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Singularly perturbed systems of ordinary differential equations arise in many biological, physi-
cal and chemical systems. We present an example of a singularly perturbed system of ordinary
differential equations that arises as a model of the electrical potential across the cell mem-
brane of a neuron. We describe two periodic solutions of this example that were numerically
computed using continuation of solutions of boundary value problems. One of these periodic
orbits contains canards, trajectory segments that follow unstable portions of a slow manifold.
We identify several mechanisms that lead to the formation of these and other canards in this
example.

1. Introduction

From the mechanics of the Van der Pol oscillator
to the chemical kinetics of enzymatic reactions, sin-
gularly perturbed systems of ordinary differential
equations describe complicated behavior that re-
sults from the multiple time scales in the system.
Solutions of the forced Van der Pol oscillator, for
example, contain such complicated phenomena as
canard solutions and horseshoes. As the dimension
of the systems increases, so does the complexity of
the solutions. Previous work on qualitative analy-
sis of singularly perturbed systems has focused on
local phenomena within low dimensional systems.
Our long-term goal is to understand and classify
the local and global bifurcations that occur in these
systems using the tools of geometric singular per-
turbation theory and asymptotic analysis. Towards
that end, we have undertaken a numerical study of a
system of coupled relaxation oscillators, motivated
by a model of two coupled neurons.

Reciprocal inhibition of two neurons is a
classical mechanism for the creation of “half center”
oscillations in which there is a left–right alternation
in the activity of the neurons. When one oscillator
is active, the second is quiescent, and vice versa.
The reciprocal inhibition prevents both oscillators
from being active simultaneously. This simple net-
work architecture is widely observed and believed to
provide the neural basis of many rhythmic motions
which have a bilateral symmetry in which sym-
metric elements act with a half period phase shift
[Cohen et al., 1988]. Models of varying degrees of
detail for half center oscillations have been stud-
ied. Wang and Rinzel [1992] and Skinner et al.
[1994] considered phase models in which each os-
cillator was represented by a single phase variable.
This work introduced the concepts of “release” and
“escape” and used them to understand the effects
of modulatory inputs on the period of the oscilla-
tions. Nadim et al. [1995a, 1995b] formulated and
studied much more detailed Hodgkin–Huxley like
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models for the leech heart that were based upon
extensive physiological data, and they compared
model simulations with measurements. Here we
study a model introduced by Rowat et al. [Rowat
& Selverston, 1993; Guckenheimer & Rowat, 1997]
of intermediate complexity to these two. Rowat’s
model represents each neuron by two variables, a
membrane potential and a “recovery” variable. In
this model, the periodic action potentials of an ac-
tive neuron are averaged and represented by equi-
libria that have an elevated membrane potential
relative to the membrane potential of a quiescent
neuron.
Rowat’s model is a singularly perturbed system

with two fast and two slow variables. The mem-
brane potentials are the fast variables while the re-
covery variables are assumed to change on a slower
time scale. Both the relaxation of the membrane
potential to an equilibrium and the response of a
postsynaptic neuron to the passage of the presy-
naptic neuron through its threshold are fast pro-
cesses. In the singular limit, the ratio of time scales
becomes infinite and these models approach phase
models of the type referenced above. The singular
perturbation problem allows us to examine in an
abstract setting the fast dynamics associated to the
release and escape mechanisms. One of our objec-
tives, only partially realized, is to characterize the
dynamical events that occur at fast transitions be-
tween different states of the reciprocally inhibiting
pair.
There have been few dynamical studies of

the qualitative properties of singularly perturbed
systems. As we demonstrate below, there are severe
limitations on the capability of numerical integra-
tion to compute families of stable orbits that con-
tain segments that are locally unstable. The locally
unstable solutions are known as canards. Numeri-
cal integration of singularly perturbed systems with
canards usually gives spurious results, producing
discontinuous or chaotic transitions between stable,
periodic solutions that in fact are connected by con-
tinuous families. Boundary value problem solvers
that use continuation algorithms to track solutions
are more successful in computing these solutions,
yet present different computational challenges. The
results in this paper were computed using AUTO,
a widely known package for solving boundary value
problems [Doedel et al., 1998]. To compute solu-
tions within specified error tolerances, we required
as many as 1000 mesh intervals whereas the value
recommended in the singular perturbation example

of Doedel et al. [1998, p. 80] is 100. Moreover, it
is apparent that important aspects of the solution
branches computed by AUTO are not adequately
resolved. In particular, we are unable to identify
bifurcations of the periodic orbits or relate these to
the AUTO calculation of eigenvalues for the mon-
odromy maps of the orbits. Here we present results
from our numerical study that illustrate the forma-
tion of canards of several different types, and we
discuss their qualitative properties.

2. Singularly Perturbed Systems

Consider the standard form of a singularly
perturbed system

x′ = f(x, y)

y′ = εg(x, y) ,
(1)

where ε is a small parameter [Mischenko & Rozov,
1980]. Due to this small parameter, the dynamics
of the variable x evolve on a much faster time scale
than the dynamics of the variable y. Thus, x is
commonly referred to as the fast variable and y is
called the slow variable. The essential idea in sin-
gular perturbation theory is to deduce the behavior
of the solutions of the singularly perturbed system
(1) by studying two limiting cases. The first limit
ε→ 0 defines the fast subsystem:

x′ = f(x, y)

y′ = 0 ,
(2)

where the slow variables y are constant parameters
in the vector field of the fast variable. The second
limit is obtained by first rescaling time t = τε and
then setting ε = 0. The resulting system is called
the slow subsystem:

y′ = g(x, y)

f(x, y) = 0 ,
(3)

a differential-algebraic system of equations. The
set of equilibria of the fast system f(x, y) = 0 is
called the critical manifold. By combining the solu-
tions of the fast and slow subsystems appropriately,
the qualitative behavior of the singularly perturbed
solution can be determined. Folds in the crit-
ical manifold correspond to saddle-node bifurca-
tion points in the fast subsystem and are distin-
guished in the full system since the fundamental
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nature of the solutions change at these points. Fold
points correspond to points where the Jacobian fx is
singular. For points where fx is nonsingular, the
implicit function theorem can be applied so that
(3) becomes y′ = g(x(y), y) and determines the
dynamics of the slow subsystem.
It is a fundamental result of Fenichel [1979]

that, for ε sufficiently small, a normally hyperbolic
subset of the critical manifold persists as a locally
invariant manifold that is O(ε) close to the criti-
cal manifold. This perturbed manifold is called the
slow manifold.

