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SUMMARY

This paper employs response surface regressions based on simulation experiments to calculate asymptotic
distribution functions for the Johansen-type likelihood ratio tests for cointegration. These are carried out in
the context of the models recently proposed by Pesaran, Shin, and Smith (1997) that allow for the possibility
of exogenous variables integrated of order one. The paper calculates critical values that are very much more
accurate than those available previously. The principal contributions of the paper are a set of data ®les that
contain estimated asymptotic quantiles obtained from response surface estimation and a computer program
for utilizing them. This program, which is freely available via the Internet, can be used to calculate both
asymptotic critical values and P-values. Copyright # 1999 John Wiley & Sons, Ltd.

1. INTRODUCTION

Since the in¯uential work of Engle and Granger (1987), several procedures have been proposed
for testing the null hypothesis that two or more non-stationary time series are not cointegrated,
meaning that there exist no linear combinations of the series that are stationary. One approach is
to use likelihood ratio tests based on estimating a vector autoregression. This approach was ®rst
proposed by Johansen (1988) and re®ned further by Johansen and Juselius (1990) and Johansen
(1991, 1992, 1994). There are two di�erent test statistics, which are called the Trace and lmax

statistics.
Johansen's approach, which has been used extensively in applied work, provides a uni®ed

framework for estimation and testing in the context of a multivariate vector autoregressive model
in error correction form (VECM) with normal errors. The normality assumption allows a neat
application of maximum likelihood theory, which produces both the test statistics and the
maximum likelihood estimators (MLE) of the parameters of interest. Phillips (1991) noted
several desirable properties of the MLE for this model and demonstrated that asymptotically
optimal inferences can be based on theMLE of the cointegrating vectors. Gonzalo (1994) showed
that these properties hold in ®nite samples even without the normality assumption. Haug (1996),
among others, has provided Monte Carlo evidence that the Trace and lmax statistics generally
have reasonable size and power properties. Just how accurate they are will depend on the sample
size, the number of lags in the vector autoregression, and the data-generating process; see Cheung
and Lai (1993).
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In the literature, tables of critical values have been computed by simulating the expressions to
which the two tests converge asymptotically for ®ve cases (models) of interest; see, in particular,
Osterwald-Lenum (1992) and Johansen (1995). Recently, Pesaran, Shin, and Smith (1997),
henceforth PSS, has extended the analysis in two ways. PSS includes exogenous I(1) variables in
the VECM, and it modi®es some of the models so as to make their trending behaviour invariant
with respect to the cointegration rank of the whole system. Section 2 provides a comparison of the
PSS framework of analysis with that of Johansen (1995).

A major problem with the studies just cited is that their results are not very accurate. There are
two reasons for this. First, they employ experiments with no more than 100,000 replications, and
sometimes as few as 6000. These are not large numbers for the estimation of tail quantiles.
Second, all of them simulate the asymptotic quantities to which the two tests converge by using a
discrete approximation with either 400 or 500 steps, instead of using response surfaces.

In this paper, we obtain extremely accurate critical values and marginal signi®cance levels, or
P-values, for the Trace and lmax tests in the context of the PSS framework of analysis. This is
done by adopting the response surface approach of MacKinnon (1994, 1996). To facilitate
comparisons with the PSS results, the ®ve di�erent models considered in that paper are analysed
for up to 12-dimensional systems with between 0 and 8 exogenous variables. The basic idea is to
estimate a large number of quantiles of the distributions of the test statistics, for a number of
di�erent sample sizes, by means of Monte Carlo experiments. Response surface regressions, in
which the estimated quantiles are regressed on negative powers of the sample size, are then used
to estimate the quantiles of the asymptotic distribution. Some of the estimated quantiles from the
response surface regressions directly provide asymptotic critical values. The quantiles can also be
used as input to a computer program which can calculate the asymptotic P-value for any test
statistic.

Both the tables of estimated asymptotic quantiles and a computer program called lrcdist that
uses them are available via the Internet; for details, see the Appendix. The lrcdist program is
run interactively and prompts the user for input. For those who wish to compute large numbers
of critical values or P-values, two sets of routines, called johrouts.f and lrcdists.f, are also
provided. These users simply need to write their own main program to call the appropriate
routine, which in turn reads the appropriate ®les and calls other routines to do the calculations.

The rest of the paper is organized as follows. Section 2 discusses the ®ve models and the two
likelihood ratio tests for cointegration. Section 3 discusses the simulation experiments and the
response surface regressions. Section 4 presents a very small subset of our results in tabular form
and explains why they are more accurate than previous results. Section 5 discusses how P-values
and critical values may be calculated using the response surface estimates.

