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Abstract: A numerical method for determination of least-square approximations of
an arbitrary complex mapping function is derived here and implemented with fast Fourier
transforms (FFTs). An essential feature of the method is the factoring of a discrete Hilbert
transform in a pair of Fourier transforms in order to reduce the operation count of the
longest computation to 0(N log N). A similar factoring of the discrete Poisson integral
formula allows an explicit inversion of it in 0(N log N) operations instead of 0(N3). The
resulting scheme for analytic continuation appears to be considerably more reliable than
the evaluation of polynomials. Examples are treated, and APL implementations of algo-
rithms are provided.

1. Introduction. Chapter and verse of the book by Carrier, Krook and Pearson ([1],
henceforth [CKP]) will be cited for results from the theory of functions of a complex
variable. The use of integral equations for finding the analytic function that maps the
interior of the unit circle onto a simply connected domain S is described in [CKP 4-8]
and in [2 and 3]. That problem and continuation of the mapping function outside the
unit circle will be addressed here by means of somewhat more direct methods.

It has been suggested lately in [4, 5, and 6] that the fast Fourier transform (FFT) can
be used to provide efficient algorithms for numerical solution of the mapping problem.
Fourier analysis will be used in two ways here: first, to formulate the basic iteration for
solution of the mapping problem in terms of a convolution sum; then again to factor that
sum and others that are used for evaluation and continuation of the solution in pairs of
(fast) Fourier transforms. The arguments are not circular—the second Fourier analysis
incorporates twice the number of Fourier coefficients with no significant increase of com-
putational effort beyond what is required in the first.

The problem at hand is to find a complex analytic function Z(pe,e) for which the
boundary values at p = 1 lie on a closed curve that is specified by a complex function
A"(s). The argument of X is a real parameter (e.g. arc length), and X(s) need not be analytic
in any sense. According to the Riemann mapping theorem [CKP 4-2], restated appropri-
ately for the present purpose, there exists a monotonic function s(0) and an analytic func-
tion Z(z) such that

Z(e">) = X(.s(0)). (1.1)
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Moreover, s(0) is uniquely defined if in addition to (1.1) we specify

i) Z(0) = Z0 in Q) bounded by X
(1.2)ii) Z( 1) = Zy on X.

It may be noted (1) that X need not be a simple curve, but if it is not then conformality of
the mapping is lost at points where X intersects itself; (2) given s(0), Z is uniquely defined
for p < 1 by the Cauchy integral formula [CKP 2-3], restated appropriately as

^ _ j_ r2* xjsm do'
2;: Jo 1 - pei{

In accord with current nomenclature [4] the function s(0) will be called the correspon-
dence function. The present method is based upon dropping the specification of Z0 and
Zj in (1.2) in favor of determination of approximations of the correspondence function
that are optimal in the sense of least-square fitting of (1.1). In fact, specified values of Z0
and Zx can be introduced, but the method then becomes more cumbersome and less
accurate. It is suggested that this aspect of the mapping problem should be treated by
introduction of a bilinear transformation after the optimal approximation of the corre-
spondence function has been found.

The least-square analysis is outlined in Sec. 2, where it is found that a direct Fourier
analysis gives an expression for the errors in boundary data (Eq. (1.1)) that can be ident-
ified as a rough discretization of one of the Plemelj formulae (Eq. (2.13)). The content of
Sec. 3 is an iterative algorithm for determination of s(0) that incorporates a refined dis-
cretization of the Plemelj formula. In Sec. 4 the convolution sum of Sec. 3 is factored in
terms of a pair of discrete Fourier transforms in order to reduce computational effort (and
storage) by the use of the fast Fourier transform, and in Sec. 5 evaluation and continu-
ation of the solution are treated by similar techniques. Some examples are treated in Sec.
6, and some of the APL implementations of the algorithms are given in an appendix.

2. Least-square error and Fourier analysis. The mapping function Z is analytic and
thus can be represented by the Taylor series

00

Z(peie)= p< 1. (2.1)
fc = o

The complex coefficients ak and the correspondence function are now to be determined by
minimization of

E2 = limp-i 2n J
2 n

}iS\ Vt„/Q\\ 12Z(pe,e) - X(s(6))\2 dd. (2.2)

With the substitution of (2.1) in (2.2), dE/8ak = 0 gives the expected result,

1 2n
-ikOe~lkdX(s(e))dd, (2.3)

and a vanishing first variation of E2 when s(0) <- s(6) + <5s(0) gives

Z(5(0))-(Z(eie)-X(S(0))) = O. (2.4)
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The notation above is for the scalar product, A ■ B = Re {AB*}, and the dot above X
indicates d/ds.

