

Bed at minimum fluidization conditions 
First, a fluidized bed operated at minimum fluidization con- 

ditions has been considered in our numerical study since it is 
amenable to a simple theoretical analysis as shown below. 
Advantageously, on the one hand, the validation of the nu- 
merical solution method can be obtained by comparing the 
model predictions with the results of this theoretical analysis, 
on the other hand, a “base case solution” becomes available 
which is very useful in order to place the computational results 
for more complicated systems in perspective. 

Simple Theoretical Model. For an incipiently fluidized bed, 
the thermal energy equations (TI-5) and (Tl-6) reduce to: 
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Figure 4a. Boundary conditions for the hydrodynamic 
equations. 
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Figure 4b. Boundary conditions for the thermal energy 
equations. 

and 
For many purposes it is useful to consider also the average 

heat-transfer coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh during a certain contact time tP. 
From its definition and Eq. 13 it can easily be shown that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh 
is given by: 

respectively, provided that, first, both the convective heat 
transport and the work terms can be neglected and, secondly, 
that the conductive heat transport predominantly occurs nor- 
mal to the heated wall (that is, in the x-direction). In the case 
of local thermodynamic equilibrium (Tf= T, = T )  between the 
phases and constant thermophysical properties near the heated 
wall, Eqs. 10a and 10b reduce to: 

aT a2T 
ax2 

-- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat - ae- 

which is the well-known heat conduction equation. Here, a, 
represents the mixture or effective thermal diffusivity defined 
by: 

For a semi-infinite medium, the familiar penetration theory 
solution can be obtained from Eq. 11. According to the pen- 
etration theory the local instantaneous heat-transfer coefficient 
hi is given by: 

For the fluid-particle system considered in the present study 
Eqs. 13 and 14 yield respectively: 

hi=-  252 [ W / ( m 2 . K ) I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
45 

and 

504 
h = -  [ W / ( m 2 . K ) ]  
6 

Equations 15 and 16 will subsequently be used for the inter- 
pretation of the computational results. 

As a typical example, Figure 5 shows the numerically cal- 
culated local wall-to-bed heat-transfer coefficient as a function 
of time for an incipiently air-fluidized bed at a height of ap- 
proximately 0.24 m above the gas distributor. The prediction 
according to the penetration theory, Eq. 15, is also shown in 
this figure. It can be seen that, in accordance with the pre- 
dictions from the penetration theory, the numerically calcu- 
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Figure 5. Numerically calculated local wall-to-bed heat- 
transfer coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh and local solidity (1 - 4 
as a function of time t for an incipiently air- 
fluidized bed at approximately 0.24 m above 

the gas distributor. 
At zero time the heated wall contacts the bed. Solid line: pene- 
tration theory, Eq. 15. 

lated local wall-to-bed heat-transfer coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh decreases 
rapidly with increasing time t. However, the numerically cal- 
culated local heat-transfer coefficient shows a decay with a 
small superimposed oscillation. At other heights above the gas 
distributor, similar results were obtained. 

In order to find an explanation for this phenomenon, a 
further analysis of the computational results was performed. 
It was found that the local heat-transfer coefficient oscillates 
in phase with the computed local solidity (that is, the solid 
phase volume fraction (1 - E ) )  as Figure 5 shows (oscillation 
frequency is approximately five Hz). One might expect this 
finding because the group ~,,,(pc,,)~ in Eq. 13 increases with 
increasing solidity (1-E) ,  Although Eq. 13 was derived for 
constant thermophysical properties it is still applicable since 
the solidity fluctuations remain small. Figure 6 shows the po- 
rosity E as a function of the distancey above the gas distributor 
at t=0.81 s and t=0.89 s. This figure clearly illustrates the 
propagation of voidage waves through the bed, a feature which 
will be explained subsequently. 

l t  should be realized that the condition of incipient fluidi- 
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Figure 6. Propagation of small voidage waves in an in- 

cipiently air-fluidized bed. 
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Figure 7. Time-averaged wall-to-bed heat-transfer coef- 
ficient h as a function of time t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor an incipi- 
ently air-fluidized bed. 
Solid line: penetration theory, Eq. 16. 

zation involves a very delicate balance between the frictional 
force exerted by the fluidizing gas on each particle and the 
gravitational force acting on each particle. The value of the 
minimum fluidization velocity umf used in the simulations was 
slightly higher than the value corresponding to an equilibrium 
between frictional and gravitational forces (that is, the “true” 
minimum fluidization velocity). As a consequence of this small 
positive deviation from the “true” minimum fluidization ve- 
locity local bed expansion occurs generating a local deviation 
from the specified incipient fluidization porosity. As known 
from linear stability analysis this constitutes an instable situ- 
ation and consequently the “disturbance” grows to a certain 
extent while propagating through the bed. In the computation 
this phenomenon manifests itself by the propagation of plane 
voidage waves through the bed spanning the entire column 
width. In practice, with the exception of liquid-fluidized beds 
where this phenomenon has been observed experimentally, due 
to bed inhomogeneities and small deviations from uniform gas 
throughflow, plane voidage waves do not occur and instead 
small bubbles are generated. 

