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Numerical Dispersion Analysis of the Unconditionally
Stable 3-D ADI–FDTD Method

Fenghua Zheng and Zhizhang Chen

Abstract—This paper presents a comprehensive analysis of numerical
dispersion of the recently developed unconditionally stable three-dimen-
sional finite-difference time-domain (FDTD) method where the alternating-
direction-implicit technique is applied. The dispersion relation is derived
analytically and the effects of spatial and temporal steps on the numer-
ical dispersion are investigated. It is found that the unconditionally stable
FDTD scheme has advantages over the conventional FDTD of the Yee’s
scheme in modeling structures of fine geometry where a graded mesh is
required. The unconditionally stable FDTD allows the use of a large time
step in a region of fine meshes while maintaining numerical dispersion er-
rors smaller than those associated with the region of coarse meshes.

Index Terms—CFL stability conditions, numerical dispersion, uncondi-
tionally stable FDTD.

I. INTRODUCTION

The finite-difference time-domain (FDTD) method is widely
used to simulate transient electromagnetic-wave propagation since
it is robust, fast, simple to implement, and possible to achieve the
responses in a chosen frequency band with one single round of
simulation [1], [2]. However, since the FDTD method is anexplicit
time-stepping technique, its time step is limited by the well-known
Courant–Friedich–Lecy (CFL) stability condition [2]. As a result, the
FDTD may require a large number of iterations in certain applications,
especially when structures of fine geometry (such as small via) are
involved.

To eliminate the CFL stability condition, implicit methods can be
used. These implicit techniques, in particular, alternating-direction-im-
plicit (ADI) methods, have been widely used in solving heat transfer
problems [3], leading to various unconditionally stable finite-differ-
ence formulations for parabolic equations [4]. Very recently, such im-
plicit techniques were introduced into the FDTD schemes for solving
Maxwell’s equations, resulting in an implicit unconditionally stable
ADI–FDTD method [5]–[7]. In particular, a rigorous theoretical proof
of the unconditional stability was presented with numerical verifica-
tions in [7]. Due to the removal of the CFL conditions, the time step
used is no longer restricted by the stability conditions, but by modeling
accuracy of the algorithm. One of the factors that affect the accuracy is
numerical dispersion.

This paper presents the study on numerical dispersion characteris-
tics of the unconditionally stable ADI–FDTD. An analytical formula
is derived and the effects of the time and spatial steps on the numer-
ical dispersion are investigated. An important corollary regarding the
numerical dispersion errors of a graded mesh or multigrid is also pre-
sented.

II. NUMERICAL DISPERSION OF THEUNCONDITIONALLY STABLE

ADI–FDTD

In this section, the dispersion of the FDTD scheme is derived by
following a similar procedure described in [2].
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The relationship between the field components at the(n+1)th time
step and thenth time step in the spatial spectral domain were obtained
in [7]

F
n+1 = �Fn (1)

where� is shown in the first equation at the bottom of the following
page, with
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Here,� is a 6� 6 matrix that containskx�x; ky�y, andkz�z.
kx; ky, andkz are the spatial frequencies along thex- y-, andz-direc-
tions, respectively.�x, �y, and�z are the spatial steps.F is a vector
that contains all six field components in the spatial spectral domain
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Now, assume the fields to be a monochromatic wave with angular fre-
quency!
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; � = x; y; z: (3)

Equation (1) then becomes

(ej!�tI� �)F = 0 (4)

whereI is a 6� 6 identity matrix andF is the field vector defined by

F
n = Fe

j!�tn
: (5)

For a nontrivial solution of (4), the determinant of the coefficient matrix
should be zero as follows:

det (ej!�tI� �) = 0: (6)

With the help of Maple V5.0, the above equation can be simplified, as
shown in (7), at the bottom of the following page, which is the disper-
sion relationship of the unconditionally stable ADI–FDTD method.
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III. N UMERICAL DISPERSIONRESULTS ANDDISCUSSION

Several aspects of the numerical dispersion studies are performed in
this aspect. They include: 1) the effect of the propagation direction on
the dispersion; 2) the effect of the large time step on the dispersion;
3) the dispersion on thekx � ky plane; and 4) an important corollary
regarding the graded mesh or multigrid.

1) Effect of the Propagation Direction on the Dispersion:Suppose
that a wave propagating at angle� and � is in the spherical coor-
dinate system. Then,kx = k sin � sin�, ky = k sin � cos�, and
ky = k cos �. By substituting them into dispersion relation (7), nu-
merical phase velocityvp = !=k can be solved numerically. For sim-
plicity, uniform cells are considered here (�x = �y = �z = �).

Fig. 1 shows the variations of the numerical phase velocity with the
wave propagation angles with a time step smaller than the CFL limit. It
is seen that the numerical phase velocity error reaches minimum at 45�

and maximum at 0� and 90�. This represents a numerical anisotropy
that is inherent in the FDTD algorithm. In comparison with the disper-
sion errors of the conventional FDTD method (not shown due to space
limitation), one can find that the difference between the two methods is
very small. In general, below the time step defined by the CFL condi-
tion, both the unconditionally stable FDTD and the conventional FDTD
present the very similar dispersion behaviors.

