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Numerical characterisation of quadrics

Thomas Dedieu and Andreas Höring

Abstract

Let X be a Fano manifold such that −KX ·C > dimX for every rational curve C ⊂ X.
We prove that X is a projective space or a quadric.

1. Introduction

Let X be a Fano manifold, that is, a complex projective manifold with ample anticanonical
divisor −KX . If the Picard number of X is at least two, Mori theory shows the existence of at
least two non-trivial morphisms ϕi : X → Yi which encode some interesting information on the
geometry of X. Conversely, when the Picard number equals one, Mori theory does not yield any
information, and one is thus led to studying X in terms of the positivity of the anticanonical
bundle. A well-known example of such a characterisation is the following theorem of Kobayashi–
Ochiai.

Theorem 1.1 ([KO73]). Let X be a projective manifold of dimension n. Suppose −KX ∼ dH,
with H an ample divisor on X. Then

(i) one has d 6 n+ 1 and equality holds if and only if X ' Pn;

(ii) if d = n, then X ' Qn, where Qn is a non-singular quadric.

The divisibility of −KX in the Picard group is a rather restrictive condition, so it is natural to
ask for similar characterisations under (a priori) weaker assumptions. Based on Kebekus’ study
of singular rational curves [Keb02b], Cho, Miyaoka, and Shepherd-Barron proved a generalisation
of the first part of Theorem 1.1.

Theorem 1.2 ([CMSB02, Keb02a]). Let X be a Fano manifold of dimension n. Suppose

−KX · C > n+ 1 for all rational curves C ⊂ X .

Then X ' Pn.

The aim of this paper is to prove the following, which is a similar generalisation for the second
part of Theorem 1.1.

Theorem 1.3. Let X be a Fano manifold of dimension n. Suppose

−KX · C > n for all rational curves C ⊂ X .

Then X ' Pn or X ' Qn.
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Numerical characterisation of quadrics

This statement already appeared in a paper of Miyaoka [Miy04, Theorem 0.1], but the proof
there is incomplete (cf. Remark 5.2 for instance). In this paper we borrow some ideas and
tools from Miyaoka, yet give a proof based on a completely different strategy. Note also that
Hwang gave a proof under the additional assumption that the general VMRT (see below) is
smooth [Hwa13, Theorem 1.11], a property that does not hold for every Fano manifold [CD15,
Theorem 1.10].

In the proof of Theorem 1.3, we have to assume n > 4; for n 6 3 the statement follows
directly from classification results.

The assumption that X is Fano ensures that ρ(X) = 1 because of the Ionescu–Wísniewski
inequality [Ion86, Theorem 0.4], [Wís91, Theorem 1.1] (see Section 4). It is possible to remove
this assumption: the Ionescu–Wísniewski inequality together with [HN13, Theorem 1.3] enables
one to deal with the case ρ(X) > 1, and one gets the following.

Corollary 1.4. Let X be a projective manifold of dimension n containing a rational curve. If

−KX · C > n for all rational curves C ⊂ X ,

then X is a projective space, a hyperquadric, or a projective bundle over a curve.

(Note that under the assumptions of Corollary 1.4, if ρ(X) = 1, then X is Fano.)

Outline of the proof. In the situation of Theorem 1.3, let K be a family of minimal rational
curves on X. By Mori’s bend-and-break lemma, a minimal curve [l] ∈ K satisfies −KX · l 6 n+1
and if equality holds, then X ' Pn by [CMSB02]. By our assumption we are thus left to deal
with the case −KX · l = n. Then, for a general point x ∈ X the normalisation Kx of the space
parametrising curves in K passing through x has dimension n−2, and by [Keb02b, Theorem 3.4]
there exists a morphism

τx : Kx → P(ΩX,x)

which maps a general curve [l] ∈ Kx to its tangent direction T⊥l,x at the point x. By [HM04,
Theorem 1] this map is birational onto its image Vx, the variety of minimal rational tangents
(VMRT) at x. We denote by V ⊂ P(ΩX) the total VMRT, that is, the closure of the locus covered
by the VMRTs Vx for x ∈ X general. To prove Theorem 1.3, we compute the cohomology class of
the total VMRT V ⊂ P(ΩX) in terms of the tautological class ζ and π∗KX , where π : P(ΩX)→ X
is the projection map. This computation is based on the construction, on the manifold X, of
a family W◦ of smooth rational curves such that for every [C] ∈ W◦ one has

TX |C ' OP1(2)⊕n ;

it lifts to a family of curves on P(ΩX) by associating with a curve C ⊂ X the image C̃ of the
morphism C → P(ΩX) defined by the invertible quotient

ΩX |C → ΩC .

The main technical statement of this paper is the following.

Proposition 1.5. Let X 6' Pn be a Fano manifold of dimension n > 4, and suppose

−KX · C > n for all rational curves C ⊂ X .

Then, in the above notation, one has V · C̃ = 0 for all [C] ∈ W◦.

Once we have shown this statement, a similar intersection computation involving a general
minimal rational curve l yields that the VMRT Vx ⊂ P(ΩX,x) is a hypersurface of degree at most
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two. We then conclude with some earlier results of Araujo, Hwang, and Mok [Ara06, Hwa07,
Mok08].

2. Notation and conventions

We work over the field C of complex numbers. Throughout the paper, Qn designates a smooth
quadric hypersurface in Pn+1 for any positive integer n. Topological notions refer to the Zariski
topology.

We use the modern notation for projective spaces, as introduced by Grothendieck: If E is
a locally free sheaf on a scheme X, we let P(E) be Proj (Sym E). If L is a line in a vector
space V , then L⊥ designates the corresponding point in P(V ∨). The symbols ≡ and ∼Q refer to
numerical and Q-linear equivalence, respectively.

A variety is an integral scheme of finite type over C; a manifold is a smooth variety. A fibration
is a proper surjective morphism with connected fibres ϕ : X → Y such that X and Y are normal
and dimX > dimY > 0.