It will be assumed (for convenience) that X(s) is twice differentiate, for then an iter-
ation of (2.4) is easily defined by Newton's method. With a current approximation of
Z(e'e), s(9) is updated according to

_ _ X(S(0))-(X(Sm~Z(e'6))
m*"m~ ixv^TTWl ' <2'5)

The magnitude in the denominator insures iteration toward a minimum of E2. It may be
noted that 6 appears as a parameter in (2.5), so a discretization of 6 and s in 2N intervals
gives 2N decoupled updates which implies 0(2N) operations per iteration.

The substitution of (2.3) in (2.1) implies

Z(pew) = ^~Tpk ^X^s^^'))e•k(l,' e', iff, (2.6)

and for p < 1, integration and summation (of the geometric series) can be interchanged to
give

,», 1 r* TOfl'i) dir
'<'• (17)

Thus we have it that the Cauchy integral formula evaluates a least-square approximation
of Z when s(0) is not the correspondence function.

In the case where p = 1, summation and integration cannot be interchanged in (2.6),
and it becomes necessary to specify a relationship between truncation of (2.1) and dis-
cretization of (2.3). Let the Taylor series be truncated to a polynomial of degree M, and
let [0, 2n\ be discretized in IN equal intervals. Then the Gaussian quadrature formula for
(2.3) is

1 2JV-1
I e-ik9'X(Sl) (2.8)

/ = 0

where 6t is In/N and st is s(0j). The finite sums can be interchanged, and thus the approxi-
mate form of (2.6) implies

i 2N — 1
Z(eWm) I K(6m - 0,)X(s,) (2.9)

Ziv i = o

where

K(0j) = I eikei = — . (2.10)
k = o 1 — e

The fact that ak and at_2JV cannot be distinguished in the discretized approximation
(2.8) suggests that M should be N or N — 1, rather than 27V — 1. Indeed, if M is 2N — 1
then K(6j) = 0, except for K(0) = 2N, and (2.9) implies the approximation

Z(eWm) = X(sm) (M = 2N — 1). (2.11)

Here the discrete version of (2.2) is minimized with E2 = 0, but no account is taken of the
requirement that Z shall be analytic.
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With M = N — 1, Eq. (2.10) implies
N 7 = 0

WH rr^ 7=1,3,5,... (2.12)
0 7 = 2,4,....

The factor of 2 in the second line compensates for evaluations of the integrand at half of
the points, and (2.9) now turns out to be a numerical quadrature of the Plemelj formula,

Z(ew) = § ( X(s(0)) + - P
n

2n X(s(0')) d0'
o 1 - eiie~e'' (2.13)

where P denotes the principal value integral [CKP 8-6],
With M = N, Eq. (2.10) implies

K(8j) = {

(N + 1 7 = 0

Si
2i cot ^ j = 1, 3, 5, ... (2.14)

7 = 2, 4,....
In fact,

1 1 ''l + i cot '-V (2.15)1 _ <,«»-«'> 2

and again (2.9) is a numerical quadrature of (2.13).
In sum, it has been established in this section:
i) Boundary data for the least-square fit of the mapping function can be computed,

either by Fourier analysis or with the Plemelj formula.
ii) If s(6) is not the correspondence function, then the mean-square error of the ap-

proximation can be reduced by an iterative updating of s(6) based on (2.4).

3. The correspondence function by iteration. In this section the Euler equation (2.4)
will be used to formulate an iteration for determination of the least-square approximation
of the correspondence function s(0). The Fourier analysis in Sec. 2 will be discarded in
favor of the convolution integrals (2.7 and 2.13) for the evaluation of least-square approxi-
mations of the mapping function and its boundary values at p = 1.

Before a discretization is introduced it is convenient to remove the singularity at
0 = 0' that appears in (2.7) in the limit where p-» 1, or, equivalently, to convert the prin-
cipal value integral in (2.13) to an ordinary integral of a bounded function. Following
others here [2], we note that' 1' is an analytic function; thus

*2 71 J/V

! (P <o i pe
'-5

and

i=4ii +i P r de' \ (32)
a Jo 1 { )2

Either of the above equations can be multiplied by X(s(0)) and used with the correspond-



NUMERICAL CONFORMAL MAPPING AND ANALYTIC CONTINUATION 129

ing one of (2.7 and 2.13) to obtain (in the limit where p-* 1 or directly)

"2n X(s(6'j) - X(s(9))
Z(eie) - X(s(0)) = ~

2 n
J_
An

dd'
l /»*l v — vf

0 1 - ei(e-e'>

(I -i cot ^—^1 (X' - X) dff. (3.3)
Jo

Provided X (to be assumed a C2 function of s for convenience) is C1, contributions to
quadrature formulae at 9 — 9' can be evaluated by l'Hospital's rule and the rough quadra-
ture formulae of Sec. 2 can be replaced by a refined one in which the integrand is evalu-
ated at every point of the discretization.