2) Effect of the Large Time Step on the Numerical Disper-
sion: Since the time step in the unconditionally stable FDTD scheme
is no longer restricted by the CFL condition, it is important and mean-
ingful to see how a large time step impacts on numerical dispersion, in
particular, for a time step larger than the CFL limit. In our studies, two
different time steps are selected:�t = �=c (

p
3� the CFL limit) and

�t = 1:5�=c (2.6� the CFL limit). In both cases, a uniform spatial
discretization� = �=20 was used.

Figs. 2 and 3 illustrate how time steps affect the numerical phase
velocity. It is obvious that the curves in the two figures basically have
the same shape. However, the dispersion errors increase when the time
steps increase. With the time step of 2.6 times of the CFL limit (see
Fig. 3), the error reaches 2.2%. This is an indication that the time step
cannot be made too large. Its selection depends very much on the ac-
curacy level that can be tolerated by a user or modeler. Our numerical

Fig. 1. Numerical phase velocity versus wave propagation angle with the
unconditionally stable FDTD grid with� = �=20 and�t = �=c=5.

experience suggests that the time steps could be made up to four times
larger than that of the conventional FDTD with acceptable accuracy
when a spatial resolution� = �=10 � �=20 is used.

3) Dispersion on thekx–ky-Plane: In order to view dispersion
characteristics more closely and precisely, the dispersion is shown on
the cut of thekx–ky-plane (� = 90�, kz = k cos � = 0).

Fig. 4 shows the numerical dispersion characteristics obtained for a
large time step. In this figure, three different mesh sizes are considered:
coarse (� = �=10), normal (� = �=20), and fine (� = �=40). In
comparison with Fig. 1 for a smaller time step, Fig. 4 shows larger
errors for a large time step. Note that, for the coarse grid, the errors are
larger than the errors for the fine mesh. The errors for the coarse mesh
can reach 10%. However, for the fine mesh, the errors remain small.

4) Important Corollary: The results shown in Fig. 4 have an impor-
tant implication in terms of the application of the unconditionally stable
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Fig. 2. Numerical phase velocity versus wave propagation angle with the
unconditionally stable FDTD grid with� = �=20 and�t = �=c (1.73� the
CFL limit).

Fig. 3. Numerical phase velocity with wave propagation angle with the
unconditionally stable FDTD grid with at� = �=20 and�t = 1:5�=c (2.6�
the CFL limit).

ADI–FDTD to FDTD graded meshes or multigrids. With the conven-
tional FDTD, a small time step has to be taken due to the CFL stability
condition applied in the refined mesh region. The overall computation
time is then increased. However, with the unconditionally stable FDTD,
the time step can be chosen large even for the fine mesh. Therefore, the
computation time is reduced. In the following, a quantitative analysis of
the dispersion error bound of a locally refined mesh is provided in ref-
erence to the dispersion of the nonrefined mesh (i.e., the coarse mesh).

Suppose a solution domain is discretized with graded meshes. De-
note the overall largest coarse grid size as�a and the refined grid size
as�l. The ratio of the coarse grid size to the local grid size is defined as

r =
�a
�l

(8)

Fig. 4. Dispersion characteristics of different mesh sizes at time step�t =
1:5�=c (2.6� the CFL limit).

Fig. 5. Dispersion characteristics of differents at time step�t = 1:5� =c
(2:6r� the�t ).

and the CFL condition stipulates that

�tCFL = �l=c=
p
3: (9)

Fig. 5 shows the dispersion with�t = 1:5�a=c (2:6r� the�tCFL) of
the refined meshes ofr = 1 (no mesh refinement),r = 10 (moderately
refined mesh), andr = 20 (highly refined meshes), respectively.

As can be seen, the numerical dispersion errors decrease asr in-
creases. That is, for a finer mesh, the dispersion is smaller. This leads
to an important corollary: in a domain discretized with graded meshes
or multigrids, one can take the time step with the refined mesh(r > 1)
to be the same as the time step with the course mesh(r = 1) as long
as the dispersion errors with the coarse mesh(r = 1) are negligible. In
other words,�t is only restricted by the coarse mesh size�a in terms
of accuracy, not by the finer mesh size�l because the dispersion er-
rors with the refined meshes(r > 1) are always smaller than that with
the coarse mesh(r = 1). The number of iterations with the uncon-
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ditionally stable FDTD is then reduced byr� in comparison with the
conventional FDTD of the Yee’s scheme.

IV. CONCLUSIONS

The numerical dispersion of the recently developed unconditionally
stable ADI–FDTD scheme has been derived in an analytical form. The
impacts of spatial and time steps on the numerical dispersion have been
investigated. For a time step smaller than the CFL limit, the dispersion
errors of the unconditionally stable FDTD is at the same level as that of
the conventional FDTD. For a larger time step, however, the dispersion
errors increase as the time step increases. In a region of the solution
domain that requires variable meshes, the time step can be taken uni-
formly the same as that used for the coarse grid. The accuracy for the
finer mesh will be at least the same as that for the coarse mesh. This is
a unique feature with the unconditionally stable FDTD and it reduces
significantly the number of iterations with the unconditionally stable
FDTD.
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