We use the standard terminology and results on rational curves, as explained in [Kol96,
Chapter II], [Deb01, Chapters 2, 3, 4], and [Hwa01]. Let X be a projective variety. We remind
the reader that following [Kol96, II, Definition 2.11], the notation RatCurvesn(X) refers to the
union of the normalisations of those locally closed subsets of the Chow variety of X parametrising
irreducible rational curves (the superscript “n” is a reminder that we have normalised, and has
nothing to do with the dimension).

For technical reasons, we have to consider families of rational curves on X as living alternately
in RatCurvesn(X) and in Hom(P1, X). Our general policy is to call HomR ⊂ Hom(P1, X) the
family corresponding to a normal variety R ⊂ RatCurvesn(X).

3. Preliminaries on conic bundles

In this section, we establish some basic facts about conic bundles over a curve and compute some
intersection numbers which will turn out to be crucial for the proof of Proposition 1.5. All these
statements appear in one form or another in [Miy04, Section 2], but we recall them and their
proofs for the clarity of exposition.

Definition 3.1. A conic bundle is an equidimensional projective fibration ϕ : X → Y such that
there exist a rank three vector bundle V → Y and an embedding X ↪→ P(V ) that maps every
ϕ-fibre ϕ−1(y) onto a conic (that is, the zero scheme of a degree two form) in P(Vy). The set

∆ :=
{
y ∈ Y |ϕ−1(y) is not smooth

}
is called the discriminant locus of the conic bundle.

Lemma 3.2. Let S be a smooth surface admitting a projective fibration ϕ : S → T onto a smooth
curve such that the general fibre is P1 and such that −KS is ϕ-nef. Let F be a reducible ϕ-fibre,
and suppose

F = C1 + C2 + F ′ ,

where the Ci are (−1)-curves and Ci 6⊂ Supp(F ′). Then F ′ =
∑
Ej is a reduced chain of (−2)-

curves, and the dual graph of F is as depicted in Figure 1.

Proof. Write F ′ =
∑k

j=1 ajEj with aj ∈ N, where E1, . . . , Ek are the irreducible components
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v f f f f vC1 E1 E2 Ek−1 Ek C2

Figure 1.

of F ′. First, note that since −KS · F = 2 and −KS · Ci = 1, the fact that −KS is ϕ-nef implies
−KS ·Ej = 0 for all j. Since Ej is an irreducible component of a reducible fibre, we have E2

j < 0.
Thus we see that each Ej is a (−2)-curve.

We will now proceed by induction on the number of irreducible components of F ′, the case
F ′ = 0 being trivial. Let µ : S → S′ be the blow-down of the (−1)-curve C2; then by the rigidity
lemma [Deb01, Lemma 1.15], there is a morphism ϕ′ : S′ → T such that ϕ = ϕ′ ◦µ. Note that S′

is smooth and −KS′ is ϕ′-nef. We also have

0 = C2 · F = −1 + C2 ·

(
C1 +

k∑
i=1

aiEi

)
,

so C2 meets C1+
∑k

i=1 aiEi transversally in exactly one point. If C2 ·C1 > 0, then µ∗(C1) has self-

intersection 0, yet it is also an irreducible component of the reducible fibre µ∗

(
C1 +

∑k
i=1 aiEi

)
,

which gives a contradiction. Thus (up to renumbering) we can suppose C2 · E1 = 1 and a1 = 1.
In particular, µ∗(E1) is a (−1)-curve, so

µ∗

(
C1 +

k∑
i=1

aiEi

)
= µ∗(C1) + µ∗(E1) + µ∗

(
k∑
i=2

aiEi

)
satisfies the induction hypothesis.

In the following we use that for every normal surface one can define an intersection theory
using the Mumford pull-back to the minimal resolution; cf. [Sak84].

Lemma 3.3. Let S be a normal surface admitting a projective fibration ϕ : S → T onto a smooth
curve such that the general fibre is P1 and such that every fibre is reduced and has at most two
irreducible components. Then

(i) ϕ is a conic bundle;

(ii) S has at most Ak-singularities; and

(iii) if s ∈ Ssing, then s = Fϕ(s),1 ∩Fϕ(s),2, where Fϕ(s) = Fϕ(s),1 +Fϕ(s),2 is the decomposition of
the fibre over ϕ(s) in its irreducible components. In particular, Fϕ(s) is a reducible conic.

Proof. If a fibre ϕ−1(t) is irreducible, then ϕ is a P1-bundle over a neighbourhood of t [Kol96,
II, Theorem 2.8]. Thus we only have to consider points t ∈ T such that St := ϕ−1(t) is reducible.
Since pa(St) = 0 and St = C1 + C2 is reduced, we see that St is a union of two P1 meeting
transversally in a point. Since St = ϕ∗t is a Cartier divisor, this already implies statement (iii).

Let ε : Ŝ → S be the canonical modification [Kol13, Theorem 1.31] of the singular points
lying on St. Then we have

KŜ ≡ ε
∗KS − E ,

with E an effective ε-exceptional Q-divisor whose support is equal to the ε-exceptional locus.
Denote by Ĉi the proper transform of Ci. If KŜ · Ĉi < −1, then Ĉi deforms in Ŝ [Kol96, II,
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Theorem 1.15]. Yet Ĉi is an irreducible component of a reducible ϕ◦ε-fibre, so this is impossible.
So we have

KS · Ci > KŜ · Ĉi > −1

for i = 1, 2. Since KS · (C1 + C2) = −2, this implies KS · Ci = −1 and E = 0. Thus S has
canonical singularities. Since canonical surface singularities are Gorenstein, we see that −KS is
Cartier and ϕ-ample and defines an embedding

S ⊂ P
(
V := ϕ∗(OS(−KS))

)
into a P2-bundle mapping each fibre onto a conic. This proves statement (i).

Now, let ε̃ : S̃ → S be the minimal resolution. It is crepant, so the divisor −KS̃ is ϕ ◦ ε̃-nef.

