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A model of a three-dimensional dual-sidestay landing gear mechanism is presented and

employed in an investigation of the sensitivity of the downlocking mechanism to attachment

point deflections. A motivation for this study is the desire to understand the underlying

nonlinear behaviour, which may prevent a dual-sidestay landing gear from downlocking

under certain conditions. The model formulates the mechanism as a set of steady-state

constraint equations. Solutions to these equations are then continued numerically in state

and parameter space, providing all state parameter dependencies within the model from

a single computation. The capability of this analysis approach is demonstrated with an

investigation into the effects of the aft sidestay angle on retraction actuator loads. It was

found that the retraction loads are not significantly affected by the sidestay plane angle,

but the landing gear’s ability to be retracted fully is impeded at certain sidestay plane

angles. This result is attributed to the landing gear’s geometry, as the locklinks are placed

under tension and cause the mechanism to lock. Sidestay flexibilities and attachment

point deflections are then introduced to enable the downlock loads to be investigated. The

investigation into the dual sidestay’s downlock sensitivity to attachment point deflections

yields an underlying double hysteresis loop, which is highly sensitive to these deflections.

Attachment point deflections of a few millimetres were found to prevent the locklinks from

automatically downlocking under their own weight, hence requiring some external force

to downlock the landing gear. Sidestay stiffness was also found to influence the downlock

loads, although not to the extent of attachment point deflection.
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I. Introduction

Conventional Main Landing Gears (MLGs) have a single-sidestay to support the shock strut when the

gear experiences side loads (e.g. under high-speed cornering on the ground). Some MLGs may have a second

structural drag stay to support the shock strut against aerodynamic drag loading. Others feature an angled

sidestay to absorb both types of loads (lateral ground and aerodynamic drag loads). With the increasing use

of new materials (such as carbon fibre composites) in new aircraft primary structural elements, landing gear

designs are having to evolve to meet new design constraints. Whilst composite materials offer large potential

weight savings due to their high strength, they are not as good as metals at absorbing point loads. This

provides a challenge when integrating the landing gear into a carbon fibre wing-box section, because the

attachment points (where the landing gear meets the wing-box) transfer very large loads into the airframe.

In order to be able to integrate the landing gear into a carbon fibre wing, the loads at the attachment

points must be reduced. One solution could be to increase the number of landing gears on the aircraft, thus

reducing the load on each gear when the aircraft is manoeuvring on the ground. An alternative solution,

which has been adopted by both Boeing1 and Airbus2 for the main landing gears on both of their latest

aircraft, is to add a second sidestay into the mechanism; this is referred to as a dual-sidestay main landing

gear (DSS MLG). The presence of two sidestays spreads the loads transfered from the gear to the wingbox,

allowing the DSS MLG to be integrated into a carbon fibre wing.

Whilst DSS MLGs provide a solution to integrating a landing gear into a composite wing structure, the

nature of the DSS mechanism presents challenges in itself due to its sensitivity to changes in MLG parameters,

such as attachment point positions and aerodynamic drag. The mechanism is particularly sensitive to these

parameters around the downlock point, which is the state of the landing gear defined as separating the

‘unlocked’ and ‘downlocked’ states. In this state the two locklink links align with one another, and at the

same time the upper and lower sidestay links are also very close to aligning. The reasons for the sensitivity

of DSS MLGs near the downlock point are not fully understood.

The literature on landing gear mechanism analysis is limited and relatively old,3,4 and it focuses on

the kinematic aspects of the landing gear mechanism from a preliminary design perspective. There are

currently no examples in the public domain of DSS MLG mechanism modelling. The vast majority of

previous work into landing gear modelling has tended to focus on capturing the landing gear properties

under ground loading5–8 by building relatively complex dynamic models using dynamic simulation software

packages (such as Dymola or ADAMS). These models are very good at capturing many different aspects of

the physical system, and they can provide quantitatively accurate results for a specific system of interest.

On the other hand, complex dynamic models are less suitable to developing an understanding of general

underlying nonlinear behaviour. This is because the model parameters that can be simulated continuously
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within the model are often limited to externally applied forces. If, for example, the MLG geometry was to

be investigated, the model would need to be adjusted and multiple time histories conducted for different

(discrete) geometries. Not only is this a time-consuming process, but areas of highly nonlinear behaviour

may be missed if a relevant geometry is not simulated.

The approach presented here expresses the mechanism as a set of steady-state constraint equations, which

are solved simultaneously with the method of numerical continuation. Tools from Bifurcation Theory,9–11

including numerical continuation, have been used to help understand nonlinear problems in Aerospace ap-

plications before.12–14 For all of these applications, numerical continuation was shown to provide significant

advantages over alternative analysis methods. This paper outlines a mechanism modelling approach that

enables the use of numerical continuation methods to analyse DSS MLG mechanisms. The following section

briefly describes the model; it is self-contained and builds on our previous work modelling single-stay NLG

and MLG mechanisms.12,15 A formulation validation is then presented by starting from the case of a single-

sidestay MLG and then ‘rotating out’ an extra sidestay. Subsequently, continuation results for a DSS MLG

are presented with an emphasis on downlock sensitivity to sidestay flexibility. The final section presents

some concluding remarks and offers an outlook on future model advancements that could be introduced to

increase the applicability of the results.

II. Model details

The model used in this work was derived using newtonian mechanical principles. Because

of this, the equations within this section are presented in their entirety.
.
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Figure 1: Three-view of a symmetrical DSS MLG arrangement, with joints, locklinks and sidestay plane
normal vectors shown.

Figure 1 shows the DSS MLG geometry considered, with a main vertical shock strut supported by two
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folding sidestays. For the landing gear considered in this work, the rake angle is taken to be zero. The

sidestays are attached to the shock strut at points slightly offset from the shock strut centreline. The other

end of each sidestay is attached to the airframe at points A and G. The locklinks, attached between the

sidestay joints and the shock strut, lock the gear in position when deployed. Locklink configurations differ

from landing gear to landing gear; one of the locklinks on the Boeing 787 DSS MLG, for example, is attached

to the sidestays and the airframe (rather than the sidestays and the shock strut as considered here). The

model of the DSS MLG considered here is a development of the single sidestay MLG model formulation

presented previously;15 as such, the notation follows a similar convention. As Figure 1 shows, the DSS MLG

mechanism consists of nine links, which are initially assumed to be rigid bodies with uniformly distributed

mass along their lengths. Each link, Li, is connected to another link or the aircraft structure via rotational

joints; the majority of the joints labelled in Figure 1 are planar joints, with the exception of joints A, B,

G and H which are spherical joints that allow connected bodies to rotate about the joint freely in three-

dimensions. The X-axis is defined as the shock strut rotation axis, with the shock strut rotation joint at the

global co-ordinate origin point O. The gear is defined to retract in the positive (Y ,Z)-plane and the Z-axis

is aligned with the global gravity vector, positive down.

Due to the presence of two sidestays, two transformation matrices are required to define the two sidestay

rotation planes — a fore and aft plane. These two transformation matrices are defined in terms of two

normal vectors n̂f and n̂a for the fore and aft sidestay planes, respectively, as given by:

n̂f = OA×OB (1a)

n̂a = OG×OH (1b)

The two sidestay local co-ordinate systems can now be defined with two rotation matrices. The fore

rotation matrix T f describes rotations about the global origin point O, which aligns the local fore x-axis

(xf ) with n̂f by a rotation over αf about the global Y -axis, followed by a rotation through βf about the

intermediate z-axis:

T f =















cosβf cosαf − sinβf cosβf sinαf

sinβf cosαf cosβf sinβf sinαf

− sinαf 0 cosαf















. (2)

The aft rotation matrix T a is also a transformation about the global origin point O, but one that aligns

the local aft x-axis (xa) with n̂a by a rotation over αa about the global Y -axis followed by a rotation through

βa about the intermediate z-axis:
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T a =















cosβa cosαa − sinβa cosβa sinαa

sinβa cosαa cosβa sinβa sinαa

− sinαa 0 cosαa















. (3)

The two local co-ordinate systems are therefore related to the global (X,Y, Z) co-ordinates as follows:















xf

yf

zf















= T f















X

Y

Z















, (4a)















xa

ya

za















= T a















X

Y

Z















. (4b)

The equations are formulated by considering each link Li within the mechanism as an individual rigid

body in static equilibrium. This method has been previously introduced,12,15 and is now extended to the

case of a DSS MLG.