3. The Classical Canard

Special solutions to singularly perturbed systems
were discovered by a group of French mathemati-
cians using techniques from nonstandard analysis
[Benoit et al., 1981]. These solutions, called canard
solutions, include segments of the solution that re-
main close to the unstable part of the slow manifold.
The unstable nature of the canard solution com-
bined with the fact that the solution only exists
in parameter ranges that are exponentially small
in relation to the small parameter ε make these
solutions analytically elusive and computationally
challenging. The numerical computation of these

special canard solutions is the point that we address
in this paper.
Consider the “classical” example of a system

with canard solutions

ẋ =
y − x2 − x3

ε

ẏ = a− x

(4)

with ε = 0.001. The nullclines for this system are
plotted in Fig. 1; the dashed and dotted lines are
the x and y nullclines, respectively. In this case, the
critical manifold is the x nullcline y = x3+x2. This
system undergoes a Hopf bifurcation when a = 0,
and as a decreases, a family of periodic orbits grows
out of the origin. This is a family of canard solu-
tions; the orbits travel down the right side of the
x-nullcline, and then continue up the unstable part
of the x nullcline before jumping to the right. The
distance for which the orbits track the unstable slow
manifold increases, up to where the orbit reaches
the local maximum in the nullcline. As a decreases
further, the distance for which the orbit follows the
unstable slow manifold decreases, but now the or-
bit jumps left (i.e. x jumps down in value) to the
left-most stable branch of the slow manifold. Even-
tually, the canard disappears, and the periodic orbit
becomes the standard relaxation oscillation.
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Fig. 1. A numerically computed solution to Eq. (4) (a = −3.7757344 × 10−4). The right figure is a closer look at the region
where the canard leaves the unstable part of the slow manifold. The numerical algorithm produces trajectories that jump
erratically left and right from the unstable part of the slow manifold rather than clearly tracking the stable periodic orbit with
a canard. This solution was computed using the MATLAB subroutine ODE15S, with error tolerances set to 10−11.
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Computation of the canards of this system
with numerical integration fails completely. The
Jacobian of the vector field is

(

1000(−2x − 3x2) 1000

−1 0

)

.

We consider −1 ≪ a < 0. On the critical manifold
for x ∈ [−1/2, −1/6], the x components of nearby
trajectories separate at a rate at least exp(250t).
The equations for the slow subsystem reduces to
ẋ = −1/(2 + 3x) (taking a = 0), and we find
that a trajectory requires at least time 1/3 to tra-
verse the portion of the critical manifold where
−1/2 < x < −1/6. During this time, the rel-
ative separation of trajectories in the x direction
increases by a factor of well over exp(80). Thus,
an initial condition must have an accuracy of at
least exp(−80) close to the slow manifold to be able
to track it with a numerical integration algorithm.
Consequently, initial conditions that differ by unit
precision but lie on opposite sides of the unstable
portion of the slow manifold separate without track-
ing the unstable slow manifold very far. Standard
numerical integration algorithms, when applied to
the initial value problem, produce “chaotic” trajec-
tories that jump erratically left and right on subse-
quent returns to the unstable slow manifold rather
than giving a good representation of a periodic or-
bit with a canard. An example is shown in Figs. 1
and 2.
In contrast, boundary value problem solvers

that use continuation methods are able to track
canard solutions. To illustrate this point, we use
AUTO [Doedel et al., 1998] to track canard solu-
tions of a system of singularly perturbed ordinary
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Fig. 2. A plot of the fast variable x of (4) versus time
demonstrates the erratic behavior of the solution illustrated
in Fig. 1.

differential equations with two fast variables and
two slow variables. As we will demonstrate, this
particular system is much more complicated than
Eq. (4) and includes canards qualitatively different
from those found in (4).
More specifically, we demonstrate two addi-

tional classes of canards that we have observed,
distinct from the classical canard described above.
The first type of canard that we observed enters the
unstable part of the slow manifold at a fold, a point
that is not normally hyperbolic. In the fast sub-
system, this corresponds to a trajectory entering a
saddle-node (degenerate) equilibrium. We call this
a fold initiated canard. For such a canard to form,
the vector field on the critical manifold near the fold
must point away from the fold.
The second class of canards occurs when the

slow manifold is of saddle type (i.e. has stable and
unstable fibers), and a trajectory enters the slow
manifold along a stable fiber. In the fast sub-
system, this trajectory is the stable manifold of a
saddle. We call this a saddle initiated canard. Note
that this type of canard can only occur in systems
with at least two fast variables.

4. The Model

4.1. The equations

The Hodgkin–Huxley equations [Hodgkin &
Huxley, 1952], a widely accepted model for the
voltage potential in a squid giant axon, is a well-
known system of mildly stiff ordinary differential
equations. Instead of trying to understand a model
with the complexity of the Hodgkin–Huxley equa-
tions, we study a simpler model of two coupled
neurons that does not attempt to resolve individual
conductances within the membranes of the neu-
rons. The particular model that we studied was
formulated as a description of neurons coupled with
reciprocal inhibition in the gastric mill circuit of a
lobster [Guckenheimer & Rowat, 1997; Rowat &
Selverston, 1993]. Specifically, the model is

v′1 = −

(

v1 − a tanh

(

σ1v1
a

)

+ q1 + ωf(v2)(v1 − r)

)

v′2 = −

(

v2 − a tanh

(

σ2v2
a

)

+ q2 + ωf(v1)(v2 − r)

