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SUMMARY

This paper employs response surface regressions based on simulation experiments to calculate asymptotic
distribution functions for the Johansen-type likelihood ratio tests for cointegration. These are carried out in
the context of the models recently proposed by Pesaran, Shin, and Smith (1997) that allow for the possibility
of exogenous variables integrated of order one. The paper calculates critical values that are very much more
accurate than those available previously. The principal contributions of the paper are a set of data files that
contain estimated asymptotic quantiles obtained from response surface estimation and a computer program
for utilizing them. This program, which is freely available via the Internet, can be used to calculate both
asymptotic critical values and P-values. Copyright © 1999 John Wiley & Sons, Ltd.

1. INTRODUCTION

Since the influential work of Engle and Granger (1987), several procedures have been proposed
for testing the null hypothesis that two or more non-stationary time series are not cointegrated,
meaning that there exist no linear combinations of the series that are stationary. One approach is
to use likelihood ratio tests based on estimating a vector autoregression. This approach was first
proposed by Johansen (1988) and refined further by Johansen and Juselius (1990) and Johansen
(1991, 1992, 1994). There are two different test statistics, which are called the Trace and A
statistics.

Johansen’s approach, which has been used extensively in applied work, provides a unified
framework for estimation and testing in the context of a multivariate vector autoregressive model
in error correction form (VECM) with normal errors. The normality assumption allows a neat
application of maximum likelihood theory, which produces both the test statistics and the
maximum likelihood estimators (MLE) of the parameters of interest. Phillips (1991) noted
several desirable properties of the MLE for this model and demonstrated that asymptotically
optimal inferences can be based on the MLE of the cointegrating vectors. Gonzalo (1994) showed
that these properties hold in finite samples even without the normality assumption. Haug (1996),
among others, has provided Monte Carlo evidence that the Trace and 4, statistics generally
have reasonable size and power properties. Just how accurate they are will depend on the sample
size, the number of lags in the vector autoregression, and the data-generating process; see Cheung
and Lai (1993).
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564 J. G. MACKINNON ET AL.

In the literature, tables of critical values have been computed by simulating the expressions to
which the two tests converge asymptotically for five cases (models) of interest; see, in particular,
Osterwald-Lenum (1992) and Johansen (1995). Recently, Pesaran, Shin, and Smith (1997),
henceforth PSS, has extended the analysis in two ways. PSS includes exogenous I(1) variables in
the VECM, and it modifies some of the models so as to make their trending behaviour invariant
with respect to the cointegration rank of the whole system. Section 2 provides a comparison of the
PSS framework of analysis with that of Johansen (1995).

A major problem with the studies just cited is that their results are not very accurate. There are
two reasons for this. First, they employ experiments with no more than 100,000 replications, and
sometimes as few as 6000. These are not large numbers for the estimation of tail quantiles.
Second, all of them simulate the asymptotic quantities to which the two tests converge by using a
discrete approximation with either 400 or 500 steps, instead of using response surfaces.

In this paper, we obtain extremely accurate critical values and marginal significance levels, or
P-values, for the Trace and A, tests in the context of the PSS framework of analysis. This is
done by adopting the response surface approach of MacKinnon (1994, 1996). To facilitate
comparisons with the PSS results, the five different models considered in that paper are analysed
for up to 12-dimensional systems with between 0 and 8 exogenous variables. The basic idea is to
estimate a large number of quantiles of the distributions of the test statistics, for a number of
different sample sizes, by means of Monte Carlo experiments. Response surface regressions, in
which the estimated quantiles are regressed on negative powers of the sample size, are then used
to estimate the quantiles of the asymptotic distribution. Some of the estimated quantiles from the
response surface regressions directly provide asymptotic critical values. The quantiles can also be
used as input to a computer program which can calculate the asymptotic P-value for any test
statistic.

Both the tables of estimated asymptotic quantiles and a computer program called 1rcdist that
uses them are available via the Internet; for details, see the Appendix. The 1rcdist program is
run interactively and prompts the user for input. For those who wish to compute large numbers
of critical values or P-values, two sets of routines, called johrouts.f and 1rcdists.f, are also
provided. These users simply need to write their own main program to call the appropriate
routine, which in turn reads the appropriate files and calls other routines to do the calculations.

The rest of the paper is organized as follows. Section 2 discusses the five models and the two
likelihood ratio tests for cointegration. Section 3 discusses the simulation experiments and the
response surface regressions. Section 4 presents a very small subset of our results in tabular form
and explains why they are more accurate than previous results. Section 5 discusses how P-values
and critical values may be calculated using the response surface estimates.

