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Bifurcation analysis is a powerful method for studying the steady-state nonlinear
dynamics of systems. Software tools exist for the numerical continuation of steady-
state solutions as parameters of the system are varied. These tools make it possible
to generate ‘maps of solutions’ in an efficient way that provide valuable insight into
the overall dynamic behaviour of a system and potentially to influence the design
process. While this approach has been employed in the military aircraft control
community to understand the effectiveness of controllers, the use of bifurcation
analysis in the wider aircraft industry is yet limited. This paper reports progress on
how bifurcation analysis can play a role as part of the design process for passenger
aircraft.

Keywords: nonlinear dynamics, bifurcation analysis, steady-state vibration

1. Introduction

Aeronautical vehicles are continually driven by market needs to provide highly
reliable aircraft with better performance and functionality at a reduced cost of
ownership. These characteristics form part of the emergent properties, capabilities
and behaviours of the vehicle. They arise through the interactions amongst mul-
tiple components (internal influences) that comprise the vehicle, and the vehicle’s
interactions with its operating environment (external influences). Engineers strive
to design aircraft that, when built, will reliably exhibit these desirable behaviours.
The use of optimisation techniques to reduce weight, loads, cost of manufacture
and cost of ownership, whilst increasing the availability and maintainability of the
product, have resulted in an unprecedented level of design integration. The resulting
solutions inevitably give rise to new interactions that are nonlinear.

Architects of aeronautical vehicles tend to use simplified models in the Con-
ceptual Design stage, which comprise of either surrogate models or linearised dif-
ferential equation models, as depicted in Fig. 1. Surrogate models are used for
determining the vehicle’s dimensions and do not contain any dynamics. Linearised
models of the vehicle are used to perform a large number of simulation studies
with different model parameters and operating scenarios. Although the mathemat-
ical models could be analytical, there is a tendency for the engineering analysts
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2 S. Sharma et al.

Figure 1. Industrial design phases.

to resort to numerical methods by using modelling environments such as Matlab-
SimulinkTM. The resulting time-series are analysed to characterise the behaviours,
with no guarantees that all possible behaviours will be discovered, due to the linear
model assumption.

The introduction of nonlinear analyses, and more specifically bifurcation anal-
ysis, can provide the detailed dynamics information an architect may need during
the Concept phase. A timely understanding of nonlinear behaviours allows vehicle
architects to specify architectures that lead to high quality products, by either di-
minishing the likelihood of undesired nonlinear behaviours from occurring, or by
utilising nonlinear behaviours to their advantage. This is important for the vehicle
designers and manufacturers — while only 8% of the total product budget is spent
by the end of the Concept stage, 80% of the cost of the product will have been
committed (Anderson 2014).

This paper considers the use of bifurcation analysis and numerical continuation
in this crucial phase of the design process. Bifurcation analysis has been used widely
within the military aircraft control community for many years, see for example the
reviews by Thompson & Macmillan (1998) and Paranjape et al. (2008). Here we
concentrate on work conducted on passenger aircraft, both in flight and during
ground manoeuvres. Section 2 gives a brief description of bifurcation analysis along
with its software implementation. Section 3 discusses with a number of examples
the insights that bifurcation analysis can provide. A more detailed industrial case
study is then considered in Section 4, and an outlook and conclusions are given is
Section 5.

2. Bifurcation analysis

Mathematical models that one encounters in the context of aerospace applications
often take the form of a system of first-order differential equations of the form

ẋ = f(x, λ). (2.1)

Here x ∈ Rn is the vector of n states that describe the system, λ ∈ Rm is a vector
of all system parameters, and the function f is assumed to be sufficiently smooth.
System (2.1) is also referred to as a vector field, and its dynamics are given by
the corresponding flow φt that maps an initial condition x0 to φt(x0, λ) after time
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Bifurcation Analysis 3

t. The basic issue is to find out how the observed dynamics depends on the system
parameters. Since the function f is nonlinear in general, system (2.1) cannot be
solved analytically. Hence, numerical methods need to be employed. One option
is to use simulation by numerical integration from some chosen initial condition.
However, it is often computationally expensive to find all behaviour of interest in
this way.