2. THE MODELS AND TEST STATISTICS

The maximum likelihood theory of systems of potentially cointegrated stochastic variables
presupposes that the variables are integrated of order one, or I(1), and that the data-generating
process is a Gaussian vector autoregressive model of ®nite order l, or VAR(l), possibly including
some deterministic components. If Zt denotes an m-dimensional column vector of I(1) variables,
the VAR(l) model can be written as

FFFFF�L�Zt ÿ mmmmmÿ gggggt� � et �1�
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Here FFFFF(L) is an (m, m) matrix polynomial of order l in the lag operator L, mmmmm and ggggg are m-vectors
of unknown coe�cients, and et is an m-vector of unknown error terms assumed to be NID(0, OOOOO),
with OOOOO positive de®nite. It is convenient to express equation (1) in the VECM form

DZt � PPPPPZtÿ1 �
Xlÿ1
i�1

GGGGGiDZtÿi � mmmmm0 � mmmmm1t� et t � 1; . . . ;T �2�

where PPPPP and the GGGGGi are (m, m) matrices of coe�cients, and mmmmm0 and mmmmm1 are, respectively, m-vectors
of constant and trend coe�cients de®ned by

mmmmm0 � ÿPPPPPmmmmm� �GGGGG�PPPPP�ggggg; and mmmmm1 � ÿPPPPPggggg �3�

with GGGGG � Im ÿ Slÿ1
i�1GGGGGi.

The VECM representation (2) is convenient, because the hypothesis of cointegration can be
stated in terms of the rank of the long-run impact matrix, PPPPP. In the existing literature,
multivariate cointegration has been analysed in the context of ®ve di�erent models corresponding
to speci®c restrictions on the vector parameters mmmmm0 and mmmmm1; see the ®ve models in Johansen (1995)
or, equivalently, the ®ve cases in Osterwald-Lenum (1992).

The PSS paper departs from the existing literature in two important ways. First, it allows for
the e�ects of exogenous I(1) variables on the distribution of the likelihood ratio tests for
cointegration; see also Harbo et al. (1998). Second, it incorporates explicitly the restrictions (3)
into the analysis and accounts for their e�ects on the properties of the process Zt and the null
distributions of the Trace and lmax tests. In particular, restricting mmmmm1 to lie in the range space ofPPPPP
eliminates the quadratic trend in the level of the process Zt that one obtains without the
restriction; see, for instance, Johansen (1994). This is desirable, because it makes the trending
behaviour of Zt independent of the cointegration rank of the system. Otherwise, the number of
independent quadratic deterministic trends in Zt decreases as the cointegration rank of the system
increases.

To describe brie¯y the models and test statistics that arise in the PSS framework, let Zt be
partitioned into a p-vector Yt and a k-vector Xt , where k � mÿ p, and Xt is assumed to be weakly
exogenous with respect to PPPPP. Partitioning the parameters and the error term et of model (2)
conformably with Zt � �Y0t;X0t�0, so that PPPPP � �PPPPP0y PPPPP0x�0, and so on, it is easy to derive the
conditional VECM for Yt :

DYt � PPPPPyZtÿ1 �
Xlÿ1
i�1

CCCCCiDZtÿi � LLLLLDXt � c0 � c1t�Ut t � 1; . . . ;T �4�

where

c0 � ÿPPPPPymmmmm�YYYYYggggg; and c1 � ÿPPPPPyggggg �5�

In model (5), YYYYY is a (p, k) matrix of unknown parameters derived, like the other parameters of
(4), from the parameters of the unconditional model (2). Since et is normally distributed, so is Ut .
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Further, under the assumption of weak exogeneity with respect to PPPPP, which requires PPPPPx � 0,
the data-generating process for Xt takes the VECM form

DXt �
Xlÿ1
i�1

GGGGGxiDZtÿi � mmmmmx0 � Vt t � 1; . . . ;T

where mmmmmx0 � GGGGGxggggg, in which GGGGGx � �O : Ik� ÿ Slÿ1
i�1GGGGGxi, and Vt is a k-vector of error terms that is

multivariate normal with mean vector zero. Therefore, in this framework, the cointegration
analysis is based on the assumption that there are at most p cointegrating vectors and that
rank�PPPPP� � rank�PPPPPy�.

The hypothesis of cointegration can be stated in terms of the conditional long-run impact
matrix PPPPPy, which can be written as

PPPPPy � aaaaabbbbb0 �6�

where aaaaa and bbbbb are respectively (p, r) and (m, r) matrices of full rank. If r � 0, then PPPPPy � 0, and
there exists no linear combination of the elements of Yt that is stationary. At the other extreme, if
rank�PPPPPy� � p, then Yt is a stationary process if k � 0, but will in general be non-stationary if Xt is
I(1). In the intermediate case, when 05 r5 p, there exist r stationary linear combinations of the
elements of Yt , along with mÿ r stochastic trends.

Under the hypothesis (6), di�erent restrictions on c0 and c1 are crucial in determining the
properties of the process Yt and the various cases of interest that can arise. Following PSS, we
consider ®ve submodels of the general model (4), which are ordered from most to least restrictive:

Case I: c0 � 0; c1 � 0

Case II: c0 � ÿPPPPPymmmmm; c1 � 0

Case III: c0 6� 0; c1 � 0

Case IV: c0 6� 0; c1 � ÿPPPPPyggggg

Case V: c0 6� 0; c1 6� 0

In addition to the above restrictions, which are explicitly imposed on the likelihood function in
each case, there are some additional restrictions that are implicitly assumed. First, for cases I, II,
and III, ggggg � 0, and hence mmmmmx0 � 0. If this restriction is violated, then a nuisance parameter
appears in the limit distributions of the two likelihood ratio tests, which makes inference di�cult;
see Theorem 2 in Harbo et al. (1998). Second, ggggg � 0 also implies, via model (5), that c0 � ÿPPPPPymmmmm.
Even though case II fully incorporates this restriction, case III ignores it. Third, the original
model (1), which is maintained throughout the analysis, implies the restriction c1 � ÿPPPPPyggggg.
Although case IV imposes this restriction, case V does not.

