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Abstrmt-A numerical continuation For tracing the double 
bounded homotopy (DBH) for obtaining DC solutions of nonlin- 
ear circuits is proposed. The double bounded homotopy is used 
to find multiple DC solutions with the advantage of having a 
stop criterion which is based on the property of having a double 
bounded trajectory. The key aspects of the implementation of 
the numerical continuation are presented in this paper. Besides, 
in order to trace and apply the stop criterion some blocks of the 
numerical Continuation are modified and explained. 

I .  INTRODUCTION 

Homotopy methods, [ 1 J, [2], [3], have an important role in 
the analysis of circuits exhibiting multiple operating points. 
Although, homotopy methods are able to find more than one 
solution to the equilibrium equation of the circuit, they still 
show several problems. Among them, it is worthy to mention 
the lack of a reliable stop criterion. 

It is well-known that there are two types of paths of 
solutions, open and closed paths, the main problem is when 
to stop searching for  more solutions. For closed paths. this 
can be solved by testing whether a new solution is not indeed 
a previously found solution. For open paths, this is a serious 
drawback, because there is no reasonable and reliable stop 
criterion to decide when to stop seeking for more solutions. 

The Double Bounded Homotopy, [4], [SI, has been proposed 
as an alternative to circumvent the problem of the stop 
criterion. The DBH formulation can be recast as follows: 

H ( f ( s ) ,  A) = CQ + eQ ln(Df2(z) + 1) (1) 

where f(z) is the original set of nonlinear algebraic equations, 
X is the homotopy parameter, C y D are positive constants of 
the DBH, and Q is given by: 

Q = ( A  - a)(A - b )  

where a and b are values of the double solution lines. 
This homotopy possesses symmetrical branches that are 

bounded by the solution lines. The symmetry and bounding 
properties [6]  of the trajectory of the DBH are depicted in 
Figure 1 .  These properties are useful in order to implement a 
reliable stop criterion. 

The numerical continuation methods (also called path fol- 
Lowing and path tracking) are numerical tools used to trace the 
homotopy trajectories. They are a combination of a variety of 
numerical methods focussed on drawing a path in order to ac- 
complish specific needs of a particular homotopy formulation. 

Due to the specific features of the DBH, it becomes nec- 
essary to devise a well-suited numerical continuation method 
in order to trace the homotopy trajectory having n robust stop 
criterion. The next section is devoted to explain the traditional 
numerical continuation methods. 
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Fig. 1. Symmetry and bounding of DBH 

11. NUMERICAL CONTINUATION METHODS 

Some homotopies have global convergence when applied to 
solve the equilibrium equation of certain type of circuits. How- 
ever, without an appropriated numerical continuation method 
is not possible to ensure that all of the solutions may be found. 
There are some reasons for this problem, one of them is related 
to the predictor-corrector steps, if the coefficients of these 
steps are not properly selected, then the numerical continuation 
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fails and Ioses track on the homotopy trajectory. The other of the homotopy trajectory begins at X = 0 and ends' at X = 1. 
reason is that once the numerical continuation crosses the When the tracing is close to X = 1,. the f ind Zem Srrategy 
solution line, the algorithm fails to determine the solution takes over. The simplest example of strategy is to use [zf, A,] 
because it diverges. It clearly results that it is important to (the last iteration) as the initial point to solve the equilibrium 
study the characteristics of the numerical continuation in order equation f(s) with a Newton-like method. 
to use them appropriately. The numerical continuation scheme Because the Newton method possesses local convergence, 
consists of a predictor, a corrector, a step control, a find zero ,it still could fail to find the solution. In [9] some techniques 
strategy and a stop criterion. 

J )  Predictor: The predictor point for fd, X j )  is given by: 

( r C J + ' ,  xJ+ l )  = (ZJ, A,) + h * t 
where ti is an appropriate step length and t is a normalised 
tangent vector to the homotopy trajectory (see Figure 2). This 
predictor can be considered as a step of the Euler method 
(or any other integration method) for solving the diflerential 
equation that describes the homotopy trajectory (continuation 
path). Predictor steps are usually based on tangent predictions 
but there are several alternatives like the secant predictor 171, 
interpolation predictor [8], Taylor polynomial predictor [8]. 

X 

Fig. 2. Predictor-comcior steps 

2 )  Corrector: When the predictor step finishes, it is nec- 
essary to rectify the homotopy trajectory by using a corrector 
step. This step solves the homotopy formulaiion by starting 
from (Zj+r.X,+l) (see Figure 2) , A common way io solve 
this equation is by using the Newton-Gauss method [SI, which 
can be solved for systems of the type RN+l 3 RN. 

