
CHAPTER 122 

Numerical determination of wave induced flow 
in rubble mound breakwaters. 

Sun ZC\ Williams AF2, Allsop NWH2 

1 ABSTRACT 

This paper describes a numerical model of wave action onto and into a rubble 
mound breakwater. The model is constructed of two parts, the wave action 
on the exterior of the mound in which a boundary element method is used 
and flow inside the rubble mound in which a finite element method is used. 
The two parts of the model are coupled by demanding continuity of flow 
through the front face of the breakwater.  The predicted pressures within the 
core of the rubble mound are compared with data collected from physical 
model tests. 

2 INTRODUCTION 

The problem is that of wave action onto and into a rubble mound breakwater 
as illustrated in Fig(1).  External wave action on the breakwater induces wave 
action within the porous material of the rubble mound. The stability of both 
the rubble mound core and the external armour layers is dependent on the 
pore water pressures within the structure. Our aim is to model the wave 
motion within the rubble mound, and calculate the instantaneous pore 
pressures as they change under wave action. 

A complete model needs to incorporate all of the following physical 
processes: Random wave motion external to the breakwater and uprush onto 
the breakwater face.  Energy dissipation caused by wave breaking and friction 
at the breakwater surface. The transport of water through the front face of 
the breakwater. The flow of water through the porous material of the 
breakwater core.  Here the flow is non-Darcy or turbulent and the flow rate is 
unsteady. The effect of entrained air in the flow of water through the porous 
material. A complete model must also be able to deal with complex 
breakwater geometries, such as berms and layers of armour and filter 
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Figure 1 Wave action on a rubble mound breakwater. 

materials. 

No model is presently able to incorporate all of these processes. Analytical 
solutions such as that proposed be Sollitt & Cross (1972) by necessity require 
the geometry to be simplified to a homogeneous rectangle with vertical faces. 
Madsen & White (1976) also developed an analytical solution which uses 
assumptions of rectangular geometry and linear periodic wave theory. They 
improved the range of application of their model by representing multi-layered 
trapezoidal breakwaters with a "hydraulically equivalent" homogeneous 
rectangular structure.  Predictions of wave reflection and transmission can be 
made using analytical models of this type.  Unfortunately the simplifying 
assumptions and averaging processes necessary to arrive at an analytical 
solution make it impossible to calculated local instantaneous water velocities 
or pressures. 

To find the local instantaneous velocities and pressures required for the 
investigation of breakwater stability, a method is required that does not make 
gross assumptions about the structure geometry or involve integration of the 
solution over a wave period. These requirements may only be met by use of 
a numerical model.  McCorquodale & Nasser (1974), Nasser (1974) and 
Hannoura (1978) have all developed numerical models for flow with the 
porous material of the breakwater. A hybrid finite element/difference model is 
described by Hannoura & McCorquodale (1985), in which the time integration 
is carried out by a finite difference method and the space integration is solved 
by use of a finite element method. The model is restricted in its application 
as it only simulates the flow within the breakwater, and requires the boundary 
condition on the seaward face of the breakwater to be supplied from empirical 
data or an alternative numerical model. 

A more comprehensive model is at present in development under the 
European MAST G6-S project (Meer et al. (1992)).  This model utilises the 
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volume of fluid (VOF) technique similar to the SOLA-VOF developed by 
Nicholas, Hirt & Hotchkiss (1980).  VOF methods are the most promising way 
forward to a complete model which includes the effects of wave runup and 
breaking.  Unfortunately VOF models are computationally intensive and at 
present a main frame computing facilities are required for implementation. 
The model being developed under MAST still requires further work and it may 
be several years before a fully working VOF model is available. 

At Wallingford we have developed an intermediate numerical model which 
divides the problem into two parts:- a). The external wave action which 
produces pressures on the outer surface of the breakwater. (The external flow 
field). b).The internal flow within the breakwater driven by the pressures 
induced by the external flow field. (The internal flow field). The internal flow 
field (b) is modelled by the use of a finite element method. The external flow 
field (a) is calculated by use of a boundary element method. These two 
models are then coupled by allowing water to flow through the shared 
boundary. The ability to model the wave action on the exterior face of the 
breakwater means that support from physical model tests, as is necessary for 
the implementation of the Hannoura & McCorquodale (1985) model, is not 
required. 

3.        THE EXTERNAL FLOW FIELD 

Here the wave motion is calculated in two dimensions by use of a boundary 
element method. The program used is a variation of the program developed 
by Shih (1989), from the method described by Vinje & Brevig (1981). 