)

q′
1
= ε(−q1 + sv1)

q′2 = ε(−q2 + sv2) , (5)
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where the fast variables vk represent the membrane
potential and the slow variables qk represent the ide-
alized gating of the membrane channels. We assume
that the two neurons are coupled by a function of
the form ωf(vj)(vi − r) where f(x) is given by

f(x) =
1.0

1.0 + exp(−4γ(x− θ))
(6)

and the parameter ω controls the coupling strength.
The parameter γ governs the steepness of the
threshold for synaptic coupling. We take γ = 10,
a value large enough to produce a steep threshold
between minimal and maximal synaptic current.
We take the small parameter ε to be ε = 0.0001.
From a different perspective, Eq. (5) also repre-

sents two “oscillators” (v1, q1) and (v2, q2) coupled
by the function (6). When isolated (ω = 0), each os-
cillator has parameter ranges in which it is bistable,
that is it has two stable equilibria. The equilibria
of an isolated neuron with larger values of vi repre-
sent states in which the neuron fires periodic action
potentials. The oscillations associated with these
periodic states are averaged, however. More com-
plete models of reciprocal inhibition include the
spiking action potentials of the active state [Nadim
et al., 1995a].
We assume that the oscillators are identical,

that is, the parameters for each oscillator are the
same, with the exception of σ, the parameter which
controls the steepness of the tanh function. The
value of the remaining parameters are:

ω = 0.03, γ = 10, r = −4 ,

θ = 0.01333, a = 1, s = 1 .
(7)

4.2. Fast and slow subsystems

To understand the qualitative features of the solu-
tions of (5), we describe our numerically computed
solutions to the full singularly perturbed system in
terms of the singular solutions of the fast and slow
subsystems [Arnold et al., 1994; Guckenheimer &
Holmes, 1983; Jones, 1994; Kevorkian & Cole, 1981;
Mischenko & Rozov, 1980]. The fast subsystem is

v′1 = −

(

v1 − a tanh

(

σ1v1
a

)

+ q1 + ωf(v2)(v1 − r)

)

v′2 = −

(

v2 − a tanh

(

σ2v2
a

)

+ q2 + ωf(v1)(v2 − r)

)

(8)

where the slow variables, q1 and q2, act as parame-
ters. The slow subsystem is given by

q′
1
= (−q1 + sv1)

q′
2
= (−q2 + sv2) ,

(9)

−

(

v1 − a tanh

(

σ1v1
a

)

+ q1 + ωf(v2)(v1 − r)

)

= 0

−

(

v2 − a tanh

(

σ2v2
a

)

+ q2 + ωf(v1)(v2 − r)

)

= 0

(10)

where the algebraic Eqs. (10) define the critical
manifold.
To understand the solutions to the full singu-

larly perturbed system (5) we use information from
the fast subsystem (8) and the slow subsystem (9)
and (10). We begin by studying folds in the crit-
ical manifold. Folds in the critical manifold occur
where the Jacobian of (10) with respect to the fast
variables v = (v1, v2) is singular. Specifically

det(fv) = 0 , (11)

where Eq. (10) defines f(v, q). Thus the solutions
(v1, v2) to (11) define the curve of fold points on
the critical manifold. The projection of these fold
lines on the slow variables (q1, q2) is given by sub-
stituting the solutions (v1, v2) into (10) and solving
for the corresponding pair (q1, q2).
The fold lines of the critical manifold deter-

mine possible points at which the solution will ei-
ther leave the neighborhood of the slow manifold
and begin a fast transition or form a fold initiated
canard. The points along the fold lines at which a
fold initiated canard is possible are determined by
the dynamics on the critical manifold near the fold
line. Although the slow dynamics are typically de-
fined in terms of the slow variable q (as described
in the introduction), we express the slow dynamics
in terms of the fast variables as a matter of con-
venience. Equation (10) can easily be solved for

q = f̂(v), whereas solving v = g(q) is much more
difficult.
To determine the dynamics near a fold in the

critical manifold, we consider the vector form of
Eqs. (9) and (10):

q′ = g(v, q) ,

f(v, q) = 0 .
(12)
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The implicit function theorem can be applied to
solve f(v, q) = 0 for q as a function of v. Then
Eq. (9) becomes

v′ = (f̂v)
−1g(v, f̂)

=
adj f̂v

det f̂v
g(v, f̂) , (13)

where f̂ is defined by the relation q = f̂(v). The
vector field defined in (13) becomes singular at the

fold since det f̂v = 0 along the fold. To circumvent
this singularity, we multiply the right-hand side of
the equation by det f̂v, a scalar quantity that will
change the length of the vector field, and possibly
the sign of the vector field. But by calculating the
sign of det f̂v independently, we will know the di-
rection of the vector field at a fold. Note that q can
be recovered from the relation q = f̂(v1, v2).

5. Computation of Solutions

Our primary tool for numerically computing fami-
lies of periodic orbits was the continuation package
AUTO [Doedel et al., 1998]. AUTO uses colloca-
tion to solve the boundary value problem associated
with finding a periodic orbit. Because we are com-
puting fairly complicated periodic orbits in a system
with widely different time scales, it was necessary
to use as many as 1000 mesh points and error tol-
erances as low as 10−10. (This may be compared to
the singular perturbation example given by Doedel
et al. [1998], where only 100 mesh points were used
with error tolerances of 10−6.) The average time for
AUTO to compute 1000 periodic solutions on an
SGI Challenge L with 4 R10,000-195 MHz CPUs
and 2 Gigabytes of four-way interleaved memory
was 45 minutes.
To compute a starting solution for the contin-

uation algorithm, we solved the system using a nu-
merical initial value problem solver, with a set of
parameters for which the computed trajectory ap-
proaches a periodic orbit with no canards. We used
the MATLAB function ODE15S, an adaptive algo-
rithm designed for stiff systems, to solve the dif-
ferential equations. To obtain accurate results, we
used error tolerances as low as 10−9. For large
ranges of the parameter σ2, the system converges to
a stable periodic orbit. We used orbits computed
this way as starting points in AUTO. Additionally,
we used MATLAB to plot and animate the solutions
generated by AUTO.