Moreover, the proper transforms C̃i of the curves Ci are (−1)-curves in S̃. By Lemma 3.2 this
proves statement (ii).

The following fundamental lemma should be seen as an analogue of the basic fact that a pro-
jective bundle over a curve contains at most one curve with negative self-intersection.

Lemma 3.4 ([Miy04, Proposition 2.4]). Let S be a normal projective surface that is a conic
bundle ϕ : S → T over a smooth curve T , and denote by ∆ the discriminant locus. Suppose
that ϕ has two disjoint sections σ1 and σ2, both contained in the smooth locus of S. Suppose
moreover that for every t ∈ ∆, the fibre Ft has a decomposition Ft = Ft,1 + Ft,2 such that

σi · Ft,j = δi,j (3.4.1)

(Kronecker’s delta). Assume also that we have

σ2
1 < 0 and σ2

2 < 0 . (3.4.2)

Let ε : Ŝ → S be the minimal resolution. Let σ be a ϕ-section and σ̂ ⊂ Ŝ its proper transform.
Then the following hold:

(i) If (σ̂)2 < 0, then σ = σ1 or σ = σ2.

(ii) If (σ̂)2 = 0, then σ is disjoint from σ1 ∪ σ2.

Remarks 3.5. (1) In the situation above all the fibres are reduced, since there exists a section
that is contained in the smooth locus.

(2) The two inequalities (3.4.2) are satisfied if there exists a birational morphism S → S′ onto
a projective surface S′ that contracts σ1 and σ2. More generally, the Hodge index theorem implies
that (3.4.2) holds if there exists a nef and big divisor H on S such that H · σ1 = H · σ2 = 0.

Proof of Lemma 3.4. Preparation: contraction to a smooth ruled surface. Lemma 3.3 applies
to the surface S. It follows that S has an Akt-singularity (kt > 0) in Ft,1∩Ft,2 for every t ∈ ∆, and
no further singularities. In particular, the dual graph of (ϕ ◦ ε)−1(t) is as described in Figure 1
for every t ∈ ∆.

We consider the birational morphism

µ̂ : Ŝ → S[

defined as the composition of the blow-downs, for every t ∈ ∆, of the proper transform F̂t,1 of
Ft,1 and of all the kt (−2)-curves contained in (ϕ◦ε)−1(t). Since µ̂ is a composition of blow-downs
of (−1)-curves, the surface S[ is smooth. By the rigidity lemma [Deb01, Lemma 1.15], there is
a morphism ϕ[ : S[ → T . All its fibres are irreducible rational curves, so it is a P1-bundle by
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[Kol96, II, Theorem 2.8]. Again by the rigidity lemma, µ̂ factors through ε. That is, there is
a birational morphism µ : S → S[ such that µ̂ = µ ◦ ε; it is the contraction of all the curves Ft,1
for t ∈ ∆.

Since σ1 meets Ft,1 in a smooth point of S, the proper transforms σ̂1 and F̂t,1 meet in the
same point. Thus σ̂1 meets (or rather, its successive images meet) the exceptional divisor of all
the blow-downs of (−1)-curves composing µ̂, and since the section σ[1 := µ̂(σ̂1) is smooth, all the
intersections are transversal. Vice versa we can say that Ŝ is obtained from S[ by blowing up
points on (the successive proper transforms of) σ[1.

By the symmetry condition (3.4.1), the curve σ2 is disjoint from the µ-exceptional locus, so
if we set σ[2 := µ(σ2), then we have (σ[2)2 = (σ2)2 < 0. Thus, in the notation of [Har77, V,
Chapter 2], the surface S[ is ruled with ruling ϕ[ : S[ → T and invariant −e := (σ[2)2 > 0. In
particular, the Mori cone NE(S[) is generated by a general ϕ[-fibre F and σ[2. Since σ[1 · σ[2 = 0
and σ[1 · F = 1, we have

σ[1 ≡ σ[2 + eF . (3.5.1)

Conclusion. Now, let σ ⊂ S be a section that is distinct from both σ1 and σ2. Then σ[ := µ(σ)
is distinct from both σ[1 and σ[2. Since σ[ 6= σ[2, we have

σ[ ≡ σ[2 + cF (3.5.2)

for some c > e [Har77, V, Proposition 2.20]. Since σ[ 6= σ[1, we have

σ[ · σ[1 >
∑
t∈∆

τt , (3.5.3)

where τt is the intersection multiplicity of σ[ and σ[1 at the point Ft ∩ σ[1. Denote by σ̂ ⊂ Ŝ the
proper transform of σ ⊂ S, which is also the proper transform of σ[ ⊂ S[. By our description
of µ̂ as a sequence of blow-ups in σ[1, we obtain

(σ̂)2 =
(
σ[
)2 −∑

t∈∆

min(τt, kt + 1) >
(
σ[
)2 −∑

t∈∆

τt .

By (3.5.3) this implies

(σ̂)2 >
(
σ[
)2 − σ[ · σ[1 = σ[ ·

(
σ[ − σ[1

)
.

Plugging in (3.5.1) and (3.5.2), we obtain

(σ̂)2 > c− e > 0 . (3.5.4)

This shows statement (i).

Now, suppose (σ̂)2 = 0. Then by (3.5.4) we have c = e, hence σ[ · σ[2 = 0. Being distinct, the
two curves σ[ and σ[2 are therefore disjoint, and so are their proper transforms σ̂ and σ̂2. Now,
note that ε is an isomorphism in a neighbourhood of σ̂2, so σ = ε(σ̂) is disjoint from σ2 = ε(σ̂2).
In order to see that σ and σ1 are disjoint, we repeat the same argument but contract those fibre
components which meet σ2. This proves statement (ii).

4. The main construction

4.1. Set-up. For the whole section, we let X 6' Pn be a Fano manifold of dimension n > 4, and
suppose

−KX · C > n for all rational curves C ⊂ X ; (4.1.1)
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this is the situation of Proposition 1.5. It then follows from the Ionescu–Wísniewski inequality
that the Picard number ρ(X) equals one; see [Miy04, Lemma 4.1].

