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ABSTRACT. A simple numerical method is described for
computing a conformal map from a domain exterior to a
smooth Jordan curve in the complex plane onto the exterior
of the unit disk. The numerical method is based on a bound-
ary integral equation similar to the Kerzman-Stein integral
equation for interior mappings. Typical examples show that
numerical results of high accuracy can be obtained provided
that the boundaries are smooth.

1. Introduction. Let Γ be a Jordan curve, Ω+ and Ω− be the
interior and exterior of Γ, respectively. It is well known, see, e.g., [7, p.
374], that there exists a unique function R̃, called the exterior mapping
function of Ω, which maps Ω− onto the exterior of the unit disk such
that R̃(∞) := limz→∞ R̃(z) = ∞ and the Laurent series of R̃ at ∞ has
the form

(1.1) R̃(z) = γ−1z + a0 + a1z
−1 + · · · , γ > 0, z ∈ Ω−.

The positive constant γ is called the capacity of Γ, or the transfinite
diameter of Ω+.

Since Γ is a Jordan curve, R̃ can be extended to a homeomorphism
of the closure Ω− ∪ Γ to the closure |w| ≥ 1. Thus as z(t) traverses
along Γ, the image point R̃(z(t)) describes the unit circle. Hence

(1.2) R̃(z(t)) = eiθ(t), 0 ≤ t ≤ β,
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or

(1.3) θ(t) = arg R̃(z(t)), 0 ≤ t ≤ β.

The function θ is called an exterior boundary correspondence function.

The function R̃ is expressible in terms of θ by the formula [7, p. 381]
(1.4)

R̃(z) =
[
z

2πi

∫ β

0

e−iθ(t)

z − z(t)
z′(t)
z(t)

dt

]−1

, z ∈ Ω−, z(t) ∈ Γ, 0 ≤ t ≤ β.

If θ′ is also known, then the inverse R̃−1 is expressible in terms of θ
and θ′ by means of
(1.5)

R̃−1(w) =
[

1
2π

∫ β

0

1
z(t)

1
1 − w−1eiθ(t)

θ′(t) dt
]−1

, w ∈ {w : |w| > 1}.

For sufficiently regular boundaries, the functions θ and θ′ are known
to satisfy certain integral equations, some of which are given below.

Symm’s exterior equation [16; 7, p. 385].

(1.6)
1
2π

∫ β

0

Log
∣∣∣∣1 − z(t)

z(s)

∣∣∣∣θ′(t) dt = Log γ − Log |z(s)|, 0 ≤ s ≤ β.

Banin’s integral equation [7, p. 397].

(1.7) θ′(s) −
∫ β

0

v(s, t)θ′(t) dt = 0, 0 ≤ s ≤ β.

Equation of Kantorovich-Krylov [7, p. 397].

(1.8) θ(s) +
∫ β

0

v(t, s)θ(t) dt = 2 arg[z(s) − z(0)], 0 ≤ s ≤ β.
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The kernel v appearing in (1.7) and (1.8) is called the parametric
Neumann kernel and is defined by

(1.9) v(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

1
π

Im
[

z′(t)
z(t) − z(s)

]
, t �= s,

1
2π

Im
[
z′′(t)
z′(t)

]
, t = s.

For the proof of existence and uniqueness of the solution of Symm’s
exterior equation, see [7, pp. 386 388]. But it remains a disadvantage
of Symm’s exterior equation that the capacity γ is unknown. Equation
(1.7) shows that θ′ is a nonvanishing solution of a certain homogeneous
integral equation of the second kind, that is, an eigenfunction. See
[7, p. 398] for the proof of existence and uniqueness of the solution of
equation (1.8).

See [1, 8, 11, 16] for some numerical methods for the computation
of the exterior mapping. Excellent surveys on numerical conformal
mappings can be found in [5, 7, 18].

In this paper we present a simple numerical method for computing
the boundary values of R̃, and hence θ, in the case when the boundary
Γ is an analytic Jordan curve. The numerical method is based on
a boundary integral equation similar to the Kerzman-Stein integral
equation [10] for interior mappings. Typical examples show that
numerical results of high accuracy can be obtained. Our method gives
θ′ and γ practically for free.

