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Numerical Computation of a Generalized Exponential

Integral Function*

By W. F. Breig and A. L. Crosbie

Abstract. Series expansions and recurrence relations suitable for numerical computation

are developed for the generalized exponential integral functions. Tables of these functions

are presented in the microfiche section of this issue.

1. Introduction.    A generalization of the exponential integral  function can

be defined by

(la) Sxir, ß) = ¡" (t2 + ß2TU2 exp [-r(t2 + ß2?'2] dt,

(lb) &2(t, ß) = f   r2 exp [-T(t2 + ß2)1/2] dt,

(lc) 6.0,0) = r f   &2(rt,ß/t)dt.

These functions arise in the study of radiative transfer in a two-dimensional planar

medium ([l]-[4]). For example, the function &i(t, ß) is the kernel of the Fredholm

integral equations describing isotropic scattering ([l]-f,3]) and radiative equilibrium

[4]. The functions, Si(r, ß), 82(r, ß) and £3(t, ß), are two-dimensional analogs of the

exponential integral function

*> = f(2) £„(r) = J    rnexp(-Tí)¿f,

n = 1, 2, 3. Since the two functions are identical when ß = 0, 8„(t, ß) may be con-

sidered a generalized exponential integral.

2. Recurrence Relations. As with the one-dimensional exponential integrals,

recursive formulas are useful in the numerical evaluation of S„(t, ß). A simple inte-

gration by parts of (la) yields

(3) S2(r, ß) = exp[-r(l + /32)1/2] - t&i(t, ß)

where S2(0, ß) = 1. Equation (3) is analogous to the recursion formula for the expo-

nential integral function

(4) E2(t) = exp(-r) - tEi(t).
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The function 63(r, ß) can be expressed in terms of 82(r, ß) by the insertion of (3)

into (lc). Thus

8,0,0)«=  r   f    exp[-r(f2 +ß2)1/2]dt
(5) Jl

- r2 f f t2(t2x2 + ß2TU2 exp[-r(fV + ß2)1/2] dt dx.

The second integral in (5) can be integrated once by parts to yield

SsO, ß) = t [   exp[-r(i2 + ß2)1/2] dt - r&2(r, ß)
(6) Jl

/OO «CO

J    x'2 exp[-r(iV + ß2)U2] dt dx.

Since the double integral in (6) is another form of 83(t, ß), (6) can be rewritten as

(7) 2S3(r, ß)= t f   exp[-r(f2 + ß2)i/2] dt - r82(r, ß).

When ß = 0, (7) reduces to the standard one-dimensional form

(8) 2E3(t) =  exp(-r) - tE2(t).

An expression for 83(t, ß) which depends only upon 8i(r, ß) and 82(r, ß) can be

obtained by eliminating the integral term in (7). Differentiating &¡(t, ß) and sub-

stituting the result into (7), we get

(9) 283(r, ß) =  -t d&^r, ß)/dr - r82(r, ß).

This equation, along with (3), enables 83(t, ß) to be expressed in terms of either

8,0, ß) or 82(t, ß).

3. Series Expansions. Since neither &i(r, ß) nor 82(r, ß) can be integrated

in closed form, series representations are necessary. A Taylor series expansion of

82(r, ß) about ß = 0 yields

82(r, ß) = E2(t) - Z E3(r)ß2 + ^ [r£4(r) + E5(r)]ß*

- ^ [r2£5(r) + 3r£6(r) + 3£7(r)]/36

+ ^ [r3£6(r) + 6r2£7(r) + 15r£8(r) + 15E9(r)]ßa

(10) - -~ [r4£7(r) + 10r3£8(r) + 45r2£9(r) + 105r£10(r)

+ lO5£n(r)]010

+ ^~ [t5Es(t) + 15r4£9(r) + 105r3£10(r) + 105r2£„(r)

+ 945r£I20) + 945£13(r)]012 - • • •  .
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A series representation for large values of ß is best obtained from expression (la)

for 8,0, ß). The substitution / = ß sinh £ reduces 8i(t, ß) to a form so that an integral

listed in [5] can be used. This integral

(11) K0(rß) =   [   exp(-T/3cosh£)¿£
Jo

reduces (la) to the form

(12) 8,(r, ß) =  K0(rß) -   f   exp(-r/3 cosh 0 d£
Jo

where c = sinh" \l/ß). The integrand in (12) is expanded in a series around £ = 0

and integrated to yield

8,(7, ß) = Ko(x)

- ce"\
xc    .   x(3x — l)c

3! + ~       5!