In order to define the iteration for the Nth approximation of the correspondence
function and the boundary values of the mapping function, the range [0, 2n] of the inde-
pendent variable 9 is discretized in 2N equal intervals bounded by

9k = kn/N (3.4)

and the current approximation of s(0), evaluated at the multiples of n/N, is denoted by

sk = s(9k), sk+2H = sk + S. (3.5)

Given a current approximation of sk, the error is evaluated from

Z, - X, = {{X - X,) - ^ (Xl + 1 - *,_x) - ^ iW* - *1-*) cot | (3.6)

where Xt is ^(s,), Zx is the current least-square approximation of Z(eie% and
2N — 1

X-W I*- (3-7)
Ziv k = 0

The special contribution to (3.3) at 9 = 9' has been approximated by substitution of a
central difference for (dX/d9),. Since X is periodic, the subscripts on Xi±k are to be reck-
oned mod 2N.

Given the current error (3.6), sk is updated by application of Newton's method to the
2N conditions

Xk-(Zk-Xk) = 0 (3.8)
where (again) A ■ B = Re {A*B} and X denotes dX/ds. In each iteration Zk is held fixed
and sk is updated with one pass of Newton's method as

c _I_ ,sc Xk (Zk-Xk)
" k k"\\Xk\2-Xk-(Zk-Xk)\-

Here, depending on the magnitudes | Ssk |, the iteration is either terminated or repeated
starting at Eqs. (3.6), and (3.7).

The computational effort (per iteration) for the algorithm given above is 0(N) oper-
ations for the updates (3.9) and 0{N2) operations for the convolution sums (3.6). In the
next section it will be shown how the convolution sums can be done in 0(N log N)
operations with FFTs. Before that, a few incidental comments can be appended here:

1) In practice it was found to be necessary to limit the displacements (one-third of the
widths of the neighboring intervals was used) in order to preserve monotonicity of s(9) in
early stages of the iteration.
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2) Convergence rates (number of iterations) are not particularly impressive, but they
can be improved by replacement of Newton's method by a conjugate gradient method
[7], Interpolation of a lower-order approximation to provide starting values for a higher
approximation is less helpful here than in some other problems because s(9), though
monotonic, can have a large curvature in some regions (Fig. 6).

3) If, after all, it is insisted that the map of p = 0 shall be specified as Z0 e 2> bounded
by X, that can be incorporated (with loss of accuracy) by replacement of Eq. (3.7) by

X = Z0. (3.7a)

Again, it is my opinion that it is preferable to find the optimal mapping function Z(z) that
maps | z | = 1 onto X and the inverse image z0 such that Z(z0) = Z0. Then Z(z(pe'e)) maps
p = 0 to Z0 and p = 1 onto X when z is the bilinear transformation

zo + y
TUfpe"' (310)

4. Fourier analysis of the Hilbert integral formula. Because of its similarity to the
equations that define a Hilbert transform pair [5 and CKP 8-6] and for want of a better
name, Eq. (3.3, 2nd line) will be called the Hilbert integral formula. It appears here in an
unfamiliar way, however, since neither the real parts nor the imaginary parts of the
boundary values of the mapping function are known until the correspondence function
has been found. What is called for is merely an evaluation of the error in a least-square
approximation of the mapping function that is given in terms of real and imaginary parts
of X that are specified, but not consistently. This can be done in 0(N log N) operations,
as follows.