This paper is organized as follows. In Section 2, we construct an
integral equation based on a certain boundary condition satisfied by
a function analytic in Ω−. This result is then used in Section 3 to
derive an integral equation method for the purpose of exterior mapping.
Section 4 gives the numerical implementation, and Section 5 contains
examples and numerical results.

2. An integral equation related to a boundary condition.
Kerzman and Trummer [10] have derived an integral equation of the
second kind, whose unique solution is the Szegö kernel. This integral
equation is now called the Kerzman-Stein integral equation by some
authors, see [3, p. 108], [17, 13], or the integral equation of Kerzman
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and Trummer [7, p. 560]. Perhaps it should be called the Kerzman-
Stein-Trummer integral equation (KST integral equation). Kerzman
and Trummer used this integral equation to develop an effective nu-
merical procedure for the construction of the interior mapping function.
This procedure may be considered as one of the major advances in the
numerical conformal mappings in the past two decades.

Kerzman and Trummer used an operator-theoretic approach (for
the derivation of the KST integral equation) that is tantamount to
a concrete realization of an operator equation given by Kerzman and
Stein [9]. Henrici [7, pp. 560 563] gave a markedly different derivation
of the KST integral equation based on a function-theoretic approach.
Crucial to Henrici’s approach is the use of a certain boundary equation
satisfied by the Szegö kernel. Henrici’s approach was recently extended
by the authors to derive an integral equation satisfied by the Bergman
kernel [13]. Motivated by these two cases the authors have also
formulated an integral equation related to a general boundary condition
satisfied by a function analytic in Ω+ such that both the integral
equations of the Szegö kernel and the Bergman kernel are special cases.

In this section, we show that a similar general boundary condition
satisfied by a function analytic in Ω− can be formulated, on the basis
of which an integral equation for the exterior mapping function can be
constructed.

Suppose D(z) is analytic with respect to z ∈ Ω− and is continuous
on Ω− ∪ Γ, where the boundary Γ is assumed to be a smooth Jordan
curve. We shall assume thatD is also Hölder continuous on Γ. The unit
tangent to Γ at the point z(t) will be denoted by T (z) = z′(t)/|z′(t)|.
Suppose further that D satisfies the boundary condition

(2.1) D(z) = c

[
T (z)Q(z)D(z)

P (z)

]−
, z ∈ Γ,

where the minus sign in the superscript denotes complex conjugation,
c is a complex constant, Q and P are complex-valued functions with
the following properties:

(i) P (z) is analytic with respect to z ∈ Ω−, is continuous on Ω−∪Γ,
and is Hölder continuous on Γ.

(ii) P (∞) �= 0, D(∞) is finite.

(iii) P (z) �= 0, Q(z) �= 0, for z ∈ Γ.
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Under the above assumptions, we have:

Theorem 1. Let u and v be complex-valued functions defined on Γ.
Then

(2.2)
1
2

[
v(z) +

u(z)
T (z)Q(z)

]
D(z)

− PV
1

2πi

∫
Γ

[
u(z)

(w − z)Q(w)
− v(z)T (w)

w − z

]
D(w) |dw|

= c u(z)
D(∞)
P (∞)

+ v(z)D(∞), z ∈ Γ.

Proof. We write

PV
1

2πi

∫
Γ

[
u(z)

(w − z)Q(w)
− v(z)T (w)

w − z

]
D(w) |dw|

= PV
1

2πi

∫
Γ

u(z)D(w)
(w − z)Q(w)

|dw|

− PV
1

2πi

∫
Γ

v(z)T (w)D(w)
w − z

|dw|,

and evaluate the two integrals on the right separately. In the second
integral, we use T (w)|dw| = dw and the formula [6, p. 27]

(2.3)
1

2πi

∫
Γ

h(w)
w − z

dw = −1
2h(z) + h(∞), z ∈ Γ,

for a function h which is analytic in Ω−, continuous on Ω− ∪ Γ, and
Hölder continuous on Γ. Hence we obtain

PV
1

2πi

∫
Γ

v(z)T (w)D(w)
w − z

|dw| = −1
2
v(z)D(z) + v(z)D(∞).
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As for the first integral, we use (2.1), T (w)|dw| = dw and (2.3) to get

PV
1

2πi

∫
Γ

u(z)D(w)
(w − z)Q(w)

|dw|

= −c u(z)
[
PV

1
2πi

∫
Γ

D(w)
(w − z)P (w)

dw

]−

= −c u(z)
[
− 1

2
D(z)
P (z)

+
D(∞)
P (∞)

]−

=
c

2
u(z)

D(z)
P (z)

− c u(z)
D(∞)
P (∞)

=
1
2
u(z)

D(z)
T (z)Q(z)

− c u(z)
D(∞)
P (∞)

.