Because our system of equations is four-
dimensional, visualization of the phase space is
problematic. We plot an assortment of projections
to do so. The two-dimensional projections that
we have found most useful are the fast variables
(v1, v2), the first oscillator (v1, q1), and the second
oscillator (v2, q2). Occasionally it is also helpful to
see three-dimensional projections, so in some cases
we plot (v1, v2, q1) and (v1, v2, q2).
The parts of the solution where the speed of

the trajectory is much greater than ε (which for
our computations is 10−4) are called “fast transi-
tions”; these are the parts where the fast subsystem
provides a good approximation to the full system.
When a trajectory slows down to O(ε), the fast
subsystem is no longer a good approximation; the
“fast” variables are now changing on the same time
scale as the slow variables. In this case, the slow
subsystem (i.e the dynamics on the critical mani-
fold) provides a good approximation to the solution,
and we will often say that the trajectory is “on the
slow manifold”. In the plots of solutions (such as
Fig. 3), the slow parts are plotted with thick (blue)
lines, and the fast transitions are plotted with thin-
ner (red) lines. Whether a part of the solution is
considered slow or fast in these plots is decided by
computing the norm of the vector field. If it is above
an arbitrary threshold, it is called fast; otherwise it
is slow.
We begin by describing in Sec. 5.1 one of the

simpler solutions of (5) that represents two sym-
metric oscillators. This example provides a basis
for introducing the projections and the terminology
with which we describe the behavior of the solu-
tions. With this foundation, we present in Sec. 5.2
a more complicated asymmetric solution containing
three canards.

5.1. Symmetric oscillators

Models of symmetrically coupled reciprocally inhib-
ited identical neurons such as (5) produce “half-
center” oscillations in which the two neurons oscil-
late half a period out of phase of each other. There
is a symmetry of the orbits corresponding to inter-
change of the two neurons and advancing time of a
half period. While one neuron is active, the other
is quiescent. We begin by presenting a solution of
(5) which exhibits this behavior. This will illustrate
the two-dimensional and three-dimensional projec-
tions of trajectories in the context of a simple and
familiar example.
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Fig. 3. Three two-dimensional projections of the periodic solution of the symmetric oscillators that exhibit half-center os-
cillations are portrayed in this figure. The phase portraits of the oscillators (v1, q1) and (v2, q2) depict the slow segments of
the orbit (thick solid blue lines) and fast segments of the orbit (thick solid red lines) as well as the qi-nullclines (dot–dashed
line), the upper and lower bounds of the vi-nullclines (thin solid line), and the vi-threshold (vertical dashed line). The (v1, v2)
projection of the solution also contains the fold lines, as defined by Eq. (11).

Consider the model (5) with the parameter val-
ues given by Eq. (7) and σ1 = σ2 = 2. The stable
periodic solution that exhibits half-center oscilla-
tions is depicted in Figs. 3–5. In Fig. 3, three two-
dimensional projections of the solution are shown.
The plots of the solution projected onto the fast
variables (v1, v2) [Fig. 3(c)] also contain the projec-

tions of the fold curves of the slow manifold [com-
puted by solving Eq. (11)] plotted as thin solid
curves. Note that the changes in speed of the or-
bit occurring at B and D correspond to the orbit
leaving the slow manifold at a fold and beginning
a fast transition to another part of the slow man-
ifold. Compare also Fig. 5 where the jumps of
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Fig. 4. Two three-dimensional views of the critical manifold and the periodic solution of the symmetric system give a different
perspective on the solution.
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Fig. 5. The voltage of each oscillator is plotted against time t for the periodic solution to the symmetric system. The voltage
potential of the first oscillator v1 represented by the solid line and v2 is represented by the dashed line.

vi occur simultaneously at times 0% and 50% of
the period.
Figures 3(a) and 3(b) show the “phase plane”

associated with each of the oscillators. Each plot
includes the qi-nullcline (dot–dashed line), the vi
threshold (vertical dashed line), and the projection
of the periodic orbit. In addition, the plots con-
tain the upper and lower limits of the vi-nullcline

(thin solid lines). The lower limit of the vi-nullcline
corresponds to the value of the coupling function
being zero, which occurs when the voltage of the
other oscillator is sufficiently below the threshold
θ. Analogously, the upper limit corresponds to the
value of the coupling function being one, which oc-
curs when the voltage of the other oscillator is suf-
ficiently above the threshold θ. When the voltage
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of the other oscillator is in a neighborhood of the
threshold θ, the value of the coupling function is
between zero and one and the vi-nullcline is between
the upper and lower limits.
Figures 4(a) and 4(b) are three-dimensional

plots of the periodic orbit in (v1, v2, q1) coor-
dinates and (v1, v2, q2) coordinates, respectively.
These plots include the two-dimensional critical
manifold.
The following detailed description of the peri-

odic orbit refers to Figs. 3–5. At point A, the or-
bit has just completed a fast transition; in the fast
subsystem, this means that the orbit has entered
a small neighborhood of a critical point of the fast
subsystem, which in this case is a stable node. The
orbit then moves along the slow manifold from A
to B. In Fig. 3(a), the segment from A to B is close
to the lower v1-nullcline. Because v1 is to the left
of the v1 threshold [as shown by the vertical dashed
lines in Fig. 3(a)], v2 is on its upper nullcline, and
similarly v1 is on the lower nullcline because v2 is
above threshold. At B, the orbit reaches a fold in
the slow manifold. This can be seen in Fig. 3(b),
where we see that the slow segment ends at the knee
(i.e., local maximum) of the upper v2-nullcline. In
Fig. 3(c), we see that B is the intersection of the tra-
jectory and a fold line; in Fig. 4(b), it is clear that
B is at the fold in the slow manifold. A fast tran-
sition begins at B. In Fig. 3(b), the fast transition
is a jump down (to the left). During this jump, v2
crosses threshold, which moves the v1-nullcline up
towards its upper limit. When this happens, the
first oscillator is no longer near its nullcline, and it
begins a fast jump up (to the right). In the termi-
nology of Skinner et al. [1994], the first oscillator
has been “released”. As it jumps, it crosses the
threshold for activating its synaptic inhibition of
the second oscillator. Thus the point C lies on the
lower nullcline for v2. Both oscillators cross their
threshold in the transition from B to C, the first
oscillator turning on its inhibition of the second os-
cillator while the second oscillator turns off its inhi-
bition of the first oscillator. Because the oscillators
are symmetric, the transitions C→ D→ A are the
same as A → B → C, but with the roles of the
oscillators reversed.