An alternative is offered by the technique of bifurcation analysis. Its underlying
idea is to follow or continue steady-states and periodic solutions of (2.1) in a cho-
sen continuation parameter. Recall that a steady state or equilibrium is a point x0
where f(x0, λ) = 0, while a periodic orbit is defined by an initial condition x0 that
returns back to itself after the period T , that is, φT (x0, λ) = x0. The stability of an
equilibrium is determined by the eigenvalues of its Jacobian matrix; similarly, the
stability of a periodic orbit is given by its Floquet multipliers (which are the eigen-
values of the return map along the periodic orbit). Hence, stability properties of
equilibria and periodic orbits can be monitored during a continuation. A change of
stability leads to a qualitative change of the dynamics — a bifurcation. Bifurcation
points can be detected during the continuation of an equilibrium or periodic solu-
tion. From such points of bifurcations other solutions may emerge or bifurcate, and
they can then also be followed (irrespective of whether they are stable or not) to
obtain a one-parameter bifurcation diagram that represents all solutions and their
stability as a function of the chosen continuation parameter. Such a bifurcation
diagram can be represented by projection on any of the n states in the vector x.
Detected bifurcation points can be continued in an additional parameter to yield
bifurcation curves in a parameter plane.

Bifurcation analysis is based on two important ingredients

(A) Bifurcation theory. Bifurcations can be identified and listed in a systematic
way, and they are represented by normal forms, meaning that the nearby
dynamics are known a priori.

(B) Numerical continuation. Continuation of equilibria and periodic orbits, as well
as the detection and continuation of their stability changes, can be performed
with available software packages; for example, with AUTO (Doedel 1981;
2007), MatCont (Dhooge et al. 2003) or CoCo (Dankowicz & Schilder 2013).

Bifurcation analysis is a powerful tool as it allows one to identify in a systematic
way where dynamics of interest exists in parameter space. Regions of stable solu-
tions can be determined by computing stability boundaries directly as functions
of the relevant system parameters. In particular, regions of multistability can be
identified in this way. In this paper we will encounter the following bifurcations
of equilibria and periodic orbits, which are typical in the sense that they must be
expected to occur when a single parameter is changed; see, for example, (Gucken-
heimer & Holmes 1986; Kuznetsov 2004; Strogatz 1994) for more details.

• At a saddle node bifurcation two equilibria come together and disappear; it
is characterized by a single eigenvalue 0.

• At a Hopf bifurcation an equilibrium loses stability and a periodic orbit
emerges; it is characterized by a pair of purely imaginary eigenvalues ±iω.
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4 S. Sharma et al.

• At a saddle-node of limit cycle bifurcation two periodic orbits come together
and disappear; it is characterized by a single Floquet multiplier 1.

• At a period-doubling bifurcation a periodic orbit loses its stability and a pe-
riodic orbit with twice the period emerges; it is characterized by a single
Floquet multiplier −1.

• At a torus bifurcation a periodic orbit loses stability and an invariant torus
emerges; it is characterized by a pair of imaginary Floquet multipliers e±i2πω.

The practical use of bifurcation theory requires the knowledge of the basic bi-
furcations that must be expected to occur, as well as familiarity with the governing
physical phenomena and their modelling in software. Moreover, the model under
consideration must satisfy certain minimal conditions for this approach to work.
In practical terms, the right-hand side (the function f) must depend smoothly on
the state x and the parameter λ; for example, data obtained from lookup tables to
define f must be interpolated smoothly.

(a) Software packages and the Dynamical Systems Toolbox

The continuation of equilibria, periodic orbits and their bifurcations is a well
established technique that has been implemented in a number of software pack-
ages; see, for example, (Krauskopf et al. 2007) as an entry point to the extensive
literature on the subject. Arguably the most extensively used package is AUTO
(Doedel 1981; 2007); it was developed by Doedel in the early 1980s and has been
extended over the years with additional capabilities. More recent developments are
MatCont (Dhooge et al. 2003), which is written in Matlab and also implements nor-
mal form calculations, and CoCo (Dankowicz & Schilder 2013), which facilitates the
formulation of multi-segment boundary value problems.

The efficiency of the implemented continuation routines depends on the size
of the system, that is, on the number n of states represented in the state vector
x, as well as on how costly it is to evaluate the right-hand side f . Bifurcation
analysis is ideally suited for reasonably small system, say, with up to 20 states,
where the function f is given in explicit functional form. It is more challenging but
also possible to employ bifurcation analysis to larger or industry developed models.

