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Numerical Dispersion Analysis of the Unconditionally The relationship between the field components afth¢ 1)th time
Stable 3-D ADI-FDTD Method step and theth time step in the spatial spectral domain were obtained
in [7]

Fenghua Zheng and Zhizhang Chen
F*T = AF" (1)

Abstract—This paper presents a comprehensive analysis of numerical whereA is shown in the first equation at the bottom of the following

dispersion of the recently developed unconditionally stable three-dimen- page, with

sional finite-difference time-domain (FDTD) method where the alternating- ’

direction-implicit technique is applied. The dispersion relation is derived

analytically and the effects of spatial and temporal steps on the numer- W = At sn <%A04>
ical dispersion are investigated. It is found that the unconditionally stable 7 Aa 2
FDTD scheme has advantages over the conventional FDTD of the Yee's 9

scheme in modeling structures of fine geometry where a graded mesh is Qo =1+ ”_u

required. The unconditionally stable FDTD allows the use of a large time e

step in a region of fine meshes while maintaining numerical dispersion er- a=x,Y,z

rors smaller than those associated with the region of coarse meshes. W =W, W, W.

Index Terms—CFL stability conditions, numerical dispersion, uncondi-
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The finite-difference time-domain (FDTD) method is widely
used to simulate transient electromagnetic-wave propagation since
it is robust, fast, simple to implement, and possible to achieve the
responses in a chosen frequency band with one single round of
simulation [1], [2]. However, since the FDTD method is explicit Bs
time-stepping technique, its time step is limited by the well-known
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Courant-Friedich—-Lecy (CFL) stability condition [2]. As a result, the Dy =W, (W W2 — /:,252)
FDTD may require a large number of iterations in certain applications, s )
especially when structures of fine geometry (such as small via) are D2 =W- (Wy We —pe )
involved. v (vt 2
To eliminate the CFL stability condition, implicit methods can be Ds =W, (II Wy — e )

used. These implicit techniques, in particular, alternating-direction-im-

plicit (ADI) methods, have been widely used in solving heat transfétere, A is a 6 x 6 matrix that containg, Ax, k, Ay, andk.Az.

problems [3], leading to various unconditionally stable finite-differk=- ky, andk- are the spatial frequencies along they-, and--direc-

ence formulations for parabolic equations [4]. Very recently, such iHONS, respectivelyAx, Ay, andAz are the spatial stepk.is a vector

plicit techniques were introduced into the FDTD schemes for solvirffat contains all six field components in the spatial spectral domain

Maxwell’'s equations, resulting in an implicit unconditionally stable B

ADI-FDTD method [5]-[7]. In particular, a rigorous theoretical proof F"=[E; E; E! H H; H ;’]1 . ¥

of the unconditional stability was presented with numerical verifica-

tions in [7]. Due to the removal of the CFL conditions, the time stefiow, assume the fields to be a monochromatic wave with angular fre-

used is no longer restricted by the stability conditions, but by modelirgiency..

accuracy of the algorithm. One of the factors that affect the accuracy is

numerical dispersion. BN = E /2™ H' = H, 00,
This paper presents the study on numerical dispersion characteris- i

Flcs of_ the unconditionally stable ADI—FDTD. An analytical formU|aE9uation (1) then becomes

is derived and the effects of the time and spatial steps on the numer-

ical dispersion are investigated. An important corollary regarding the

numerical dispersion errors of a graded mesh or multigrid is also pre-

sented.

a=a,y, 2. (3)

(/- A)F =0 (4)

wherel is a 6x 6 identity matrix andF is the field vector defined by

Il. NUMERICAL DISPERSION OF THEUNCONDITIONALLY STABLE ,
Fn — F()]u,Atn (5)
ADI-FDTD g :

In th's segthn, the dispersion Of, the ,FDTD scheme is derived %ranontrivial solution of (4), the determinant of the coefficient matrix
following a similar procedure described in [2]. should be zero as follows:
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I1l. NUMERICAL DISPERSIONRESULTS AND DISCUSSION

PR 6=0°
Several aspects of the numerical dispersion studies are performec 1002+ | - 0=22.5"

this aspect. They include: 1) the effect of the propagation direction o N A 6=45"
the dispersion; 2) the effect of the large time step on the dispersio fooo b 0=67.5" 1
3) the dispersion on thie, — k, plane; and 4) an important corollary ‘ gi';zg:gz:‘
regarding the graded mesh or multigrid.

1) Effect of the Propagation Direction on the DispersioBuppose 0.998 | oeem e e .
that a wave propagating at angleand¥é is in the spherical coor- ’
dinate system. Therk, = ksinfsin¢, k, = ksinf cos¢, and
ky, = kcos6. By substituting them into dispersion relation (7), nu-
merical phase velocity, = w/k can be solved numerically. For sim-
plicity, uniform cells are considered herA{ = Ay = Az = §).