A. Link description and co-ordinate systems

Figure 2 depicts the general naming convention used for each link within the landing gear mechanism in local

fore (a) and aft (b) co-ordinates. Each link is described in terms of seven elements, Li = {Xi, Yi, Zi, n̂, θi, Li,mi},

where:

• Li is the i
th link;

• Xi, Yi, Zi are the global Cartesian co-ordinates which describe the position of Li’s centre of gravity

(cg);

• n̂ is the normal vector to Li’s plane of rotation, i.e. perpendicular to the page in Figure 2;

• θi is the local rotation of Li relative to the local y-axisa;

• Li is the length of Li;

• mi is the mass of Li, assumed to be evenly distributed along Li.

aFor the main strut L1 a global rotation Θ1 is used to define the link: see Figure 3 for graphical representation. The

corresponding local rotations θ
f
1
and θa

1
(shown in Figure 2) are functions of Θ1
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Figure 2: Naming convention shown in two local (y, z) co-ordinate systems, looking along the normal vectors
to the fore (a) and aft (b) planes. The direction of travel for the aircraft is shown in both cases.

The forces acting on Li can be expressed in global, and in local fore or aft co-ordinates. The fore and

aft co-ordinate systems are related to the global co-ordinates by the fore and aft transformation matrices,

respectively, as:















F xf

F yf

F zf















= T f















FX

FY

FZ















, (5a)















F xa

F ya

F za















= T a















FX

FY

FZ















. (5b)

The left-hand sides of Equations (5a) and (5b) are the local projections of the given force, with the

symbol F used to distinguish the force as being in local co-ordinates; the right-hand side of the equations
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contains the global (X,Y ,Z) projections of the same force, again denoted by the symbol F to distinguish it

as being a global force projection.

B. Geometric constraints

A system of 35 geometric constraint equations is needed to express the physical constraints in the DSS MLG

mechanism: of these, three equations are expressed in global co-ordinates (Xi, Yi, Zi), along with a single

rotation Θi about the global X-axis; 16 equations are formulated using the local fore sidestay co-ordinate

cg positions (xfi , y
f
i , z

f
i ), along with a single rotation θfi in the local fore plane; 16 equations are formulated

using the local aft sidestay co-ordinate cg positions (xai , y
a
i , z

a
i ), along with a single rotation θai in the local

aft plane. The 35 geometric constraint equations obtained are:















X1

Y1 −
L1

2
cos(Θ1)

Z1 −
L1

2
sin(Θ1)















= 0 , (6a)













































































































x
f
2

y
f
2 − L2

2
cos(θf2 )−Ayf

z
f
2 − L2

2
sin(θf2 )−Azf

x
f
3

y
f
2 − y

f
3 + L2

2
cos(θf2 ) +

L3

2
cos(θf3 )

z
f
2 − z

f
3 + L2

2
sin(θf2 ) +

L3

2
sin(θf3 )

y
f
3 − y

f
1 + L3

2
cos(θf3 ) + l13 cos(θ

f
1 + ω

f
1 )

z
f
3 − z

f
1 + L3

2
sin(θf3 ) + l13 sin(θ

f
1 + ω

f
1 )

x
f
4

y
f
4 − y

f
2 − L2

2
cos(θf2 ) +

L4

2
cos(θf4 )

z
f
4 − z

f
2 − L2

2
sin(θf2 ) +

L4

2
sin(θf4 )

x
f
5

y
f
5 − y

f
4 + L5

2
cos(θf5 ) +

L4

2
cos(θf4 )

z
f
5 − z

f
4 + L5

2
sin(θf5 ) +

L4

2
sin(θf4 )

y
f
5 − y

f
1 + L5

2
cos(θf5 )− l15 cos(θ

f
1 + ω

f
2 )

z
f
5 − z

f
1 + L5

2
sin(θf5 )− l15 sin(θ

f
1 + ω

f
2 )













































































































= 0 , (6b)
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











































































































xa6

ya6 − L6

2
cos(θa6)−Gya

za6 − L6

2
sin(θa6)−Gza

xa7

ya6 − ya7 + L6

2
cos(θa6) +

L7

2
cos(θa7)

za6 − za7 + L6

2
sin(θa6) +

L7

2
sin(θa7)

ya7 − ya1 + L7

2
cos(θa7) + l17 cos(θ

a
1 + ωa

3 )

za7 − za1 + L7

2
sin(θa7) + l17 sin(θ

a
1 + ωa

3 )

xa8

ya8 − ya6 − L6

2
cos(θa6) +

L8

2
cos(θ8)

za8 − za6 − L6

2
sin(θa6) +

L8

2
sin(θ8)

xa9

ya9 − ya8 + L9

2
cos(θa9) +

L8

2
cos(θa8)

za9 − za8 + L9

2
sin(θa9) +

L8

2
sin(θa8)

ya9 − ya1 + L9

2
cos(θa9)− l19 cos(θ

a
1 + ωa

4 )

za9 − za1 + L9

2
sin(θa9)− l19 sin(θ

a
1 + ωa

4 )













































































































= 0 . (6c)

Here Ayf

, Azf

, Gya

and Gza

are the local co-ordinate y- and z-components of the sidestay attachment points

(points A and G in Figure 1), l13, l15, l17 and l19 are the lengths from the shock strut cg to the adjoining ends

of links L3, L5, L7 and L9, respectively, and ω
f
1 and ωf

2 , ω
a
3 and ωa

4 are the angles l13, l15, l17 and l19 make

with the shock strut centreline (in the appropriate local co-ordinates). All other symbols follow the naming

convention that capital letters indicate global co-ordinates and lower cases indicate local co-ordinates, with

superscripts ‘f ’ and ‘a’ distinguishing between fore and aft local co-ordinate systems.

C. Force and Moment Equilibrium Equations

The 35 geometric constraints are supplemented with a second set of 37 equations that describe the force

and moment equilibrium necessary for the gear to be in a steady-state. For the whole DSS MLG to be in

equilibrium, each of the nine links must be in force and moment equilibrium and the joints must also be

in force equilibrium. The links are acted upon by internal forces, which in global co-ordinates are denoted

by Fi;∗ in the general case. The subscript i denotes the link number that the force is acting on and the

subscript ∗ denotes the element exerting that force on Li which can be either another link, L∗, or the aircraft

body. If the aircraft body is responsible for exerting the force, then the subscript symbol ∗ is replaced by
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a subscript RA, RO or RG, depending on if the reaction force acts at points A, O or G on the landing

gear (respectively). Unlike the single sidestay MLG model,15 the DSS MLG requires more than one local

co-ordinate system, so it is necessary to distinguish between force projections in the local fore and local aft

planes. This distinction is made in a similar manner to that of the local positional co-ordinates, by using

superscripts ‘f ’ and ‘a’ such that:

F
f
i;∗ = T fFi;∗ , (7a)

F a
i;∗ = T aFi;∗ . (7b)

Within the sidestay plane, for an arbitrary link Li to be in static equilibrium the sum of the forces acting

on the link must equal zero, along with the sum of the moments about an arbitrary point P . Using the

notation conventions as before, this means that:

∑

∗
F

yf
i;∗ = 0 ,

∑

∗
F

zf
i;∗ = 0 ,

∑

∗
M

Pf
i;∗ = l

Pf
i;∗ F

f
i;∗ = 0 , (8a)

∑

∗
F

ya
i;∗ = 0 ,

∑

∗
F za
i;∗ = 0 ,

∑

∗
MPa

i;∗ = lPa
i;∗ F

a
i;∗ = 0 . (8b)

From Equations (8a), the equilibrium equations for links L2–L5 can be formulated as follows:

for link L2, the moment equilibrium equation is

−F y
2;3,4L2 sin θ

f
2 + F z

2;3,4L2 cos θ
f
2 =

L2

2
m2gz cos θ

f
2 −

L2

2
m2gy sin θ

f
2 ; (9)

for link L3, the force equilibrium equations are

F
y
3;2,4 + F

y
3;1 = m3gy , (10a)