5.2. Asymmetric oscillators

The symmetric solution presented in Sec. 5.1 is a
stable periodic orbit with no canards. It can be
computed quite easily by letting a standard numer-

ical differential equation solver integrate forward in
time until a given convergence criterion is reached.
As we track one parameter families of periodic or-
bits to the system (5), allowing the parameter σ2 to
vary, canards appear and disappear in the periodic
orbits. The occurrence of canards makes comput-
ing periodic orbits more difficult. We saw in Sec. 3
that when a periodic orbit has a canard, using an
initial value problem solver has severe limitations,
even if the orbit is stable. The degeneracies of the
slow–fast system associated with the formation of
canards are discussed in Sec. 6. In this section,
we describe a single periodic orbit that illustrates
the complexity of the solutions to Eq. (5). We also
note that this complexity seems to be beyond that
which has been achieved previously in computations
with AUTO. The example we display has parame-
ters σ1 = 3 and σ2 = 1.2652372051. Figures 6–8
show a periodic orbit computed by AUTO at these
parameter values. This example contains one fold
initiated and two saddle initiated canards.
To understand the structure of this trajectory

and how it interacts with the slow manifold, we
give a detailed description of the periodic orbit, be-
ginning at the point labeled A. In the symmetric
half-center oscillations, the interaction between the
two oscillators can be easily characterized. When
the first oscillator is on its lower (upper) nullcline,
the second oscillator is on its upper (lower) null-
cline. The solution presented in Figs. 6–8 shows
a much more complicated interaction between the
oscillators. Beginning at the point labeled A, the
first oscillator makes a series of jumps between its
upper and lower nullclines without crossing its
synaptic threshold (depicted by the vertical dashed
line), so the second oscillator remains on its upper
nullcline in a typical relaxation oscillation pattern.
In contrast to the symmetric solution, in this exam-
ple both oscillators can be on their upper nullcline
at the same time! An analogous situation exists
as the first oscillator jumps between its upper and
lower nullclines as it proceeds from point C to the
maximum of the lower nullcline. The first oscilla-
tor is always above its threshold, thus the second
oscillator remains on its lower nullcline.
For generic trajectories, stable segments of slow

motion in the system terminate near fold points of
the critical manifold or near points of Hopf bifurca-
tion. Thus the location of folds is closely related to
the initiation of canards. In this system, the folds
lie close to the local minima and maxima of the
v-nullclines in the plane of each oscillator, except
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Fig. 6. Complicated periodic orbit computed by AUTO for asymmetric oscillators. The upper figures depict the phase plane
for (a) the first oscillator and (b) the second oscillator. (c) The bottom left figure is a blowup of the local minimum of the
nullcline of the first oscillator shown in the upper left. (d) The bottom right figure depicts the projection of the solution onto
the fast variables.

when the other oscillator is at its synaptic thresh-
old. We locate fold initiated canards visually by
looking for points of tangency between the projec-
tion of a trajectory into the plane of one of the
oscillators and the v-nullcline in that plane. Our
example periodic orbit contains one fold initiated
canard at the point labeled B. As can be seen in
Fig. 6(c), the first oscillator makes a fast transition
from its lower nullcline to a minimum of its upper

nullcline. (This corresponds to a trajectory encoun-
tering a saddle-node point in the fast subsystem.)
At this point, labeled B, the orbit proceeds up the
unstable portion of the slow manifold (correspond-
ing to saddles in the fast system). This is a fold
initiated canard. At the next fast transition, the
first oscillator leaves the unstable portion of its up-
per nullcline, follows the stable manifold of another
saddle (in the fast subsystem) to the unstable lower
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Fig. 7. Three-dimensional views of the asymmetric periodic orbit. These figures include the two-dimensional critical manifold,
and show that the orbit tracks the slow manifold when the trajectory is moving slowly (thick intervals of the curve). The
canards are visible in the figure on the left; they are the thick parts of plotted trajectory that track the slow manifold in the
region −0.5 < v1 < 0.5 (between the lower fold and the upper fold).

nullcline at B’ and a saddle initiated canard is born.
This brief canard ends when the trajectory leaves
the saddle, and in the subsequent fast transition, v1
decreases while v2 remains approximately constant.
This part of the orbit is the horizontal segment in
the upper part of the (v1, v2) projection shown in
Fig. 6(d) with v2 ≈ 0.9. Next, there is a slow transi-
tion to a fold of the second oscillator. In the subse-
quent fast transition, the trajectory misses the fold
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Fig. 8. Complicated periodic orbit computed by AUTO for
asymmetric oscillators. This orbit has three canards.

of the first oscillator on the upper nullclines and
continues on to the point labeled C, where the os-
cillations described in the previous paragraph con-
tinue. A second saddle initiated canard is formed as
the first oscillator leaves the maximum of its lower
nullcline and is drawn in along the stable manifold
of a saddle in the fast subsystem to the unstable
part of the upper nullcline at point D. As the or-
bit leaves this saddle initiated canard, the first os-
cillator crosses threshold, thus forcing the second
oscillator to jump to its upper nullcline. The next
fast transition occurs at the initial point A where
the second oscillator reaches the local maximum of
its upper nullcline. We have returned to the initial
point of the periodic orbit.
Prior to the formation of the saddle initiated ca-