2. THE MODELS AND TEST STATISTICS

The maximum likelihood theory of systems of potentially cointegrated stochastic variables
presupposes that the variables are integrated of order one, or I(1), and that the data-generating
process is a Gaussian vector autoregressive model of finite order /, or VAR(/), possibly including
some deterministic components. If Z, denotes an m-dimensional column vector of I(1) variables,
the VAR(/) model can be written as

D(L)Z, — p— 1) =, (1)

Copyright © 1999 John Wiley & Sons, Ltd. J. Appl. Econ. 14: 563-577 (1999)



DISTRIBUTION FUNCTIONS FOR COINTEGRATION TESTS 565

Here ®(L) is an (m, m) matrix polynomial of order / in the lag operator L, u and y are m-vectors
of unknown coefficients, and e, is an m-vector of unknown error terms assumed to be NID(0, Q),
with Q positive definite. It is convenient to express equation (1) in the VECM form

-1
AZ,=MZ_ +Y TAZ_+py+pite (=1,....T )

i=1

where IT and the T'; are (m, m) matrices of coefficients, and p, and u, are, respectively, m-vectors
of constant and trend coefficients defined by

po=-Mp+ T +1Iy, and p =-Ily 3)

withT =1, —=ZIT,.

The VECM representation (2) is convenient, because the hypothesis of cointegration can be
stated in terms of the rank of the long-run impact matrix, II. In the existing literature,
multivariate cointegration has been analysed in the context of five different models corresponding
to specific restrictions on the vector parameters p, and p; see the five models in Johansen (1995)
or, equivalently, the five cases in Osterwald-Lenum (1992).

The PSS paper departs from the existing literature in two important ways. First, it allows for
the effects of exogenous I(1) variables on the distribution of the likelihood ratio tests for
cointegration; see also Harbo et al. (1998). Second, it incorporates explicitly the restrictions (3)
into the analysis and accounts for their effects on the properties of the process Z, and the null
distributions of the Trace and 4, tests. In particular, restricting y, to lie in the range space of IT
eliminates the quadratic trend in the level of the process Z, that one obtains without the
restriction; see, for instance, Johansen (1994). This is desirable, because it makes the trending
behaviour of Z, independent of the cointegration rank of the system. Otherwise, the number of
independent quadratic deterministic trends in Z, decreases as the cointegration rank of the system
increases.

To describe briefly the models and test statistics that arise in the PSS framework, let Z, be
partitioned into a p-vector Y, and a k-vector X, where k = m — p, and X, is assumed to be weakly
exogenous with respect to II. Partitioning the parameters and the error term e, of model (2)
conformably with Z, = (Y), X)), so that II = (l'[;_ IT'), and so on, it is easy to derive the
conditional VECM for Y,:

/-1
AY,=ILZ,_ +> WAZ_,+AAX,+¢,+ci+U, 1=1,....T 4)
i=1
where

¢=-IIp+Oy, and ¢, =-Iy ®)

In model (5), ® is a (p, k) matrix of unknown parameters derived, like the other parameters of
(4), from the parameters of the unconditional model (2). Since e, is normally distributed, so is U, .
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566 J. G. MACKINNON ET AL.

Further, under the assumption of weak exogeneity with respect to II, which requires IT, =0,
the data-generating process for X, takes the VECM form

/-1
AX,=> T AZ _+p,+V, t=1,...T

i=1

where g, =Ty, in which T =[O0 : 1] - Zﬁ;%l"xi, and V, is a k-vector of error terms that is
multivariate normal with mean vector zero. Therefore, in this framework, the cointegration
analysis is based on the assumption that there are at most p cointegrating vectors and that
rank(II) = rank(II).

The hypothesis of cointegration can be stated in terms of the conditional long-run impact
matrix IT, which can be written as

I =af (6)

where a and B are respectively (p, r) and (m, r) matrices of full rank. If » = 0, then IT, = 0, and
there exists no linear combination of the elements of Y, that is stationary. At the other extreme, if
rank(l'ly) = p, then Y, is a stationary process if k = 0, but will in general be non-stationary if X, is
I(1). In the intermediate case, when 0 < r < p, there exist r stationary linear combinations of the
elements of Y,, along with m — r stochastic trends.

Under the hypothesis (6), different restrictions on ¢, and ¢, are crucial in determining the
properties of the process Y, and the various cases of interest that can arise. Following PSS, we
consider five submodels of the general model (4), which are ordered from most to least restrictive:

CaseL:¢y=0, ¢, =0
Case II: ¢, = —l'[yu, ¢, =0
Case lll: ¢, #0, ¢, =0
Case IV: ¢y #0, ¢, =—-ILy
Case Vic, #0, ¢, #0

In addition to the above restrictions, which are explicitly imposed on the likelihood function in
each case, there are some additional restrictions that are implicitly assumed. First, for cases I, II,
and III, y =0, and hence p,, = 0. If this restriction is violated, then a nuisance parameter
appears in the limit distributions of the two likelihood ratio tests, which makes inference difficult;
see Theorem 2 in Harbo ez al. (1998). Second, y = 0 also implies, via model (5), that ¢, = —IT pu.
Even though case II fully incorporates this restriction, case III ignores it. Third, the original
model (1), which is maintained throughout the analysis, implies the restriction ¢, = -1 y.
Although case IV imposes this restriction, case V does not.