F z
3;2,4 + F z

3;1 = m3gz , (10b)

and the moment equilibrium equation is

−F y
3;1L3 sin θ

f
3 + F z

3;1L3 cos θ
f
3 =

L3

2
m3gz cos θ

f
3 −

L3

2
m3gy sin θ

f
3 ; (10c)
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for link L4, the force equilibrium equations are

F
y
4;2,3 + F

y
4;5 = m4gy , (11a)

F z
4;2,3 + F z

4;5 − Fll = m4gz , (11b)

and the moment equilibrium equation is

F
y
4;5L4 sin θ

f
4 − F z

4;5L4 cos θ
f
4 + FllL4 cos θ

f
4 = −

L4

2
m4gz cos θ

f
4 +

L4

2
m4gy sin θ

f
4 , (11c)

where Fll is the force from the unlock actuator which is assumed to work in the local z-direction; for link

L5, the force equilibrium equations are

F
y
5;4 + F

y
5;1 = m5gy , (12a)

F z
5;4 + F z

5;1 = m5gz , (12b)

and the moment equilibrium equation is

−F y
5;1L5 sin θ

f
5 + F z

5;1L5 cos θ
f
5 =

L5

2
m5gz cos θ

f
5 −

L5

2
m5gy sin θ

f
5 . (12c)

From Equations (8b), the equilibrium equations for links L6–L9 can be formulated as follows:

for link L6, the moment equilibrium equation is

−F y
6;7,8L6 sin θ

f
6 + F z

6;7,8L6 cos θ
f
6 =

L6

2
m6gz cos θ

f
6 −

L6

2
m6gy sin θ

f
6 ; (13)

for link L7, the force equilibrium equations are

F
y
7;6,8 + F

y
7;1 = m7gy , (14a)

F z
7;6,8 + F z

7;1 = m7gz , (14b)

and the moment equilibrium equation is

−F y
7;1L7 sin θ

f
7 + F z

7;1L7 cos θ
f
7 =

L7

2
m7gz cos θ

f
7 −

L7

2
m7gy sin θ

f
7 ; (14c)
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for link L8, the force equilibrium equations are

F
y
8;6,7 + F

y
8;9 = m8gy , (15a)

F z
8;6,7 + F z

8;9 − Funlock = m8gz , (15b)

and the moment equilibrium equation is

F
y
8;9L8 sin θ

f
8 − F z

8;9L8 cos θ
f
8 + FunlockL8 cos θ

f
8 = −

L8

2
m8gz cos θ

f
8 +

L8

2
m8gy sin θ

f
8 ; (15c)

and for link L9, the force equilibrium equations are

F
y
9;8 + F

y
9;1 = m9gy , (16a)

F z
9;8 + F z

9;1 = m9gz , (16b)

and the moment equilibrium equation is

−F y
9;1L9 sin θ

f
9 + F z

9;1L9 cos θ
f
9 =

L9

2
m9gz cos θ

f
9 −

L9

2
m9gy sin θ

f
9 . (16c)

The four force equilibrium equations for the upper sidestays (links L2 and L6) are not needed when forming

the system of equations. This is because their inclusion introduces four new variables (the local planar

components of the attachment point forces), so they only need to be included if attachment point force

determination is required.

Along with the static equilibrium equations for the individual links, compatibility equations at the joints

need to be included to ensure that there is no net force causing relative motion between the ends of adjoining

links. This is achieved through inclusion of the constraint that the sum of the forces acting at the joint

between two or more links must be zero. The compatibility equations at fore joints C and D (respectively)

in the local y and z directions are therefore given by

F
y
2;3,4 + F

y
3;2,4 + F

y
4;2,3 = 0 , (17a)

F z
2;3,4 + F z

3;2,4 + F z
4;2,3 = 0 , (17b)

F
y
4;5 + F

y
5;4 = 0 , (17c)
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F z
4;5 + F z

5;4 = 0 , (17d)

and the compatibility equations at aft joints I and J (respectively) in the local y and z directions by

F
y
6;7,8 + F

y
7;6,8 + F

y
8;6,7 = 0 , (18a)

F z
6;7,8 + F z

7;6,8 + F z
8;6,7 = 0 , (18b)

F
y
8;9 + F

y
9;8 = 0 , (18c)

F z
8;9 + F z

9;8 = 0 . (18d)

.

.

(a)

F
Y
1;3,F

Y
1;7

F
Z
1;3,F

Z
1;7

F
Y
1;5,F

Y
1;9

F
Z
1;5,F

Z
1;9

Θ1

Ω1,Ω3

l13,l17

Ω2,
Ω4

l15,l19

Dss

F1;G

Dw

F
Y
1;RO

F
Z
1;RO

Y

Z

B,H

O

E,K

(b)

X

Z

F
X
1;RO

F
Z
1;RO

F
X
1;5

F
Z
1;5

−F
X
1;9

F
Z
1;9

F1;G

F
X
1;3

F
Z
1;3

−F
X
1;7

F
Z
1;7

Figure 3: Free-body diagram of the DSS MLG shock strut viewed in global co-ordinates in the (Y ,Z)-plane
in which the gear retracts (a), and in the (X,Z)-plane (b).

The compatibility equations at joints B, E, H and K require some forces to be calculated in global
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co-ordinates; they will be presented after the subsequent treatment of forces associated with the shock strut,

link L1, which is more complicated than the force determination for the other links. Figure 3 shows the

free-body diagram for the DSS MLG shock strut as viewed perpendicular to the retraction plane (along the

global X-axis). The force and moment equilibrium equations for L1 can be constructed in a similar manner

as those for the sidestays and locklinks, but the formulation becomes more complicated when considering the

joint equilibrium equations between L1 and the adjoining links L3, L5, L7 and L9. These equations require

the application of the inverse of the transformation matrices T f and T a, to express the sidestay and locklink

local forces in the global co-ordinate system in which the shock strut is considered. The joint equilibrium

equation for the sidestay-shock strut and locklink-shock strut joints (B, E, H and K), respectively, are given

by

F1;3 = −inv(T f )F f
3;1 , (19a)

F1;5 = −inv(T f )F f
5;1 , (19b)

F1;7 = −inv(T a)F a
7;1 , (19c)

F1;9 = −inv(T a)F a
9;1 , (19d)

where inv(T f ) and inv(T a) are the inverse matrices of T f and T a and contain elements tfm,n and tam,n,

respectively (where m,n ∈ {1, 2, 3}). Equations (19a–d) can be expanded by multiplying out the right-hand

side. Since the links are assumed to be rigid, only forces acting in the shock strut rotation plane influence the

moment equilibrium of the link; therefore, expressions for the X-components of the global forces (FX) have

no effect on the mechanism and can be disregarded. Equation (20) describes eight of the internal structural

forces shown in Figure 3:

FY
1;3 = −(tf2,1F

xf
3;1 + t

f
2,2F

yf
3;1 + t

f
2,3F

zf
3;1) , FZ

1;3 = −(tf3,1F
xf
3;1 + t

f
3,2F

yf
3;1 + t

f
3,3F

zf
3;1) ,

(20a)

FY
1;5 = −(tf2,1F

xf
5;1 + t

f
2,2F

yf
5;1 + t

f
2,3F

zf
5;1) , FZ

1;5 = −(tf3,1F
xf
5;1 + t

f
3,2F

yf
5;1 + t

f
3,3F

zf
5;1) ,

(20b)

FY
1;7 = −(ta2,1F

xa
7;1 + ta2,2F

ya
7;1 + ta2,3F

za
7;1) , FZ

1;7 = −(ta3,1F
xa
7;1 + ta3,2F

ya
7;1 + ta3,3F

za
7;1) , (20c)

FY
1;9 = −(ta2,1F

xa
9;1 + ta2,2F

ya
9;1 + ta2,3F

za
9;1) , FZ

1;9 = −(ta3,1F
xa
9;1 + ta3,2F

ya
9;1 + ta3,3F

za
9;1) . (20d)

The y and z components of F3;1, F5;1, F7;1 and F9;1 are described from the equilibrium equations of the

fore and aft sidestays and locklinks, but the out-of-plane components in the local x-direction (F xf
3;1 , F

xf
5;1 , F

xa
7;1

and F xa
9;1) require calculating explicitly. These force components are calculated by considering the sidestay
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planes in isolation.
.