Recall that by definition, a family of minimal rational curves is an irreducible component
K of RatCurvesn(X) such that (1) the curves in K dominate X and (2) for x ∈ X general the
algebraic set K[x ⊂ K parametrising curves passing through x is proper. We will use the following
simple observation.

Lemma 4.2. In the situation of Proposition 1.5, let l ⊂ X be a rational curve such that
−KX · l = n. Then any irreducible component K of RatCurvesn(X) containing [l] is a family
of minimal rational curves.

Proof. Condition (4.1.1) implies the properness of K [Kol96, II, (2.14)]. On the other hand, we
know by [Kol96, IV, Corollary 2.6.2] that the curves parametrised by K dominate X.

4.3. Minimal rational curves and VMRTs. Since X is Fano, it contains a rational curve l
[Mor79, Theorem 6]. Since X 6' Pn, there exists a rational curve with −KX · l = n by [CMSB02],
and by Lemma 4.2 there exists a family of minimal rational curves containing the point [l] ∈
RatCurvesn(X). We fix once and for all such a family, which we call K.

For x ∈ X general, denote by Kx the normalisation of the algebraic set K[x ⊂ K parametrising
curves passing through x. Every member of K[x is a free curve (this follows from the argument
of [Kol96, II, proof of Theorem 3.11]), so Kx is smooth and has dimension n− 2 > 2 [Kol96, II,
(1.7) and (2.16)].

By results of Kebekus, a general curve [l] ∈ K[x is smooth [Keb02b, Theorem 3.3], and the
tangent map

τx : Kx → P(ΩX,x) ,

which sends a general curve [l] to its tangent direction T⊥l,x at the point x, is a finite morphism
[Keb02b, Theorem 3.4]. Its image Vx is called the variety of minimal rational tangents (VMRT)
at x. The map τx is birational by [HM04, Theorem 1], so the normalisation of Vx is Kx, which
is smooth (this is [HM04, Corollary 1]). Also, one can associate with a general point v ∈ Vx a
unique minimal curve [l] ∈ Kx. We denote by V ⊂ P(ΩX) the total VMRT, that is, the closure of
the locus covered by the VMRTs Vx for x ∈ X general. Since Kx has dimension n− 2, the total
VMRT V is a divisor in P(ΩX).

For a general [l] ∈ K, one has

TX |l ' OP1(2)⊕OP1(1)⊕n−2 ⊕OP1 (4.3.1)

[Kol96, IV, Corollary 2.9]. We call a minimal rational curve [l] ∈ K standard if l is smooth and
the bundle TX |l has the same splitting type as in (4.3.1).

4.4. Smoothing pairs of minimal curves. For a general point x1 ∈ X the curves parametri-
sed by Kx1 cover a divisor Dx1 ⊂ X [Kol96, IV, Proposition 2.5]. This divisor is ample because
ρ(X) = 1, so for x2 ∈ X and [l2] ∈ Kx2 the curve l2 intersects Dx1 . Thus for a general point
x2 ∈ X we can find a chain of two standard minimal curves l1 ∪ l2 connecting the points x1

and x2. By [Kol96, II, Example 7.6.4.1] the union l1 ∪ l2 is dominated by a transverse union
P1∪P1. Since both rational curves are free, we can smooth the tree P1∪P1, keeping the point x1

fixed [Kol96, II, Theorem 7.6.1]. Since x1 is general in X, this defines a family of rational curves
dominating X; we denote by W the normalisation of the irreducible component of Chow(X)
containing these rational curves.
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4.5. Since a general member [C] of the family W is free and −KX ·C = 2n, we have dimW =
3n − 3. We pick an arbitrary irreducible component of the subset of W parametrising cycles
containing x1, and let Wx1 be its normalisation; then we have dimWx1 = 2n− 2. Let Ux1 be the
normalisation of the universal family of cycles over Wx1 . The evaluation map evx1 : Ux1 → X is
surjective: its image is irreducible, and it contains both the divisor Dx1 (because it is contained
in the image of the restriction of evx1 to those members of Wx1 that contain a minimal curve
through x1) and the point x2, which is general in X (in particular, x2 6∈ Dx1).

Next, we choose an arbitrary irreducible component of the subset of W parametrising cycles
passing through x1 and x2, and let Wx1,x2 be its normalisation and Ux1,x2 the normalisation of
the universal family over Wx1,x2 . We denote by

q : Ux1,x2 →Wx1,x2 , ev : Ux1,x2 → X

the natural maps. It follows from the considerations above thatWx1,x2 is non-empty of dimension
n− 1.

By construction, a general curve [C] ∈ Wx1,x2 is smooth at xi for i ∈ {1, 2}, so the preimage
ev−1(xi) contains a unique divisor σi that surjects onto Wx1,x2 . Since ev is finite on the q-fibres
andWx1,x2 is normal, we obtain that the degree one map σi →Wx1,x2 is an isomorphism. We call
the divisors σi the distinguished sections of q. We denote by ∆ ⊂ Wx1,x2 the locus parametrising
non-integral cycles.

Let loc1
x1 be the locus covered by all the minimal rational curves of X passing through x1. It

is itself a divisor, but may be bigger than Dx1 , since in general there are finitely many families
of minimal curves. From now on we choose a general point x2 ∈ X such that x2 6∈ loc1

x1 (which
implies x1 6∈ loc1

x2).

Lemma 4.6. In the situation of Proposition 1.5 and using the notation introduced above, let C
be a non-integral cycle corresponding to a point [C] ∈ ∆. Then C = l1 + l2, with the li minimal
rational curves such that xi ∈ lj if and only if i = j.

Remark. Note that we do not claim that the curves li belong to the family K. However, by
construction of the family W as smoothings of pairs l1 ∪ l2 in K, there exists an irreducible
component ∆K ⊂ ∆ such that li ∈ K when [l1 + l2] ∈ ∆K.