To facilitate the use of continuation methods in an industrial context, the devel-
opment of the Dynamical Systems Toolbox (DST) started in 2008 at the University
of Bristol. Building on previous work by Ryan Bedford at the University, the goal
was to incorporate the continuation software AUTO into the user-friendly environ-
ment of Matlab (Coetzee et al. 2010) to allow for the convenient bifurcation analysis
of industrial Simulink and SimMechanics models. In this way, industrially validated
models can be investigated directly without the need to convert (and often simplify)
models to a format that can be used by stand-alone AUTO. In addition, using such
validated models provides confidence in the results — an important part in any
certification process.

The DST integrates the Fortran AUTO code into MATLAB via mex-functions,
ensuring usability, computational speed, toolbox support etc (Coetzee et al. 2010).
In effect, the speed of Fortran is combined with the user-friendly interface of MAT-
LAB in such a way that AUTO has direct access to the states of Simulink or
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Figure 2. Dynamical Systems Toolbox architecture.

SimMechanics models. Similar output objects to that of AUTO output files are
generated, and any number of additional outputs can be obtained from Simulink
output ports, which are written alongside the continuation parameters and states.
Figure 2 depicts the architecture of the DST under Matlab.

A recent project managed to link LMS Virtual.Lab Motion to the DST for the
analysis of a nose landing gear, while current work is focussing on the generation of
C-code from a Simulink model in a format that can be linked in to the DST. This
will avoid the use of the relatively slow mexCallMatlab command, when compared
to pure Fortran or C-code. A C-code function of the model also allows one to split
the calculations across different processors, supporting a current feature of AUTO,
and would increase the calculation speed of periodic orbit continuation considerably.

More widespread use of the Dynamical Systems Toolbox is promoted by pro-
viding documentation and reference material that is easy to use, while concrete
examples act as additional training material for the user. We have combined most
of the user manual of AUTO into the toolbox, which is integrated into the Matlab
help environment. The DST therefore feels like any other toolbox that has been
developed for Matlab; it can be downloaded from (Coetzee et al. 2014).

3. Applications of bifurcation analysis

We now discuss the usefulness of bifurcation analysis in terms of behaviour char-
acterisation, determining sudden changes in behaviour and supporting conceptual
design. To this end, we consider some specific examples of models arising from
industrial practice.

(a) Behaviour Characterisation

Nonlinear dynamics result in various types of steady-state responses. It has been
shown by considering nonlinear normal modes that — in stark contrast to a linear
system — a two degree-of-freedom nonlinear oscillator can exhibit more than two
modes of vibration; see for example Kerschen et al. (2006) or Neild et al. (2015).
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Figure 3. One-parameter bifurcation diagram in the velocity V of the coupled NLG-fuse-
lage model from Terkovics et al. (2014), shown in terms of torsional angle (a) and lateral
deflection angle (b), using non-representative parameter values selected for illustrative
purposes. See Table 1 for information on the different branches and bifurcations; also
shown are branches of stable tori (light green).

Bifurcation analysis is the tool of choice for identifying in a convenient way
the types of behaviour exhibited by a system as a parameter varies. The ability
of numerical continuation in following unstable branches, as well as stable ones, is
particularly useful for identifying regions of stable solution and their boundaries.
This also allows one to find regions of multiple stable solutions, without the need
to run simulations for many initial conditions or for different applied perturbations
to trigger a jump to another solution branch. We now demonstrate this capability
with the example of landing gear shimmy oscillations.

Its known that pilots report cockpit vibrations under certain conditions, which
could be attributed to several factors, one of which is nose-gear vibration, better
known as shimmy. These vibrations are often caused by a combination of factors,
which include tyre flat-spots, pressure differences between tyres, faulty shimmy
dampers and excessive backlash in the gear assembly. The root cause is not always
easy to determine and, therefore, a list of maintenance actions are applied by the
aircraft operator. Such events have been linked to gear failure; see, for example, the
accident report by CIAIAC (2003).

We consider here shimmy dynamics of landing gear during forward motion.
Shimmy has been studied since the 1920s with the key role of flexibility, from either
the pneumatic tyres (Broulhiet 1925) or structural flexibility (Sensaud de Lavaud
1927), in the onset of automobile shimmy identified. In aircraft, initially linear
techniques were used to identify the onset of shimmy in nose landing gear (Smiley
1957). Somieski (1997) introduced nonlinearity and identified a Hopf bifurcation
to stable limit cycle shimmy oscillations. The source of nonlinearities are primarily
the tyre dynamics, which are challenging to model and often add additional states
and even delays to the system (Stépán 1999), and geometric coupling. Main landing
gear, which are less prone to shimmy, have also been studied and Van der Valk &
Pacejka (1993) presented a case study into a main gear failure.