.

F2;RA

F2;g

F3;g

F4;g

F5;g

F5;1
LOA;E

LOB;3

F3;1

A

O

B

C

D

E

Figure 4: Free-body diagram of the fore sidestay plane.

The free-body diagram used to obtain F
xf
3;1 and F

xf
5;1 is shown in Figure 4. There are three unknown

forces, acting at points A, B and E, which need to be determined before the equilibrium equation for the

shock strut can be considered. The x-components of the forces are assigned to act in a positive direction. A

similar free-body diagram can be constructed for the aft sidestay-locklink plane, which allows F xa
7;1 and F xa

9;1

to be calculated in exactly the same way. The x-components of the six unknown forces, (F f
3;1, F

f
5;1, F

f
2;RA,

F a
7;1, F

a
9;1 and F a

6;RG) can be obtained by resolving forces perpendicular to each sidestay plane and applying

moment equilibrium about four axes (OA, OB, OG and OH).

The reaction force x-components F xf
2;RA and F xa

6;RG can be calculated directly as

F
xf
2;RA = −1

LOB;A
(F xf

2;gLOB;2 + F
xf
3;gLOB;3

+F xf
4;gLOB;4 + F

xf
5;gLOB;5) ,

(21a)

F xa
6;RG = −1

LOH;G
(F xa

6;gLOH;6 + F xa
7;gLOH;7

+F xa
8;gLOH;8 + F xa

9;gLOH;9) .

(21b)

Here, as before, F xf
2;RA is the fore plane x-component of force F f

2;RA in the fore plane co-ordinates, and

F xa
2;RG is the equivalent force in the aft plane. The generalised moment arm LOB;∗ is the shortest length from

axis OB to point ∗. Similarly, the generalised moment arm LOH;∗ is the shortest length from axis OH to

point ∗ for the aft plane’s equations. The example shown in Figure 4 depicts the moment arm LOB;3 which

is the moment arm of the lower sidestay’s weight (F f
3;g) about axis OB. After obtaining F xf

2;RA, the following

two expressions can be solved simultaneously to obtain F xf
3;1 and F xf

5;1 :
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F
xf
2;RA + F

xf
2;g + F

xf
3;g + F

xf
4;g + F

xf
5;g + F

xf
3;1 + F

xf
5;1 = 0 , (22a)

F
xf
2;gLOA;2 + F

xf
3;gLOA;3 + F

xf
4;gLOA;4

+F xf
5;gLOA;5 + F

xf
3;1LOA;B + F

xf
5;1LOA;E = 0 .

(22b)

In Equation (22b) the generalised moment arm LOA;∗ is the shortest length from axis OA to point ∗.

Figure 4 also depicts the distance LOA;E ; this is the moment arm of the internal force F5;1 (which acts at joint

E in the MLG) about axis OA. The equivalent equations, for the aft plane, to those given by Equation (22)

are:

F xa
6;RG + F xa

6;g + F xa
7;g + F xa

8;g + F xa
9;g + F xa

7;1 + F xa
9;1 = 0 , (23a)

F xa
6;gLOH;6 + F xa

7;gLOG;7 + F xa
8;gLOG;8

+F xa
9;gLOG;9 + F xa

7;1LOG;H + F xa
9;1LOG;K = 0 .

(23b)

The moment equilibrium for the shock strut, along with the compatibility equations for joints B, E, H

and K, can now be formulated in terms of the global forces shown in Figure 3 (expressed mathematically in

Equation (20)). The fore and aft plane force x-components (F xf
3;1 , F

xf
5;1 , F

xa
7;1 and F xa

9;1) are calculated from

Equations (22) and (23), and all other components are solved by the continuation algorithm as system states.

The moment equilibrium equation for L1 is

Fy
1;3

(

L1

2
sinΘ1 − l13 sin(Θ1 +Ω1)

)

+ Fz
1;3

(

l13 cos(Θ1 +Ω1)−
L1

2
cosΘ1

)

+Fy
1;5

(

L1

2
sinΘ1 − l15 sin(Θ1 − Ω2)

)

+ Fz
1;5

(

l15 cos(Θ1 − Ω2)−
L1

2
cosΘ1

)

+Fy
1;7

(

L1

2
sinΘ1 − l17 sin(Θ1 +Ω3)

)

+ Fz
1;7

(

l17 cos(Θ1 +Ω3)−
L1

2
cosΘ1

)

+Fy
1;9

(

L1

2
sinΘ1 − l19 sin(Θ1 − Ω4)

)

+ Fz
1;9

(

l19 cos(Θ1 − Ω4)−
L1

2
cosΘ1

)

= (
m1

2
Gz +mwheel)L1 cosΘ1 + Fz

act(l1act cos(Θ1 +Ω5))−Fy
act(l1act sin(Θ1 +Ω5)) +MD −M .

(24)

HereM is the retraction actuator moment parameter, defined to act about the shock-strut attachment point

O; Fact is the retraction actuator force parameter, which acts between the shock-strut and airframe during

retraction; MD is the drag-induced moment (set to zero in this work); length l1act is the distance from the

shock strut cg to the adjoining retraction actuator, and Ω5 is the angle that the length l1act makes with the
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shock strut centreline (in local co-ordinates). Angles Ω1−4 are as depicted in Figure 3, and all other entities

follow the defined naming conventions for force, angle and link positional states.

The compatibility equations for joints associated with the shock strut are:

Fy
1;3 + t

f
2,2F

y
3;1 + t

f
2,3F

z
3;1 = −tf2,1F

x
3;1 , (25a)

Fz
1;3 + t

f
3,2F

y
3;1 + t

f
3,3F

z
3;1 = −tf3,1F

x
3;1 , (25b)

Fy
1;5 + t

f
2,2F

y
5;1 + t

f
2,3F

z
5;1 = −tf2,1F

x
5;1 , (25c)

Fz
1;5 + t

f
3,2F

y
5;1 + t

f
3,3F

z
5;1 = −tf3,1F

x
5;1 , (25d)

Fy
1;7 + ta2,2F

y
7;1 + ta2,3F

z
7;1 = −ta2,1F

x
7;1 , (25e)

Fz
1;7 + ta3,2F

y
7;1 + ta3,3F

z
7;1 = −ta3,1F

x
7;1 , (25f)

Fy
1;9 + ta2,2F

y
9;1 + ta2,3F

z
9;1 = −ta2,1F

x
9;1 , (25g)

Fz
1;9 + ta3,2F

y
9;1 + ta3,3F

z
9;1 = −ta3,1F

x
9;1 . (25h)

The forces on the left-hand sides of Equations (25a-h) are the unknowns, to be determined by the continuation

algorithm. The force values on the right-hand side are calculated explicitly from Equations (21)–(23).

As with the cases of the upper sidestays (links L2 and L6), the force equilibrium equations for the shock

strut only need to be included if the force at its attachment point is required. For the purposes of this work,

the attachment point forces are not needed so the force equilibrium equations for L1 are not included in the

model.

D. Matrix Formulation

To simplify model implementation, specifically the requirement for determining an initial continuation start-

ing point, the 37 internal force/moment equilibrium equations presented thus far (i.e. Equations (9)-(18)

and (25)-(24)) were combined into a matrix form such that

AF −B = 0 . (26)

Formulating the landing gear force-balance equations in this way eases calculation of the initial conditions,

by computing A−1B (provided A−1 is nonsingular, which is the case here). The generic formulation of

Equation (26) is the same as that used for the single sidestay MLG model, however the matrix A and vectors

F and B are significantly larger than before. For the single sidestay MLG model,15 A is a (19× 19) matrix,
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containing the terms from the equilibrium equations which are multiplied by the vector of internal forces F .