Since PSS introduces exogenous I(1) variables into the analysis, the five cases I to V above are
not directly comparable to the five cases 0, 1*, 1, 2*, and 2 in Osterwald-Lenum (1992). However,
in the special case in which & = 0, when there are no exogenous variables in the VAR, cases I, II
and IV of PSS are the same as cases 0, 1, and 2* of Osterwald-Lenum. Cases III and V of PSS,
however, are different from cases 1 and 2 of Osterwald-Lenum, because the former together with
the definitions (3) do not allow for a linear and quadratic trend, respectively, in the level of the
process Y,, whereas the latter do allow for them.

Copyright © 1999 John Wiley & Sons, Ltd. J. Appl. Econ. 14: 563-577 (1999)
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Because of the normality assumption, it is natural to test for the reduced rank of l'Iy by using a
likelihood ratio test. The procedure uses the technique of reduced rank regression first introduced
by Anderson (1951) and applied to systems of I(1) variables independently by Johansen (1988)
and Ahn and Reinsel (1990). This technique is appealing because it delivers at once the MLE of a
and B and the eigenvalues needed to construct likelihood ratio tests.

PSS shows how this technique can be applied when there are exogenous I(1) variables in the
VAR. Consider the problem of testing the null hypothesis that there are at most r cointegrating
vectors against the unrestricted model (4). The null hypothesis is that rank(Il,) = r, and the
alternative is that rank(l'[y) = p. The likelihood ratio test statistic, which is called the Trace
statistic, 18

p
Trace = —T Z log(1 — 4, (7)
i=r+1

where the A, are the eigenvalues, ordered from smallest to largest, which arise in the solution of
the reduced rank regression problem. The testing is performed sequentially either for
r=p—1,...,0 or for r=0,...,p—1. The testing sequence terminates when the null is
rejected for the first time in the former case or when it is not rejected for the first time in the latter
case. It is also possible to test the null that rank (IT,)) =r against the alternative that
rank(l'[y) =r+ 1. In this case, the likelihood ratio statistic, which is called the /4, statistic, is
imax =-T lOg(l - /Ir-H) (8)

Of course, the 2, statistic is equal to the Trace statistic when p —r = 1.

The asymptotic distributions of the Trace and 4, statistics are given, respectively, by the trace
and maximal eigenvalue of

1 1
/ dBp—rF:n—r </ Fm—rF:M—r du)
0 0

where u € [0, 1], Bp_,, is a standard (p — r)-dimensional Brownian motion on the unit interval,
and F,_, contains functions of standard (m — r)-dimensional Brownian motions on the unit
interval. The stochastic process F, _, depends in addition on the restrictions imposed on the
deterministic component of the VECM (4). Definitions of F, _, for the five cases are provided in

Table 1.

-1

1
/ Fm—r dB//J—r (9)
0

3. THE SIMULATION EXPERIMENTS

The simulations used 12 different discrete-time approximations to expression (9), in which the
Brownian motion was replaced by a Gaussian random walk. Let each element of the (m — r)-
vector z, follow an independent random walk with N(0, I) innovations, with z;, = 0, where z, is
partitioned into a (p — r)-vector y, and a k-vector x,, with k = m — p. In expression (9), dBIH, is
replaced by y, —y,_;,and F,_isreplaced by F,, where the latter is obtained by replacing B,,_, by
z,, in the various definitions of F,_ ; see Table I. Thus equation (9) is replaced in the

m—r?
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Table 1. An overview of the various cases simulated

A. Specifications of VAR and VECM

Deterministic component in the levels VAR

Deterministic component in the

Case Case in O-L Intercept t 2 VECM: ¢, + ¢t
1 0 No No No ¢, =0 ¢, =0
I 1* Rest. No No ¢, =-Ip ¢ =0
111 Unrest. No No g #0 ¢, =0
v 2% Unrest. Rest. No ¢, #0 ¢, =-ILy
\Y Unrest. Unrest. No ¢, #0 ¢, #0
1 Unrest. Rest. No ¢, #0 ¢ =0
Unrest. Unrest. Rest. ¢, #0 ¢, #0

B. Asymptotic distributions

Case F,_, F,

1 Bmfr(u) Z,_ |

11 B, @), 1] [z,_,, 17
111 _ B, () Z,,

v B, (u), u— 0-5] [Z,_,,1—05 T
v Bmfr(u) irfl

Notes: In Panel A, ‘Case in O-L’ refers to Osterwald-Lenum (1992) with k = 0. In Panel B, B,,_,(u) is a standard (m — r)-
dimensional Brownian motion on the unit interval, and z, is an (m — r)-vector that follows a random walk with
innovations that are N(0, I). The following functions of B, _ (u) also appear in panel B:

m—r

1
B, (=B, _,(u) —f B, _,(u) du, and
0

1
B, .(u)=B, (1) —12(u—0-5) / B, .(u) du
0

The discrete-time analogues of these are z,_,, which is z,_, minus its sample mean, and Z

which is z,_| minus the fitted
values obtained by regressing it on a constant and z.

t—1°

simulations by

T T -Lr
Z(yt - ytfl)F; (Z FtF;) Z Ft(yt - yH)/ (10)
=1 t=1 =1

where T is the number of steps in the discrete-time approximation. Realizations of the quantities
to which the Trace and /1, statistics tend asymptotically were computed as the trace and
maximum eigenvalue of expression (10) for each of cases I to V.