Since PSS introduces exogenous I(1) variables into the analysis, the ®ve cases I to V above are
not directly comparable to the ®ve cases 0, 1*, 1, 2*, and 2 in Osterwald-Lenum (1992). However,
in the special case in which k � 0, when there are no exogenous variables in the VAR, cases I, II
and IV of PSS are the same as cases 0, 1, and 2* of Osterwald-Lenum. Cases III and V of PSS,
however, are di�erent from cases 1 and 2 of Osterwald-Lenum, because the former together with
the de®nitions (3) do not allow for a linear and quadratic trend, respectively, in the level of the
process Yt , whereas the latter do allow for them.
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Because of the normality assumption, it is natural to test for the reduced rank ofPPPPPy by using a
likelihood ratio test. The procedure uses the technique of reduced rank regression ®rst introduced
by Anderson (1951) and applied to systems of I(1) variables independently by Johansen (1988)
and Ahn and Reinsel (1990). This technique is appealing because it delivers at once the MLE of aaaaa
and bbbbb and the eigenvalues needed to construct likelihood ratio tests.

PSS shows how this technique can be applied when there are exogenous I(1) variables in the
VAR. Consider the problem of testing the null hypothesis that there are at most r cointegrating
vectors against the unrestricted model (4). The null hypothesis is that rank(PPPPPy� � r, and the
alternative is that rank(PPPPPy� � p. The likelihood ratio test statistic, which is called the Trace
statistic, is

Trace � ÿT
Xp
i�r�1

log�1ÿ li� �7�

where the li are the eigenvalues, ordered from smallest to largest, which arise in the solution of
the reduced rank regression problem. The testing is performed sequentially either for
r � pÿ 1; . . . ; 0 or for r � 0; . . . ; pÿ 1. The testing sequence terminates when the null is
rejected for the ®rst time in the former case or when it is not rejected for the ®rst time in the latter
case. It is also possible to test the null that rank �PPPPPy� � r against the alternative that
rank(PPPPPy� � r� 1. In this case, the likelihood ratio statistic, which is called the lmax statistic, is

lmax � ÿT log�1ÿ lr�1� �8�

Of course, the lmax statistic is equal to the Trace statistic when pÿ r � 1.
The asymptotic distributions of the Trace and lmax statistics are given, respectively, by the trace

and maximal eigenvalue of

Z 1

0

dBpÿrF
0
mÿr

Z 1

0

FmÿrF
0
mÿr du

� �ÿ1Z 1

0

Fmÿr dB
0
pÿr �9�

where u 2 �0; 1�, Bpÿr is a standard (pÿ r)-dimensional Brownian motion on the unit interval,
and Fmÿr contains functions of standard (mÿ r)-dimensional Brownian motions on the unit
interval. The stochastic process Fmÿr depends in addition on the restrictions imposed on the
deterministic component of the VECM (4). De®nitions of Fmÿr for the ®ve cases are provided in
Table I.

3. THE SIMULATION EXPERIMENTS

The simulations used 12 di�erent discrete-time approximations to expression (9), in which the
Brownian motion was replaced by a Gaussian random walk. Let each element of the (mÿ r)-
vector zt follow an independent random walk with N(0, I) innovations, with z0 � 0, where zt is
partitioned into a (pÿ r)-vector yt and a k-vector xt , with k � mÿ p. In expression (9), dBpÿr is
replaced by yt ÿ ytÿ1, and Fmÿr is replaced by Ft , where the latter is obtained by replacing Bmÿr by
ztÿ1 in the various de®nitions of Fmÿr; see Table I. Thus equation (9) is replaced in the
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simulations by

XT
t�1
�yt ÿ ytÿ1�F0t

XT
t�1

FtF
0
t

 !ÿ1XT
t�1

Ft�yt ÿ ytÿ1�0 �10�

where T is the number of steps in the discrete-time approximation. Realizations of the quantities

to which the Trace and lmax statistics tend asymptotically were computed as the trace and

maximum eigenvalue of expression (10) for each of cases I to V.

In order to be able to estimate asymptotic distributions using response surface regressions, we

used 12 di�erent values of T. The approach is similar to the one used byMacKinnon (1994, 1996)

to compute the asymptotic distributions of Dickey±Fuller unit root and cointegration tests. For

every �T; pÿ r� pair, with pÿ r � 1; . . . ; 12, we performed 50 experiments, each with 100,000

replications. We did this because it would have been impossible to keep results for all 5 million

replications in memory at once, and because the observed variation among the 50 experiments

Table I. An overview of the various cases simulated

A. Speci®cations of VAR and VECM

Case Case in O-L

Deterministic component in the levels VAR
Deterministic component in the

VECM: c0 � c1tIntercept t t2

I 0 No No No c0 � 0 c1 � 0
II 1* Rest. No No c0 � ÿPPPPPymmmmm c1 � 0
III Unrest. No No c0 6� 0 c1 � 0
IV 2* Unrest. Rest. No c0 6� 0 c1 � ÿPPPPPyggggg
V Unrest. Unrest. No c0 6� 0 c1 6� 0