The identity used in factoring the Hilbert integral formula is the same as is used in the
derivation of the Poisson kernel [CKP 2-5]:

1 1 , lip sin 6
Je + ; = 1 + , , _2  (4-1)1 — pe j 1 w 1 + p2 — 2p cos 6

P
This has the limit, where p—> 1,

1 + i cot ^ = lim (-——w +    \ (0/0). (4.2)
1 Pe j_i eie

The substitution of (4.2) in the discretization of (3.3) in 2N equal intervals gives a re-
arrangement of (3.6) as

2N — 1

Zl-X,= - — (X„l-Xl_l)+ X Hlk(Xk - Xt), (4.3)
k = 0

where Hn = 0, and otherwise

H,k=jn lim 11 - +—r~~ \ (4-4a)
4iV 1 1 Pe ! _ L em-»k)
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(4.4b)
- p i - p /

(4-4c)

Since the coefficient of H„ is zero anyway, it can be included, as given in (4.4c), to give

z. T (' ^ - W- (4.5)

From the properties of finite Fourier transforms (Eq. (2.10) with M = 2N — 1) it follows
that

2N- 1

(Xk - X,) X e^9'-9" = 0 (4.6)
j= o

and
2N-1 2JV-1

jX, X e~i^=jXl X e iMj = 0. (4.7)
fc = 0 fc = 0

Thus the final, factored version of the discrete Hilbert formula is

_ j j 2N — 1 2JV-1

r2 ^Z, - X, = — (Xl+1 -Xl^)-—2 £ jeije' X (4.8)

If s(0) is the correspondence function, then, in the limit where iV—> oo, (4.8) converges
to the polar form of the Cauchy-Riemann equations,

,. ( dZ\ dX
(4-9»

For another check on algebra, the algorithm for determination of s(0) was implemented in
both ways ((3.6) and (4.8)); identical results were obtained. Even when 2N is a relatively
low power of 4, the algorithm that incorporates (4.8) and uses FFTs is significantly more
efficient.

5. Fourier analysis of the Poisson integral formula. Once a satisfactory approxi-
mation of the correspondence function has been found, there comes the problem of evalu-
ation of the mapping function for p < 1 and (sometimes) continuation, for p > 1. Since it
is a byproduct of the iteration for s(0), the discrete Fourier transform of X will be used in
both cases; i.e. we take as given

| 21V-1
ak = —= X Xte~ike', /c = 0 to 2N — 1, (5.1)

J2N o

where X, — X(s(0,)) and 6, = ln/JV.
For the evaluation of the mapping function at p < 1, there is little to be gained by the
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Fig 1. Zero at —.5, pole at — 2. r = 1,1.2, 1.4, 1.6, 1.8, 2.

use of anything but the polynomial
i 2N-1

Z(pew) = -= X (5.2)
,y2jv *=o

and that has been done in all cases. A map of a level curve (p is constant) at the points
Zk(p, S) = Z(pe'<ek + S>) can be evaluated from (5.2) in 0(N log N) operations. When that is
done, it is found that the maps of level lines near the boundary are poorly represented.
What happens is that s(0), though monotonic, can still vary quite rapidly; and, if s is arc
length on X, large and small values of s'(9) correspond to small and large densities of
mapped points along Zk( 1, S). The phenomenon is not necessarily an indication of an
inadequate approximation; indeed, an evaluation of the error in (5.2) at p = 1 for a few
interpolated angles where s'{0) is large serves well as a check on whether or not enough
Fourier coefficients have been included in (5.1).

When the polynomial (5.2) is evaluated at 0, for p > 1, reliable results can be expected
at moderate values of p, provided the mapping function has a relatively distant nearest
singularity. For larger values of p, (5.2) produces numerical trash, thus indicating, in part,
the encounter with the nearest singularity of Z and, in part, the truncation error of the
discrete Fourier transforms. In this section the Poisson integral formula [CKP 2-5] will
used to derive a different continuation scheme that appears (in simple examples) to be
more reliable than the polynomial.
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Fig. 2. Zero at —.5, pole at — 2. Polynomial at 1.78, 1.81, 1.83.

Given a mapping function Z that is analytic in a circle of radius p', the Poisson
integral formula is

,2
1-lA

Z{pe'°) =
2* Z(p'eie'} dff

2n

where p < p'. The formula is often derived from the identity

°1+< ^)2 -2 f c°s (e -
(5.3)

,

l + - 2 ^ cos (0 - 6')
P P \P / P

(5.4)

and this will be used, as in Sec. 4.
Again let 9k = kn/N and let Zk = Z(peWk) and Z'k = Z(p'eWk): then the discretization of

(5.3, 5.4) is
2N — 1

Z,= X PA (5.5)
k = 0
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where

Fig. 3. Zero at 0, poles at 2 and — 2. r = 1, 1.2, 1.4, 1.6, 1.8, 1.9.

gijIOl ~ Ok)

£ (pJp'2N-J + P'jp2N-J)e^
_ _L  

2N p'2N - p2N

P

)eiJ(e' ~6k)