Figure 7 shows the time-averaged wall-to-bed heat-transfer 
coefficient h as a function of time t .  Prior to time-averaging, 
the average instantaneous wall-to-bed heat-transfer coefficient 
was calculated by integrating the local heat-transfer coeffi- 
cients over the incipient fluidization bed height hrnp The pre- 
diction according to the penetration theory, Eq. 16, is included 
in this figure. As Figure 7 shows, the numerically calculated 
wall-to-bed heat-transfer coefficients agree very well with the 
simple penetration theory solution which validates the nu- 
merical solution method. 

In order to demonstrate the further capabilities of the present 
continuum model, a few more complicated systems have been 
studied theoretically and these will be discussed below. 

Single bubble rising along a heated wall 
The next application of the model involves the calculation 

of local wall-to-bed heat-transfer coefficients for the case of a 
single bubble rising along a heated wall. In comparison with 
an incipiently fluidized bed one might expect an enhancement 
of the wall-to-bed heat-transfer due to the bubble induced re- 
placement of solid particles adjacent to the heat exchange sur- 
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Figure 8. A bubble rising along a heated wall in a two-dimensional air-fluidized bed: a (left) and b (right), 
The length of the horizontal bar designates the instantaneous local heat-transfer coefficient. Dashed line: penetration theory, Eq. 15. 

face. In freely bubbling beds this solid particle replacement 
occurs due to the bubble induced macroscopic (that is, on the 
scale of the bed) solids circulation on the one hand and due to 
the particle motion in the immediate vicinity of rising bubbles 
on the other hand. The experimentally observed high heat- 
transfer coefficients in freely bubbling beds are partly attributed 
to these phenomena. Here, as mentioned above, the effect of 
bubbles on the wall-to-bed heat transfer in fluidized beds, will 
be studied computationally in its simplest form. 

The injection of a single bubble into an incipiently fluidized 
bed was simulated by limiting the time of additional (that is, 
in excess of the incipient fluidization velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAurn/) air injection 
to 0.245 s. The injection velocity of the additional air was 5.25 
m/s(21*umf) forO<t<0.245 sand0.25 m/s(u,,) fort>0.245 
s. Figures 8a and 8b show a sequence of density or dot plots 
which clearly illustrate the bubble formation, the bubble rise 
along the (heated) wall and the eruption at  the bed interface. 
A visual representation of the numerically calculated instan- 
taneous local heat-transfer coefficients is included in these 
figures. Here, the length of the horizontal bar is a measure 
for the value of the instantaneous local heat-transfer coeffi- 
cient. The dashed line represents the prediction according to 
the penetration theory, Eq. 15, which has been included for 
the purpose of reference. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As Figure 8a shows, after 0.245 s of air injection a bubble 
has detached from the orifice. During its rise along the wall, 
the bubble shape changes continuously due to the development 
of its wake. In front of the rising bubble, the calculated local 
heat-transfer coefficients are relatively low and decrease, as 
expected, with increasing time. However, at  the rear of the 
rising bubble, the calculated local heat-transfer coefficients are 
relatively high and differ greatly from the simple penetration 
theory solutions. 

Evidently, the bubble induced bed material refreshment along 
the heated wall, which is not accounted for in the penetration 
theory, is responsible for these high heat-transfer rates. This 
effect can be recognized very clearly from the first two plots 
(at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt = 0.1750 s and at  t = 0.2450 s) of Figure 8a. The local heat- 
transfer coefficient increases sharply as soon as the bed ma- 
terial, constituting the developing bubble wake, hits the heated 
wall. From the plots shown in Figure 8b it can further be seen 
that the maximum heat transfer occurs at  some distance behind 
the rising bubble. Figure 9 shows the calculated instantaneous 
local heat-transfer coefficients as a function of time at four 
different heights above the gas distributor. 