The addition of an extra sidestay causes A to practically double in size to a (37 × 37) matrix. Note that

A does not double in size exactly, because there is only one shock strut (described by one row in A) – all

other elements (i.e. those for the sidestays and locklinks) are doubled when comparing the DSS MLG model

to the single-sidestay MLG model.

Rather than presenting matrix A as a single, sparse matrix, the elements within A can be grouped such

that the force coefficients from the global, fore and aft constraint equations become sub-matrices in A. In

this way, Equation (26) can be written as











































0 . . . 0

[Af ]
...

. . .
...

0 . . . 0

0 . . . 0

...
. . .

... [Aa]

0 . . . 0

C1 . . . . . . . . . . . . C37

















































F
f

F
a






−















B
f

B
a

BL1















= 0 . (27)

The matrix A in Equation (26) is formed as two matrices Af and Aa, which describe the forces in the

sidestay-locklink fore and aft planes, along with the vector C, which describes the shock strut forces in the

global co-ordinate system. Af and Aa are (18 × 19) and (18 × 18) matrices, respectively, whilst the row

vector C = {C1 . . . C37} is mathematically responsible for linking the fore and aft planes. It contains mainly

zeros, with eight non-zero entries which describe the moment equilibrium of the shock strut in terms of forces

applied by the fore and aft plane. Vector F in Equation (26) is defined in terms of two separate vectors,

F
f
and F

a
, for the fore- and aft-plane force elements, whilst vector B contains the corresponding non-force-

coefficient terms. All the matrices and vectors in Equation 27 are given in Appendix I. Equation 27, together

with the geometric constraints of Equations 6, constitute the DSS MLG model.
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E. Addition of structural flexibilities

By using the internal structural forces, it is straightforward to include an element of structural flexibility

within the model. The DSS MLG retraction and deployment is highly sensitive to geometric deflections,

especially around the downlock point. In fact, for a fully rigid landing gear, the downlock solution becomes

unobtainable if one of the sidestay attachment points is moved from the undeflected geometry. For such cases,

some aspect of the DSS MLG geometry must change in order for the gear to reach the downlock point: in the

real system, this occurs through a combination of the shock strut bending, whilst the sidestays compress or

extend on alternate sides. For ease of initial implementation here, only the sidestay compression/extension is

modelled, by treating the sidestay length parameters as highly stiff linear springs. The formulation described

here is applicable to all sidestay links (L2, L3, L6 and L7).

Figure 5: Free-Body Diagram of the fore upper sidestay link L2.

Figure 5 shows the upper fore sidestay link with internal forces from the adjoining links acting at either

end. The link weight acts at the link centre of gravity. All forces are depicted to act in the local co-ordinate

positive y- and z-directions. The forces at either end of the link can be considered, with the link weight

added onto the z-component of the force, and resolved into components axially and perpendicularly to the

link. The change in link length can then be calculated by dividing the axial force component with the link

stiffness, ki. The flexible link’s length is therefore described in the general case by

Li =
1

ki

(

(F y
i;∗ +migy) cos θi + (F z

i;∗ +migz) sin θi
)

+ L0i , (28)

where L0i is the unstrained length of link Li (i.e. the length when there are no forces acting axially on the

bar). For the case of L2 (as depicted in Figure 5) Equation (28) becomes:
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L2 =
1

k2

(

(F y
2;3,4 +m2gy) cos θ2 + (F z

2;3,4 +m2gz) sin θ2
)

+ L02 , (29)

where m2gy = F
y
2;g and m2gz = F z

2;g. The linear relation between force and displacement used by this model

is applicable for an isotropic material undergoing small (i.e. elastic) deflections; as most landing gears are

constructed with metal sidestays, and the deflections considered in the results in Section IV are much less

than 1% of the sidestay link lengths, these assumptions are reasonable for a real DSS MLG. The stiffness is

also assumed to be unaffected by the position along the link where the force is applied, which is a reasonable

assumption as only small axial deflections are considered.

F. Retraction Actuator Parameterisation

.

.

a

X

Z

ψd

b

Y

Z

(a+ b) tan (ψd)

n̂

Y

X

Figure 6: Retraction actuator parameterisation diagram.

Figure 6 shows how the retraction actuator position is parameterised within the model. Three parameters

are used to describe the actuator position: length a denotes the vertical distance between the shock strut

rotation point and the actuator attachment point on the aircraft body; length b is the distance between the

shock strut rotation point and the actuator attachment point on the shock strut; and angle ψd is the angle

made in the deployed position between the actuator and the shock strut centreline. It should be noted that,

whilst it would be possible to parameterise the actuator position in terms of three length parameters (a, b

and c = (a + b) tanψd) rather than two lengths and one angle, the three length parameters would not be

independent so that distinguishing between parameter effects would be more difficult.

The retraction actuator is positioned in the plane in which the shock strut retracts, as any out of plane

actuator components would not contribute to retracting the landing gear in this rigid model. The actuator
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was also assumed to be attached to the shock strut centreline, something which is not necessarily the case

for all real landing gears. The parameter a was fixed for the following results presented in this paper, and

chosen to be equal to 10% of the overall landing gear length.

III. Numerical Continuation of Sidestay Angle

The formulation flexibility allows the sidestay attachment points in the DSS MLG model to be param-

eterised in terms of a fore and aft attachment point angle (αf and αa respectively; see Figure 1), which

can then be continued numerically to allow different geometries to be considered. Specifying two angles to

describe the two sidestay attachment point positions enables consideration of both symmetric (αf = αa) and

asymmetric (αf 6= αa) geometries. The following subsections consider several asymmetric geometry cases.

A. Comparison of Single-Sidestay and Dual-Sidestay MLG models

To ensure confidence in the DSS model formulation, the retraction cycle for the DSS MLG is compared to

that of the single-sidestay MLG presented previously.15 By setting αf = −αa and making the sidestay and

locklink masses in the DSS model half the value of the sidestay and locklink masses in the single sidestay

model (such that the total mass of both gears is the same), the resulting DSS MLG is equivalent to a single

sidestay MLG.

Figure 7 shows the retraction actuator force F in the DSS MLG model as a function of the shock strut

angle Θ1 and the deployed actuator angle ψd. The case presented is that when the two sidestays are aligned

with one another, i.e. αa = −αf = −35◦. The light curves of panels (a) and (b) show the response of the

single-sidestay MLG, which is matched practically exactly by the equivalent DSS MLG retraction curves in

black. The only noticeable difference between the single and dual sidestay retraction results is that the DSS

retraction curves stop at a retraction angle of Θ1 ≈ 10◦, whereas the single sidestay MLG model retracts to

Θ1 = 0◦. The reason for this is that the DSS MLG is not exactly equivalent (geometrically) to the single

sidestay MLG. Because the model was initialised by numerically continuing the sidestays together from a

symmetric geometry, the final value for the continued angle is obtained once the continuation has reached

a parameter value one step beyond the specified parameter end point. This means that, whilst the two

sidestay planes in the DSS model are approximately the same, there is a very small angle (about 0.05◦)

between the fore and aft planes. This small difference is thought to cause the gear to lock at the point

when the sidestay plane normal vectors reach the vertical plane (i.e. the global (Y, Z)-plane), presenting

numerical difficulties in tracing solutions beyond this point. These numerical difficulties are a direct

consequence of the overdetermined nature of a DSS mechanism. Physically, this means that,

as the fully retracted position (where the two locklinks are aligned) is approached, the two
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Figure 7: Comparison between dual-sidestay and single-sidestay landing gear retraction, for actuator angle
values of: ψd = 6◦ (a), ψd = 50◦ (b), and ψd between 6◦ and 50◦ (c). The black curves in panels (a)
and (b) are for the DSS MLG with αa = αf = 35◦, and the light curves are for equivalent results from
the single-sidestay model. The angles Θ1 and ψd are the shock strut angle and initial retraction actuator

angle respectively, with force F =

√

Fy2

act + Fz2

act indicating the retraction actuator force magnitude in the
retraction plane.

sidestays may increasingly work against each other (creating large forces) in the presence of

numerical inaccuracies. In this situation, the solution may be difficult to follow numerically.