Proof. We can write C =
∑
aili, where the ai are positive integers and the li are integral curves.

By [Kol96, II, Proposition 2.2] all the irreducible components li are rational curves. We can
suppose that up to renumbering one has x1 ∈ l1. If a1 > 2, then −KX ·C = 2n, and −KX · l1 > n
implies C = 2l1 and that l1 is a minimal rational curve. Yet this contradicts the assumption
x2 6∈ loc1

x1 . Thus we have a1 = 1 and since C is not integral, there exists a second irreducible
component l2. Again −KX · C = 2n, and −KX · li > n implies C = l1 + l2 and that the li
are minimal rational curves by Lemma 4.2. The last property now follows by observing that
x2 6∈ loc1

x1 implies x1 6∈ loc1
x2 .

By [Kol96, II, Theorem 2.8], the fibration q : Ux1,x2 → Wx1,x2 is a P1-bundle over the open
setWx1,x2 \∆. Although Lemma 4.6 essentially says that the singular fibres are reducible conics,
it is a priori not clear that q is a conic bundle (cf. Definition 3.1). This becomes true after we
make a base change to a smooth curve.

Lemma 4.7. In the situation of Proposition 1.5 and using the notation introduced above, let Z ⊂
Wx1,x2 be a curve such that a general point of Z parametrises an irreducible curve. Then there
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exists a finite morphism T → Z such that the normalisation S of the fibre product Ux1,x2×Wx1,x2
T

has a conic bundle structure ϕ : S → T that satisfies the conditions of Lemma 3.4.

Proof. Let ν : Z̃ → Z be the normalisation, let N be the normalisation of Ux1,x2 ×Wx1,x2
Z̃, and

let fN : N → X be the morphism induced by ev : Ux1,x2 → X. Since all the curves pass through
x1 and x2, there exist curves Z1 ⊂ N and Z2 ⊂ N that are contracted by fN onto the points x1

and x2, respectively. Since ev is finite on the q-fibres, the curves Z1 and Z2 are multisections of
N → Z̃. If Z̃i is the normalisation of Zi, then the fibration (N×Z̃ Z̃i)→ Z̃i has a section given by

c 7→ (c, c). Thus there exists a finite base change T → Z̃ such that the normalisation ϕ : S → T
of the fibre product (Ux1,x2 ×Wx1,x2

T ) → T has a natural morphism f : S → X induced by
ev : Ux1,x2 → X that contracts two ϕ-sections σ1 and σ2 onto x1 and x2, respectively.

Since Z 6⊂ ∆, the general ϕ-fibre is P1. Moreover, by Lemma 4.6 all the ϕ-fibres are reduced
and have at most two irreducible components. By Lemma 3.3 this implies that ϕ is a conic
bundle and if s ∈ Ssing, then Fϕ(s) is a reducible conic and the two irreducible components
meet in s. Thus we have σi ⊂ Ssm, where Ssm denotes the smooth locus, since otherwise both
irreducible components would pass through xi, thereby contradicting the property x2 6∈ loc1

x1 .
For the same reason we can decompose any reducible ϕ-fibre Ft by defining Ft,i as the unique
component meeting the section σi. Since σi ·F = 1 for a general ϕ-fibre, we see that (3.4.1) holds.
Condition (3.4.2) holds with H the pull-back of an ample divisor on X.

From this and Lemma 3.4 one deduces the following statement, in the spirit of the bend-and-
break lemma [Deb01, Proposition 3.2].

Lemma 4.8. The restriction of the evaluation map ev : Ux1,x2 → X to the complement of σ1 ∪σ2

is quasi-finite. In particular, ev is generically finite onto its image.

Proof. We argue by contradiction. Since ev is finite on the q-fibres, there exists a curve Z ⊂
Wx1,x2 such that the natural map from the surface q−1(Z) onto ev(q−1(Z)) contracts three
disjoint curves σ1, σ2, and σ onto the points x1, x2, and x := ev(σ), respectively.

If Z 6⊂ ∆, then by Lemma 4.7 we can suppose, possibly up to a finite base change, that
q−1(Z) → Z satisfies the conditions (3.4.1) of Lemma 3.4. After a further base change we can
assume that σ is a section. Since σ is contracted by ev, we have σ2 < 0. By Lemma 3.4(i), this
implies σ = σ1 or σ = σ2, which gives a contradiction.

If Z ⊂ ∆, then all the fibres over Z are unions of two minimal rational curves. Thus the
normalisation of q−1(Z) is a union of two P1-bundles mapping onto Z, and by construction they
contain three curves which are mapped onto points. However, a ruled surface contains at most
one contractible curve, so we have a contradiction.

4.9. Since dimUx1,x2 = dimX, one deduces from Lemma 4.8 that the cycles [C] ∈ W passing
through x1 and x2 cover the manifold X. By [Deb01, 4.10] this implies that a general member
[C] ∈ Wx1,x2 is a 2-free rational curve [Deb01, Definition 4.5]. Since −KX · C = 2n, this forces

f∗TX ' OP1(2)⊕n , (4.9.1)

where f : P1 → C ⊂ X is the normalisation of C. As a consequence, one sees from [Kol96, II,
Theorem 3.14.3] that a general member [C] ∈ W is a smooth rational curve in X.

Let Hom◦W ⊂ Hom(P1, X) be the irreducible open set parametrising morphisms f : P1 → X
such that the image C := f(P1) is smooth, the associated cycle [C] ∈ Chow(X) is a point in W,
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and f∗TX has splitting type (4.9.1). By what precedes, the image of Hom◦W in W under the
natural map Hom(P1, X)→ Chow(X) is a dense open set W◦ ⊂ W.

4.10. Denote by π : P(ΩX)→ X the projection map. We define an injective map

i : Hom◦W ↪→ Hom(P1,P(ΩX))

by sending f : P1 → X to the morphism f̃ : P1 → P(ΩX) corresponding to the invertible quotient
f∗ΩX → ΩP1 . For [C] ∈ W◦ with normalisation f , we call [C̃] the member of Chow(P(ΩX))
corresponding to the lifting f̃ .