At heights less than the initial bed height, y < h ,  the tran- 
sient behavior is very similar in all cases. Initially the numer- 
ically calculated heat-transfer coefficients decay rapidly with 
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Figure 9. Calculated instantaneous local heat-transfer coefficients as a function of time at four different heights 
above the gas distributor: (a) y= 0.245 m; (b) y= 0.345 m; (c) y= 0.445 m; (d) y= 0.545 m. 
Initial bed height: h,,,=0.500 m. Solid line: penetration theory solution, Eq. 15. 

increasing time and they practically coincide with the pene- 
tration theory solution, Eq. 15. One might expect these results, 
since for short simulation times, the principal wall-to-bed heat 
transfer occurs through transient conduction normal to the 
heated wall into a nearly stagnant emulsion phase. 

At each location, as soon as the rising bubble passes, a drastic 
decrease of the numerically calculated local heat-transfer coef- 
ficient can be observed due to the relatively low effective ther- 
mal conductivity inside the bubble. After the bubble passage, 
the local heat-transfer coefficient rises sharply, passes through 
a maximum, and then slowly decreases again. From Figure 9 
it can be seen that the magnitude of this maximum decreases 
with increasing height above the gas distributor. This phe- 
nomenon is probably related to the progressive heat penetra- 
tion into the emulsion phase constituting the bubble wake. The 
calculated heat-transfer coefficient, at y = 0.545 m (> hmf)  
above the gas distributor, reflects the combined effects of the 
bed expansion and the subsequent bed collapse. 

In Figure 10, the instantaneous average wall-to-bed heat- 
transfer coefficient, which was obtained by integrating the local 
heat-transfer coefficients over the incipient fluidization bed 
height zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh,, is shown as a function of time. The penetration 
theory solution, Eq. 15, is also shown in this figure. Initially, 
the calculated average wall-to-bed heat-transfer coefficient co- 
incides with the penetration theory solution, however, during 
the final stage of bubble formation the available effective heat 
exchange length has decreased substantially due to the presence 
of the bubble and as a consequence, the average wall-to-bed 
heat-transfer coefficient falls below the penetration theory so- 
lution, Eq. 15. 

During its rise along the heated wall, the bubble induces a 
refreshment of the bed material adjacent to this wall and even- 
tually the calculated average wall-to-bed heat-transfer coef- 
ficient exceeds the penetration theory solution. Obviously the 
phenomenon of bed material refreshment overcompensates for 
the loss of the available effective heat exchange length due to 
the presence of the bubble. 

Stream of bubbles rising along a heated wall 
In the previous section, the effect of bubbles on the wall- 

- penetrationtheory 
numerical calculation 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 
t - 6) 

Figure 10. Instantaneous average wall-to-bed heat- 
transfer coefficient as a function of time. 
Solid line: penetration theory solution, Eq. 15. 
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Figure 11. Evolution and propagation of bubbles in a two.dimensional air-fluidized bed with a heated wall: a (left) 

and b (right). 
The bubbles originate from an orifice near the heated right wall. Air injection velocity through the orifice: 5.25 m/s ( 2 1 ’ ~ ~ ) .  

to-bed heat-transfer in fluidized beds was studied computa- 
tionally in its simplest form by considering a single injected 
bubble rising along a heated wall. The maximum heat transfer 
occurred at some distance behind the rising bubble due to the 
significant bed material refreshment in the bubble wake. De- 
spite the simplicity of the system considered in the previous 
section, it seems reasonable that the experimentally observed 
large wall-to-bed heat-transfer coefficients of freely bubbling 
beds are determined partly by very similar phenomena. 

Unfortunately, at present it is impossible to simulate such 
freely bubbling fluidized beds and the corresponding wall- 
to-bed heat-transfer processes on the basis of mechanistic 
models since such simulations would require a very large num- 
ber of computational cells and consequently huge amounts of 
(super-) computer time. Once the extension of the present two- 
dimensional numerical model to a three-dimensional one has 
been achieved, this limitation constitutes a practical limitation 
only. Hereafter, an approximately situation will be considered. 

A two-dimensional bed with preferential bubble formation 
near a heated wall served as a very rough approximation of a 
freely bubbling bed with an immersed vertical heat-exchanger 
tube. The injection velocity of the additional air (that is, in 
excess of the incipient fluidization velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAurn,) was kept con- 
stant at 5.25 m/s (21*urnf) in this final application of our 
continuum model. 