The typical low-order lumped parameter model of a landing gear
consists of two degrees-of-freedom: the torsional rotation ψ and the lateral
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Bifurcation Analysis 7

Table 1. Symbols used in bifurcation diagrams.

Stable equilibrium Hopf bifurcation

Unstable equilibrium Torus bifurcation

Stable periodic orbit Period doubling bifurcation

Unstable periodic orbit

bending angle δ. When the fuselage is modelled as a vertical load and an additional
lateral degree-of-freedom, y, and the tyre dynamics is described by the stretched
string approach (Takács et al. 2009), the model takes the form of a first-order
differential equation of the form (2.1) with n = 7 states. Figure 3 shows a one-
parameter bifurcation diagram of this model in forward velocity V , displayed in
terms of torsional rotation ψ and lateral bending δ; see Terkovics et al. (2014) for
full details. In this and further bifurcation diagrams in this paper the solution types
and bifurcations are represented as shown in Table 1.

Figure 3 shows that at low and at high speed the straight forward rolling equi-
librium solution, for which there are no torsional or lateral deflections, is stable. As
the velocity V increases from a low level or reduces from a high level, this desirable
solution becomes unstable at Hopf bifurcations (at V ≈ 4.5m/s and V ≈ 180.0m/s
respectively) that lead to stable periodic oscillations of the landing gear. From the
Hopf bifurcation point at V ≈ 4.5m/s a branch of single-frequency periodic orbits
emerges that feature a significant torsional component with little lateral motion
— referred to as torsional-shimmy (Howcroft et al. 2013). This branch ends on
the unstable no-shimmy solution at V ≈ 75.6m/s. The Hopf bifurcation point at
V ≈ 180.0m/s that is encountered as V is reduced from a high level also leads to
a branch of periodic orbits that is now dominated by lateral motion — we speak
of lateral-shimmy. This branch ends on the unstable no-shimmy solution at V ≈

6.5m/s.
On both of these branches we find points of torus bifurcations where the

respective single-frequency periodic orbit loses its stability. From these torus bi-
furcation points two branches of stable multiple-frequency periodic solutions have
been identified in which both lateral and torsional motion occurs; these were cal-
culated via successive time integrations, since tori cannot readily be computed by
continuation. In addition, there exists an isola, part of which is visible in the pan-
els of Fig. 3, which has a stable region spanning approximately 31.2m/s < V <

107.5m/s between a saddle-node and a torus bifurcation. This stable periodic so-
lution is characterised by significant fuselage lateral motion in addition to landing
gear deflections.

Overall, a one-parameter bifurcation diagram such as Fig. 3 is very useful for
identifying both the possible types of observed behaviour as well as the transitions
between them. In this study the parameters were selected for illustrative purposes
and do not reflect real behaviour. Rather the goal was to investigate qualitative
features of nose landing gear shimmy to aid the design process, which ultimately
must ensure that the onset of shimmy is well outside the operational envelope.
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8 S. Sharma et al.

(b) Sudden changes in behaviour

There are three main ways in which a steady-state response of a system can
change. One is a perturbation in the external loading, for example a gust loading
during steady flight. A second is a change in one of the operating parameters such
as the forward aircraft velocity during a ground manoeuvre. The third is a change
in a parameter of the structure; this may be slow, such as increasing freeplay of
a control surface due to wear, or fast such as stiffness changes in a tyre due to
temperature increase on spin-up during landing.

Understanding how a system will respond to loading or parameter changes is
often an important part of the design process. It requires knowledge of the steady-
state solutions, of the likelihood of being perturbed onto a different solution branch,
and of the transient response. One-parameter bifurcation diagrams provide some
basic important information in this regard, and they can be used to identify pa-
rameter regions of interest that can then be studied by means of time-integration
techniques to find the transient response.