nard at the point labeled D, the trajectory crosses
the fold curves of both oscillators almost at the
same time. This point labeled F is seen in Fig. 6(d),
the (v1, v2) projection at the upper right intersec-
tion of the two fold curves. Our description of
the dynamics obscures some of the detail associ-
ated with the fold surfaces of the four-dimensional
coupled system. One aspect of this model is that
the synaptic conductance term through which the
two oscillators are coupled is almost constant except
at the synaptic threshold. Away from the synaptic
threshold, the critical surface of the coupled system
is approximated by products of the critical curves
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of each oscillator (in its inhibited or uninhibited
state depending upon whether the other oscillator is
above or below synaptic threshold). The fold curves
of the coupled system are approximately products
of the fold points of one oscillator with the critical
curve of the other. This is what we have displayed
in our figures. The resulting self intersections of
the approximate fold curves are degenerate singu-
larities that we call double folds. For a generic map-
ping, we expect to encounter only folds and cusps
as singularities of the projection of the critical man-
ifold onto the plane of the fast variables, not double
folds [Arnold, 1968]. The flow near a double fold
point is the product flow of two saddle-nodes. It
has a quadrant of trajectories that flow into the
double fold point and a quadrant of trajectories
that leave the double fold point. Thus we should
not be surprised to see a trajectory that encoun-
ters the intersection point of the two fold curves.
Guckenheimer and Khibnik [1997] have analyzed
the bifurcations of two weakly coupled oscillators,
showing how the dynamics of uncoupled oscilla-
tors perturb with weak coupling. We have not
attempted here to resolve details of the dynamics
of the frozen system (ε = 0) near the intersection
points of the fold curves.

6. Formation of Canards

We have displayed three different types of
canards:

• “classical” canards associated with Hopf
bifurcation
• fold initiated canards that occur as a fast trajec-
tory approaches a critical manifold near a fold
point
• saddle initiated canards that occur when a fast
trajectory approaches the critical manifold along
the stable manifold of a saddle point.

In this section, we present numerical examples that
illustrate the formation of each type of canard in the
system (5). We show one additional type of classi-
cal canard, initiated by the appearance of a “folded
saddle” [Arnold et al., 1994] rather than a Hopf
bifurcation. We demonstrate intermediate stages
of the processes that create each type of canard as
a parameter or initial point varies. Illustrations of
the evolution of classical and fold initiated canards
can be found in [Diener, 1984] and [Arnold et al.,
1994].

6.1. Classical canards

As was discussed in Sec. 3, there is a family of
periodic orbits for the system (4), parametrized by
a, that is born in a Hopf bifurcation and ultimately
becomes a relaxation oscillation. The Hopf bifur-
cation and relaxation oscillations occur on opposite
sides of the critical manifold. As the periodic solu-
tions grow, they cross the critical manifold by devel-
oping segments that lie along the unstable portion
of the slow manifold. These are canards. The prop-
erties of these canards have been analyzed in great
detail from multiple perspectives [Diener, 1984;
Dumortier & Roussarie, 1996; Eckhaus, 1983]. The
salient features of the “classical” asymptotic analy-
sis are that

• The canards occur at parameter values compara-
ble to ε.
• The parameter interval during which the canards
occur has a length comparable to exp(−c/ε) with
c a positive constant that has been explicitly
computed.
• There are asymptotic expansions for the canards
and the parameter values at which they occur.
• As ε → 0, the canards approach closed curves
formed from segments of the slow and fast vector
fields.

Hopf initiated canards can occur in systems
with one slow and one fast variable as illustrated
by the system (4). The periodic orbits of (5)
that we have exhibited thus far are not close to
Hopf bifurcations. We have numerically investi-
gated some Hopf bifurcations that occur in (5),
and they exhibit the same qualitative behavior as
those (4). For example, Fig. 9 shows solutions (in
the (v2, q2) plane) from a family of periodic orbits
that arise from a Hopf bifurcation that occurs when
(σ1, σ2) = (3, 2.7338807152). As predicted by the
asymptotic analysis of the Hopf canards, the peri-
odic orbits grow in amplitude very quickly at some
distance from the Hopf bifurcation itself.

6.1.1. Classical canard (second example)

This example shows the formation of a canard by
passage through a folded saddle. The smallest di-
mension in which folded saddles occur is in systems
with two slow variables and one fast variable. At
typical fold points of a generically perturbed sys-
tem, trajectories on the critical manifold approach
the fold from both sheets or they leave the fold from
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Fig. 9. This sequence of plots shows the periodic orbits that arise from a Hopf bifurcation.

both sheets. At isolated points of a fold curve in a
generic system with two slow variables, equilibrium
points may be encountered [Arnold et al., 1994].
When this happens, the trajectories on the criti-
cal manifold approach the fold curve on one side
of the equilibrium point and leave the fold curve
on the other side of the equilibrium point. In the
slowly varying system, some trajectories may have
extensions that go through the fold while remain-
ing close to the critical manifold. These are classi-
cal canards in that the trajectory tracks a critical
manifold through a fold as do the Hopf initiated
canards. We call these canards equilibrium point
initiated canards.

Figure 10 shows the relevant details of a so-
lution with an equilibrium point initiated canard.
There is one aspect of this example that differs a
bit from other examples that we present, namely
that the canard formation itself takes place along a
canard. The incoming trajectory to the fold curve
lies along a portion of the slow manifold with one
unstable direction, and the outgoing trajectory lies
along a portion of the slow manifold with two unsta-
ble directions. The three panels of the figure show
the projection of segments of three solutions onto
the plane of the second oscillator. Not shown in
the figure, the projection of this trajectory segment
onto the plane of the first oscillator lies near the
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Fig. 10. (a) The first plot illustrates a regular jump off a fold. (b) The second plot shows the q2-nullcline is very close to the
fold, and a canard is beginning to form, and in (c) there is a longer canard.

unstable branch of the v1-nullcline. As the param-

eter σ2 varies, v1 approaches its synaptic threshold

from above during the slow motion. This causes the
inhibition of the second oscillator to diminish and

raises the v2-nullcline. Only the lower limit of the
v2-nullclines corresponding to full inhibition from

the first oscillator is shown in the figure. The equi-
librium point initiated canard occurs as an equilib-

rium point approaches a fold point of the critical

manifold. This equilibrium point is called a folded
saddle. The figure displays the q2-nullcline as well

as the lower limit of the v2-nullclines. When the

q2- and v2-nullclines cross near the local minimum
of the v2-nullcline, the system is close to the folded
saddle point where the equilibrium point initiated
canard occurs.

6.2. Fold initiated canards

A fold initiated canard occurs when a fast transition
passes through a neighborhood of a saddle-node
point for the fast subsystem, leaving this neighbor-
hood along a branch of unstable points in the slow
manifold. Recall that saddle-node points of the fast
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subsystem are fold points of the critical manifold.
At generic fold points, the flow either

• approaches the fold from both sheets of the slow
manifold resulting in a fast jump, or
• leaves the fold on both sheets of the slow
manifold.