1 Unrest. Rest. No c0 6� 0 c1 � 0
2 Unrest. Unrest. Rest. c0 6� 0 c1 6� 0

B. Asymptotic distributions

Case Fmÿr Ft

I Bmÿr�u� ztÿ1
II �B0mÿr�u�; 1�0 �z0tÿ1; 1�0
III ~Bmÿr�u� ~ztÿ1
IV � ~B0mÿr�u�; uÿ 0�5�0 �~z0tÿ1; tÿ 0�5T�0
V B̂mÿr�u� ẑtÿ1

Notes: In Panel A, `Case in O-L' refers to Osterwald-Lenum (1992) with k � 0. In Panel B, Bmÿr�u� is a standard (mÿ r)-
dimensional Brownian motion on the unit interval, and zt is an (mÿ r)-vector that follows a random walk with
innovations that are N(0, I). The following functions of Bmÿr�u� also appear in panel B:

~Bmÿr�u� � Bmÿr�u� ÿ
Z 1

0

Bmÿr�u� du; and

B̂mÿr�u� � ~Bmÿr�u� ÿ 12�uÿ 0�5�
Z 1

0

Bmÿr�u� du

The discrete-time analogues of these are ~ztÿ1, which is ztÿ1 minus its sample mean, and ẑtÿ1, which is ztÿ1 minus the ®tted
values obtained by regressing it on a constant and t.
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provided an easy way to measure experimental randomness. For each (T; pÿ r) pair, results for
all values of k � 0; . . . ; 8 were computed simultaneously.

This approach made it convenient to divide the experiments among several computers. The
experiments were performed on 10 di�erent computers, half of them IBM RS/6000 machines
running AIX, and half of them 200 MHz Pentium Pro machines running Linux, over a period of
several months. They would have required about two years of CPU time on a single Pentium Pro
machine. Because it would have been impractical to store all the simulated test statistics, 221
quantiles were estimated and stored for each experiment. These quantiles were: 0.0001, 0.0002,
0.0005, 0.001, . . . , 0.010, 0.015, . . . , 0.985, 0.990, 0.991, . . . , 0.999, 0.9995, 0.9998, 0.9999. The
221 quantiles provide more than enough information about the shapes of the cumulative
distribution functions of the various test statistics.

Because so many random numbers were used, it was important to use a pseudo-random
number generator with a very long period. The generator employed was also used in MacKinnon
(1994, 1996). It combines two di�erent uniform pseudo-random number generators recom-
mended by L'Ecuyer (1988). The two generators were started with di�erent seeds and allowed to
run independently, so that two independent uniform pseudo-random numbers were generated at
once. The procedure of Marsaglia and Bray (1964) was then used to transform them into two
N(0,1) pseudo-random variates.

The estimated ®nite-sample quantiles from the simulation experiments were used to estimate
response surface regressions, one for each of the 221 asymptotic quantiles used to describe each
asymptotic distribution. Consider the estimation of the a quantile for some test statistic. Let
qa�Ti� denote the estimate of that quantile based on the ith experiment, for which the sample size
is Ti . Then the response surface regressions have the form

q
a�Ti� � ya1 � ya1T

ÿ1
i � ya2T

ÿ2
i � ya3T

ÿ3
i � "i �11�

The ®rst parameter here, ya1, is the a quantile of the asymptotic distribution, which is what we are
trying to estimate. The other three parameters allow the ®nite-sample distributions to di�er from
the asymptotic ones.

Based on preliminary experiments and the experience obtained in earlier work, we used the
following 12 sample sizes: 80, 90, 100, 120, 150, 200, 400, 500, 600, 800, 1000, 1200. It is obvious
that it is desirable for there to be some large values of Ti . What may be less obvious is that it is
also desirable for there to be several small values of Ti , because the smaller is the smallest value of
Ti , the more trouble the other regressors in equation (11) have explaining the constant term, and
thus the smaller is the standard error of ya1. However, none of the Ti 's should be too small,
because then equation (11) may not ®t satisfactorily; it is, after all, just an approximation.
Computation costs, of course, increase as Ti increases.

Equation (11) was estimated 221 times for each of 1035 di�erent test statistics; there are 1035,
rather than 1080 � 5� 2� 12� 9, because the Trace and lmax statistics are the same when
pÿ r � 1. Each estimation normally used 600 observations. However, in a few cases when
pÿ r� k was large, it was necessary to drop the observations corresponding to one or more of
the smallest values of Ti .

As in MacKinnon (1996), we employed a form of GMM estimation to allow for the fact that
the error terms of equation (11) are heteroscedastic. Let qa denote the regressand, yyyyy the vector of
coe�cients, and V the matrix of regressors in equation (11). Further, let OOOOO denote the covariance
matrix of the error terms. This matrix is diagonal, because all the experiments are independent.
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The estimator we used was

ŷyyyy � �V0W�W0ÔOOOOW�ÿ1W0V�ÿ1V0W�W0ÔOOOOW�ÿ1W0qa �12�

whereW is a matrix of up to 12 zero-one dummy variables, the ®rst equal to 1 when Ti � 80, the
second equal to 1 when Ti � 90, and so on. The matrix ÔOOOO was obtained by ®rst running an OLS
regression of qa onW and then regressing the squared residuals on a constant, 1/T, and 1/T2. The
®tted values from this auxiliary regression were then used as the diagonal elements of ÔOOOO.