Fig. 1 shows the variations of the numerical phase velocity with th:
wave propagation angles with a time step smaller than the CFL limit.  0.992 -
is seen that the numerical phase velocity error reaches minimurfi at 4
and maximum at Oand 90. This represents a humerical anisotropy 0990 ot v 0 oo
that is inherent in the FDTD algorithm. In comparison with the disper: o 10 20 30 40 50 60 70 80 90
sion errors of the conventional FDTD method (not shown due to spac Wave propagation angle ¢ (degree)
limitation), one can find that the difference between the two methods is
very small. In general, below the time step defined by the CFL condiig. 1. Numerical phase velocity versus wave propagation angle with the
tion, both the unconditionally stable FDTD and the conventional FDTEnconditionally stable FDTD grid with = A/20 andAt = é/c¢/5.
present the very similar dispersion behaviors.

2) Effect of the Large Time Step on the Numerical Dispeexperience suggests that the time steps could be made up to four times
sion: Since the time step in the unconditionally stable FDTD schentarger than that of the conventional FDTD with acceptable accuracy
is no longer restricted by the CFL condition, it is important and meam¢hen a spatial resolution= /10 ~ \/20 is used.
ingful to see how a large time step impacts on numerical dispersion, in3) Dispersion on thet,—k,-Plane: In order to view dispersion
particular, for a time step larger than the CFL limit. In our studies, twoharacteristics more closely and precisely, the dispersion is shown on
different time steps are selectelt = §/¢ (v/3x the CFL limit) and the cut of thek,—k,-plane § = 90°, k. = kcosd = 0).

At = 1.56/c (2.6x the CFL limit). In both cases, a uniform spatial Fig. 4 shows the numerical dispersion characteristics obtained for a
discretizations = \/20 was used. large time step. In this figure, three different mesh sizes are considered:

Figs. 2 and 3 illustrate how time steps affect the numerical phasearse { = \/10), normal ¢ = )\/20), and fine § = \/40). In
velocity. It is obvious that the curves in the two figures basically hav@mparison with Fig. 1 for a smaller time step, Fig. 4 shows larger
the same shape. However, the dispersion errors increase when the émers for a large time step. Note that, for the coarse grid, the errors are
steps increase. With the time step of 2.6 times of the CFL limit (ségrger than the errors for the fine mesh. The errors for the coarse mesh
Fig. 3), the error reaches 2.2%. This is an indication that the time stegn reach 10%. However, for the fine mesh, the errors remain small.
cannot be made too large. Its selection depends very much on the a@) Important Corollary: The results shown in Fig. 4 have an impor-
curacy level that can be tolerated by a user or modeler. Our numeritait implication in terms of the application of the unconditionally stable
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Fig. 2. Numerical phase velocity versus wave propagation angle with t

. A : hﬂg 4. Dispersion characteristics of different mesh sizes at time/step-
unconditionally stable FDTD grid with = A/20 andAt = é/c (1.73x the

1.58/c (2.6x the CFL limit).
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Fig. 3. Numerical phase velocity with wave propagation angle with the

unconditionally stable FDTD grid with & = A/20 andAt = 1.56/c¢ (2.6x

the CFL limit). and the CFL condition stipulates that
Atcrr = 6/¢/V3. 9)
ADI-FDTD to FDTD graded meshes or multigrids. With the conven-
tional FDTD, a small time step has to be taken due to the CFL stabili;tyg_ 5 shows the dispersion witht = 1.5, /¢ (2.6r x the Atcrr,) of
condition applied in the refined mesh region. The overall computatigRe refined meshes of= 1 (no mesh refinement), = 10 (moderately
time is then increased. However, with the unconditionally stable FDTRsfined mesh), and = 20 (highly refined meshes), respectively.
the time step can be chosen large even for the fine mesh. Therefore, thgs can be seen, the numerical dispersion errors decreasénas
computation time is reduced. In the following, a quantitative analysis gfeases. That is, for a finer mesh, the dispersion is smaller. This leads
the dispersion error bound of a locally refined mesh is provided in ref an important corollary: in a domain discretized with graded meshes
erence to the dispersion of the nonrefined mesh (i.e., the coarse megfultigrids, one can take the time step with the refined niesk 1)
Suppose a solution domain is discretized with graded meshes. Rehe the same as the time step with the course resh 1) as long
note the overall largest coarse grid sizééasind the refined grid size as the dispersion errors with the coarse mesk 1) are negligible. In
aso;. The ratio of the coarse grid size to the local grid size is defined ggher words At is only restricted by the coarse mesh sizen terms
of accuracy, not by the finer mesh siZebecause the dispersion er-
Sa rors with the refined meshégs > 1) are always smaller than that with

r= 5 (®)  the coarse mesfr = 1). The number of iterations with the uncon-
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ditionally stable FDTD is then reduced by in comparison with the REFERENCES
conventional FDTD of the Yee’s scheme.
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