The fold initiated canards occur in the second case.
The essential properties of the fold initiated canard
occur already in systems with one fast and one slow
variable. The system of equations

ẋ = −y + x2 ,

ẏ = ε
(14)

provides a model for the flow in this regime.
Scaling analysis of system (14) provides use-

ful information. Rescaling system (14) by setting
τ = ε1/3t, X = ε−1/3x and Y = ε2/3y yields the
system

dX

dτ
= −Y +X2 ,

dY

dτ
= 1 .

(15)

Thus, much of the ε-dependence of system (14) is
described by this scale change. Solutions of sys-
tem 14 are shown in Fig. 11. The heavy line is the
critical manifold y = x2. There is a single trajec-
tory that maintains a bounded distance from the
critical manifold as t→∞. This trajectory divides
the plane into two halves. In one half, trajecto-
ries approach the stable branch of the slow mani-
fold as t → ∞. In the other half, the trajectories
leave the neighborhood of the slow manifold, with
x → ∞ in finite time and y remaining bounded.
Consider trajectories beginning at (−1, y0). As y0
increases towards −0.1, the solutions come close to
the fold (i.e., the minimum of the parabola), and
follow the right branch of the parabola for increas-
ing distances before accelerating off to the right.
Further increases in y0 yield solutions that again
follow the right branch of the parabola, but then
jump off the parabola on the left side (decreasing x);
these trajectories then converge to the left branch
of the parabola. As y0 is increased still further, the
distance that these orbits track the right branch of
the parabola decreases, until finally the orbits are
simply reversing their horizontal direction in the
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Fig. 11. Solutions to (14), the model system for the fold ini-
tiated canard, with ε = 0.01. The heavy line is the critical
manifold y = x2.

vicinity of the minimum of the parabola. Larger
values of y0 give the solutions that converge to the
left branch of the parabola from the left. This qual-
itative picture describes the behavior of a flow near
a generic fold at which trajectories on the slow man-
ifold leave the fold.
All the solutions that track the right branch of

the parabola are canards. These solutions occur in
a very small interval of y0. A rigorous analysis of
these observations is given by Mischenko and Rozov
[1980]. These canards are also briefly discussed in
Sec. 5.4 of [Arnold et al., 1994]; there they are called
ducks (i.e., canards) with relaxation. Here we give a
crude estimate demonstrating that the set of initial
conditions in system (14) that track the unstable
slow manifold for distance 2 is a strip whose width
is smaller than exp(−1/ε). The variable y increases
at the constant rate ε while the variational equa-
tions show that trajectories separate from one an-
other in the x direction at the rate 2x. Thus, along
the right-hand branch of the parabola y = x2, solu-
tions take time 1/ε to traverse the horizontal strip
1 < y < 2 and they spread apart horizontally by rel-
ative amounts exceeding exp(−2/ε). Consequently,
initial conditions with x = 0 that pass close to (2, 4)
on the unstable branch of the slow manifold form a
strip whose width is small compared to exp(−1/ε).
Thus, we expect that the saddle initiated canards
of length O(1) in a family of periodic orbits oc-
cur over parameter ranges that are small compared
to exp(−1/ε).
In our discussion of system (14), we have con-

sidered the changes in behavior within a family of
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Fig. 12. A sequence of trajectories that show the formation of a fold initiated canard. The labeled curves are small parts of
larger periodic orbits; we only show the region of each plot that is relevant to the formation of canards. The phase of each
orbit has been chosen so that the large jump in v1 occurs at t ≈ 1. Orbit (1) does not have a canard. Orbits (2), (3) and (4)
have canards, and the part of the orbit that tracks the slow manifold is successively longer in each.

solutions parametrized by an initial condition. In
this family we see two separate asymptotic behav-
iors, separated by a special solution. In our numeri-
cal computation of solutions to (5), we are not vary-
ing initial conditions. We follow a family of periodic
orbits. Some periodic orbits within the family may
approach a fold in the critical manifold and result
in fold initiated canards within the family. We have
indeed found numerous examples of this; we show
two of them here. However, as the canard of the pe-
riodic orbit approaches the equivalent of the special
solution that separates the asymptotic behaviors in
(14), the canard does not become arbitrarily long.
We see in our computations that the canard even-
tually reaches another fold in the slow manifold,
resulting in further complications and possibly ad-
ditional canards. The two examples discussed below
show fold initiated canards observed in our system
of two coupled oscillators corresponding to the two
sides of the special separating solution.

6.2.1. Fold initiated canard
(first example)

Figure 12 shows details of four orbits from a fam-
ily of periodic orbits in which a canard forms as the

parameter σ2 is varied. The orbit labeled (1) makes
a fast transition that comes “close” to the slow man-
ifold; this can be seen in the plot of v1 versus t in
Fig. 12, where v1 jumps up at about t = 0.998,
slows a bit when v1 is near −0.4, and then jumps
rapidly near t = 1. If we could watch a movie of
this solution in the (v1, v2) plane, we would see that
there is a region of the phase plane that is close to
a saddle-node bifurcation. Orbit (1) is influenced
by this region, but its speed does not slow down to
O(ε).
Orbits (2)–(4), however, do come close enough

to the saddle-node region to slow down to O(ε).
Orbit (2) has a small canard, and in (3) and (4)
the canard tracks the unstable part of the slow
manifold for successively longer times. In our
(v1, v2) movie, we would see the trajectory come
close to the saddle-node point. While the trajec-
tory lingers here, the saddle-node bifurcation takes
place, and the trajectory remains near the saddle
born in this bifurcation. The time that it stays
near the saddle increases from orbit (2) to orbit
(4). When the trajectory leaves the saddle, it does
so by jumping away from the node, along the un-
stable manifold of the saddle in the fast (v1, v2)
subsystem.
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Fig. 13. A sequence of trajectories that show the formation of a fold initiated canard. The labeled curves are small parts of
larger periodic orbits; we only show the region of each plot that is relevant to the formation of canards. The phase of each
orbit has been chosen so that they are all making approximately the same fast transition at t = 0. Orbits (1) and (2) do
not have canards, but the fast transition of (2) ends near the fold. The fast transition of (3) ends very close to the fold and
shows the beginning of a canard. Orbit (4) shows a significant canard, in which the orbit tracks the unstable part of the slow
manifold out to t ≈ 0.02.