This GMM estimation procedure automatically generates a statistic for testing the
speci®cation of the response surface equation (11). The test statistic is the minimized value of
the criterion function,

�qa ÿ Vyyyyy�0W�W0ÔOOOOW�ÿ1W0�qa ÿ Vyyyyy� �13�

Standard results about GMM estimation imply that, under the null hypothesis that equation (11)
is a correct speci®cation, equation (13) is asymptotically distributed as w2(d), where d is equal to
the number of distinct Ti 's (which may be 12 or less) minus the number of parameters in equation
(11).

The GMM test statistic (13) played a key role in the speci®cation of the response surfaces. In
order to avoid discontinuities caused by changes in functional form, the same response surface
regression was estimated for every one of the 221 quantiles for a given distribution. The average
value of the 221 test statistics was used to decide whether to set ya3 � 0 in equation (11) and, in a
few cases, to determine how many small values of Ti to drop. Since the objective was to obtain
e�cient estimates of ya1, it was desirable to set ya3 � 0, if possible. On average, for a correctly
speci®ed response surface, reducing the number of distinct Ti 's by 1, or dropping the constraint
that ya3 � 0 in equation (11), would be expected to reduce the value of expression (13) by 1.0,
because the mean of a random variable with a w2(d) distribution is d. In most cases, we chose to
reject a model when such a change reduced the value of (13) by more than 2.5. The ®t of the
response surface regressions tended to deteriorate as either pÿ r or k increased. For small values
of pÿ r� k, the restriction that ya3 � 0 was almost always compatible with the data. Only for a
few large values of pÿ r� k was it ever necessary to drop observations corresponding to one or
more of the smallest values of Ti .

The simulations described above are not the only ones we performed. In preliminary work, we
also performed simulations for cases 0, 1, 1*, 2, and 2* of Osterwald-Lenum (1992). For these
simulations, the actual values of the test statistics were calculated instead of asymptotic
approximations, di�erent values of the Ti were used, and the details of how equation (11) was
estimated were not quite the same. The two sets of simulations yielded almost identical results for
cases that are comparable, but the earlier ones provide the only results we have for cases 1 and 2.

4. NUMERICAL DISTRIBUTIONS

The principal results of this paper are 228,735 ( � 221� 1035) estimates of ya1. These estimates,
which are very much more accurate than any published previously, allow us to construct tables of
asymptotic critical values directly. In addition, as we will discuss in the next section, they allow us
to obtain asymptotic P-values for any observed test statistic.
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Tables II±VI present asymptotic critical values at the 5% level for all the tests we examined.

These critical values di�er substantially from those previously published by Johansen and

Juselius (1990), Osterwald-Lenum (1992), Johansen (1995), and PSS, especially when pÿ r is

large. There appear to be two reasons for this. First, we used more replications than did the

earlier authors; Johansen and Juselius (1990) and Osterwald-Lenum (1992) each used 6000,

Johansen (1995) used 100,000, and PSS used 10,000. Our critical values therefore su�er from

much less experimental error. Second, the estimates of ya1 from equation (11) really are estimates

of the quantiles of an asymptotic distribution, while the values previously published by others are

merely approximations based on a discrete random walk with a ®nite number of steps, either

T � 400 or T � 500.

It appears that approximations based on ®nite T are simply not very accurate, especially when

pÿ r is large. As an example, for case II with pÿ r � 12 and k � 0, which is the same as case 1*

with pÿ r � 12, Table III reports a 5% critical value of 348.98 for the Trace test. In contrast,

Johansen (1995) reports a critical value of 338.10, and PSS reports a critical value of 341.2. The

discrepancies between these numbers are mainly due to the fact that neither Johansen nor PSS

actually computed asymptotic critical values. Instead, Johansen used a discrete approximation

Table II. Five per cent critical values for case I

pÿ r / k 0 1 2 3 4 5 6 7 8

1 4.13 8.11 11.37 14.36 17.20 19.95 22.63 25.26 27.84
4.13 8.11 11.37 14.36 17.20 19.95 22.63 25.26 27.84

2 11.23 14.96 18.33 21.49 24.53 27.47 30.35 33.16 35.92
12.32 18.25 23.72 28.95 34.03 39.01 43.91 48.75 53.53

3 17.80 21.43 24.83 28.08 31.21 34.27 37.23 40.16 43.05
24.28 32.20 39.79 47.16 54.39 61.53 68.57 75.54 82.47

4 24.16 27.76 31.18 34.46 37.66 40.77 43.81 46.82 49.78
40.17 50.12 59.77 69.23 78.57 87.79 96.96 106.07 115.08

5 30.42 33.99 37.41 40.73 43.96 47.10 50.22 53.27 56.28
60.06 71.98 83.69 95.22 106.62 117.92 129.16 140.35 151.49

6 36.61 40.16 43.59 46.93 50.18 53.39 56.54 59.63 62.67
83.94 97.86 111.59 125.18 138.63 152.00 165.30 178.54 191.72

7 42.76 46.29 49.75 53.09 56.37 59.60 62.76 65.88 68.96
111.79 127.73 143.49 159.12 174.65 190.08 205.43 220.74 235.98

8 48.87 52.40 55.83 59.19 62.50 65.73 68.92 72.07 75.18
143.64 161.59 179.33 196.99 214.58 232.03 249.43 266.76 284.02