We let Hom∼W be the image of i. Note that it parametrises a family of rational curves that
dominates P(ΩX), but it is not an irreducible component of Hom(P1,P(ΩX)). Indeed, Hom∼W
is contained in a (much bigger) irreducible component defined by morphisms corresponding to
arbitrary quotients f∗ΩX � OP1(−2).

The following property is well known to experts. Since Hom∼W is not an open subset of the
space Hom(P1,P(ΩX)), we have to adapt the proof of [Kol96, II, Proposition 3.7].

Lemma 4.11. In the situation of Proposition 1.5, let V0 ⊂ V be a dense, Zariski-open set in the
total VMRT V, and let C̃ := f̃(P1) be a rational curve parametrised by a general point of Hom∼W .
Then one has

(V ∩ C̃) ⊂ (V0 ∩ C̃) .

Proof. Set Z := V \ V0. A point z ∈ P(ΩX) is of the form z = (v⊥z , x), where Cvz ⊂ TX,x is a
tangent direction in X at x = π(z). So for all p ∈ P1 and z = (v⊥z , x) ∈ P(ΩX), the morphisms
[f̃ ] ∈ Hom∼W mapping p to z correspond to morphisms f : P1 → X in Hom◦W mapping p to x
with tangent direction Cvz. Since f has splitting type (4.9.1), the set of these morphisms has
dimension exactly n. It follows that

Hom∼W,Z :=
{

[f̃ ] ∈ Hom∼W | f̃(P1) ∩ Z 6= ∅
}

=
⋃
z∈Z

⋃
p∈P1

{
[f̃ ] ∈ Hom∼W | f̃(p) = z

}
has dimension at most dimZ + 1 + n.

Now V ⊂ P(ΩX) is a divisor, and Z has codimension at least one in V, so Z has dimension at
most 2n− 3, and the set Hom∼W,Z above has dimension at most 3n− 2. Since Hom◦W has dimen-

sion 3n and Hom◦W → Hom∼W is injective, a general point [f̃ ] ∈ Hom∼W is not in Hom∼W,Z .

We need one more technical statement.

Lemma 4.12. In the situation of Proposition 1.5 and using the notation introduced above, let
[f ] ∈ Hom◦W be a general point. Then for every x ∈ f(P1) we have f(P1) 6⊂ loc1

x.

Proof. Fix two general points x1, x2 ∈ X. A general morphism [f ] ∈ Hom◦W passing through x1

and x2 is 2-free, and up to reparametrisation we have f(0) = x1 and f(∞) = x2. Set g := f |{0,∞};
then f is free over g [Kol96, II, Definition 3.1]. Now, suppose that such a curve has the property
f(P1) ⊂ loc1

x0 for some x0 ∈ f(P1). Thus x1, x2 ∈ loc1
x0 , hence by symmetry x0 ∈ (loc1

x1 ∩ loc1
x2).

Yet the intersection

loc1
x1 ∩ loc1

x2

has codimension two in X. By [Kol96, II, Proposition 3.7] a general deformation of f over g is
disjoint from this set.
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4.13. Proof of Proposition 1.5. Arguing by contradiction, we suppose V · C̃ > 0 (C̃ is not
contained in V for general [C] ∈ W◦). Applying Lemma 4.11 with

V0 :=
{
v⊥ ∈ V |Cv = Tl,π(v) , where [l] ∈ K is standard

}
,

we see that for a general point [C] ∈ W there exist a point x1 ∈ C and a standard curve [l] ∈ Kx1
such that

TC,x1 = Tl,x1 . (4.13.1)

We shall now reformulate the property (4.13.1) in terms of the universal family Ux1,x2 , with x2

a point chosen in C\loc1
x1 thanks to Lemma 4.12. Consider the blow-up ε : X̃ → X at the point x1,

with exceptional divisor E1. There is a rational map ẽv : Ux1,x2 99K X̃ such that ε ◦ ẽv = ev (on
the locus where ẽv is defined); since the general member of Wx1,x2 is smooth at x1, this map ẽv
is well defined in a general point of σ1 and restricts to a rational map σ1 99K E1. The latter
is dominant and therefore generically finite, because the general member of Wx1,x2 is 2-free. In
particular, we may assume that it is finite in a neighbourhood of the point C ∩ σ1.

We then consider the proper transform l̃ of l under ε, and let Γ be an irreducible component of
ẽv−1(l̃) passing through C ∩σ1. It is a curve that is mapped to a curve in Wx1,x2 by q. Applying
the same construction to the divisor Dx1 ⊂ X, one gets a prime divisor G ⊂ Ux1,x2 mapped
surjectively onto Dx1 and Wx1,x2 by ev and q, respectively.

In general the curve Γ could be contained in the locus where q|G or ev|G is not étale. However,
the standard rational curves [l] ∈ K such that a corresponding curve Γ is not contained in these
ramification loci form a non-empty Zariski-open set in K. Hence their tangent directions define
a non-empty Zariski open set in V. Applying Lemma 4.11 a second time, we can thus replace C
by a general curve C ′ such that [C ′] ∈ W◦ ∩Wx1,x2 and hence l by a general [l′] ∈ Kx1 such that
there exists a curve Γ′ ⊂ G such that q(Γ′) is a curve, ev(Γ′) = l′, and both maps q|G and ev|G
are étale at the general point x ∈ Γ′. By construction the point C ′ ∩ σ1 lies on Γ′. This gives
a contradiction to Proposition 4.14 below.