6.2.2. Fold initiated canard
(second example)

Figure 13 also shows the formation of a fold ini-
tiated canard which exhibits different behavior in
the phase plane of the fast subsystem. First con-
sider orbit (1). In our (v1, v2) movie, we would see
the trajectory get drawn into a stable node. There
is a nearby saddle, but once the orbit is close to the
node and we enter the slow regime, the saddle and
node move apart.
In orbit (2) of Fig. 13, the trajectory gets

drawn into the stable node, but now the sad-
dle is very close. A saddle-node bifurcation is
imminent. In orbits (3) and (4), the trajectory
is drawn into a saddle-node point (or at least
something that is extremely close to a saddle-
node point), where it slows down to O(ε). The
saddle-node bifurcation takes place while the tra-
jectory is nearby, and the trajectory stays near
the saddle for a longer time. Orbit (3) stays near
the saddle only a moderate time, while orbit (4)
remains near it significantly longer. When the tra-
jectories leave the saddle, they jump back to the
stable node.

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1

0

0.5

1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
−3

v
2

v
1

t

Fig. 14. A saddle initiated canard. The trajectory remains
near the saddle from t ≈ 1×10−3 to t ≈ 3×10−3. The layers
show the directions field of the fast subsystem.

6.3. Saddle initiated canards

A saddle initiated canard results from a fast
transition being close to the stable manifold of
a saddle in the fast subsystem. In the singular
limit ε = 0, the frozen system has a normally
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Fig. 15. A saddle initiated canard. This is the same plot as
Fig. 14, but viewed from above, looking down on the (v1, v2)
plane.

hyperbolic invariant manifold of equilibria that are
saddles in the fast subsystem. Fenichel [1979] stud-
ied the persistence of normally hyperbolic manifolds
and introduced coordinate systems that give normal
forms for the transverse dynamics along these man-
ifolds. Ilyashenko et al. [to appear] proved that Cr

coordinate transformations reduce a generic three-
dimensional system with one slow and two fast vari-
ables to a system of the form

ẋ = a(z)x ,

ẏ = −b(z)y ,

ż = ε

(16)

with a and b smooth functions of the slow variable
z. Further information that is relevant to the sta-
bility of periodic orbits containing saddle initiated
canards is contained in the Exchange Lemma of
[Jones & Kopell, 1994].
An example of a saddle initiated canard is

shown in Fig. 14. The three axes in this plot are v1,
v2 and t. This is a plot of the region labeled B’ in the
solution discussed in Sec. 5.2, and shown in Fig. 6.
At several values of t, a direction field of the phase
plane of the fast subsystem is plotted. We clearly
see the fast transition (from t = 0 to t ≈ 1× 10−3)
that encounters a saddle in the fast subsystem. The
orbit stays close to this saddle from t ≈ 1× 10−3 to
t ≈ 3 × 10−3. It then leaves the saddle and makes
a fast transition to a stable node. The same plot,

but viewed from above looking down the t axis, is
shown in Fig. 15.

7. Discussion

We have shown that even the simplest singularly
perturbed systems arising from neurobiology have
complex dynamical behavior. We have studied a
model system for reciprocal inhibition of two neu-
rons with two fast and two slow variables. This
model produces solutions containing many sub-
tle features that span time scales. In particular,
families of periodic orbits in this system encounter
canards, trajectory segments that follow unstable
portions of the slow manifold. There are several
ways in which canards form, corresponding to dif-
ferent bifurcations in the singular limit of the sys-
tem. We have displayed four of these: two types of
“classical” canards corresponding to Hopf bifurca-
tions and folded saddles, fold initiated canards cor-
responding to systems with two saddle-node points
and a separatrix joining them, and saddle initiated
canards in which the separatrix of a saddle-node
point flows to a saddle point. Individual periodic
orbits may contain several canards. We described
an asymmetric periodic orbit in Sec. 5.2 that con-
tains one fold initiated canard and two saddle
initiated canards.
Our numerical study is incomplete in two fun-

damental respects. First, we have not addressed the
stability of the periodic orbit described in Sec. 5.2.
As we demonstrated in Sec. 2, the inability of
numerical integration algorithms to converge to
solutions with canards does not imply that these
solutions are unstable. Numerical integration al-
gorithms are simply unable to solve initial value
problems that contain canards of substantial length.
In contrast, boundary value problem solvers that
use continuation methods to track solutions were
able to compute complicated solutions containing
multiple canards as shown in Sec. 5.2. Although
the boundary value problem solver that we used
(AUTO) was able to compute this orbit with mul-
tiple canards, its calculations of the Floquet multi-
pliers seemed unreliable and thus did not provide
stability information for the orbits. Subsequent
work by Lust [personal communication] has indi-
cated that more sophisticated algorithms than those
used in AUTO are required to compute the multi-
pliers accurately.
The second incomplete aspect of our nu-

merical study is that we have not discussed
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bifurcations of periodic orbits in this singularly per-
turbed system. AUTO computes one parameter
families of orbits with one varying parameter in the
system, but the bifurcation diagrams and informa-
tion about Floquet multipliers produced by AUTO
are inadequate to determine the types of bifurca-
tions encountered within these families. Singularly
perturbation theory does not yet provide founda-
tions for such a study either. There has been little
work describing the bifurcations of periodic orbits
in singularly perturbed systems beyond the analysis
of canard formation near Hopf bifurcations. Mech-
anisms for the formation and evolution of canards
have been described [Arnold et al., 1994; Diener,
1984], but these have not been related to the bi-
furcations of periodic orbits in which they appear.
We hope that this work will stimulate further de-
velopment of such theory. Canards are common in
singularly perturbed systems even if they are diffi-
cult to compute numerically.
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