9 54.97 58.49 61.92 65.31 68.62 71.88 75.09 78.27 81.39
179.48 199.41 219.24 238.91 258.51 278.02 297.44 316.80 336.12

10 61.04 64.54 67.98 71.36 74.68 77.95 81.18 84.38 87.54
219.38 241.31 263.12 284.82 306.43 327.96 349.42 370.84 392.22

11 67.06 70.58 74.02 77.42 80.74 84.02 87.26 90.47 93.65
263.25 287.20 310.97 334.69 358.33 381.86 405.37 428.79 452.16

12 73.10 76.60 80.04 83.41 86.76 90.06 93.34 96.56 99.77
311.09 336.98 362.81 388.56 414.19 439.77 465.29 490.71 516.16

Note: The top entry in each cell is the 5% critical value for lmax , and the bottom entry is the 5% critical value for Trace.
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with T � 400, and PSS used one with T � 500. The averages of our experimental results for

T � 400 and T � 500 were 338.00 and 340.12, respectively, which are quite close to the numbers

reported by Johansen and PSS. These results demonstrate clearly that, if one wishes to obtain

accurate asymptotic critical values, one must use a response surface analysis.

There are good reasons to believe that our estimated asymptotic distributions are extremely

accurate. The estimates of ya1 have standard errors associated with them, and, except for the

extreme tail quantiles, these are all very small. For example, for the 5% critical value, the

estimated standard errors range from 0.0023 to 0.0433, with the larger standard errors being

associated with the larger values of pÿ r and k. Of course, because of the pretesting involved in

choosing which version of equation (11) to estimate, the estimated standard errors may be rather

too optimistic.

In at least one special case, it is possible to compare our estimates with outside benchmarks.

When pÿ r � 1 and k � 0, the distribution of both test statistics for case I (or case 0) is that of

the square of the corresponding Dickey±Fuller test. Table VII therefore compares our critical

values for this special case with ones reported by Nielsen (1997) based on the analytic formulae of

Table III. Five per cent critical values for case II

pÿ r / k 0 1 2 3 4 5 6 7 8

1 9.17 12.34 15.28 18.10 20.84 23.51 26.14 28.71 31.27
9.17 12.34 15.28 18.10 20.84 23.51 26.14 28.71 31.27

2 15.88 19.21 22.35 25.38 28.31 31.18 34.00 36.76 39.48
20.25 25.64 30.82 35.89 40.85 45.74 50.57 55.35 60.09

3 22.30 25.68 28.91 32.04 35.09 38.07 40.98 43.87 46.71
35.19 42.70 50.03 57.23 64.33 71.38 78.33 85.26 92.14

4 28.58 31.99 35.27 38.46 41.57 44.63 47.63 50.58 53.49
54.09 63.66 73.08 82.38 91.59 100.71 109.82 118.85 127.83

5 34.80 38.22 41.53 44.75 47.90 51.02 54.07 57.08 60.05
76.96 88.59 100.08 111.46 122.74 133.95 145.12 156.24 167.31

6 40.95 44.37 47.70 50.97 54.17 57.32 60.42 63.46 66.46
103.84 117.49 131.02 144.45 157.80 171.08 184.31 197.49 210.58

7 47.06 50.51 53.87 57.14 60.36 63.54 66.65 69.72 72.78
134.70 150.40 165.98 181.47 196.89 212.21 227.51 242.73 257.90

8 53.15 56.59 59.95 63.25 66.51 69.69 72.85 75.97 79.04
169.54 187.29 204.90 222.41 239.87 257.24 274.56 291.82 309.04

9 59.26 62.69 66.06 69.38 72.65 75.86 79.04 82.18 85.27
208.41 228.13 247.79 267.34 286.84 306.26 325.59 344.90 364.15

10 65.30 68.73 72.12 75.43 78.71 81.95 85.15 88.31 91.44
251.31 273.05 294.71 316.26 337.80 359.23 380.63 401.96 423.27

11 71.33 74.76 78.16 81.50 84.77 88.01 91.23 94.41 97.55
298.16 321.92 345.56 369.16 392.69 416.14 439.57 462.93 486.27

12 77.35 80.79 84.19 87.52 90.82 94.09 97.31 100.51 103.69
348.98 374.70 400.43 426.05 451.62 477.11 502.57 527.96 553.33

Note: The top entry in each cell is the 5% critical value for lmax , and the bottom entry is the 5% critical value for Trace.
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Abadir (1995). It is clear from the table that our estimates are very accurate in this case, much

more accurate than those of Osterwald-Lenum (1992), Johansen (1995), and PSS.

No benchmarks are available for most of our estimates. We have tried to verify that equation

(11) is accurate even for values of T much larger than the ones we actually used by performing a

(very expensive) set of simulations for the case T � 5000, pÿ r � 12, k � 0. When equation (11)

was re-estimated for this case using these additional simulation results, the GMM test statistics

(13) rose only modestly, and the estimated asymptotic distributions did not change appreciably.

This is precisely what we would expect to observe if equation (11) is correctly speci®ed.

5. LOCAL APPROXIMATIONS

The response surface coe�cient estimates obtained in Section 3 may be used to obtain

approximate P-values as well as approximate critical values. A program which does both is

available via the Internet; see the Appendix.