P'k 2 N /p\2V fp'\ 2» (5'6a)

(5.6b)

The substitution of (5.6b) in (5.5) gives a pair of discrete Fourier transforms that can be
inverted explicitly (and exactly) to give

(n'2N   n2N} 2N—1 ijOi 2N-1
zi' 2W X + .V.-y I Z.'-""- (5-'l

j = 0 P P T P P k = 0

Now let p = 1 and Zk = Xk, and then drop the prime on p' to obtain the formal result,

nN _ 2N-i



NUMERICAL CONFORMAL MAPPING AND ANALYTIC CONTINUATION 135

Fig 4. Zero at 0, poles at 2, 2i, —2, —2i. r = 1, 1.2, 1.4, 1.6, 1.8.

for p (formerly p') greater than 1. The formula (5.8) is blatantly wrong at p = 1, and that is
undoubtedly due to the neglect of the singularity in (5.3) at p = p' and d = 6'. In lieu of a
more detailed analysis of (5.3), it is proposed now that (5.8) simply be replaced by

N , -JV2N-1

Z, = P ±JL X N-k (5-9)JlN k = o P + P
for "continued" values of Z(pe'e') when p > 1. In the sense of boundary layer theory, (5.9)
is a uniformly valid approximation, i.e.:

i) Boundary data is recovered at p = 1,
ii) (5.8) is recovered outside a boundary layer of width 0(1/N) at p = 1,

iii) (5.2) is recovered, term by term, for fixed k and fixed p > 1, when N—> oo.
As will be seen presently, the filtering of high harmonics that has been obtained in (5.9)
has a soothing effect in some cases where it is certain that a numerical analytic continu-
ation should be possible.

6. Examples. Numerical analytic continuation of maps defined by rational functions
will be considered first. The APL functions VG <- Y POLS FW and VG«- Y ZERS FV
were used to generate boundary data at p = 1. Thus, for example,

Z *- .5 0 ZERS '2 0 POLS 130 pi 0
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Fig. 5. Knots, data, maps at .5, .75, .9, .97, 1, interpolated at 37-38 and 165-166.

assigns sixty-five coordinate pairs X, Y (last pair equals the first to close the curve) on
Z = (0.5 + e,e)/l + 0.5 x elB at the 64th roots of unity. Fourier coefficients were evaluated
by VF<-FFT4 ZV and then evaluations and continuations were given by VZ <- R
F/FT4 FV. Thus with Z assigned as above

F FFT4 Z

assigns the Fourier coefficients in a 2 by 64 array, and, for example,

G <- 0.5 1 1.5 F/FT4 F

assigns the points on the level lines in a 3 by 130 array. The decision to limit the im-
plementations of FFT's to cases where the number of coefficients is a power of four helped
to make them reasonably efficient: an execution of what has been mentioned so far in this
section was clocked at 565 milliseconds CPU time on the IBM 4341 at Brown University.

Some maps of continued level lines at 64 roots of p are shown in Figs. 1-4. All the
mapping functions had one or more poles at p = 2 and, to be fair, it should be mentioned
that the Poisson continuations, while qualitatively correct, tended to become rather noisy
at values of p between 1.9 and 2. Fig. 1 is a bilinear transformation (Eq. (3.10) with
z0 = 0.5) that maps p = 0 to z = 0.5 and p = 2 to a circle of infinite radius. Scale and
orientation are indicated by the crosshair, which is centered at z = 0 and has a unit
diameter. In Fig. 2, level lines of a polynomial approximation of the same map are shown
for values of p at which the 64-term polynomial begins to show qualitative discrepancies.
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Max: 5. 9906

Mini 0094

Fig. 6. Correspondence function for Fig. 5.

For Fig. 2, which indicates that the antipole is as troublesome for the polynomial as the
pole, it was necessary to doctor the transform of the boundary data in order to control
round-off errors. The transform of the symmetric figure had round-off errors of 0(10~15)
in its imaginary part, and before these were reassigned exact zeros, the polynomial gave
results that were similar to Fig. 2, but not symmetric. Fig. 3 shows continuations by the
Poisson formula for a map that has one zero and two poles, and Fig. 4 does the same for
a map that has one zero and four poles.