Figure 7(c) shows the surface of steady-state solutions of the DSS MLG as a function of both the

shock strut or retraction angle Θ1, and the deployed actuator angle ψd. On the surface is a locus of local

maxima, present for a range of ψd. At low values of the deployed actuator angle ψd, the retraction profile

is qualitatively similar to the case shown in Figure 7(a). The local maximum point occurs increasingly later

in the retraction cycle (i.e. at lower Θ1 values) as ψd is increased. As ψd increases past the value where the

local maximum occurs in the retracted position, there is a qualitative change in the retraction response. For

these high values of ψd, the retraction profile is qualitatively similar to that shown in Figure 7(b).

The overall behaviour shows very good qualitatative and quantitative agreement with an equivalent
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surface for a single-sidestay MLG in previous work.15

B. Numerical Continuation of Aft Sidestay Angle

From the single-sidestay configuration, the aft sidestay attachment point can be continued through changing

the aft sidestay angle αa, while keeping αf fixed at 35◦. The resulting qualitative effect of the change in

geometry on the retraction surface is shown in Figure 8.
.

.
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Figure 8: Qualitative effect of increasing the angle between the two sidestays in the DSS MLG model, with
retraction surfaces shown for aft sidestay angles of: αa = −20◦ (a), αa = −10◦ (b), αa = 0◦ (c), αa = 10◦

(d), αa = 20◦ (e), αa = 35◦ (f).

For the retraction surfaces shown in Figure 8, the fore sidestay plane angle αf remains fixed whilst the
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aft sidestay swings out through 10◦ intervals from αa = −20◦ to αa = 20◦ (panels (a) to (e)), before the

symmetric case (αa = αf = 35◦) is presented in the final panel (f).

There appears to be a good qualitative match between positive and negative αa values. Considering the

pairs of surfaces in Figures 8(a) and (e), and (b) and (d), the locus of local maxima (curve on surface) disap-

pears when |αa| decreases from 20◦ to 10◦, yet the surfaces show no significant differences when comparing

positive and negative αa values. The reasons for this behaviour are due to the role the sidestay geometry

plays in the retraction of the MLG, and are discussed below.

When considering the causes of the observed actuator force variation with retraction angle, the aft

sidestay and locklink weight is the physical aspect of the sidestay plane which works against the retraction

actuator force. This weight is transferred to the shock strut at two points along its length, and these points

remain constant irrespective of the aft sidestay plane angle αa. Because the shock strut is rigid, the weight

component opposing the shock strut movement for any single positive αa is identical to the weight component

for the negative of that same value of αa. Furthermore, the geometric symmetry of a MLG for positive and

negative values of a given αa results in the observed similarities between Figures 7(c) and 8(f) (αa = ∓35◦),

Figures 8(a) and (e) (αa = ∓20◦), and Figure 8(b) and (d) (αa = ∓10◦). The noticeable differences between

Figures 8(a) and (e) arise because the sidestay angle was continued to the exact value, but the continuation

run only stops once that parameter value has been exceeded (as explained in Section IIIA).

The other effect the sidestay and locklink geometry has on the retraction loads relates to the MLG as a

purely geometric mechanism. For the MLG to fully retract, all sidestay and locklink links must be able to

rotate about one another at a fixed distance (as the mechanism is still rigid for this analysis). If, at a certain

point in the retraction cycle, the links are no longer able to rotate about one another without violating their

length constraints, the mechanism locks and becomes a structure. Increasing the externally applied force (in

this case from the retraction actuator) merely causes the internal forces to redistribute, but no movement in

the mechanism occurs. It is this mechanism lockup that causes the retraction surface to become vertical for

low retraction angles as |αa| → 0.

The reason this lockup is a function of αa is that the sidestay plane angle affects the motion of the sidestays

and locklinks throughout the retraction: for small absolute values of αa, the sidestays and locklinks rotate

in their plane more than they do for higher values of αa. This is shown in Figure 9, which depicts how the

relation between θa8 and Θ1 changes as the aft sidestay plane is moved from the single sidestay configuration

(αa = −35◦) through to the symmetric DSS configuration (αa = 35◦). For the single sidestay configuration,

there is a corresponding θa8 value for the whole range of retraction angles considered (90◦ down to 10◦). As

the aft sidestay plane moves away from the fore sidestay plane, there is a qualitative change in the relation

between θa8 and Θ1. When αa = −20◦, Figure 9(a) shows the relation becomes more parabolic, appearing to
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Figure 9: Variation in aft locklink angle θa8 as a function of retraction angle Θ1 for different values of aft
sidestay plane angle αa. Panel (a) considers the cases where αa ≤ 0, whilst panel (b) presents the cases
when αa ≥ 0.

approach a Θ1 asymptotic value. Furthermore, the value of θa8 passes through zero for αa ≥ −20◦, showing

that this locklink is rotating more as the sidestay plane angle is increased towards zero.

As the sidestay plane angle increases further, the landing gear mechanism begins to lock up at lower

values of retraction angle Θ1. This is shown by the increased gradient over the latter part of the curves in

Figure 9(a). The easiest case to consider is that where αa = 0◦, as the aft sidestay plane remains fixed in

space for this case (i.e. it does not rotate as the gear retracts). The crucial joint to consider is the aft joint

I, joining the aft sidestays to the locklinks; see Figure 1. As the mechanism is rigid, this link must trace

out a circular path about the aft sidestay attachment point G. At the same time, the distance between the

ends of the two locklinks (joints I and K) cannot exceed the lengths of both locklinks (L8 and L9). The

mechanism therefore locks up at the point where these two conditions can no longer be satisfied, because

the locklinks are being stretched by the rest of the mechanism.

Figure 9(b) presents equivalent results to those in Figure 9(a) for the cases when αa ≥ 0. The results are

identical (within the error tolerances of the continuation) to those discussed for αa ≤ 0. This is an expected

result as there is no difference in the geometric relations in the landing gear (such as the presented relation

between θa8 and Θ1) for α
a = +x◦ or αa = −x◦.

IV. Downlock Sensitivity Study

The DSS MLG mechanism will enable the gear to move between retracted and deployed states provided

the geometry is in its nominal position, i.e. no attachment points have moved nor any lengths changed. This

situation is unrealistic in a real landing gear system, because under flight conditions the wing, and hence

the MLG attachment points, will deflect. If the landing gear is rigid, any asymmetric deflections (where

one attachment point moves relative to the other) mean the downlock solution for the gear no longer exists.

Since real structures and mechanisms are not rigid, the downlock solution for a real landing gear may still
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be obtainable, but some elements within the structure would also need to deflect in order for the downlock

point to be reached. This translates to a force barrier that needs to be overcome for successful locking.

In order to mimic the asymmetric downlock case, the following numerical continuation results are started

with the landing gear in a semi-locked position. The aft plane is downlocked, but the fore plane locklinks are

left unlocked. A deflection to the aft attachment point is introduced by defining a length parameter along

the vector intersecting points G and H, and then numerically continuing this parameter until the desired

deflection is obtained. From this solution, the landing gear is treated as being half-downlocked by fixing the

rotational state Θ1. Because one state has been fixed, one fixed parameter is required to vary for the problem

to be well posed (otherwise it would be over-constrained). The real landing gear would be held in place by

the locklinks pressing against one another, so an artificial resistance force is added that acts between the

two aft-plane locklinks. The variation of this force effectively keeps the MLG in equilibrium throughout the

subsequent downlock analysis continuation runs.

From the semi-locked state, the unlock force in the fore plane is used as a continuation parameter. In

order for the fore plane downlock solution to be reached, at least one of the links in the fore plane is required

to deflect. The modelling of this flexibility was presented in Section E. The results of this investigation into

the behaviour of the flexible model are presented now.