Table IV. Five per cent critical values for case III

pÿ r / k 0 1 2 3 4 5 6 7 8

1 8.19 11.42 14.39 17.23 19.97 22.64 25.27 27.85 30.39
8.19 11.42 14.39 17.23 19.97 22.64 25.27 27.85 30.39

2 15.02 18.36 21.52 24.54 27.48 30.35 33.17 35.93 38.65
18.11 23.62 28.88 33.98 38.95 43.87 48.72 53.50 58.24

3 21.49 24.87 28.11 31.24 34.29 37.27 40.17 43.06 45.90
31.88 39.56 46.99 54.27 61.41 68.48 75.46 82.39 89.30

4 27.80 31.20 34.49 37.67 40.78 43.83 46.84 49.78 52.68
49.64 59.42 68.97 78.34 87.61 96.78 105.91 114.97 123.95

5 34.03 37.44 40.75 43.98 47.13 50.24 53.29 56.30 59.27
71.44 83.26 94.89 106.36 117.71 128.97 140.19 151.33 162.40

6 40.19 43.61 46.94 50.20 53.40 56.55 59.65 62.69 65.69
97.26 111.11 124.77 138.30 151.72 165.06 178.33 191.53 204.67

7 46.31 49.75 53.11 56.38 59.60 62.77 65.88 68.96 72.00
127.05 142.93 158.66 174.26 189.75 205.15 220.48 235.73 250.95

8 52.41 55.84 59.20 62.50 65.75 68.93 72.09 75.21 78.28
160.87 178.80 196.54 214.15 231.70 249.12 266.49 283.80 301.05

9 58.51 61.94 65.31 68.63 71.89 75.10 78.28 81.42 84.51
198.72 218.63 238.41 258.04 277.62 297.11 316.49 335.85 355.14

10 64.56 67.99 71.37 74.69 77.97 81.20 84.39 87.56 90.69
240.58 262.48 284.26 305.92 327.53 349.05 370.49 391.89 413.22

11 70.59 74.03 77.41 80.75 84.03 87.27 90.47 93.65 96.80
286.39 310.33 334.09 357.78 381.40 404.93 428.42 451.82 475.15

12 76.61 80.06 83.45 86.78 90.08 93.34 96.57 99.76 102.94
336.22 362.07 387.90 413.63 439.30 464.86 490.33 515.77 541.21

Note The top entry in each cell is the 5% critical value for lmax , and the bottom entry is the 5% critical value for Trace.
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In order to obtain a P-value for any test statistic or a critical value for any desired test size,
some procedure for interpolating between the 221 tabulated values is needed. Many such
procedures could be devised, but the one we used, which was proposed by MacKinnon (1996), is
appealing and seems to work well. First, consider the regression

Fÿ1�a� � g0 � g1q̂�a� � g2q̂
2�a� � g3q̂

3�a� � ea �14�

where Fÿ1�a� is the inverse of the cumulative standard normal distribution function, evaluated at
a. It may seem a bit odd that the regressors in (14) are stochastic and the regressand is not.
However, because the estimated quantiles are very accurate, the errors in variables bias that this
induces is trivially small; see MacKinnon (1994). If the distribution from which the estimated
quantiles were obtained were in fact normal with any mean and variance, regression (14) would
be correctly speci®ed with g2 � g3 � 0. Since that is not the case here, this regression can only be
valid as an approximation. Therefore, we estimate it using only a small number of points in the
neighbourhood of the observed test statistic, say t. After (14) has been estimated, the estimated P-
value associated with t is given by P̂ � F�ĝ0 � ĝ1t� ĝ2t

2 � ĝ3t
3�.

Table V. Five per cent critical values for case IV

pÿ r / k 0 1 2 3 4 5 6 7 8

1 12.52 15.46 18.26 20.98 23.63 26.24 28.81 31.35 33.87
12.52 15.46 18.26 20.98 23.63 26.24 28.81 31.35 33.87

2 19.38 22.50 25.50 28.43 31.28 34.09 36.84 39.56 42.24
25.86 31.05 36.09 41.03 45.90 50.72 55.50 60.22 64.91

3 25.83 29.04 32.15 35.19 38.15 41.08 43.94 46.77 49.56
42.92 50.25 57.45 64.54 71.56 78.52 85.44 92.29 99.12

4 32.12 35.38 38.55 41.66 44.71 47.70 50.64 53.55 56.42
63.87 73.31 82.62 91.81 100.96 110.03 119.03 128.00 136.94

5 38.32 41.62 44.84 47.99 51.10 54.14 57.13 60.10 63.03
88.79 100.29 111.69 122.96 134.16 145.30 156.44 167.47 178.46

6 44.47 47.79 51.06 54.24 57.38 60.47 63.52 66.53 69.50
117.69 131.23 144.66 158.01 171.33 184.53 197.70 210.80 223.88

7 50.58 53.94 57.21 60.44 63.61 66.72 69.79 72.82 75.85
150.55 166.15 181.67 197.07 212.39 227.68 242.90 258.09 273.21

8 56.68 60.03 63.33 66.57 69.76 72.89 76.00 79.08 82.12
187.44 205.08 222.61 240.05 257.43 274.77 292.03 309.24 326.43

9 62.75 66.11 69.43 72.69 75.91 79.08 82.21 85.31 88.39
228.32 247.96 267.54 287.03 306.47 325.83 345.11 364.38 383.59