_ x(15;c2 - 15* + lV   ,   a:(1Q5a:3 - 210a:2 + 63a: - l)c8

7! + 9!

_ x(9A5x* - 3150a:3 + 2205a:2 - 255a: + l)c'0

11!

a:(10395x5 - 51975a:4 + 65835a:3 - 21120*2 + 1023a: - l)c12

+ 13!

(13) - a:(135135a:6 - 945945a:5 + 1891890a:4 - 1201200a:3

+ 195195x2 - 4095a: + l)c14/15! + • • ■

where x = rß.

Continual integration by parts of integral (la) yields the following asymptotic

expansion of 8,(7, 0) for large r.

S,(r, ß) ~ exp[-r(l + ß2)U2]\~ - ° + f)1/2 +
(2 + 3/32)

3^
T

(1 + g2)1/2(6 + 15/32)   ,   24 + 120^2 + 105/34
(14) -i-1-»-

T T

(1 + j32)'/2(120 + 840g2 + 945^4)

+ .--J-
This expansion reduces to the asymptotic expansion [6] for the exponential integral

when ß = 0. Neglecting higher order terms in (14) the generalized exponential

integral can be approximated by

(15) 8,0, ß) ~ exp[-r(l + /32),/2]/[r + (1 + ß2)U2].

4. Associated Functions. The generalized exponential integral functions can

be expressed in terms of other functions. In particular, the generalized integral

E(a, x) is defined [7] as
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(16) E(a, x) =        (t2 + a2YU2{\ - exp[-(i2 + a2)1/2]} dt
•'o

and is related to 8,0, ß) as follows:

(17) 8,0, ß) =   Koirß) - sinrT^l//?) + E(rß, r).

The function E(a, x) is tabulated in [7] using numerical integration. Another special

function, the incomplete modified Bessel function K0(w, z), is defined [8] as

(18) K0(w,z) =   /    exp(—z cosh t) dt
Jo

and is related to 8,0, ß) as follows:

(19) 8,(t, ß) =   K0irß) -  K0(smh-l(l/ß), rß).

In [7], [8], an asymptotic expansion equivalent to the first term of Eq. (14) is presented.

However, no series expansions suitable for numerical computation are developed.

In studying the absorption of solar radiation by the earth's atmosphere, Chapman

[9] studied the following function:

(20) f(x, sin a) = x sin a ez  I    exp[—x sin a cosh t] cosh t dt
Ju

where sech U = sin c. Chapman's function is related to the derivative of 8,0) ß), i.e.,

(21) . - r d&i(r, ß)/dr = exp[-r(l + ß2)W2]f[r(l + ß2f/2, ß(l + ß2)~1/2].

5. Numerical Computation. Numerical values of 8,, S2 and 83 are listed in

Tables 1, 2 and 3 in the microfiche section. The calculations were performed on an

IBM 360 model 50 computer with double precision arithmetic. For ß ^ .5 and r^2,

Eq. (10) was used to compute 82(r, ß) with 8,0, ß) and 83(r, ß) following from

recursion relations (3) and (9). For ß > .5 and t ^ 2, Eq. (13) was used to compute

8,0, ß) with 82(r, ß) and 83(t, ß) following from recursion relations (3) and (9).

For t > 2, the generalized exponential integrals S„(t, ß) were calculated using

Gaussian quadrature.

Using results calculated with Gaussian quadrature as a reference, the results

from Eq. (10) yield six significant digits in the region ß ^ .5 and t¿2. Results from

Eq. (13) and those from the numerical quadrature differ by two units in the fifth

significant digit for ß = .5 and r ^ 2. The accuracy of Eq. (10) increases as r or ß

decreases, while the accuracy of Eq. (13) increases as t or 1/(3 decreases. For example,

the results from Eq. (10) yield seven significant digits for ß ^ .5 and ral. Also,

the results for 8,(r, ß) were spot-checked with those of [7] and found in agreement.
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