Figures 1 la  and 1 l b  show a sequence of density or dot plots 
which illustrate the formation, the rise along the heated wall 
and the subsequent collapse at the bed interface of the first 
bubbles, generated by the injection of the additional air through 
the orifice near the hot wall. A visual representation of the 
numerically calculated instantaneous local heat-transfer coef- 
ficients is included in these figures. During the initial period, 
the evolution and propagation of a relatively big start-up bub- 
ble can be clearly seen from Figure l la .  Subsequently, the 
simulation predicts the evolution and propagation of small 
elongated bubbles which tend to move away from the heated 
wall with increasing height above the gas distributor (See Figure 
1 lb). Inspection of Figure 1 l a  shows again that the maximum 
wall-to-bed heat-transfer occurs in the bubble wake. This phe- 
nomenon was also observed in the previous section. 
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Figure l l b  shows the presence of several bubbles, and as a 
consequence the profile of the instantaneous heat-transfer coef- 
ficient along the hot wall displays several maxima. As expected 
on the basis of the results presented in the previous section, the 
local heat-transfer coefficient rises very sharply if the bed ma- 
terial of the developing bubble wake hits the heated wall. This 
effect can be seen very clearly from the second plot (at t =  
0.6456 S) shown in Figure 1 Ib. Just above the gas distributor, 
the instantaneous local heat-transfer coefficient exceeds the 
value of 3,000 W/(m2.K). Conceptually, the heat-transfer proc- 
ess during the short bed material contact times with the heated 
wall, between the successive passage of bubbles, shows some 
resemblance with the picture envisaged in the familiar emulsion 
phase or packet renewal models. In terms of the packet renewal 
models, such high heat-transfer coefficients imply very short 
residence times of the “packets” or emulsion phase. At rela- 
tively short contact times the heat penetration depth will be 
relatively small and as a consequence, as explained in more 
detail in the introductory section, the effect of the altered ther- 
mophysical properties near the heated wall become important. 
In practice, this phenomenon will determine the maximum at- 
tainable wall-to-bed heat-transfer rates in fluidized beds. How- 
ever, the present continuum model does not account for the 
altered thermophysical properties near the heat-transfer surface 
and as a consequence it probably overpredicts the actual heat- 
transfer coefficients at very low “packet” residence times. 

Figure 12 shows the calculated instantaneous heat-transfer 
coefficient as a function of time at 0.345 m above the gas 
distributor. The prediction according to the penetration theory, 
Eq. 15, is included in this figure. After the sharp initial decay 
and the decrease due to the passage of the big start-up bubble, 
the local heat-transfer coefficient vs. time exhibits a complex 
oscillatory behavior. Here, the tendency of the small bubbles 
to move away from the heated wall while they rise along it, 
accounts for the relatively high minimum heat-transfer rates 
for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt>0.5 s. Figure 13 shows the instantaneous average wall- 
to-bed heat-transfer coefficient as a function of time. It has 
been obtained according to the procedure described in the pre- 
vious section. During the initial period, the heat penetrates into 
a nearly stagnant bed and consequently the numerically cal- 
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Figure 12. Calculated instantaneous heat-transfer coef- 
ficient as a function of time at 0.345 m above 
the gas distributor. 
Solid line: penetration theory solution, Eq. 15. 

culated heat-transfer coefficients agree with those predicted by 
the penetration theory. Subsequently, the average wall-to-bed 
heat-transfer coefficient falls below the penetration theory so- 
lution. This is caused by the presence of the big start-up bubble 
which substantially reduces the available effective heat exchange 
length. Eventually, the bubble induced bed material refresh- 
ment overcompensates for this phenomenon and the calculated 
average wall-to-bed heat-transfer coefficient exceeds the pen- 
etration theory solution. The instantaneous average wall-to-bed 
heat-transfer coefficient vs. time exhibits a complex oscillatory 
behavior which cannot be predicted with the simple penetration 
theory. 

Furthermore, as Figure 12 illustrates, the present model pro- 
vides detailed information on the local behavior of the wall- 
to-bed heat-transfer coefficients. Such information cannot eas- 
ily be verified by experimental methods presently available. 
Average wall-to-bed heat-transfer coefficients for air-fluidized 
glass beads have been determined experimentally by, for ex- 
ample, Ozkaynak and Chen (1980), Wunder (1980) and Prins 
(1987) in three-dimensional freely bubbling beds. A compar- 
ison of the calculated average wall-to-bed heat-transfer coef- 
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Figure 13. Instantaneous average wall-to-bed heat- 

transfer coefficient as a function of time. 
Solid line: penetration theory solution, Eq. 1 5 .  

ficient with such experimental data is not attempted here, 
because of the large differences in conditions between the pres- 
ent numerical calculation and the experiments [that is, a two- 
dimensional bed with preferential bubble formation and bub- 
ble propagation near the heated wall vs. a three-dimensional 
freely bubbling bed with an immersed cylindrical heater (Oz- 
kaynak and Chen, 1980; Wunder, 1980) or with immersed 
spheres (Prins, 1987)l. Plans have been made to validate the 
present heat-transfer model experimentally in a two-dimen- 
sional gas-fluidized bed with a geometry very similar to the 
one sketched in Figure 3. 