10 68.81 72.17 75.50 78.77 82.00 85.18 88.34 91.47 94.57
273.20 294.87 316.45 337.95 359.40 380.79 402.18 423.48 444.75

11 74.83 78.21 81.54 84.82 88.07 91.27 94.43 97.61 100.73
322.03 345.74 369.31 392.86 416.35 439.78 463.15 486.46 509.74

12 80.84 84.23 87.57 90.87 94.13 97.36 100.54 103.70 106.84
374.84 400.54 426.17 451.78 477.28 502.72 528.13 553.48 578.84

Note: The top entry in each cell is the 5% critical value for lmax , and the bottom entry is the 5% critical value for Trace.
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If we are interested in obtaining approximate critical values, equation (14) has to be turned
around. Consider the regression

q̂�a� � d0 � d1F
ÿ1�a� � d2�Fÿ1�a��2 � d3�Fÿ1�a��3 � e

�
a �15�

This is not actually the inverse of equation (14). However, if the distribution from which the
estimated quantiles were obtained were in fact normal with any mean and variance, equation (15)
would be correctly speci®ed with d2 � d3 � 0. In that case, equation (14) would have
g2 � g3 � 0, and (15) would be the inverse of (14).

Regressions (14) and (15) could be estimated by OLS, but this would ignore both
heteroscedasticity and serial correlation. In MacKinnon (1996), it is shown how to take both
of these into account. Therefore, when estimating these equations, our program actually uses the
form of feasible GLS estimation proposed in that paper. As discussed above, equations (14) and
(15) are to be ®tted only to a small number of points near the speci®ed test statistic or test size.
Experimentation suggests that 11 points is a good number to use. Also, in many cases, it is
possible to set g3 or d3 equal to zero on the basis of a t-test.

Table VI. Five per cent critical values for case V

pÿ r / k 0 1 2 3 4 5 6 7 8

1 11.64 14.59 17.39 20.11 22.76 25.37 27.94 30.48 33.00
11.64 14.59 17.39 20.11 22.76 25.37 27.94 30.48 33.00

2 18.55 21.67 24.68 27.60 30.46 33.26 36.01 38.73 41.41
23.94 29.16 34.22 39.18 44.06 48.88 53.67 58.38 63.08

3 25.03 28.24 31.35 34.38 37.35 40.28 43.14 45.95 48.75
39.92 47.31 54.54 61.66 68.70 75.67 82.58 89.47 96.29

4 31.34 34.60 37.77 40.87 43.92 46.90 49.85 52.76 55.63
59.79 69.31 78.66 87.90 97.08 106.17 115.19 124.17 133.11

5 37.55 40.85 44.06 47.21 50.32 53.35 56.35 59.32 62.24
83.63 95.22 106.67 118.00 129.23 140.42 151.55 162.61 173.62

6 43.71 47.03 50.30 53.48 56.62 59.70 62.74 65.75 68.72
111.45 125.10 138.59 151.99 165.35 178.59 191.77 204.91 218.01

7 49.83 53.18 56.46 59.68 62.84 65.95 69.02 72.06 75.07
143.29 158.97 174.54 190.02 205.39 220.69 235.96 251.16 266.30

8 55.92 59.29 62.57 65.81 69.00 72.13 75.24 78.32 81.35
179.08 196.84 214.44 231.94 249.37 266.76 284.06 301.28 318.52

9 62.01 65.36 68.67 71.93 75.15 78.33 81.45 84.55 87.62
218.91 238.67 258.33 277.87 297.37 316.78 336.09 355.39 374.62

10 68.07 71.43 74.75 78.02 81.24 84.42 87.58 90.71 93.82
262.76 284.53 306.19 327.78 349.27 370.73 392.13 413.46 434.75

11 74.10 77.48 80.80 84.08 87.32 90.52 93.69 96.86 99.97
310.55 334.34 358.00 381.62 405.17 428.64 452.06 475.41 498.75

12 80.11 83.49 86.83 90.13 93.38 96.61 99.80 102.95 106.09
362.35 388.15 413.85 439.51 465.09 490.59 516.06 541.43 566.80

Note: The top entry in each cell is the 5% critical value fo lmax , and the bottom entry is the 5% critical value for Trace.
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6. CONCLUSION

In this paper, we have used computer simulation and response surface estimation to obtain
excellent approximations to the asymptotic distributions of the Trace and lmax tests for VECM
systems with up to 12 variables and from 0 to 8 structurally exogenous I(1) variables. Although
the paper contains tables of critical values, which are far more accurate than those previously
available, the principal results are tables of estimated asymptotic quantiles, in machine-readable
form, along with a computer program that uses these to calculate critical values and P-values.
Both of these are available via the Internet.

APPENDIX

The tables of asymptotic quantiles from the response surface regressions and the associated
computer programs may be obtained from the Journal of Applied Econometrics Data Archive:

http://www.econ.queensu.ca/jae/

In addition to zipped ®les that contain the estimated quantiles of the asymptotic distribution
functions, the archive contains the Fortran source ®les lrcdist.f, lrcrouts.f, and
johrouts.f, along with a compiled version of lrcdist for personal computers (486DX or
later) running DOS, Windows, or OS/2. Detailed instructions are provided in the readme ®le.
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