In order to be able to estimate asymptotic distributions using response surface regressions, we
used 12 different values of 7. The approach is similar to the one used by MacKinnon (1994, 1996)
to compute the asymptotic distributions of Dickey—Fuller unit root and cointegration tests. For
every (T, p —r) pair, with p —r=1,...,12, we performed 50 experiments, each with 100,000
replications. We did this because it would have been impossible to keep results for all 5 million
replications in memory at once, and because the observed variation among the 50 experiments

Copyright © 1999 John Wiley & Sons, Ltd. J. Appl. Econ. 14: 563-577 (1999)



DISTRIBUTION FUNCTIONS FOR COINTEGRATION TESTS 569

provided an easy way to measure experimental randomness. For each (7, p — r) pair, results for
all values of k =0, ..., 8 were computed simultaneously.

This approach made it convenient to divide the experiments among several computers. The
experiments were performed on 10 different computers, half of them IBM RS/6000 machines
running AIX, and half of them 200 MHz Pentium Pro machines running Linux, over a period of
several months. They would have required about two years of CPU time on a single Pentium Pro
machine. Because it would have been impractical to store all the simulated test statistics, 221
quantiles were estimated and stored for each experiment. These quantiles were: 0-0001, 0-0002,
0-0005, 0-001, ..., 0-010, 0-015, ..., 0-985, 0-990, 0-991, . . ., 0-999, 0-9995, 0-9998, 0-9999. The
221 quantiles provide more than enough information about the shapes of the cumulative
distribution functions of the various test statistics.

Because so many random numbers were used, it was important to use a pseudo-random
number generator with a very long period. The generator employed was also used in MacKinnon
(1994, 1996). It combines two different uniform pseudo-random number generators recom-
mended by L’Ecuyer (1988). The two generators were started with different seeds and allowed to
run independently, so that two independent uniform pseudo-random numbers were generated at
once. The procedure of Marsaglia and Bray (1964) was then used to transform them into two
N(0,1) pseudo-random variates.

The estimated finite-sample quantiles from the simulation experiments were used to estimate
response surface regressions, one for each of the 221 asymptotic quantiles used to describe each
asymptotic distribution. Consider the estimation of the o quantile for some test statistic. Let
q*(T;) denote the estimate of that quantile based on the ith experiment, for which the sample size
is T;. Then the response surface regressions have the form

F(T) =00 + 0T + 05T + 05T, +e, (11)

The first parameter here, 07 , is the o quantile of the asymptotic distribution, which is what we are
trying to estimate. The other three parameters allow the finite-sample distributions to differ from
the asymptotic ones.

Based on preliminary experiments and the experience obtained in earlier work, we used the
following 12 sample sizes: 80, 90, 100, 120, 150, 200, 400, 500, 600, 800, 1000, 1200. It is obvious
that it is desirable for there to be some large values of 7. What may be less obvious is that it is
also desirable for there to be several small values of 7', because the smaller is the smallest value of
T,, the more trouble the other regressors in equation (11) have explaining the constant term, and
thus the smaller is the standard error of 07 . However, none of the 7.’s should be too small,
because then equation (11) may not fit satisfactorily; it is, after all, just an approximation.
Computation costs, of course, increase as 7 increases.

Equation (11) was estimated 221 times for each of 1035 different test statistics; there are 1035,
rather than 1080 = 5 x 2 x 12 x 9, because the Trace and 4, statistics are the same when
p —r=1. Each estimation normally used 600 observations. However, in a few cases when
p — r+ k was large, it was necessary to drop the observations corresponding to one or more of
the smallest values of 7.

As in MacKinnon (1996), we employed a form of GMM estimation to allow for the fact that
the error terms of equation (11) are heteroscedastic. Let q* denote the regressand, 0 the vector of
coefficients, and V the matrix of regressors in equation (11). Further, let Q denote the covariance
matrix of the error terms. This matrix is diagonal, because all the experiments are independent.

Copyright © 1999 John Wiley & Sons, Ltd. J. Appl. Econ. 14: 563-577 (1999)
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The estimator we used was
0= (VWWOW) 'WV) 'VWWaw) 'w¢* (12)

where W is a matrix of up to 12 zero-one dummy variables, the first equal to 1 when T; = 80, the
second equal to 1 when T, = 90, and so on. The matrix Q was obtained by first running an OLS
regression of ¢* on W and then regressing the squared residuals on a constant, 1/7, and 1/ T?. The
fitted values from this auxiliary regression were then used as the diagonal elements of Q.

This GMM estimation procedure automatically generates a statistic for testing the
specification of the response surface equation (11). The test statistic is the minimized value of
the criterion function,

(@* — VOYW(WQW)'W'(¢* — V) (13)

Standard results about GMM estimation imply that, under the null hypothesis that equation (11)
is a correct specification, equation (13) is asymptotically distributed as y*(d), where d is equal to
the number of distinct 7;’s (which may be 12 or less) minus the number of parameters in equation
(11).