For better or worse, the algorithm for conformal mapping and the correspondence
function was set up to take as input the coefficients of a B-spline representation of the
boundary curve. This was well suited to the use of Newton's method in the iteration and
made construction of complicated boundaries easy, but gave results that cannot be con-
tinued much beyond p = 1 because of the singularities at the knots. The APL function
WB <- PFIT XV returns coefficients of B-splines defined on [ — 2, 2] and centered at any
number of knots, as specified by X. The function VF«- N BDFT BV then performs the
iteration of Sec. 3. Thus, for example,

B <- 64 BDFT A<-PFIT 1 0 0 1 "1 0 0 "1

assigns to A a 2 by 4 array of coefficients for a spline with period 4 that is near a unit
circle and to B a 3 by 64 array of Fourier coefficients and the correspondence function.

A more complicated boundary was constructed and approximations were carried to
256 roots of one to generate the example in Fig. 5. As can be seen from the marked
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Fig. 7. r = 1, 1.05, 1.1, 1.125, 1.13, near a knot.

evaluations at a few 512th roots of one, the approximation is still off by a bit near the
ends of two rays. Fig. 6 is the correspondence function for the same map, evaluated at
256th roots of one. With tolerance on Ss set at 10~6, this computation ran through 200
iterations and took 3 minutes CPU time—just about the limit of terminal boredom for
interactive users.

Finally, the approximation for the nearly circular boundary was carried to 256th roots
of one and a few 'continuations' were plotted on an expanded scale to show the rather
abrupt breakdown of the Poisson continuation formula near a discontinuity in the third
tangential derivative of boundary data.

It can be said now, on the basis of some experience with these algorithms, that they
probably should not be exercised much more strenously than they have been here. Even
with the filtering that comes with the use of the Poisson continuation formula, the at-
tempt to improve accuracy by increasing N fails when epN « 1. In A PL's double precision
calculations e ss 10"15, and for p x 2 this gives N « 50. When 2N was increased from 64,
as in Figs. 1-4, to 256 the results deteriorated rapidly with increasing p, and only a
moderate improvement was achieved by the assignment of exact zeros to small coef-
ficients that was incorporated in the last version of V F <- FFT4 ZV.
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Appendix: APL implementations.

F+FFT4 ZiQIOiN ;L ;C ;S ;C>i -,S>* il ;J -,CJ iSJ ;U ;V
A FAST FOURIER TRF OF Z[i2;iff=4*L], INVERSE IS FIFTH
A RESHAPE ALTERNATE INPUT Z[i2ff+2]
■♦( 2 = pp Z)pBl

(~l + 0.5xpZ).2)pZ
51 :-►(£*L£-m«//*(pZ)[l + DJ0^0] )pERR
C+Ul* 4 HS-O.S. 1 ,(<J>5) ,0 A-S) ."1 ,-<t>S->-lo(l+ xll*H)x02*N
S4-«-( 0 1 0 1)[S4], 4 0 pC4«-(l 0 "1 0 ) [S4<-4 I ( i4 ) ° . x i4]
U-ZlO; ] ,0pl'+Z[I-<-l;]
*B2.F->-H.J->-NiH
ERR:-ShFFTH+ERR
B2:U*-,*)(.CH+ .xZ-FpU)+SH+ .xV+FpV
-*(<?=l)pF,P-<-.$(C4+.xy)-S4+.xZ
CM (CJ->-ClCJl)xZ--U) + VxSJ*-SlCJ->-n I . ( \J) » .x(I«-Jx4)pXx 143

.V+<.CJxV)-SJxZ
S:F[(LiCT> IF) / ipF«-Uff**2)*( MpU) . ,(S( L+LpH) p Vl-0
Fi-(2.ff)pF