Summarizing,

PV
1

2πi

∫
Γ

[
u(z)

(w − z)Q(z)
− v(z)T (w)

w − z

]
D(w) |dw|

=
1
2

[
u(z)

T (z)Q(z)
+ v(z)

]
D(z)

− c u(z)
D(∞)
P (∞)

− v(z)D(∞),

which is equivalent to (2.2). This completes the proof.

In what follows it will be convenient to use (2.1) in the equivalent
form:

(2.4) P (z) = c
T (z)Q(z)D(z)2

|D(z)|2 , z ∈ Γ.

In the next section, we apply Theorem 1 to obtain an integral
equation related to the exterior mapping. The kernel of this integral
equation is the same as the Kerzman-Stein kernel of the KST integral
equation.

3. An integral equation method for the exterior mapping.
We now assume that the boundary Γ of Ω− is an analytic Jordan
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curve. Hence the exterior map R̃ can be extended to a function that
is analytic on Ω− ∪ Γ. Moreover, R̃′ is different from zero and analytic
in Ω− ∪ Γ ∪ {∞}. Thus a single-valued analytic square root of R̃′(z),

denoted by
√
R̃′(z), may be defined; the square root is chosen such

that
√
R̃′(∞) > 0 [7, p. 565]. To justify this, we shall adapt a proof

given in [7, p. 375]. We observe that

log R̃′(z) − log R̃′(z0) =
∫ z

z0

R̃′′(z)
R̃′(z)

dz,

provided that the above integral defines a single-valued function in
Ω− ∪ Γ ∪ {∞} (since Ω− is not simply connected). As in Henrici [7],
we do not replace z in the integrand by a dummy variable; this abuse
of notation should not cause any ambiguity. The integral defines a
single-valued function provided that

∫
Γ1

R̃′′(z)
R̃′(z)

dz = 0,

where Γ1 is any closed curve surrounding Γ. In particular, Γ1 may be
taken as a large circle. Since

R̃′′(z)
R̃′(z)

= O(z−3), z → ∞,

the Laurent series at ∞ of R̃′′/R̃′ has no term in z−1, and the integral

∫
Γ1

R̃′′(z)
R̃′(z)

dz

clearly vanishes. The same expansion shows that by defining

log R̃′(z) := log γ−1 +
∫ z

∞

R̃′′(z)
R̃′(z)

dz

we obtain an analytic branch of log R̃′(z) in Ω− ∪ Γ ∪ {∞}. By letting
√
R̃′(z) = e(log R̃′(z))/2,
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we can also define a single-valued and analytic branch of
√
R̃′(z).

For z ∈ Γ, the exterior map R̃(z) may be expressed in terms of R̃′(z).
To see this, we differentiate both sides of (1.2) with respect to t to
obtain

(3.1) R̃′(z(t))z′(t) = i θ′(t)eiθ(t).

Upon division by |R̃′(z(t))||z′(t)|, we obtain

(3.2) R̃(z(t)) = −i T (z(t))
R̃′(z(t))
|R̃′(z(t))| ,

which is the desired relationship. This relationship also holds if the
exterior map R̃ is replaced by the interior map, i.e. the Riemann map
[10].