3.1       GENERAL PRINCIPLES 

The fluid is assumed to be both incompressible and irrotational. Such a two 
dimensional flow field can be described by either one of the pair of orthogonal 
functions termed the velocity potential § and stream function \|/. Both the 
velocity potential and the stream function are solutions of the Laplace 
equation with some specified boundary condition. In this way the Laplace 
equation relates the values of these functions in the interior of the 
computational domain to values at the boundary of the domain.  If the stream 
function or the velocity potential is specified at all points on the boundary, 
then the stream function inside the boundary can be found and hence the 
complete flow field computed. This is convenient as in our problem the 
boundary condition at the free surface of the material is most easily phrased 
in terms of the velocity potential <(>, while the conditions at the other 
boundaries of the domain are most easily specified by the stream function y. 
For the purposes of the numerical model the boundary is specified at discrete 
points zk as shown in Fig (2). 

If suitable boundary conditions can be specified for the whole domain,then the 
complete flow field may be calculated. The only remaining problem is that of 
finding the position of the free surface. The position of the free surface is 
continually re-calculated by tracking the movements of points on the surface. 
The motion of these points is given by the most recently computed values of 
the flow field at these points. 
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Figure 2 The computational domain. 

3.2      MATHEMATICAL FORMULATION 

The orthogonal function defined by the velocity potential ty and stream 
function y may be combined to form the complex potential; 

p(z,0 = <f>(z,<) + A|/(z,0 (1) 

In which z is a complex variable which describes the position in the 
computational domain; z = x + iy and t is the time variable. 

As <j) and v|/ both satisfy the Laplace equation, (3 must be an analytical function 
within the boundary of the fluid. For such an analytical function the value of p 
within the boundary can be related to the values of (3 at the boundary by use 
of the Cauchy integral theorem, 
then: 

If zK is some point inside the boundary C 

Aft) 
1 

271/ 

HA 
c z-z. 

dz (2) 

We are interested in the case when zk also lies on the boundary.  In this case 
if the boundary C is smooth, then zk is related to all other points on the 
boundary by: 

-fep(z*0 - fc ^fdz = 
(3) 

c  z-z„ 

Equating the real and imaginary parts of Equ(3) produces two equations for 
the conditions where either § or \f is known at the boundary point zk: 
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mr^O + Re f  ^^-dz = 0 (4) 

for zk lying on the boundary for which <|> is known 

n*(z*.0 + Re f 0&dz = 0 (5) 

for zk lying on the boundary for which y is known 

For purposes of the numerical calculation, the boundary is divided into 
discrete points.  By assuming a linear variation of p between the points, the 
integral around the boundary can be expressed in terms of a summation over 
an influence function.   The set of equations formed by this summation for 
each point is then assembled into a matrix. The matrix is solved by Guassian 
elimination to produce ty and y at each point on the boundary. 

3.3      BOUNDARY CONDITIONS 

There are four boundaries on which conditions must be specified. 

THE IMPERMEABLE BOTTOM BOUNDARY: Here the condition is no flow 
normal to this boundary, which results in: 

xy = constant 

In our case the constant = 0 

THE LEFT HAND BOUNDARY: This boundary condition is supplied by the 
wave maker and the simple theory of wave generation proposed by Galvin 
(1964) is used. The wave maker is simulated as a piston that produces flow 
normal to this boundary, hence at this boundary y is specified.  In addition to 
the original model developed by Shih, this boundary has been modified to 
allow wave energy to exit the computational domain. 

THE RIGHT HAND BOUNDARY: This is the interface with the internal flow 
model. Flow normal to the boundary is given by the seepage flow from the 
internal model at this interface.  Here y is again specified. 

THE FREE SURFACE BOUNDARY: At this boundary two conditions are 
required, one to specify the velocity potential and another to describe how this 
boundary should move between time steps. 

The velocity potential is given by the dynamic condition: 

^ = ww* - gy - BL (6) 
dt p 

Where w= u - //the conjugated complex velocity, g = acceleration due to 
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gravity, y = the vertical position of the boundary point, ps= the pressure at the 
surface (in most cases ps = 0), p = density of the fluid 

Hamming's fourth order predictor-corrector method is used to determine ty 
from Equ(6) with the exception of the first three time steps of a calculation 
when the Runge-Kutta method is used. 

The new position of the boundary is calculated from the kinematic condition: 

-? = -£C*+W = w* (7) 
Dt      Dt 

Where z = the complex position of the boundary point (which has coordinates 
x and y). This allows the new position z of the boundary to be calculated for 
the next time step by an integration over time t. 

4.        THE INTERNAL FLOW FIELD 

As in the external flow model the internal flow model is two-dimensional, with 
the breakwater cross section forming the computational domain.  Wave 
motion is caused by the variation of the pressure on the seaward face of the 
structure and fluid flow through the structure. The front face of the 
breakwater forms the interface of the two models. The pressures on this 
external face are supplied by the external flow model. 