The GMM test statistic (13) played a key role in the specification of the response surfaces. In
order to avoid discontinuities caused by changes in functional form, the same response surface
regression was estimated for every one of the 221 quantiles for a given distribution. The average
value of the 221 test statistics was used to decide whether to set 05 = 0 in equation (11) and, in a
few cases, to determine how many small values of T to drop. Since the objective was to obtain
efficient estimates of 07, it was desirable to set 05 = 0, if possible. On average, for a correctly
specified response surface, reducing the number of distinct 7;’s by 1, or dropping the constraint
that 05 = 0 in equation (11), would be expected to reduce the value of expression (13) by 1-0,
because the mean of a random variable with a y%(d) distribution is d. In most cases, we chose to
reject a model when such a change reduced the value of (13) by more than 2-5. The fit of the
response surface regressions tended to deteriorate as either p — r or k increased. For small values
of p — r+ k, the restriction that 65 = 0 was almost always compatible with the data. Only for a
few large values of p — r + k was it ever necessary to drop observations corresponding to one or
more of the smallest values of 7.

The simulations described above are not the only ones we performed. In preliminary work, we
also performed simulations for cases 0, 1, 1*, 2, and 2* of Osterwald-Lenum (1992). For these
simulations, the actual values of the test statistics were calculated instead of asymptotic
approximations, different values of the T, were used, and the details of how equation (11) was
estimated were not quite the same. The two sets of simulations yielded almost identical results for
cases that are comparable, but the earlier ones provide the only results we have for cases 1 and 2.

4. NUMERICAL DISTRIBUTIONS

The principal results of this paper are 228,735 ( = 221 x 1035) estimates of 0. These estimates,
which are very much more accurate than any published previously, allow us to construct tables of
asymptotic critical values directly. In addition, as we will discuss in the next section, they allow us
to obtain asymptotic P-values for any observed test statistic.

Copyright © 1999 John Wiley & Sons, Ltd. J. Appl. Econ. 14: 563-577 (1999)
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Tables II-VI present asymptotic critical values at the 5% level for all the tests we examined.
These critical values differ substantially from those previously published by Johansen and
Juselius (1990), Osterwald-Lenum (1992), Johansen (1995), and PSS, especially when p — r is
large. There appear to be two reasons for this. First, we used more replications than did the
earlier authors; Johansen and Juselius (1990) and Osterwald-Lenum (1992) each used 6000,
Johansen (1995) used 100,000, and PSS used 10,000. Our critical values therefore suffer from
much less experimental error. Second, the estimates of 07 from equation (11) really are estimates
of the quantiles of an asymptotic distribution, while the values previously published by others are
merely approximations based on a discrete random walk with a finite number of steps, either
T = 400 or T = 500.

It appears that approximations based on finite 7 are simply not very accurate, especially when
p —rislarge. As an example, for case II with p — r = 12 and k = 0, which is the same as case 1*
with p —r = 12, Table III reports a 5% critical value of 348-98 for the Trace test. In contrast,
Johansen (1995) reports a critical value of 338-10, and PSS reports a critical value of 341-2. The
discrepancies between these numbers are mainly due to the fact that neither Johansen nor PSS
actually computed asymptotic critical values. Instead, Johansen used a discrete approximation

Table II. Five per cent critical values for case I

p—rlk 0 1 2 3 4 5 6 7 8
1 413 811 1137 1436 1720 1995  22.63 2526  27-84
413 811 1137 1436 1720 1995 2263 2526 2784

2 1123 1496 1833 2149 2453 2747 3035 3316 3592
1232 1825 2372 2895 3403 3901 4391 4875  53.53

3 17-80 2143 2483 2808 3121 3427 3723 4016 4305
2428 3220 3979 4716 5439 6153 6857 7554 8247

4 2416 2776 3118 3446 3766 4077 4381 4682  49.78
4017 5012 5977 6923 78:57 8779 9696 10607 11508

5 3042 3399 37441 4073 4396 4710 5022 5327 5628
60-06 7198 8369 9522 10662 11792  129-16 14035  151-49

6 3661 4016 4359 4693 5018 5339 5654 5963 62:67
8394  97.86  111-59 12518  138:63 15200 16530 17854  191.72

7 42776 4629 4975 5309 5637 5960 6276 6588 6896
111:79 12773 14349 15912 17465  190-08  205-43 22074 23598

8 48-87 5240 5583 5919  62:50 6573 6892 7207 7518
14364 161-59 17933 19699  214-58  232:03 24943  266-76  284-02

9 5497 5849 6192 6531 6862 7188 7509 7827  81:39
17948 19941 21924 23891 25851  278:02 29744 31680 33612

10 6104 6454 6798 7136 7468 7795 8118 8438  87-54
21938 24131 26312 284-82 30643 32796 34942  370-84  392.22

11 6706 7058 7402 7742 80-74 8402 8726 9047  93:65
26325 28720 31097 33469  358-33  381.86 40537 42879  452-16

12 7310 7660  80-04 8341 8676 9006 9334 9656  99-77

311-09 336-98 362-81 388-56 414-19 43977  465-29 490-71 516-16

Note: The top entry in each cell is the 5% critical value for 1 and the bottom entry is the 5% critical value for Trace.