3) Step Conrml: The Predictor-Corrector scheme can be 
optimized for tracing acceleration by using a step length 
control. A small constant step length can trace the curve 
successfully but not efficiently, because this process involves 
too many steps along flat branches. Therefore, it is necessary 
to adapt the step length to the convergence behaviour at each 
predictor-correclor step. The basic criterion is to control the 
step by observing the convergence quality of the corrector 
step. A change on the number of iterations in the corrector 
step produces n compensation factor 1, which affects the step 
kength as follows: 

h j + l  = Chj 

4)  Find Zem Stmtegy: Without an efticient finding zero 
strategy, the numerical continuation is incomplete and the 
hotnotopy could fail to converge to some soiutions. The tracing 

are reported that implement the find Zem Strategy accurately 
and reliably. The basic idea is to use two points (X < 1 and 
X 2 1) in the vicinity of X = 1, and interpolate the point at 
A = 1 in order to obtain a point close to the real solution and 
use a Newton-like method to find the solution to the original 
system f(z). 

5 )  Srop criterion: In fact, there are not stop criteria in the 
traditional numerical continuation methods when applied to 
homotopy trajectory tracing. The most common way to stop 
tracing the trajectory i s  to set a maximum allowed number 
( I T M A X )  of predictor-corrector steps without finding any 
solution. This technique is inefficient because it usually fails 
to find some solutions on the homotopy trajectory. 

111. MODIFIED NUMERICAL CONTINUATION 

This section explains the modifications accomplished on 
the scheme above with the idea of  providing a reliable stop 
criterion to the numerical continuation. Modifications are 
introduced on both the find zero strategy and the stop criterion. 

1) Find zero strategy. The DBH has the characteristic 
of never crossing X = 1 [4], hence the findig zero 
strategy should start after the trajectory bounces on the 
bounding line. An efficient way to achieve this process 
is by monitoring the change of sign of AA produced in 
the predictor step. This can be done by inultiplying AX 
of two consecutive predictor steps. 

This procedure is depicted in Figure 3, where ihe sign 
ol' AA changes after bouncing from point A to point B.  
Besides, in  order to apply a quadratic interpolation the 
algorithm needs three points (A ,  B j  C). 

2) Stop criterion. The stop criterion for this homotopy is 
depicted in  Figure 4. The homotopy trajectory starts at  
the symmetry axis of rhe homotopy trajectory at the 
point S. Then it traces the half of the trayectory (the 
symmetrical branch) and stops when it returns to the 
symmetry axis at the point E. 

The modified numerical continuation is depicted in Figure 
5 where the dashed blocks are the specific characteristics 
added to the procedure. The scheme is explained a s  follows: It 
starts when the predictor calculates the tangent at (zj! Xj) and 
using n step length calculates the point (Zj+l! &+I) over the 
tangent. Then, the corrector uses the solution of the predictor 
i n  order to obtain a new point on the homotopy trajectory, 
given by ( d + ' , X j + l ) .  At this point, the step control is 

' I n  lkct if it is wanted to find muhiplc solutions the numericnl continuation 
should follow beyond X = 1. 
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Fig. 4. Stop criterion 
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applied in order to accelerate the tracing. Next, the find zero 
straregy is applied which is triggered at each solution when the 
trajectory bounces on the solution line. Finally, the numerical 
continuation stops tracing when the trajectory returns to the 
symmetry axis. 

IV. EXAMPLES 

In order to illustrate’the use of the DSH with the modifica- 
tions, a first example is used JO solve the system of equations 
given as: 

f l ( 5 1 1 2 2 )  = (.Z - 1 ) ( m  - 4 ) ( q  - 6 )  f s 1  = o  
f 2 ( ~ 1 ,  ZZ) = (XI - 3)(21 - G)(zI - 9) + 2 2  = 0 

The graphic solution of the sysiem is shown in  Figure 6. 

Fig. 5 .  Block diagram of the modified numerical continuation 

The DBH formulation yields: 

Hl(fi.: A) = lOOQ + e@ In(O.OOlf~ -I- 1) = 0 
H * ( f 2 ,  A) = lO0Q -k eQ ln(0.001f~ + 1) = 0 

where &.= X(X - 1); i.e. a = 0 and b = 1. 
The homotopy trajectories are depicted in Figure 7. The 

starting points lie on the plane defined by X = 0.5, while, the 
solutions are obtained when X reaches the value of 1 .  