Proposition 4.14 ([Miy04, Lemma 3.9]). In the situation of Proposition 1.5, let x1, x2 ∈ X be
general points and [l] a general member of Kx1 . Consider an irreducible curve Γ ⊂ Ux1,x2 such
that ev(Γ) = l and q(Γ) is a curve, and assume that there exists a prime divisor G ⊂ Ux1,x2
mapped onto Dx1 by ev and containing Γ, such that both maps q|G and ev|G are étale at a
general point of Γ. Then Γ ∩ σ1 does not contain any point C ∩ σ1 with [C] ∈ W◦ ∩Wx1,x2 .

We give the proof for the sake of completeness.

Proof. Since [l] is general in Kx1 , we have

TX |l ' OP1(2)⊕OP1(1)n−2 ⊕OP1 ,

and Kx1 is smooth with tangent space H0(l, N+
l/X ⊗Ol(−x1)) at [l], where E+ denotes the ample

part of a vector bundle E → P1, that is, its ample subbundle of maximal rank.

Let x ∈ Γ be a general point, and set y = ev(x) ∈ l. For some analytic neighbourhood
V ⊂ Kx1 of [l], we have an evaluation map

evx1 : P1 × V −→ Dx1 ,

which is étale at (y, [l]), and the tangent space to Dx1 at y is thus

TDx1 ,y
= Tl,y ⊕

(
N+
l/X ⊗Ol(−x1)

)
y

= TX |+l,y .
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Since ev|G is étale in x, we obtain that the tangent map

dxev : TUx1,x2 ,x → ev∗(TX,ev(x))

maps TG,x isomorphically into the ample part; that is, we have

dxev(TG,x) ' ev∗(TX |+l,ev(x)) . (4.14.1)

We argue by contradiction and suppose that there exists a [C] ∈ W◦ ∩ Wx1,x2 such that
(C ∩ σ1) ∈ (Γ ∩ σ1). Since Γ maps onto l, it is not contained in the divisor σ1. Since the smooth
rational curve C is 2-free, there exists by semicontinuity a neighbourhood U of [C] ∈ Wx1,x2

parametrising 2-free smooth rational curves. For a 2-free rational curve, the evaluation morphism
ev is smooth in the complement of the distinguished divisors σi [Kol96, II, Proposition 3.5.1].
Thus if we denote by R ⊂ Ux1,x2 the ramification divisor of ev, then σ1 is the unique irreducible
component of R containing the point C ∩ σ1. Thus Γ is not contained in the ramification divisor
of ev.

Since q(Γ) is a curve, there exists by Lemma 4.7 a finite base change T → q(Γ), with T
a smooth curve, such that the normalisation S of the fibre product T ×Wx1,x2

Ux1,x2 is a surface
with a conic bundle structure ϕ : S → T satisfying the conditions of Lemma 3.4. After a further
base change we may suppose that there exists a ϕ-section Γ1 that maps onto Γ. Note that since
we obtained S by a base change from Ux1,x2 , the ramification divisor of the map µ : S → Ux1,x2
is contained in the ϕ-fibres; that is, its image by ϕ has dimension zero. In particular, Γ1 is not
contained in this ramification locus.

Since the rational curve C is smooth and 2-free, the universal family Ux1,x2 is smooth in
a neighbourhood of C ∩ σ1. Thus σ1 is a Cartier divisor in a neighbourhood of C ∩ σ1, and we
can use the projection formula to see that

Γ1 · µ∗σ1 = µ∗(Γ1) · σ1 > 0 .

In particular, Γ1 is not disjoint from the distinguished sections in the conic bundle S → T . Now,
let ε : Ŝ → S be the minimal resolution of singularities and Γ̂1 the proper transform of Γ1. Since
the distinguished sections are in the smooth locus of S, the section Γ̂1 is not disjoint from the
distinguished sections of Ŝ → T . We shall now show(

Γ̂1

)2
6 0 ,

which gives a contradiction to Lemma 3.4.

Denote by f : Γ̂1 → l the restriction of ev ◦ µ ◦ ε : Ŝ → X. Since Γ̂1 is not in the ramification
locus of µ ◦ ε and Γ is not in the ramification divisor of ev, the tangent map

TŜ |Γ̂1
→ f∗TX |l

is generically injective. Since Γ̂1 is a (ϕ ◦ ε)-section, we have an isomorphism

TŜ/T |Γ̂1
' NΓ̂1/Ŝ

. (4.14.2)

Since l has the standard splitting type (4.3.1), we have a (unique) trivial quotient f∗TX |l � OΓ̂1
,

and thanks to (4.14.2) we are done if we prove that the natural map

TŜ/T |Γ̂1
↪→ TŜ |Γ̂1

→ f∗TX |l � OΓ̂1

is not zero. It is sufficient to check this property for a general point in Γ̂1, and since Γ̂1 → Γ is
generically étale, it is sufficient to check that for a general x ∈ Γ, the natural map

TUx1,x2/Wx1,x2 ,x
→ ev∗(TX,ev(x))
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does not have its image in the ample part ev∗(TX |+l,ev(x)). Yet if TUx1,x2/Wx1,x2 ,x
maps into the

ample part, the decomposition TUx1,x2 ,x = TUx1,x2/Wx1,x2 ,x
⊕ TG,x (given by the fact that q|G is

étale in x) combined with (4.14.1) implies that the tangent map

dxev : TUx1,x2 ,x → ev∗(TX,ev(x))

cannot be surjective. Since Γ is not contained in the ramification locus of ev, this is impossible.

5. Proof of the main theorem

5.1. Proof of Theorem 1.3. If X ' Pn, we are done, so suppose that this is not the case.
Consider the family of minimal rational curves K constructed in Section 4 and the associated
total VMRT V. Denote by d ∈ N the degree of a general VMRT Vx ⊂ P(ΩX,x).

Step 1: Using the family W◦. In this step we prove

V ∼Q d

(
ζ − 1

n
π∗KX

)
, (5.1.1)

where ζ is the tautological divisor class on P(ΩX). Note that P(ΩX) has Picard number two, so
we can always write

V ∼Q aζ + b
−1

n
π∗KX

with a, b ∈ Q. Now, letW◦ be the family of rational curves constructed in Section 4, and let C̃ be
the lifting of a curve C ∈ W◦. By Proposition 1.5 we have V · C̃ = 0. Since by the definition of C̃
one has ζ ·C̃ = −2 and − 1

nπ
∗KX ·C̃ = 2, it follows that a = b. Since Vx = V|P(ΩX,x) ∼Q dζ|P(ΩX,x),

we have a = b = d. This proves (5.1.1).