‘max *

Copyright © 1999 John Wiley & Sons, Ltd. J. Appl. Econ. 14: 563-577 (1999)
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Table III. Five per cent critical values for case 11

p—r/lk 0 1 2 3 4 5 6 7 8
1 9-17 12-34 15-28 18-10 20-84 23.51 26-14 28-71 31-27
917 12-34 15-28 18-10 20-84 23-51 26-14 28-71 3127
2 15-88 19-21 22-35 25-38 2831 31-18 34-00 36-76 39-48
20-25 25-64 30-82 35-89 40-85 45.74 50-57 55-35 60-09
3 22-30 25-68 2891 32-04 35-09 38-07 40-98 43.87 46-71
35-19 42-70 50-03 57-23 64-33 71-38 78:33 85:26 92-14
4 28-58 31-99 35-27 38-46 41.57 44-63 47-63 50-58 53-49
54-09 63-66 73-08 82-38 91-59 100-71 109-82 118-85 127-83
5 34-80 38:22 41-53 44.75 4790 51-02 54-07 57-08 60-05
76-96 88-59 100-08 111-46 12274 133-95 145-12 156-24 167-31
6 40-95 44.37 47.70 50-97 54-17 57-32 60-42 63-46 66-46
103-84 117-49 131-02 144-45 157-80 171-08 184-31 197-49  210-58
7 47-06 50-51 53-87 57-14 60-36 63-54 66-65 69-72 72-78
134.70 150-40 165-98 181-47 196-89 212-21 227-51 242.73 257-90
8 53-15 56-59 59-95 63-25 66-51 69-69 72-85 75-97 79-04
169-54 18729 20490  222-41 239-87 25724 27456 29182  309-04
9 59-26 62-69 66-06 69-38 72-65 75-86 79-04 82-18 85-27
208-41 228-13 24779 26734 286-84 306-26 325-59 344-90 36415
10 65-30 68-73 72-12 75-43 7871 81-95 85-15 8831 91-44
251-31 273-05  294.71 316-26 337-80 359-23 380-63 40196  423.27
11 71-33 74-76 78-16 81-50 84-77 88-01 91.23 94-41 97-55
298-16 32192 345-56 369-16 392-69 416-14  439-57  462-93 486-27
12 77-35 80-79 84-19 87-52 90-82 94-09 97-31 100-51 103-69

348-98 37470 400-43 426-05 451-62 47711 502-57 52796 553-33

Note: The top entry in each cell is the 5% critical value for 4 and the bottom entry is the 5% critical value for Trace.

max’

with 7' = 400, and PSS used one with 7'= 500. The averages of our experimental results for
T = 400 and T = 500 were 338-00 and 340-12, respectively, which are quite close to the numbers
reported by Johansen and PSS. These results demonstrate clearly that, if one wishes to obtain
accurate asymptotic critical values, one must use a response surface analysis.

There are good reasons to believe that our estimated asymptotic distributions are extremely
accurate. The estimates of Hf)o have standard errors associated with them, and, except for the
extreme tail quantiles, these are all very small. For example, for the 5% critical value, the
estimated standard errors range from 0-0023 to 0-0433, with the larger standard errors being
associated with the larger values of p — r and k. Of course, because of the pretesting involved in
choosing which version of equation (11) to estimate, the estimated standard errors may be rather
too optimistic.

In at least one special case, it is possible to compare our estimates with outside benchmarks.
When p —r = 1 and k = 0, the distribution of both test statistics for case I (or case 0) is that of
the square of the corresponding Dickey—Fuller test. Table VII therefore compares our critical
values for this special case with ones reported by Nielsen (1997) based on the analytic formulae of
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Table IV. Five per cent critical values for case 111

p—rlk 0 1 2 3 4 5 6 7 8
1 819 11-42 14-39 17-23 19-97 22-64 2527 27-85 30-39
8:19 11-42 14-39 17-23 19-97 22-64 2527 27-85 30-39
2 15-02 18:36 21-52 24-54 27-48 30-35 33-17 3593 38-65
18-11 23-62 28-88 33-98 38-95 43.87 48-72 53-50 58-24
3 21-49 24-87 28-11 31-24 34-29 37-27 40-17 43-06 4590
31-88 39-56 46-99 54.27 61-41 68-48 75-46 82-39 89-30
4 27-80 31-20 34-49 37-67 40-78 43.83 46-84 49.78 52-68
49-64 59-42 68-97 78-34 87-61 96-78 10591 114.97 123-95
5 34-03 37-44 40-75 43.98 47-13 50-24 53-29 56-30 59-27
71-44 83-26 94-89 106-36 11771 128-97 140-19 151-33 162-40
6 40-19 43.61 46-94 50-20 53-40 56-55 59-65 62-69 65-69
9726 111-11 12477 138-30 15172 165-06 178-33 191-53 204-67
7 46-31 49.75 53-11 56-38 59-60 62-77 65-88 68-96 72-00
127-05 142.93 158-66 174-26 189-75 205-15 220-48 235.73 250-95
8 52-41 55-84 59-20 62-50 65-75 68-93 72-09 75-21 78-28
160-87 178-80 196-54  214-15 231-70  249-12  266-49 283-80 301-05
9 58-51 61-94 65-31 68-63 71-89 75-10 78-28 81-42 84-51
198-72  218-63 238-41 258-04  277-62  297-11 316-49 335-85 355-14
10 64-56 67-99 71-37 74-69 7797 81-20 84-39 87-56 90-69
240-58 262-48 284-26 305-92 327-53 349-05 370-49 391-89 41322
11 70-59 74-03 77-41 80-75 84-03 87-27 90-47 93-65 96-80
286-39 310-33 334-09 357-78 38140 40493 42842 45182  475-15
12 76-61 80-06 83-45 86-78 90-08 93.34 96-57 99-76 102-94