To illustrate these ideas, we consider the flight dynamics of a civil aircraft that
encounters ‘upset conditions’. Recent experience has shown that a systematic eval-
uation of the nonlinear dynamics can be crucial to appreciating the causes and
consequences of upset. The phenomenon of airliner upset and loss-of-control (LOC)
is the major cause of fatalities in commercial aviation (Anon. 2014). LOC may
be defined as a state outside the normal operating flight envelope that cannot be
changed in a predictable manner by pilot inputs, is strongly nonlinear (e.g. due to
aerodynamic load characteristics at high angles of incidence, or inertial coupling),
and is likely to result in high angular displacements and rates (Wilborn & Foster,
2004). LOC is typically triggered by faults, external events, and/or inappropriate
pilot inputs; it has occurred on both older aircraft without envelope-protecting
control laws as well as on newer fly-by-wire types.

Mathematical models developed by airliner manufacturers normally only cover
a limited angle-of-incidence range, rendering them incapable of representing be-
haviour in upset/LOC. However, as part of NASA’s Aviation Safety Program, a
wide envelope mathematical model of a sub-scale representative twin-underwing
engine airliner was created by using both wind tunnel models and the remotely-
piloted ‘AirSTAR’ vehicle (Jordan et al. 2006; Foster et al. 2005). This simulation
tool of the sub-scale aircraft is known the Generic Transport Model (GTM), and it
has been used extensively in upset/LOC studies. The recent application of bifurca-
tion analysis to the open-loop GTM model (Gill et al. 2013; Pauck & Engelbrecht
2012) has provided an enhanced understanding of its upset/LOC behaviour: the re-
sulting bifurcation diagrams are essentially a ‘map’ of the vehicle’s various nonlinear
responses.

Figure 4 shows an example of a one-parameter bifurcation diagram of the GTM,
where the continuation parameter is elevator angle δe, with all other parameters
fixed, and the solution is represented by the bank angle state φ. Note that decreasing
elevator corresponds to the pilot pulling back on the stick, thus increasing α. The
bifurcation diagram shows steady-state and periodic solutions and their stability,
allowing one to distinguish the ranges of δe that correspond to different observed
behaviour. In region A for δe > −1◦ one finds stable trimmed flight, where the
bank angle remains zero throughout the elevator range in the absence of lateral-
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Figure 4. Open loop steady-state flight behaviour for the GTM in terms of bank angle, φ.
Dynamic behaviour includes stable trimmed symmetric flight A, low frequency oscillations
B, steady steep spiral and spin C and E, respectively, and period-one and -three oscillatory
steep spins F and G, respectively. See Table 1 for information on the different

branches and bifurcations.

directional control surface inputs. Below this value of elevator δe, the solutions at
φ ≈ 0 are unstable (in the ‘slow spiral’ mode), all the way to δe > −30◦, and one
finds additional solution branches that correspond to different dynamics as listed in
the caption of Fig. 4. Of those, most prominent are the two steady-state branches
marked C+ and C− designating positive and negative bank angle solutions.

A pilot whose aircraft has encountered a spin is likely to command a wings-level
condition in order to recover normal flight. Figure 4 suggests that it is possible
to recover the aircraft from any of these undesirable situations by pushing the
stick forward so that elevator is in the normal flight operating region A. Figure 5
illustrates this recovery action, with a time-stepping simulation, in the plane of
sideslip angle β (which is zero or small in conventional flight) and angle of attack
α, and the resulting aircraft trajectory. The model is initiated in the period-one
orbit that constitutes oscillatory spin F, with δe = −24◦; here, α oscillates between
33◦ and 38◦ and β between 2◦ and 10◦. After 10s the elevator is ramped quickly
to δe = 2.58◦ in the normal trimmed flight regime A. The aircraft transitions very
rapidly to this regime (α ≈ 3◦, β ≈ 0◦), although it then undergoes a low-frequency
oscillation as it settles on the desired solution. The loss of altitude arising from the
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Figure 5. Recovery from steep spin by reducing elevator deflection shown in terms of
angle of attack α against sideslip angle β (a), and the aircraft’s trajectory (b). Elevator
deflection is adjusted from δe = −24◦ to 2.58◦ to initiate recovery. Due to the scale used,
the steep spin appears as a vertical line in panel (b); it has a diameter of about 20m.

steep oscillatory spin is evident in the trajectory plot; this descent is then arrested
by the recovery action. Hence, the recovery action suggested by the one-parameter
bifurcation diagram has been confirmed in this case: the transition to recovery is
indeed possible and does not endanger the aircraft further.