A second example is given by the latch circuit of Figure 
8, which contains two NMOS transistors ( M I  and M z ) ,  two 
linear resistors (RI  and Rz) and a voltage source (E) .  The 
model of the transistors is the unified MOS model reported 
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Fig. 6. System of five solutions 

Fig. 9. 
Lrajec tory 

Graphic of the equilibrium equation of the circuit and homotopy 

0 Startingpoint X = 0.5 
. * End oftrc4iectot-y X = 0.5 

Fig. 7. Hoinotopy trajectory 

in [IO] which is a modified version of the well-known BSIM 
model. 

Figure 9 shows the graph of the equilibrium equation and 
the homotopy trajectory of the circuit in the space (q; 712, I E ) .  
The homotopy finds all three solutions of the circuit. 

A last example is the well-known benchmark circuit re- 
ported in [ 1 I]. This circuit has 4 bipolar transistors modeled 
by the half-sided Ebers-Moll model. 

The formulation is the same of [11] which is based on 
the junction voltages vlr v2, v3, v4. Figure 10 depicts the 
homotopy trajectory and the six found solutions versus V I .  

Fig. 8. Example circuit 

v. CONCLUSIONS 

A numerical continuation for tracing a DBH hns been 
presented. The numerical continuation scheme exhibits an 
improved performance regarding the stop criterion. Several 
examples illustrating the aplication of the scheme 10 nonlinear 
resistive circuits were also presenred. 

ACKNOWLEDGEMENTS 

Hector Vazquez Leal i; holder of a scholarship from CONA- 
CyT MCxico under contract 143907. This work has been 
partially supported by a CONACyT Mexico research project 
under grant 42588-Y. 

REFERENCES 
R. C. Melville and L. Tnjkovif. “Artificial parameter homotopy methods 
for the de operating point problem,” lEEE ~rnnrocrions on cornptircr- 
oirled design ofinregmed circirirs and systems, vol. 12. no. 6. pp. $61- 
877, June 1997. 

I I25 



YII 
-0.2 1 

Fig. 10. Solution of the Chua's circuit 

[21 Denise M. Wolf and Seth R. Sanders, "Multiparameter homotopy 
methods for finding dc operating points of nonlinear circuits," IEEE 
frarisncrions on circuits ond sysreiiwl: fundaiirentcil rheuiy ciiid nplicn- 
lions. vol. 43. no. 10, pp. 824-837, October 1996. 

131 Lieven Vandenberghe and Joos Vaitdewalle. "Variable dimension algo- 
rithms for solviiig resistive circuits:' liiiernnrionol Joiinml of Circtiir 
T h o q  and Applicclrions, vol. 18. no. 5, pp, 443474, September 1990. 

141 Hector V'Szquez-teal. Luis Hem6ndez-Martinez. and Anuro Snnniento- 
Reyes. "Double-bounded homotopy for analysing nonlinear resistive 
circuits:' fiuernariorinl Synpusirrrir on Circtrirr and Sys~eins. hqay 2005 

151 Hector VSzquez-Leal, Luis Hemfinder-Martinez, and Anuro Sannienlo- 
Reyes, "Numerical path following for double boundcd homotopy scheme 
for analysing nonlinear resistive circuits," IBERCHZP. 2003. 

[6] Hector Vhzquez-Leal, Luis HemSndez Martinez, and Anuro Sanniento 
Reyes, "Double bounded hombtopy applied to nontinear circuits 
simulation," Springer Verlag. Applicabfe AI,qeb,a ifr Engineering. 
Con~munication and Coolpaliirg. 2004. 

171 R. Seydel. 'Tncing branches,'' World of B$mnlion. June 1999. 
[ 8 ]  Eugene L. Allgowcr and Kuit Gcorg. Nurriericnl Parb fullurvii~g. 1994. 
191 Maria Sosonkina. Layne T. Watson, and David E. Stewart. "Notc on 

rhe end game in homotopy zero curve tracking:' ACM l?flnscinrions U/i 
Malhcrrtorical ~0fhvol-e. vol. 22, no. 3. pp. 281-287, September 1996. 

[IO] S.H Jen, B.J. Sheu, and Y. Oshima. "A unified approach lo submicroii dc 
mas transis%or modeling for low-voltage ics," Analog /nrepnted Circrrirs 
nnd Signal Piocessins, vol. 12, pp. 107-1 18, 1997. 

[ I  I] A. Ushida and L. 0. Chua. 'Tracing solution curves of non-linear 
equations with sharp turning poinu,'' Circuir 7 % c u r ~  cmd Applicotiorts, 
vol. 12, pp. 1-21, 1984. 

R y l  kR 0 

I 

R I ,  =30 k R 1 
CL vcc 

c C 
0 0 

Fig. I I .  Clma's circuit 

1126 