By means of Theorem 1, a corresponding integral equation related
to the boundary condition (3.2) may be constructed. The boundary
condition (3.2) may be obtained as a special case of (2.4) via the choice

of D(z) =
√
R̃′(z), c = i, Q(z) = 1, and P (z) = R̃(z). From (1.1),

D(∞) =
√
R̃′(∞) = 1/

√
γ and P (∞) = R̃(∞) �= 0. Upon substitution

into (2.2), along with the choice of u(z) = T (z) and v(z) = 1, we obtain

(3.3) U(z) − PV
∫
Γ

A(z, w)U(w) |dw| = 1, z ∈ Γ,

where

(3.4) U(z) =
√
γR̃′(z),

and

(3.5) A(z, w) =
1

2πi

[
T (z)
w − z

− T (w)
w − z

]
, w, z ∈ Γ, w �= z.

The kernel A is known as the Kerzman-Stein kernel. It was shown
in [10] that for each z ∈ Γ, the limit A(z, w) as w approaches z is
equal to zero. Hence the Kerzman-Stein kernel is a continuous function
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on Γ × Γ if we define A(z, z) = 0. Thus the symbol PV may be
dropped from (3.3). Note that the kernel A is also skew-hermitian,
i.e., A(w, z) = −A(z, w). Hence, the associated (compact) integral
operator has a purely imaginary spectrum. Consequently (3.3) has a
unique continuous solution.

As remarked earlier, the kernel A has already served as a kernel of
the KST integral equation for the purpose of interior mapping in [10].
The appearance of this kernel once more for the purpose of exterior
mapping is rather interesting.

Using (3.2), the boundary values of the exterior map R̃ is evaluated
in terms of U by

(3.6) R̃(z) = −i T (z)
U(z)2

|U(z)|2 , z ∈ Γ.

Observe that no knowledge of the capacity γ is required in (3.6). We
now show how the capacity γ may be computed from U . Using (3.4),
we rewrite (3.1) as

γ−1U(z(t))2z′(t) = i θ′(t)eiθ(t).

Taking absolute values of both sides yields

(3.7) γθ′(t) = |U(z(t))|2|z′(t)|.

Since ∫ β

0

θ′(t) dt = θ(β) − θ(0) = 2π,

integrating both sides of (3.7) with respect to t gives

(3.8) γ =
1
2π

∫ β

0

|U(z(t))|2|z′(t)| dt.

If θ′ is required, then (3.7) and (3.8) give

(3.9) θ′(t) =
2π |U(z(t))|2|z′(t)|∫ β

0
|U(z(t))|2|z′(t)| dt

.
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Thus solving (3.3) for U(z(t)) yields information about θ(t), θ′(t), and
the capacity γ.

Another integral equation involving the Neumann kernel related to
R̃′ may also be obtained. From (3.2) we obtain

(3.10) R̃(z)2 = −T (z)2
R̃′(z)2

|R̃′(z)|2 , z ∈ Γ.

The boundary condition (3.10) may be obtained as a special case of
(2.4) via the choice of D(z) = R̃′(z), c = −1, Q(z) = T (z), and
P (z) = R̃(z)2. Upon substitution into (2.2), along with the choice
of u(z) = T (z)2 and v(z) = 1, we obtain

(3.11) V (z)−PV
1

2πi

∫
Γ

[
T (z)2T (w)
w − z

− T (w)
w − z

]
V (w) |dw| = 1, z ∈ Γ,

where V (z) = γR̃′(z). If we multiply both sides by T (z) and let
W (z) = T (z)V (z), we obtain

(3.12) W (z) − PV
∫

Γ

N(z, w)W (w) |dw| = T (z), z ∈ Γ,

where

N(z, w) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
π

Im
[
T (z)
z − w

]
, z, w ∈ Γ, z �= w,

1
2π

Im
[
z′′(t)z′(t)

]

|z′(t)|3 , z = w ∈ Γ.

The real kernel N is the familiar Neumann kernel which arises fre-
quently in the integral equations of potential theory and conformal
mapping, see, e.g., [7, p. 282]. Since the Neumann kernel N(w, z) is
smooth for all w, z ∈ Γ, the symbol PV may be dropped from (3.12).