336-22 362-07 387-90 413-63 439-30 464-86  490-33 51577 541-21

Note The top entry in each cell is the 5% critical value for 4 and the bottom entry is the 5% critical value for Trace.

max’

Abadir (1995). It is clear from the table that our estimates are very accurate in this case, much
more accurate than those of Osterwald-Lenum (1992), Johansen (1995), and PSS.

No benchmarks are available for most of our estimates. We have tried to verify that equation
(11) is accurate even for values of 7"'much larger than the ones we actually used by performing a
(very expensive) set of simulations for the case 7= 5000, p — r = 12, k = 0. When equation (11)
was re-estimated for this case using these additional simulation results, the GMM test statistics
(13) rose only modestly, and the estimated asymptotic distributions did not change appreciably.
This is precisely what we would expect to observe if equation (11) is correctly specified.

5. LOCAL APPROXIMATIONS

The response surface coefficient estimates obtained in Section 3 may be used to obtain
approximate P-values as well as approximate critical values. A program which does both is
available via the Internet; see the Appendix.
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Table V. Five per cent critical values for case IV

p—rlk 0 1 2 3 4 5 6 7 8
1 1252 1546 1826 2098 2363 2624 2881 3135  33.87
1252 1546 1826 2098 2363 2624 2881 3135  33-87
2 1938 22:50 2550 2843 3128 3409 3684 3956  42:24
2586 3105 3609 4103 4590 5072 5550 6022 6491
3 2583 2904  32:15 3519 3815 4108 4394 4677  49:56
4292 5025 5745 6454 7156 7852 8544 9229  99.12
4 3212 3538 3855 4166 4471 4770 5064 5355 5642
6387 7331 8262 9181 10096  110-03 11903 12800  136:94
5 3832 4162 4484 4799 5110 5414 5713 6010  63-03
8879 10029  111:69  122:96 13416 14530 15644 16747  178:46
6 4447 4779 5106 5424 5738 6047 6352 6653  69-50
11769 13123 14466 15801 17133  184-53 19770  210-80  223.88
7 5058 5394 5721 6044 6361 6672 6979 7282 7585
150-55  166-15  181:67 19707 21239 22768  242:.90  258-09 27321
8 5668 6003 6333 66:57 6976 7289 7600 7908  82:12
187-44 20508  222:61 24005 25743 27477  292:03 30924 32643
9 6275 6611 6943 72469 7591 7908 8221 8531 8839
22832 24796  267-54  287-03 30647 32583 34511 36438  383-59
10 6881 7217 7550 7877  82:00 8518 8834 9147  94.57
27320 29487 31645 33795 35940 38079  402:18 42348  444.75
11 7483 7821  81.54  84-82 8807 9127 9443 9761 10073
32203 34574 36931  392:86 41635 43978 46315 48646  509-74
12 80-84 8423 8757 9087 9413 9736  100-54 10370  106-84

374-84  400-54  426-17 45178 47728 502-72 528-13 553-48 578-84

Note: The top entry in each cell is the 5% critical value for 1 and the bottom entry is the 5% critical value for Trace.

In order to obtain a P-value for any test statistic or a critical value for any desired test size,
some procedure for interpolating between the 221 tabulated values is needed. Many such
procedures could be devised, but the one we used, which was proposed by MacKinnon (1996), is
appealing and seems to work well. First, consider the regression

O (@) = 1y +7,8(®) + 7247 (@) + 738 (@) + e, (14)

where ®~!(«) is the inverse of the cumulative standard normal distribution function, evaluated at
o. It may seem a bit odd that the regressors in (14) are stochastic and the regressand is not.
However, because the estimated quantiles are very accurate, the errors in variables bias that this
induces is trivially small; see MacKinnon (1994). If the distribution from which the estimated
quantiles were obtained were in fact normal with any mean and variance, regression (14) would
be correctly specified with y, = y; = 0. Since that is not the case here, this regression can only be
valid as an approximation. Therefore, we estimate it using only a small number of points in the
neighbourhood of the observed test statistic, say t. After (14) has been estimated, the estimated P-
value associated with 7 is given by P = ®(j, + 9,7 + 7,7° + 9,7°).