4.1      THE GENERAL PRINCIPLES 

The problem is one of seepage flow through a porous granular medium, with 
a free surface within the medium. The granular material of the breakwater is 
of sufficient size that the flows within the medium are turbulent and may not 
be described by Darcy's linear law. The existence of an exact relationship 
between hydraulic gradient i, and the bulk flow velocity u, is in this case 
uncertain, however recent research by Williams, Burcharth, & den Adel (1992) 
indicates that the Forchheimer equation forms the best fit to the empirical data 
available at present. The unsteady flow form of the Forchheimer equation is: 

i=au + buz + £±9- §H (8) 
g     dt 

Where a and b are the Forchheimer coefficients which are dependent on the 
granular material.  Separate layers of filter material within the breakwater 
result in a and b being functions of position.  C is the virtual mass coefficient 
and is also dependent on the material.  Means of determining values for a,b 
and C are discussed in the paper by Williams et al. (1992). 

The assumption that the fluid is incompressible provides the continuity 
equation in the form 
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Vtf = 0 0) 

The Forchheimer equation and the equation of continuity with adequate 
boundary conditions are sufficient to allow the flow field to be solved uniquely. 

The flow field is calculated by use of a finite element method where the 
computational domain is defined by the breakwater cross section and the 
phreatic surface of the water. The phreatic surface rises and falls with the 
wave motion. As a result the size and shape of the computational domain is 
also a function of time. The position of the phreatic surface must therefore be 
calculated at each time step and the finite element mesh re-fashioned to fit 
the new computational domain. 

4.2      MATHEMATICAL FORMULATION 

It is useful to phrase the Forchheimer equation in terms of the piezometric 
head Pp 

-v/> = (fi+b\u\)u + H±£ ^ (io) 
p ' " g     dt 

the piezometric head is related to the pressure p by:- 

P„ = -£ + y (11) 
H      Y 

where y is the some vertical coordinate. 

The time domain is dealt with by the use of finite differences. Writing: 

du = ( tflMf - u\t) (12) 

dt At 

Substituting Equ(12) into Equ(10) gives: 

^/^U-lgtf'l d3) 

where 

1 
K = 

a hi7, (ucT (•) 
a+D\u\+- '- 

flfAf 

is the conductivity of the rubble material. Note that K is a function of u. 
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Substituting Equ(14) into the continuity equation (Equ(9)) yields the governing 
equation for the piezometric head: 

A( K APp) = 0 (15) 

For the purposes of the numerical simulation this equation is re-phrased as 
the requirement that: 

(16) fef • fap"l2 /L*hf + -sf  ** 

should be a minimum for the given boundary conditions and the integration is 
carried out over the whole of the computational domain.  Finite element 
discretization of this equation is carried out using triangular mesh elements. 
The minimisation technique produces a set or matrix of equations that can be 
solved to give the piezometric head and flow velocities for the specified 
boundary conditions. 

4.3      BOUNDARY CONDITIONS 

For the internal flow the boundary conditions are specified in terms of the 
piezometric head Pp. There are four relevant boundaries: 

THE BOTTOM BOUNDARY: This boundary is impermeable so the condition 
of no flow normal to this boundary gives: 

^E = 0 (17) 
dy 

where y is the vertical coordinate. 

THE HARBOUR SIDE BOUNDARY: At present, this boundary has been kept 
simple by specifying that the water level behind the breakwater remains 
constant at y=d.  Hence: 

Pp = d (18) 

THE SEAWARD BOUNDARY: This is the interface between the internal and 
external models. Here the boundary condition is supplied by the pressure 
distribution given by the external model. 

Pp = £ + y (19) 

Continuity of flow through this boundary is achieved by the coupling technique 
described in the next section. 
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THE PHREATIC SURFACE BOUNDARY: Since this boundary moves, two 
boundary conditions are required. 

The kinematic boundary condition: 

4Sa<* %~-v (20) 
Dt Dt 

where x and y are the coordinates of the boundary point and u and v at the 
flow velocities at these points. 

The dynamic boundary condition: 

PP = y (2D 

At time t = 0, the initial conditions are: 

Pp = const. u = 0 (22) 

5 COUPLING OF THE INTERNAL AND EXTERNAL FLOW MODELS 

The external flow model is coupled to the internal flow model by demanding 
continuity of flow and pressures through the shared boundary. This is 
achieved by use of a trial and error technique as shown in the flow chart in 
Fig(3). 

It is this coupling of the external and internal flow regimes that makes the 
completed model unique. This technique allows the wave motion onto and 
through the breakwater to be simulated without the need for addition data to 
be supplied from physical model tests. 

6 PHYSICAL MODEL TESTS 

Work carried out at Wallingford for the Single Layer Armour Unit Research 
Club has provided an excellent opportunity to obtain empirical data against 
which the numerical model can be tested. The study involved the 
construction of a model rubble mound which was armoured with model units. 