(c) Supporting Conceptual Design

Bifurcation analysis can be used to give insight into the dominant parameters
that govern the response. In this way, it can give weight to both the justification of
modelling assumptions (such as the conditions under which fuselage motion must be
included in a landing gear shimmy analysis (Terkovics et al. 2014)) and lead to the
identification of operating regions or parameters that give a desirable response. This
process often involves continuing bifurcation points in two parameters to obtain
two-parameter bifurcation diagrams.

As an illustration we consider the locking mechanism of a main landing gear.
The gear consists of a main shock strut which is supported by one (or two) folding
sidestays; see Fig. 6. The sidestay is locked in the deployed state by lock-links which
hit stops when the over-centre angle θ exceeds a certain positive value. While there
is much literature on the dynamics of landing gear as a structure during landing
(Kruger et al. 1997), there is little research on the gear as a mechanism during
deployment and this is limited to the gear kinematics (Conway 1958; Currey 1988).
However, the quasi-static motion of the mechanism can be formulated as a differ-
ential algebraic equation and then transformed into ordinary differential equations
though differentiation of the constraints (Udwadia & Kalaba 2007). Bifurcation
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Figure 6. Photo and schematic of a landing gear mechanism; red dots are pin joints.

analysis of these equations allows the investigation of how the lock-link force varies
with over-centre angle θ. A fold in this curve leads to a jump in over-centre angle
as it ‘snaps’ through 0◦ and hits the stops, hence locking the mechanism (Knowles
et al. 2011) — providing an example of where a sudden jump is advantageous. To
understand the robustness of the mechanism, this fold point can then be continued
in other parameters, such as attachment point deflections due to wing flexure and
compliance in the side stays (Knowles et al. 2014). Such an investigation is able to
provide valuable design requirements during the conceptual stage when the design
has not been frozen.

4. Industrial case study: aircraft ground dynamics

Nonlinear behaviour associated with landing gears can be observed in wheels during
braking, as stiction in the shock absorbers and, most importantly, in the tyres
during ground manoeuvres. Experience has shown that the use of different tyres
can significantly change the handling qualities of an aircraft on the ground, which
is very similar to what is seen on Formula One cars. Comprehensive nonlinear
simulations are therefore used to ensure that an aircraft with good handling qualities
is delivered to the final customer. This does however come at a high computational
cost. Complementary methods from bifurcation theory overcome this problem due
to the efficiency of the method, which provides an overall map of the possible
dynamics. Points of specific interest can be identified for further investigation by
simulations.

The starting point of our investigation of ground handling was an MSC.ADAMS
model that was developed by the Landing Gear Group of Airbus for ground handling
studies (Coetzee 2006). MSC.ADAMS is a software programme that can analyse
kinematic, quasi-static and dynamic mechanical systems. The first modelling step
is to describe the rigid parts and the joints connecting the parts (Blundell & Harty
2004), where a part is described by its mass, inertia and orientation. The nose
gear is constrained by a cylindrical joint, driven by an angular motion, and the
main gears are constrained by translational joints. The next step is the addition
of internal force elements, known as line of sight forces, to represent the shock
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12 S. Sharma et al.

absorbers and tyre forces. The tyres are modelled with impact functions that switch
on as soon as the distance between the wheel centre and the tyre becomes less than
the wheel radius, where the lateral force on a tyre is dependent on the slip angle
and the vertical force on the tyre. External forces such as thrust and aerodynamic
forces, known as action-only forces, are then added. The value of such a software
tool for a company, lies in the fact that the equations of motion are constructed
automatically, allowing the engineer to focus on the engineering aspects of the
system, and not the derivation of complex equations. Since MSC.ADAMS cannot
be coupled to the Dynamical Systems Toolbox, a process was developed to translate
the MSC.ADAMS model to SimMechanics, which can be coupled to the DST.
While there are important differences between the two modelling packages, the
development of the SimMechanics model followed that of the ADAMS model.

After the successful coupling of the industrial ground handling model to the
DST, the first step in the analysis is to find an equilibrium condition for the aircraft.
In our case a velocity controller is used to accelerate the aircraft to a desired steady-
state velocity over a few seconds. The thrust is then held constant until the steady-
state response is reached. The corresponding values are then used as the starting
conditions for the continuation analysis, which follows the equilibria as the steering
angle δ is varied while detecting bifurcations. In this way, the dynamics of the
aircraft can be investigated when it attempts a turn at a given steering angle.