Z-rR FIFTH FiClOiN;LiCiSiCiiSHiG;P;UiV;WiI;JiKiSJ;Cj
A FILTERED INVERSE (FAST) FOURIER TRANSFORM
n Fti2;iff=4*i] IS FOURIER TRF OF MAP OF UNIT CIRCLE
A Z[ ipF; i2ff+2] IS ON R110 = R AT N ROOTS OF ONE
A EVALUATE POLYNOMIAL OF DEGREE ff-1 FOR Rs1
A IffFEffSE POISSON INTEGRAL FOR R> 1
A C5FCK ff = 4*L 4//Z) SETUP XERS FOR FFT'S
■+Ur\.L+-H«Ni-(.pF)ll + GlO+-0'\)pERR
0(/ir*4)<t>S-«-0 ,S.1.(<&S),0,(-S),~1 ,-$S-«-lo( 1+ i//*U)xo2*ff
S4-«-(pC4-.- 4 4 p(l 0 "1 0)[S4])p(0 1 0 "1 ) [ S4*-4 I . ( 14 ) • . x 14 j
+51, ( ,Z«-( 0 .2xA')p/v,tf) « ( F<-F[ 0 ; ] ) . ( G«-F[ 1 ; ] ) ,(Z>£p4) .K+t.Ntl
ERR:-*SIFIFTH+ERR
A CtfFCK flSl Off i?>l U<0 ♦ POfc/ffff SERIES)
61 :->•( l<?<-i[0] )pB2
-►53 .P-l ,x\(ff-l )pP
B2 :P-*-P , 1 + <t>l + P-«-P[ 0 ] $P«-<t>2 ,P+ * P«-x\ (A'i 2 ) pP
A INVERSE FFT FOfl EVALUATION OR CONTINUATION
B3 :-»Op ( . (J«-l ) ,(U~FxP) .V+GxP
B4: + U=l)p£4,(P<-.&(C4+.xl')+,S4+.xf/) ,£/«- (C4 + . xf/*-Kp f/)-S4+ . x V+Kp V
SJ+SZCJ+B I .( l«/) •.x(l+4xj)pjxl4]
i-B4,(«ri-<;f4),( v->-ic<:xv)+sjxh) ,u-ucj+cicj})*w--u)-sjxv
EH-.Z-Z.lol A*N**2)*(. .bLpU) .[0 .5] .fcLpP
■*•( 0 < pR-*-l + R) p 51
-<-( l<ltpZ«-Z,Z[ ; 12 ] ) p 0
Z+.Z
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G+Y POLS FiUlO-.Z-.X-Jl
A FC 12//+2] IS (F( Z) AT K ROOTS OF OBE).Fl 1)
A G[i2ff+2] IS F*(x/(Z-ZL))xx/l-Z*ZG FOR |Z£I<1 AND IZGI>1
A 7[l2M] IS M POLES. ZL OR ZG
Z- 2 1 o.O( iff)xo2*ff«-(pF-<-<S( (~l+12*pF) ,2)pF)i:i + GJ0->-0]
B1 :-<-(l<Ci-+/Arx^2pr)pC2
+B3 Z[ 0 ; ]-XI0 ] ) . Z[ 1; ]-*[ 1 ]
B2 :JT«-( 1-( Z[0 ; ]x£[0] ) + Z[ 1; ] xA'[ 1 ] ) , ( Z[ 0 ; ] x*[ 1 ] ) -Z[ 1; ] x (X+XiG) [C ]
B 3 :F«-(2.ff)p( (2x/lr)p*+/WxA')x(+/^Fxjr) ,-/is (*«-( 2 ,N) pX) xsF
-►(0<pr*2 + r)pBl
G-+G ,2fG+-.§F

G+I ZERS F ;DIO ;Z}X -,N
A FC i2ff+2 ] IS (F(Z) AT II ROOTS OF 011E) .F(l)
A G[i2ff+2] IS Fx(x/(Z-ZL))xx/l-Z*ZG FOR |ZL|<1 ylffO I ZG I >1
a rti2/;] is ii zeros, il or zg
Z* 2 1 • .o( iff)xo2W/-<-(pF-<-«)( Cl+*2*pF) ,2)pF) [l + CI0-«-O]
fll :->(l<C-^+/ArxAr^2py)pB2
♦B3,X*-(Z[0 ;]-*[<>]) .Z[l;]-if[l]
B2 :X+-( l-(Z[0;]xjf[0])+Z[l;]xX[l]) . ( ZC 0 ; ] xjr[ 1 ] )-z[ i: ] x (X+XiC) [ 0 ]
B3:F+(2.ff)p(-/fcFxjn , + /$Fxe.J> ( 2 .11) pX
-<-(0<py-«-2 + y )pBl
G->-G.2*G+-.l*F

Z+T 11 FT F-.SiC-.HiDlO
A INTERPOLATE INVERSE (SLOW) FOURIER TRF
A F[i2;iff] IS FOURIER TRF OF MAP OF RH0=1
A Zl\2Tl IS X.Y...X.Y ON RUO = 1 AT T*o2ii;
C-20S+UI lr° .x iff)xo2U'->-< pF)[l+0l0«-0]
Z«-(C+.xF[0 ;])-(S«-10S) + .xF[l;]
Z-.<S(2,pZ)p(tff**2)xZ.(C+.xF[l ;])+5+.xF[0;]