A. Effect of sidestay attachment point displacement on required downlock loads, with flexible

lower sidestay L3

Figure 10 shows downlock results for the DSS MLG model with one flexible link, the lower sidestay link L3,

in the fore plane. Each panel shows a surface of steady-state solutions in terms of the locklink force Fll, aft

sidestay attachment point deflection δatt, and locklink angle θf4 . The case shown in Figure 10(a) is the lowest

stiffness case considered. When there is no sidestay deflection (i.e. δatt = 0), a given locklink force relates

directly to a single gear state. Because the landing gear is semi-locked, the movement of the aft locklinks

is practically limited between two steady-state asymptotes. The upper branch of solutions corresponds to

the unlocked link state: increasing the force on this branch does not produce a significant change in locklink

angle. The lower branch of solutions corresponds to the downlocked link state: decreasing the force on this

lower branch does not cause the locklink angle to change much. The locus of equilibria which joins these

two branches is approximately linear, and as the only solution when the locklink force is zero is on the lower

branch, there is not enough resistance in the structure to prevent the locklinks from reaching the downlocked

state under gravitational forces.

As the aft sidestay deflection increases, even only by a few millimetres, the equilibrium curve in the

(Fll,θ
f
4 )-plane develops two separate areas where the equilibrium curve folds back on itself. In these regions,

25 of 39

American Institute of Aeronautics and Astronautics



.

.

(a)

θ
f
4

[deg]

δatt [m] Fll [N]

(b)

θ
f
4

[deg]

δatt [m] Fll [N]

(c)

θ
f
4

[deg]

δatt [m] Fll [N]

(d)

θ
f
4

[deg]

δatt [m] Fll [N]

Figure 10: Landing gear response to varying locklink force Fll as a function of aft sidestay attachment point
deflection δatt, with flexible fore link L3 of stiffness (a) 7.7×104 N/m, (b) 1.5×105 N/m, (c) 5.5×105 N/m,
(d) 1.0× 106 N/m. Note the differences in the scale of Fll.

a given force corresponds to multiple gear states. For the maximum attachment point deflection considered

(δatt = 6 mm), the locus of equilibria between the unlocked (upper branch) and downlocked (lower branch)

solutions is now highly nonlinear. A double-hysteresis loop has formed as the sidestay attachment point has

deflected, such that now there is a range of force values for which there are three or five corresponding gear

states. The effect on the DSS MLG’s ability to reach the downlocked branch, however, is still fairly minimal,

because the upper branch of solutions is only present for positive force values. This sort of behaviour is

similar to the results obtained previously12 for an overcentre mechanism; however, only a single hysteresis

loop is present in the overcentre mechanism response.

Figures 10(b)–(d) show the effect of increased stiffness on the equilibria surfaces. As is shown in Fig-

ure 10(b), doubling the stiffness from the initially considered case in Figure 10(a) effectively expands the

double-hysteresis loop. Hence, for a given δatt there is a greater range of force values spanning an area with

three or five corresponding gear states for a given locklink force. The result of this expansion is that when

the attachment point deflection increases beyond about 5.8 mm, the downlock solution cannot be reached

from the unlocked position under the action of gravity alone.

By increasing the stiffness further still, the double hysteresis region continues to expand and occur at

lower δatt values. For the maximum stiffness considered, shown in Figure 10(d), the downlocked position
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cannot be reached under gravity, even when the sidestay has not deflected at all (i.e. δatt = 0). Even when

the attachment point is not deflected, the landing gear is still largely asymmetricb because the downlocked

aft plane is fixed in position. As the lower sidestay’s stiffness tends to infinity (i.e. approaches the fully rigid

case), the force required to move the locklinks between the unlocked and downlocked states also tends to

±∞. For a fully rigid DSS MLG model, only two states exist for the landing gear, and the locklinks are no

longer able to move between them.

B. Effect of sidestay attachment point displacement on required downlock loads, with flexible

upper sidestay L2
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Figure 11: Landing gear with flexible fore link L2 of stiffness 1.0 × 106 N/m response to varying locklink
force Fll as a function of fore sidestay attachment point deflections of (a) δatt = 0 mm, (b) δatt = 5.9 mm
and (c) 0 mm ≤ δatt ≤ 5.9 mm. The light curves in (a) and (b) show the equivalent response for the system
with a flexible L3.

Figure 11 shows the steady-state surface when the fore upper sidestay L2 is allowed to be flexible whilst

all other links remain rigid. The surface in Figure 11(c) is qualitatively similar to the previously considered

bThere will be two positions where the gear is in a symmetric state but otherwise it is asymmetric
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case in Figure 10(d), and upon closer inspection, the quantitative differences between the two are small. The

light curves in Figure 11(a) and (b) show equivalent responses to those from Figure 10(d) for comparative

purposes. Figure 11(a) is the case when δatt = 0. It shows that when the fore locklinks are unlocked (i.e.

on the upper equilibria branch), the response to the locklink force is almost identical to the previous case

when L3 is flexible. There is a slight difference around the lower fold point between the two sets of results,

indicating that the upper sidestay at this point has to deflect less than the lower sidestay would at the same

point.

The difference between the two alternate flexible sidestay cases becomes more pronounced when the

attachment point deflection is increased to the case shown in Figure 11(b). The upper and lower fold points

on the black curve occur at lower absolute force values than the respective points on the light curve. This

provides further evidence that the upper sidestay does not need to deflect as much as the lower sidestay in

order to allow the locklinks to move between downlocked and unlocked states. Despite the differences at the

upper and lower fold points, the central branch of equilibria between the two internal fold points remains

largely unchanged. In fact, there is a small range of equilibria in this region for which attachment point

deflection has no noticeable effect. This is due to a combination of two effects. The distance between the two

ends of the locklinks hardly changes around the downlock point (θf4 = 0◦), so this region is quite insensitive

to changes in attachment point position. This insensitivity is coupled with the sidestay force direction of

action: the majority of the internal forces in the sidestays act perpendicularly to the locklinks when they are

approximately aligned around the downlock point. These two effects result in the very small linear region

around θf4 = 0◦ which remains unchanged with increasing attachment point deflections. It should be noted

that the apparent change in this region between Figures 11(a) and (b) are a result of the changing Fll-scale.

One advantage of using the numerical continuation approach over dynamic simulations is highlighted by

considering this double-hysteresis behaviour. A dynamic simulation, starting from an unlocked solution, with

a slowly decreasing locklink force would approximately trace out the upper branch of equilibria, jumping to

the lower branch when the system reaches the upper fold point. From the lower branch, slowly increasing

the downlock force will approximately trace out the lower branch of equilibria until reaching the lower fold

point, where it will jump to the upper branch. It would be very difficult to identify the central equilibria

with dynamic simulations, and so it is likely that this region would be missed.

However, the reason for this jump is a change in the dynamic stability of the underlying

equilibria. Formulating the mechanism equations as coupled, steady-state equations is neces-

sary to be able to apply numerical continuation techniques, however these equations do not

contain any information on the dynamic stability of solutions. This stability information has to

be inferred through the appropriate use of dynamic simulations, coupled with some knowledge
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Figure 12: Landing gear with flexible fore links L2 and L3 of stiffnesses k2 = k3 = 1.0× 106 N/m response
to varying locklink force Fll as a function of aft sidestay attachment point deflections of (a) δatt = 0 mm, (b)
δatt = 5.9 mm and (c) 0 mm ≤ δatt ≤ 5.9 mm. The light curves in (a) and (b) show the equivalent response
for the system with a flexible L3.

of the system behaviour. Previous work studying an overcentre mechanism12 revealed hystere-

sis behaviour observed when a resistive force is applied between a two-link mechanism (similar

to considering the locklinks in isolation). In light of this prior work, it is reasoned that the

uppermost and lowermost branches are dynamically stable. This means that nearby solutions

will tend towards these two branches over time, so the equilibria can be traced dynamically

in parameter space provided the parameter variation is sufficiently slow (quasi-static). This

quasi-static assumption is reasonable for a landing gear locking mechanism.

29 of 39

American Institute of Aeronautics and Astronautics



C. Effect of sidestay attachment point displacement on required downlock loads, with flexible

upper and lower sidestays L2 and L3

Figure 12 compares the result when both L2 and L3 are flexible, with the baseline case of L3 as the only

flexible link. The forces at the upper and lower fold points on the black curves are much lower in magnitude

than the baseline, light curve case. The reason for this significant difference is that the sidestay–locklink

joint, point C, is no longer confined to lie on an arc defined by the rigid link. For the baseline case shown

by the light curves, point C was still constrained to lie a fixed distance from the fore attachment point A.