Figure 7 shows a one-parameter bifurcation diagram in δ and corresponding
aircraft ground tracks that illustrate the overall complexity of possible aircraft
ground dynamics; this diagram is far from the normal operating envelope of the
aircraft, but does provide interesting insights into the possible observed behaviours
and transitions between them due to a high thrust setting. In the one-parameter
bifurcation diagram there are four separate stable parts of equilibrium branches, as
well as a branch of oscillations that is bounded by two points of Hopf bifurcation
(indicated by circles in the figure).

The stable section (a) of the equilibrium branch represents circular trajectories
of the aircraft, where the radius of the circle decreases as the steering angle is
increased. The saddle-node bifurcation at δ ≈ 28 degrees marks the loss of stability
of the turn. In fact, as is indicated by (b), for a steering angle δ past this point
the aircraft loses control without warning. Analysis of the state variables reveals
that the tyres of the inner main gear saturate and the load is shifted to the outer
main gear. The tyres of the outer main gear then saturate with an accompanying
load redistribution to the nose and inner gears. The trajectory of the steering angle
versus the forward velocity, past the saddle-node bifurcation point, also determines
the final behaviour. For sufficiently large forward velocity the aircraft may settle
into a forward equilibrium (after a momentary loss of control), but otherwise it may
actually end up performing more complex motion, as depicted in Fig. 7(b).

The stable branch (c) also represents circular trajectories of the aircraft but,
compared to solutions on branch (a), the radius is much smaller. In other words, for
the same steering angle and thrust settings there are two different simultaneously
stable turns with a hysteresis loop between them (as indicated by the vertical
arrows). When the steering angle is decreased past the saddle-node bifurcation
point at δ ≈ 15 degrees the aircraft performs an outward spiral, as is shown by (d),
until an equilibrium at a larger circular trajectory is found. In fact, the inner or
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Figure 7. Single Aisle bifurcation diagram and corresponding ground tracks (a)–(i).
Table 1 lists the different branches and bifurcations.

Article submitted to Royal Society



14 S. Sharma et al.

the nose gear tyres saturate, and then the particular tyres stay close to saturation,
without any significant load shift to any of the other gears.

In the regions between the two Hopf bifurcation points the equilibrium solution
is unstable and stable periodic solutions and even chaotic motion can be found.
Increasing the steering angle δ past the left-most Hopf bifurcation or decreasing it
past the right-most Hopf bifurcation results in the onset of (initially small) stable
oscillations. The aircraft will start shaking, giving the pilot a warning that the
steering angle or thrust needs to be altered to move out of this region; see Fig. 7(e).
When δ is brought into the region around 30 degrees, then the periodic orbit is
actually unstable and more complicated aircraft motion is found, which manifests
itself as a complicated ground track; see Fig. 7(b).

The stable branch of equilibria in the lower right of the bifurcation diagram
represents circular trajectories of the aircraft with a very small radius. The aircraft
actually becomes stationary at very high steering angles, and (f) is an example. In
this stopped position a force impulse (e.g., a thrust impulse or wind gust) causes the
nose gear to start dragging across the ground if no braking is applied (the aircraft
will in fact stay stationary if the brakes are applied). The aircraft accelerates in a
straight line, as is shown by (g), until a velocity on the top branch (h) is reached.
This stable branch (h) of equilibria is somewhat counter-intuitive in the sense that
the radius of the circular trajectory decreases as the steering angle is decreased. Note
that the radius of (g) is almost the same as the radius of (a). When the stability
of this branch is lost by decreasing the steering angle δ to below the saddle-node
bifurcation at δ ≈ 50 degrees the aircraft performs an inward spiral, as is shown by
(i), until an equilibrium corresponding to a smaller turning circle is reached. Here
the inner gear tyres saturate, which is accompanied by a pitch down motion. Then
the nose gear tyres saturate, with a load shift to the outer gear.

A complete map can be constructed by conducting similar continuation runs
at different thrust levels, as well as conducting two-parameter continuations of
the saddle-node and Hopf bifurcations. This map can then be used to identify
critical areas for further investigation, similar to that done at points (b) and (d).
The reader can obtain further information on this procedure in (Coetzee 2006).
Additional studies have been conducted of a very large aircraft with a statically
indeterminate gear (Coetzee 2011), and of safe ground operating regions with the
accompanying modes that lead to a loss of control (Rankin et al. 2010).