B+PFIT Z
A Z[ iK-, iff] IS ffl POINTS ON CURVE III K DILS
A B[ iX; iff] 15 B-SPLINE COEFFS, PERIOD 1!. FOR CLOSED CURVE
A RESHAPE ALT INPUT ZCi2ff] FOR 2-D CURVE
-►( l*ppZ) pBl
Z->-&((0.5xpZ).2)pZ
Bl:B«-$($2)S(2-iB)<M2pB)p(3pi 24 6 ) , ( "3 + Bi-"l + pZ) pO
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F-r N BDFT B -,QI0 ;P; L ;C; S;C4; S4 ;Af; X; I -,J ;K; U; V -,W \CJ; SJ; D
ft B[i2;i«] IS B-SPLINE COEFFS FOR X(.P) , PERIOD M
ft Z[ i2;(T)]. PERIOD 02, IS MAP OF THE Villi CIRCLE
ft RETURNS FOURIER TRF OF Z, P(T) AT N ROOTS OF ONE
ft INITIAL P(T) •. LINEAR IF 0 = ppN. ELSE P+N
+(ppN)pBl+UlO--F-0
-»-B2,P«-( iff)x( (pfl)[l])*ff
fll :N+-pP-N
ft CHECK N = H*L AND SETUP XERS FOR FFT'S
B2-.-(L*\.L+H»N)/ERR
C-( K* 4 )*S+0 ,S,1.(<J>S),0,(-S).~1 ,-<*S~lo( 1+ iff*4)xo2*ff
S4«-(pC4+ 4 4 p(l 0 "1 0)[S4])p(0 1 0 ~1 ) [ S4«-4 I . ( 14 ) « . x , 4 ]
ft APPEND COEFFS FOR PERIODIC SPLINE EVALS
+BZ..B+-DI ;"l+AMpB)[l]] ,B.B[ ; i2]
ERR i-*St.BDFT+-ERR
ft X"(P) ,X'(P) AND X(.P) FROK SPLINE COEFFS. BEGIN ITERATION
B3 :X--B+ . x ( 0 .25 xi() -«A«-0 T 2- I!♦( "1, iM+2) ° . -11 IP
X->-X,l~0 .5] B+.x(0.5xxJ)x(0.25 xW+KxK) - V*-J *J
X+X, C 0 ] ( ♦ 6 ) x B+ . x ( 0 . 2 5 xj/x*) - V*J
ft FFT OF BOUNDARY DATA (xtf**2)
K+-2pH.U-N*H) ,( v^[2il^l;]) ,U*-Xl2 ;0 ;1
BH:-U = l)pElAV+,IS<.CK+ ,*V)-SH+ ,*W) ,£/+■ .$( C4 + . *U*-KpU) +54+ . xV+Kp V
SJ+SLCJ+-N I • ( ic7) • . x ( r*-Jx4 ) p Jx 14 ]
-»-B4.(«W»4) . ( F«-(CV*lO-S«AxJ/) ,£/«-( {CJ-CLCJ1 )xW+U)+SJxV
£4 :-►(F=1 )pF3 ,(£/«-,fcKpff) . V* .$( K-Lp 4 ) p V
ft FFT FOR REGULAR PART OF Z(.T)-X{P(T) )
K«-2p4. («/■•-//♦ 4) ,(7-<-l) AU*-U*D) .W'xW il!)x2*lixll
B5:-*U = l)p£5.(l'+-.<S(C4+.xy)+£4+.xfc') ,$( C4 + .*V->-KpU) -54+ . xy«-KpK
Scf+SCCV-*-// I ,( i«A)..x(I+Jx4)pJxl4]
-<-B5,(«W*4) ,(l'-<-(CJxC)+5^xf/) ,*/.►( (CJi-C[CJ])x^y)-S«7xl'
£5 :ZM ,$Kp£0 .P+-.$(A>£p4)pF
ft SINGULAR PART OF D--Z-X
D+( 2 .11) p ((to2) X (l4>F-*2<J'F-<-^[ 2 ; 1; ] ) .~ 14>F-24>F-^ATC 2 ; 0 ; ] ) -D
ft C=AP BY NEWTON'S METHOD (ONE PASS)
^♦<+/Wx*[l; j])*|(+/M[ij s]xjr[i5 ;])-+/WxAT[0;;]
ft £jwjr £> FOR KOtlOTONICITY
P*-P+D-1-~1$F)[DLF*-(. t3)x( l+P.P[0]+«)-P
•+B3,F+a/(10*-DPP)> I £>. Op * + •
£3:Ff(3,//)p( (.*N**2)xU.V) ,P