To deal with the question of solvability of the integral equation (3.12),
we parametrize Γ by z = z(t), 0 ≤ t ≤ β. With w = z(s), the integral
equation (3.12) will have the form

(3.13) φ(t) −
∫ β

0

v(t, s)φ(s) ds = ψ(t),
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where for 0 ≤ s, t ≤ 2π,

φ(t) = |z′(t)|W (z(t)),
ψ(t) = z′(t),

and the kernel v(t, s) is the parametric Neumann kernel (1.9). It is well
known, see, e.g., [7, pp. 284 286], that λ = 1 is an eigenvalue of the
integral operator whose kernel is v(t, s) with the multiplicity one, and
φ0(t) = θ′(t) is an eigenfunction belonging to this eigenvalue, where θ
is the exterior boundary correspondence function [7, p. 397]. Thus to
establish solvability of (3.13), Fredholm theory requires us to consider
the adjoint homogeneous equation:

(3.14) φ̃(t) −
∫ β

0

v(s, t)φ̃(s) ds = 0.

It is also known that φ̃(t) = 1 is an eigenfunction of (3.14) and there are
no other linearly independent eigenfunctions [7, p. 286]. It thus follows
from the Fredholm theory that the inhomogeneous equation (3.13) has
a solution if and only if

(3.15)
∫ β

0

z′(t)φ̃(t) dt =
∫ β

0

z′(t) dt = 0,

which is indeed true. The Fredholm theory also states that the solution
of (3.13) is determined only up to an arbitrary multiple of φ0(t).

4. Numerical implementation. Using a parametric representa-
tion z(t) of Γ, 0 ≤ t ≤ β, the integral equation (3.3) becomes

(4.1) φ(t) −
∫ β

0

k(t, s)φ(s) ds = ψ(t),

where for 0 ≤ s, t ≤ β,

φ(t) = |z′(t)|1/2U(z(t)),

k(t, s) = |z′(t)|1/2|z′(s)|1/2A(z(t), z(s)),

ψ(t) = |z′(t)|1/2.
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Observe that the new kernel k preserves the skew-hermitian property.

Since the functions φ, ψ, and v in (4.1) are β-periodic, an appealing
procedure for solving (4.1) numerically is to use the Nyström’s method
[2] with the trapezoidal rule which is equivalent to the Fourier method
[4]. The trapezoidal rule is most accurate for integrating periodic
functions [15]. By choosing n equidistant collocation points ti =
(i− 1)β/n and the trapezoidal rule for Nyström’s method to discretize
(4.1), we obtain

(4.2) φ(ti) − β

n

n∑
j=1

k(ti, tj)φ(tj) = ψ(ti), 1 ≤ i ≤ n.

Defining the matrix B by Bij = βk(ti, tj)/n and xi = φ(ti), yi = ψ(ti),
equation (4.2) can be rewritten as an n× n system

(4.3) (I −B)x = y.

Since (4.1) has a unique solution, then for a wide class of quadratures
the system (4.3) also has a unique solution, as long as n is sufficiently
large [2]. Observe that the complex matrix B is skew-hermitian.

Once the solution xi = φ(ti) has been computed, discretization of
(4.1) provides us with a very good “natural” interpolation formula [2]:

φ(t) = ψ(t) +
β

n

n∑
j=1

k(t, tj)φ(tj).

Finally, using (3.6), (3.8), and (3.9), the values of R̃(z(t)), θ(t), θ′(t),
and the capacity γ are computed by the following formulas:

R̃(z(t)) = −i T (z(t))
φ2(t)
|φ2(t)| ,

θ(t) = arg(−iφ2(t)z′(t)),

θ′(t) =
2π |φ(t)|2∫ β

0
|φ(t)|2 dt

,

γ =
1
2π

∫ β

0

|φ(t)|2 dt.
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For boundaries having rotational or axial symmetries, the integral
equation (3.3) may be transformed into a new integral equation which
depends on a small part of the original boundary. This gives rise to a
smaller system of linear equations thereby saving computing time. The
details are similar to the case of the interior mapping treated in [19],
and will be omitted.

5. Numerical results. In this section the numerical scheme
discussed in Section 4 is applied to two test regions that were also
considered in [1, 11, 16], namely the exteriors of an ellipse and an oval
of Cassini. The method employed in solving the system of equations
(4.3) is the Gaussian elimination, which has an order of operations of
O(n3) with n being the number of discretization points of the boundary.
We do not perform any real conversion when solving the system. The
entire computer programming was done using the MATHEMATICA
package [20] in single precision (16 digit machine precision).