The rubble mound was constructed with the geometry as shown in Fig (4). 
The core material was crushed limestone ranging in size from 4-6mm, the 
underlayer consisted of 10-14mm limestone. The armour units were 
simulated by a plastic frame work of the appropriate porosity or by model 
units of the correct density..  During construction care was taken to carefully 
weigh all the core and filter material used in the model so that the porosity of 
the relevant layers could be determined. These porosities must be known to 
allow the correct determination of the Forchheimer coefficients a and b used 
in the numerical model. 

During the construction the pressure transducers were buried in the positions 
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Set initial boundary 
conditions 

(from previous time step) 

Solve wave field 

pressures on 
the slope 

Solve the internal 
flow field 

shown. The cables of these 
transducers exited the rear 
of the mound and connected 
to the appropriate equipment 
to allow the pressures to be 
monitored by computer. 

In order to make the 
comparison of the numerical 
simulation and the physical 
model test data as simple as 
possible, only data from 
regular wave conditions have 
been investigated. The 
wave conditions tested 
ranged in height from 0.11 to 
0.2m and in period from 1.6 
to 2.8s. The piezometric 
heads measured by the 
pressure transducers were 
logged by computer for each 
test condition. 

The numerical model was 
run for a structure with the 
same geometry and material 
properties as the physical 
model. The values of the 
Forchheimer coefficients a 
and b were determined by 
comparison of the core and 
filter material with material 
whose permeability had 
previously been measured at 
HR, (see Williams et al. 
(1992)). The piezometric 
head at the positions of the 
pressure transducers was 
determined from the internal flow model and compared to the physical model 
data as described in the next section. 

Compare the newly calculated 
velocities at the 

front face of the breakwater 
with those used to solve 

the wave field 

_L 

Make prediction of 
the new velocities 
on the front face 

v Yes 

Go on to the   ! 

next time step 

Figure 3 

Models. 

Linkage of Wave and Internal Flow 

7 RESULTS 

The flow of fluid within the mound is illustrated as a velocity plot in Fig. (5.a- 
d). The wave hight is 0.14m with a period of 2.4s.  It is seen the that majority 
of the fluid flow occurs within the armour and filter layers. This is expected as 
the armour and filter layers are several orders of magnitude more permeable 
that the core of the breakwater. Points on the phreatic surface are marked e. 

In Fig.(6.a-e) show the predicted and observed pressures at the positions of 
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Figure 4 Locations of the pressure transducers. 

the pressure transducers within the mound. The close match between the 
empirical data and numerical results is very encouraging. The discrepancy 
been the observed and predicted pressures for positions deep within the 
mound is probably the result of the boundary condition, of constant water 
level behind the mound imposed on the internal flow model.  Replacement of 
this boundary condition would allow wave motion behind the breakwater, and 
reduce the amount of predicted of wave attenuation within the mound.  It may 
be possible to model the wave motion behind the breakwater, by applying the 
boundary element method to this region and demanding continuity of flow 
through the rear face of the breakwater as for the front face. 

The discrepancies between observed and predicted pressures for high wave 
conditions may be the result of the effects of wave breaking that cannot be 
modelled with the boundary element technique described. The use of 
empirically derived correction factors might be of use in reducing this error, 
however this would require an extensive series of physical model tests. Such 
a series of tests would circumvent the advantages of this model over the 
internal flow model developed by Hannoura & McCorquodale (1985). 

The model at present is sometimes unstable.  Problems may be encountered 
in establishing continuity of flow across the external/internal interface with 
sufficient accuracy. This may be due to the fundamental differences in the 
models used to calculate the external and internal flows, and the assumptions 
that these models are based upon. The boundary element model used for 
the external flow requires the assumption that the flow is irrotational.  No such 
restriction is placed on the internal finite element model. Such inconsistencies 
of formulation may well be the source of the observed inability to match the 
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Figure 5 Velocities within the mound 

flow through the interface. The nature of the instability requires further study 
so that the conditions that lead to it may be predicted.  Until this time the 
model must be use cautiously and the results interpreted with care. 

8 CONCLUSIONS 

There is a good agreement between predicted and observed pressures near 
the front face of the breakwater mound for waves of moderate flight. The 
accuracy of the model declines when significant a degree of wave breaking 
and air entrainment occurs. 

The model under predicts the amount of wave action deep within the mound. 
This is almost certainly due to the effects of an unrealistic boundary condition 
applied to the harbour side of the breakwater. Correction of this boundary 
condition should significantly improve this aspect of the model. 

The full modelling of wave action that includes wave breaking and the 
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Figure 6 Predicted* and observed pressures within the mound. 
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entrapment of air must wait for the development of volume of fluid methods 
as described in the introduction.  Until VOF models are available for 
implementation on small computers, composite models such as this will 
continue to provide valuable insight into the nature of flows within the cores of 
rubble mound breakwaters. 
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