5. Outlook and Conclusions

While use of bifurcation analysis is quite common in the analysis of the closed-loop
response of military aircraft, it is less widespread in design and development of
commercial aircraft. However, as was reported here, there have been some recent
developments in this area.

Automation of flying vehicles is becoming more common, in particular in UAVs.
The handling of highly flexible UAVs, such as X-HALE (Cesnik et al. 2012), will
require sophisticated control algorithms; the scaling-up of platforms such as quad-
copters will also result in highly nonlinear behaviour due to rotor dynamics. Bifur-
cation analysis is potentially of considerable benefit for the evaluation of these new
aerospace applications, which are currently still quite poorly understood from the
dynamical point of view. In particular, the insights gained by this approach will
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help enable the exploitation of nonlinearity, rather than avoid it as is traditionally
the case. The same argument can also be made for more traditional vehicles such as
future commercial airliners. Jones (2014) reported the use of bifurcation analysis in
a review of control challenges for future operations of commercial transport aircraft.
Applications include using bifurcation diagrams of the form shown in Fig. 4 but
with the addition of a fly-by-wire controller (Engelbrecht & Pauck 2012, 2013) to
understand the requirements of automatic Return to Envelope Function strategies
for aircraft recovery from upset. In addition, Kwatny et al. (2013) used bifurcation
analysis to conduct a rigorous assessment into the ability to control and to regulate
the GTM in the vicinity of bifurcations, leading to the definition of safe sets in
which the aircraft can be positively controlled.

The testing of fixed-gain and gain-scheduled controllers applied to the GTM has
been conducted in (Gill et al. 2015). To understand the sensitivity of the controllers,
gain parameters were defined that scale the optimal gain values. It was argued that
continuing in these gain parameters gives an understanding of the robustness of
the controller and also for the identification of the dominant control parameters.
This might be thought of as a move towards understanding the effect of parameter
uncertainty — a major challenge for the industry. Recent developments in this area
relating to bifurcation analysis include the development of a continuation technique
for the development of trajectories of stochastic differential equations (Kuehn 2012)
and the use of Branch and Bound methods (Smith et al. 2014). The latter yields
outer bounding sets of both the equilibrium and local bifurcation manifolds, and
it was demonstrated with a study of the dynamics of a UAV with uncertain CG
location.

Industrial models are typically highly complex and may well contain
hundreds to thousands of states and may include non-smooth character-
istics captured via look-up tables or control saturations. This is in contrast
to the models that are generally studied with bifurcation analysis, which might con-
tain tens of, say, up to a hundred states. To address this mismatch in model size,
one of two approaches can be followed: either the large model is reduced without
significant loss in terms of its faithfulness of description, or one needs to employ
bifurcation analysis directly to the large-scale dynamical system. The latter ap-
proach is enabled by tools such as LOCA (Salinger et al. 2002), but it has its own
challenges and the learning-curve is considerable. In addition, if one consid-
ers validation and certification, then a further challenge is to guarantee
that all the possible nonlinear behaviours within the relevant parameter
space are captured. A significant step in this direction is reported by
Kolesnikov & Goman (2012), who considered an industrial-scale model
with non-smooth aerodynamics. With a matrix of output states, they
solved the inverse dynamics to find solutions on all possible equilibria
branches, which were then studied in detail by continuation.

From an industrial perspective the challenges in introducing nonlinear dynam-
ics into the engineers’ normal toolsets require demonstrating that these techniques
provide added-value over existing methods. Moreover, what is needed is a level of
training and provision of user-friendly bifurcation software that seamlessly meshes
to commercial software packages such as Siemens-VLM or Matlab-Simulink. Train-
ing aspects must cover both the formulation of the system so that it is suitable for
bifurcation analyses, as well as the interpretation of the results — indeed, industri-
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ally relevant case studies are meant to assist in this. A level of intuition similar to
that concerning, say, Bode diagrams, needs to be developed by the practitioner for
the interpretation of bifurcation diagrams. Whilst many software tools are avail-
able, they were developed primarily for research purposes. The development of the
Dynamical Systems Toolbox is a first step towards the integration of bifurcation
software into industrial tools. It is already helping companies such as Airbus solve
industrially relevant problems.
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