Step 2: Bounding the degree d. Denote by K◦ ⊂ K the open set parametrising smooth
standard rational curves in K. We define an injective map

j : K◦ ↪→ RatCurvesn(P(ΩX))

by mapping a curve l to the image l̃ of the morphism s : l → P(ΩX) defined by the invertible
quotient ΩX |l → Ωl. We denote by K̃◦ the image of j. Let us start by showing that K̃◦ is dense in
an irreducible component of RatCurvesn(P(ΩX)). Since l is standard, the relative Euler sequence
restricted to l̃ implies H0(l̃, TP(ΩX)/X |l̃) = 0. Then, using the exact sequence

0→ TP(ΩX)/X |l̃ → TP(ΩX)|l̃ → (π∗TX)|l̃ ' TX |l → 0 ,

we obtain that the Zariski tangent space of Hom(P1,P(ΩX)) at a point corresponding to the
rational curve l̃ has dimension at most h0(l, TX |l) = 2n. Thus we can use [Kol96, II, Theorem 2.15]
to see that RatCurvesn(P(ΩX)) has dimension at most 2n − 3 at the point [l̃], which is exactly
the dimension of K̃◦.

By construction the lifted curves l̃ are contained in V. Consequently, the open set K̃0 ⊂
RatCurvesn(P(ΩX)) is actually an open set in RatCurvesn(V). Since V ⊂ P(ΩX) is a hypersurface,
the algebraic set V has locally complete intersection singularities. Thus we can apply [Kol96, II,
Theorems 1.3 and 2.15] and obtain

2n− 3 = dim K̃0 > degω−1
V
∣∣
l̃
+ (2n− 2)− 3 .

We thus have degω−1
V |l̃ 6 2.
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Now, by construction we have − 1
nπ
∗KX · l̃ = 1 and ζ · l̃ = −2. Since KP(ΩX) = 2π∗KX − nζ,

the adjunction formula and (5.1.1) yield

2 > degω−1
V
∣∣
l̃

= −(KP(ΩX) + V) · l̃ = d .

Step 3: Conclusion. If d = 1 or d = 2 but Vx is reducible, we obtain a contradiction to
[Hwa07, Theorem 1.5] (cf. also [Ara06, Theorem 3.1]). If d = 2 and Vx is irreducible, Vx is normal
[Har77, II, Example 6.5(a)] and therefore isomorphic to its normalisation Kx, which is smooth
(see Section 4). It is thus a smooth quadric and we conclude by [Mok08, Main Theorem].

Remark 5.2. Let us explain the difference between our proof and Miyaoka’s approach. In the
notation of Section 4, Miyaoka considers the family Wx1,x2 . As we have seen above the eval-
uation map ev : Ux1,x2 → X is generically finite; his goal is to prove that ev is birational. He
therefore analyses the preimage ev−1(l1∪ l2), where l1, l2 ⊂ X are general minimal curves passing
through x1 and x2, respectively, such that [l1 ∪ l2] ∈ Wx1,x2 . If Γ ⊂ ev−1(l1 ∪ l2) is an irreducible
curve mapping onto l1, one can make a case distinction: If q(Γ) is a curve that is not contained
in the discriminant locus ∆ ⊂ Wx1,x2 (Case C in [Miy04, division into cases before Lemma 3.8,
p. 227]), Miyaoka makes a very interesting observation, which we stated as Proposition 4.14.
However, the analysis of the ‘trivial’ case (loc. cit., Case A), where q(Γ) is a point, is not correct:
it is not clear that q(Γ) = [l1 ∪ l2], because there might be another curve in Wx1,x2 which is of
the form l1 ∪ l′2 with l2 6= l′2. This possibility is an obvious obstruction to the birationality of ev
and invalidates [Miy04, Corollaries 3.11(2) and 3.13(1)]. The following example shows that this
possibility does indeed occur.

Example 5.3. Let H ⊂ Pn be a hyperplane and A ⊂ H ⊂ Pn a projective manifold of dimension
n− 2 and degree a with 3 6 a 6 n. Let µ : X → Pn be the blow-up of Pn along A. Then X is a
Fano manifold [Miy04, Remark 4.2] and −KX · C > n for every rational curve C ⊂ X passing
through a general point (the µ-fibres are, however, rational curves with −KX · C = 1). The
general member of a family of minimal rational curves K is the proper transform of a line that
intersects A. Consider the family W whose general member is the strict transform of a reduced,
connected degree two curve C such that A ∩ C is a finite scheme of length two. For general
points x1, x2 ∈ X the (normalised) universal family Ux1,x2 → Wx1,x2 is a conic bundle and the
evaluation map ev : Ux1,x2 → X is generically finite. We claim that ev is not birational.

Proof of the claim. For simplicity of notation we also denote by x1 and x2 the corresponding
points in Pn. Let l1 ⊂ Pn be a general line through x1 that intersects A. Since x2 ∈ Pn is general,
there exists a unique plane Π containing l1 and x2. Moreover, the intersection Π ∩A consists of
exactly a points, one of them the point A∩ l1. For every point x ∈ Π∩A other than A∩ l1, there
exists a unique line l2,x through x and x2. By Bezout’s theorem l1∪ l2 is connected, so its proper
transform belongs to Wx1,x2 . Yet this shows that ev−1(l1) contains a− 1 > 1 copies of l1, one for
each point x ∈ Π ∩A \ l1 ∩A. This proves the claim.

Let us conclude this example by mentioning that the conic bundle Ux1,x2 →Wx1,x2 does not
satisfy the symmetry conditions of Lemma 3.4.
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