We list the sup-norm error ‖R̃(z(t))− R̃M (z(t))‖∞, where R̃(z(t)) is
the exact boundary values and R̃M (z(t)) is the approximation obtained
by means of the interpolation formula given in Section 4 using M
equally spaced points in the parameter interval, most of which are
not the original collocation points. In all our experiments we have
chosen M = 36. Tables 1 and 2 show the numerical results. Tables 3
and 4 compare some of our numerical results with those obtained by
the method of Amano [1]. The comparisons show the efficiency of our
method for “nearly circular” boundaries.

An efficient iterative procedure for solving a linear system of the
form (4.3), where the matrix B is skew-hermitian, is by the conjugate
gradient method. This method has an operation count of order O(n2).
For a numerical example of this method in interior mapping, see [19].

Observe that the matrix in the system (4.3) is a full or dense matrix.
This type of matrix commonly arises whenever an integral equation
is discretized. Various fast algorithms have been developed to answer
the challenge of solving linear systems involving full matrices. Fast
algorithms should have operation counts of the order not more than
O(n · [logn]μ), where μ is a certain nonnegative constant. Among them
is a fast algorithm due to Rokhlin [14] which is based on certain Taylor
or Laurent series expansions for the entries of the matrix which are far
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away from the main diagonal. For a recently developed fast algorithm
using wavelet approach, see [12].

Example 1. Ellipse (a ≥ 0, axis ratio = a).

z(t) = a cos t+ i sin t,

R̃(z) =
z + (z2 − a2 + 1)1/2

a+ 1
.

TABLE 1. Ellipse. Error norm ‖R̃(z(t)) − R̃M (z(t))‖∞

axis ratio

n 1.2 1.5 2.0 3.0 5.0 10.0 20.0

4 6.5(-04) 9.4(-03) 5.9(-02) 2.7(-01)

8 3.6(-07) 3.1(-05) 8.1(-04) 1.7(-02) 1.6(-01)

16 3.1(-12) 5.7(-09) 8.8(-07) 9.0(-05) 5.7(-03) 1.2(-01)

32 7.2(-16) 3.4(-15) 3.5(-11) 5.7(-08) 1.6(-05) 5.9(-03) 1.6(-01)

64 5.7(-16) 2.8(-13) 5.3(-09) 9.9(-06) 6.4(-03)

128 5.7(-16) 5.2(-15) 3.3(-09) 8.8(-06)

Example 2. Oval of Cassini (|z − 1||z + 1| > a2, a > 1).

z(t) = (cos 2t+
√
a4 − sin2 2t)1/2eit,

R̃(z) =
(z2 − 1)1/2

a
.

TABLE 2. Oval of Cassini. Error norm ‖R̃(z(t)) − R̃M (z(t))‖∞

values of a

n 5 2 1.25 1.11 1.0101 1.001001

4 9.9(-06) 2.5(-03) 5.1(-02)

8 3.1(-09) 3.2(-05) 5.9(-03) 3.4(-02)

16 1.4(-15) 6.3(-09) 7.6(-05) 1.7(-03)

32 2.5(-14) 1.6(-08) 5.6(-06) 1.7(-02)

64 4.0(-16) 1.8(-15) 8.7(-11) 4.9(-04)

128 7.0(-16) 5.6(-07) 4.2(-03)



NUMERICAL CONFORMAL MAPPING 531

TABLE 3. Ellipse. Error norm ‖ · ‖∞

a n our method a n Amano’s method

1.25 32 1.2(-15) 1.25 64 7.4(-13)

2.5 64 1.9(-15) 2.5 64 3.1(-07)

5 64 5.3(-09) 5 64 5.4(-05)

10 64 9.9(-06) 10 64 1.3(-03)

20 64 6.4(-03) 20 64 6.9(-03)

TABLE 4. Oval of Cassini. Error norm ‖ · ‖∞

a n our method a n Amano’s method

1.8 32 1.3(−14) 1.8 64 2.4(−13)

1.06 64 3.3(−08) 1.06 64 2.1(−08)

1.00995 64 5.1(−04) 1.00995 64 9.1(−05)
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