Copyright © 1999 John Wiley & Sons, Ltd. J. Appl. Econ. 14: 563-577 (1999)



DISTRIBUTION FUNCTIONS FOR COINTEGRATION TESTS 575

Table VI. Five per cent critical values for case V

p—rlk 0 1 2 3 4 5 6 7 8
1 11-64 14-59 17-39 20-11 22-76 25-37 27-94 30-48 33-00
11-64 14-59 17-39 20-11 22-76 25-37 27-94 30-48 33-00
2 18-55 21-67 24-68 27-60 30-46 33.26 36-01 38-73 41-41
23.94 29-16 34-22 39-18 44.06 48-88 53-67 58-38 63-08
3 25-03 28-24 31-35 34-38 37-35 40-28 43-14 45.95 48-75
3992 47-31 54-54 61-66 68-70 75-67 82-58 89-47 96-29
4 31-34 34-60 37-77 40-87 43.92 46-90 49-85 52-76 55-63
59-79 69-31 78-66 87-90 97-08 106-17 11519 124-17 133-11
5 37-55 40-85 44.06 4721 50-32 53-35 56-35 59-32 62-24
83-63 9522 106-67 118-00 129-23 140-42 151-55 162-61 173-62
6 43.71 47-03 50-30 53-48 56-62 59-70 62-74 65-75 68-72
111-45 125-10 138-59 151-99 165-35 178-59 191.77 20491 218-01
7 49-83 53-18 56-46 59-68 62-84 65-95 69-02 72-06 75-07
143-29 158-97 174-54 190-02  205-39 220-69 235-96 251-16  266-30
8 55-92 59-29 62-57 65-81 69-00 72-13 75-24 78-32 81-35
179-08 196-84 21444 23194  249-37 266-76  284-06 301-28 318:52
9 62-01 65-36 68-67 7193 75-15 78-33 81-45 84-55 87-62
21891 238-67  258:33 277-87  297-37 316-78 336-09 355-39 374-62
10 63-07 71-43 74-75 78-02 81-24 84-42 87-58 90-71 93-82
262-76 284-53 306-19 327-78 349-27 370-73 392-13 41346  434.75
11 74-10 77-48 80-80 84-08 87-32 90-52 93-69 96-86 99-97
310-55 334.34  358-00 381-62 40517  428-64 45206 47541 498-75
12 80-11 83-49 86-83 90-13 93.38 96-61 99-80 102:95 106-09

362-35 388-15 413-85 439-51 465-09 490-59 516-06 541-43 566-80

Note: The top entry in each cell is the 5% critical value fo 4 and the bottom entry is the 5% critical value for Trace.

‘max
If we are interested in obtaining approximate critical values, equation (14) has to be turned
around. Consider the regression

§(@) = 8y 4 0,07 (@) + 6,(®7 (@) + 05(@ (@)’ + ¢ (15)

This is not actually the inverse of equation (14). However, if the distribution from which the
estimated quantiles were obtained were in fact normal with any mean and variance, equation (15)
would be correctly specified with 6, = 6; = 0. In that case, equation (14) would have
7, =73 = 0, and (15) would be the inverse of (14).

Regressions (14) and (15) could be estimated by OLS, but this would ignore both
heteroscedasticity and serial correlation. In MacKinnon (1996), it is shown how to take both
of these into account. Therefore, when estimating these equations, our program actually uses the
form of feasible GLS estimation proposed in that paper. As discussed above, equations (14) and
(15) are to be fitted only to a small number of points near the specified test statistic or test size.
Experimentation suggests that 11 points is a good number to use. Also, in many cases, it is
possible to set y; or §, equal to zero on the basis of a r-test.
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Table VII. Comparisons of critical values. Case I, p—r =1,k =0

1% 5% 10%
Benchmark 6-9383 4-1293 2:9776
Our estimate 6-9321 4-1296 2-9786
O-L estimate 6-51 3.84 2-86
Johansen estimate 7-02 4-14 2-98
PSS estimate 4-16 3-04

6. CONCLUSION

In this paper, we have used computer simulation and response surface estimation to obtain
excellent approximations to the asymptotic distributions of the Trace and Z_,, tests for VECM
systems with up to 12 variables and from 0 to 8 structurally exogenous I(1) variables. Although
the paper contains tables of critical values, which are far more accurate than those previously
available, the principal results are tables of estimated asymptotic quantiles, in machine-readable
form, along with a computer program that uses these to calculate critical values and P-values.
Both of these are available via the Internet.

APPENDIX

The tables of asymptotic quantiles from the response surface regressions and the associated
computer programs may be obtained from the Journal of Applied Econometrics Data Archive:

http://www.econ.queensu.ca/jae/

In addition to zipped files that contain the estimated quantiles of the asymptotic distribution
functions, the archive contains the Fortran source files lrcdist.f, lrcrouts.f, and
johrouts.f, along with a compiled version of 1lrcdist for personal computers (486DX or
later) running DOS, Windows, or OS/2. Detailed instructions are provided in the readme file.
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