The case with a flexible L2 in Figure 11 is similar to the baseline case, as the sidestay–locklink joint at point

C is still constrained to lie a fixed distance from the lower sidestay joint, point B. This results in similar

magnitudes of locklink force at the fold points for both of the single stiffness cases. With both upper and

lower fore sidestays allowed to flex axially, the sidestay–locklink joint at point C is not constrained to lie on

any one path. Hence, the system can take the lowest energy position, which will result in point C tracing

out a path somewhere between the two arcs made by L2 about the attachment point A and L3 about the

lower sidestay joint B.
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Figure 13: Landing gear response to fore sidestay attachment point deflections of (a) δatt = 0 mm and (b)
δatt = 5.9 mm. The light curves show the response when k2 = 2.0× 106 N/m and k3 = 1.0× 105 N/m, and
the black curves show the response when k2 = 1.0× 105 N/m and k3 = 2.0× 106 N/m.

Figure 13 compares the responses of the landing gear when the upper and lower sidestays have different

stiffnesses. The black curves are for the case when the lower sidestay L3 has a higher stiffness than the upper

sidestay L2, and the light curves are for the opposite case when the upper sidestay stiffness is greater than

the lower sidestay stiffness. In Figure 13(a) there is very little difference between the two curves. The case

shown by the light curve (with a high L2 stiffness) requires slightly more force to hold the gear at the same

geometric configuration (i.e. at the same locklink angle). This difference becomes more pronounced when the

attachment point is deflected to about 6 mm, shown in Figure 13(b). This suggests that the upper sidestay

needs to extend less than the lower sidestay for the locklinks to move between unlocked and downlocked

positions, because of the significance of relative stiffnesses. For the light curve, the upper sidestay is stiffer
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than the lower sidestay, so the lower sidestay will deflect more when the locklinks move between the unlocked

and downlocked branches. Moving between the unlocked and downlocked states requires the most force for

this case. For the opposite scenario (i.e. the lower sidestay is stiffer), shown by the black curve in Figure 13,

the upper sidestay will deflect more than the lower sidestay as the locklinks move through the downlock

point. Because this case of predominantly upper-sidestay deflection results in a lower force at the upper and

lower fold points than the predominantly lower-sidestay deflection case, it suggests that the lower force is a

result of a smaller deflection of the upper sidestay. This result could be used to tailor the sidestay stiffnesses

such that the upper sidestay provides less structural resistance (i.e. has a lower stiffness) than the lower

sidestay, to reduce the energy barrier to the downlocked position.

V. Concluding Remarks

It has been shown how a three-dimensional dual-sidestay main landing gear mechanism can be modelled

as a set of fully parameterised steady-state constraint equations. The relatively simple method behind the

equation formulation provides a flexible approach to analysing complex mechanisms, whilst being well-suited

for the use of numerical methods from bifurcation theory. Furthermore, the equations can be adjusted in a

straightforward manner to model structural flexibilities within the sidestays of the landing gear mechanism.

The suitability of this modelling and analysis approach was demonstrated with an investigation into the

effects of sidestay angle upon retraction actuator loads. The geometry of the landing gear can be changed

simply by numerically continuing an assigned sidestay angle parameter. This proved highly advantageous

because it avoids a need to re-formulate the model to cope with the different geometries considered as the

sidestay was continued from the single sidestay case to the symmetric dual sidestay case. The results agreed

very well with a previous model of a single sidestay three-dimensional MLG, which constitutes a validation

of the DSS MLG model. The sidestay angle was found to play an important role in determining the extent

to which the landing gear can retract. The geometry of the sidestay and locklinks was found to prevent the

landing gear from retracting fully, especially for the case where the sidestay being moved was in the planar

position (i.e. the sidestay plane angle was zero). The retraction actuator loads, however, were found to be

largely unaffected by sidestay angle.

An investigation was then conducted into the sensitivity of the locklinks to sidestay attachment point

deflections. It was discovered that the underlying steady-state behaviour developed a double-hysteresis loop

as the sidestay attachment point was deflected, and that the downlock force is highly sensitive to attachment

point deflections of only a few millimetres. This was exacerbated by increasing the stiffnesses of the sidestays.

For the geometry considered, it appears that a relatively low upper sidestay stiffness (when compared to

the lower sidestay stiffness) would be beneficial in enabling the locklinks to move between the unlocked and
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downlocked states.

Future modelling work on dual-sidestay landing gear mechanisms could include adding more flexible

elements within the model. Around the downlock point, the sidestay deflections would also cause the shock

strut to deflect. This deflection would depend on the relative forces entering the strut from both the fore

and aft sidestays. Another aspect not captured by the current model, which could be added for future

investigations, is a specific rotation axis for the upper fore and aft sidestays to rotate about. In the current

model, the sidestay plane is defined in part by the vector from the origin to the sidestay attachment point,

so when the attachment point is deflected this vector automatically rotates. In a real landing gear, this

axis is initially set so that it runs from the nominal sidestay attachment point to the co-ordinate origin, but

that does not necessarily hold true when the sidestay attachment point deflects. This difference is significant

because, if the sidestay rotation axis does not intersect the origin, the mechanism will become stuck, requiring

structural deflections to allow motion to continue.
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Appendix I – Model Matrices

Here, the matrices used in Equation (27) are given. Angles Ω1−4 are depicted in Figure 3, and all other notation is as previously defined. The fore and

aft force coefficient matrices Af and Aa are (18× 19) and (18× 18) matrices, respectively. They are multiplied by the force vectors F f and F a, which are

(1× 19) and (1× 18) vectors, respectively. The locklink force Funlock is applied in the fore plane, which is why the fore plane force vector is one element

longer than the aft plane force vector. The fore and aft force coefficient matrices and force vectors are (where s ≡ sin, c ≡ cos):
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
















































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














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


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−L2sθ
f
2 L2cθ

f
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −L3sθ
f
3 L3cθ

f
3 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 L4sθ
f
4 −L4cθ

f
4 L4cθ

f
4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −L5sθ
f
5 L5cθ

f
5 0 0 0 0

1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 t
f
2,2 t

f
2,3 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 t
f
3,2 t

f
3,3 0 0 0 −1

0 0 0 0 t
f
2,2 t

f
2,3 0 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 t
f
3,2 t

f
3,3 0 0 0 0 0 0 0 0 0 0 −1 0 0
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
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
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
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, (30)

F
f
= −

[

F
y
2;3,4F

z
2;3,4F

y
3;2,4F

z
3;2,4F

y
3;1F

z
3;1F

y
4;2,3F

z
4;2,3F

y
4;5F

z
4;5FllF

y
5;4F

z
5;4F

y
5;1F

z
5;1F

y
1;3F

z
1;3F

y
1;5F

z
1;5

]T

, (31)
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a
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a
8 −L8cθ

a
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a
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a
9 0 0 0 0
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0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 ta3,2 ta3,3 0 0 0 −1

0 0 0 0 ta2,2 ta2,3 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 ta3,2 ta3,3 0 0 0 0 0 0 0 0 0 −1 0 0
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, (32)

F
a
= −

[

F
y
6;7,8F

z
6;7,8F

y
7;6,8F

z
7;6,8F

y
7;1F

z
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y
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z
8;6,7F

y
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z
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y
9;8F

z
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y
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z
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y
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z
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y
1;9F

z
1;9

]T

, (33)
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The non-force-coefficient terms are, in the fore plane:
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

, (34)

37 of 39

American Institute of Aeronautics and Astronautics



in the aft plane:
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

, (35)

and in the global (Y, Z)-plane:

BL1 = (m1

2
Gz +mwheel)L1 cosΘ1 + Fz

act(l1act cos(Θ1 +Ω5))

−Fy
act(l1act sin(Θ1 +Ω5)) +MD −M .

(36)
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The row vector C is given as
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T

. (37)

HereM is the retraction actuator moment parameter, Fact is the actuator force parameter (both initially

chosen to be zero to reflect the deployed MLG state) and MD is the drag-induced moment (set to zero in

this work); length l1act is the distance from the shock strut cg to the adjoining retraction actuator, and Ω5

is the angle that the length l1act makes with the shock strut centreline (in local co-ordinates).
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