Conclusions 

An earlier developed first principles hydrodynamic model 
has been extended to enhance the future numerical calculation 
of wall-to-bed heat-transfer coefficients in gas-fluidized beds, 
The theoretical model utilizes a TFM approach in which both 
phases are considered to be continuous and fully interpene- 
trating. 

Contrary to the well-known discrete particle models and the 
emulsion phase or packet renewal models, the present model 
does not require the input of empirical parameters such as the 
average particle or packet residence time since the bed hydro- 
dynamics evolves naturally from the solution of the TFM con- 
servation of mass and momentum equations. 

Our preliminary calculations, carried out for an idealized 
two-dimensional bed geometry, suggest that the high wall-to- 
bed heat-transfer rates characteristic of gas-fluidized beds can 
be predicted with the present model without incorporation of 
turbulence terms in the transport equations. Through its ability 
to provide detailed information on the local behavior of the 
wall-to-bed heat-transfer coefficients, the model proves its use- 
fulness and distinguishes itself advantageously from previous 
theoretical models. For the case of a single bubble rising along 
a heated wall it has been shown computationally that the max- 
imum wall-to-bed heat transfer occurs in the bubble wake. In 
a two-dimensional bed with preferential (multiple) bubble for- 
mation near a heated wall, a very similar phenomenon was 
predicted. In order to extend the validity of the present con- 
tinuum model t o  very low “packet” residence times, it will be 
necessary to account for the altered thermophysical properties 
in the immediate vicinity of the heat-transfer surface, where, 
for example, the porosity in the emulsion phase is higher. 
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Notation 

a, = effective thermal diffusivity defined in Eq. 12, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm2/s 
A = defined in Eq. 7f 
B = defined in Eq. 7e 

C, = heat capacity, J / (kg .K)  
do = orifice diameter, m 
d, = particle diameter, m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j = gravitational force per unit mass, m/s2 

G ( c )  = particle-particle interaction modulus, Pa 
h,, h = (instantaneous) heat-transfer coefficient, W/(m2. K) 

h ,  = minimum fluidization bed height, m 
I = internal energy, J /kg  
n = number of subcells, see Figure 2 
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Nup zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAparticle Nusselt number 
p = pressure, P a  

po = initial freeboard pressure, P a  
Pr = Prandtl number 

Re, = particle Reynolds number 
f = time, s 

t p  = contact time of packet, s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T = temperature, K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u = fluid-phase velocity, m/s 
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

urn, = minimum fluidization velocity, m/s 
u,  = superficial injection velocity through orifice, m/s 
u, = lateral fluid-phase velocity, m/s 
uy = vertical fluid-phase velocity, m/s 
i; = solid-phase velocity, m/s 

u, = lateral solid-phase velocity, m/s 
uy = vertical solid-phase velocity, m/s 
wb = bed width, m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x = lateral coordinate, m 
y = vertical coordinate, m 

Greek letters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a = volumetric interphase heat-transfer coefficient, W/(m3 .K) 
a,, = fluid-particle heat-transfer coefficient, W/(m2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.K)  

= volumetric interphase momentum transfer coefficient, kg/ 
(m’ .s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6 = heat penetration depth, m 
6x = lateral computational cell dimension, m 
Sy = vertical computational cell dimension, m 

Ax, = subcell dimension normal t o  the heated wall, see Figure 2, 
m 

t = porosity 

@ = heat flux by thermal conduction, W/m2 
r = defined in Eq. 7d 
K = thermal conductivity, W/(m .K) 
p = viscosity, kg/(m.s) 
p = density, kg/m’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w = defined in Eq. 7g 

E @  = minimum fluidization porosity 

Subscripts 
b = (packed) bed 
e = effective 
f = fluid phase 
i = instantaneous 

m = mixture 

o = orifice 
p = particle 
s = solid phase 
w = wall 
0 = freeboard conditions 

m f = minimum fluidization conditions 

Superscripts 
- 

= vector quantity 

Operators zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
V = gradient 
V .  = divergence 
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