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Abstract. The expectation-maximization (EM) method of parameter estimation is used to calculate

adsorption energy distributions of molecular probes from their adsorption isotherms. EM does not

require prior knowledge of the distribution function or the isotherm, requires no smoothing of the
isotherm data, and converges with high stability towards the maximum-likelihood estimate. The

method is therefore robust and accurate at high iteration numbers. The EM "algorithm is tested with

simulated energy distributions corresponding to unimodal Gaussian, bimodal Gaussian, Poisson

distributions, and the distributions resulting from Misra isotherms. Theoretical isotherms are

generated from these distributions using the Langmuir model, and then chromatographic band profiles
are computed using the ideal model of chromatography. Noise is then introduced in the theoretical

band profiles comparable to those observed experimentally. The isotherm is then calculated using the

elution-by-characteristic points method. The energy distribution given by the EM method is compared

to the original one. The results are contrasted to those obtained with the House and Jaycock algorithm

HILDA, and shown to be superior in terms of both robustness, accuracy, and information theory. The

effect of undersampling of the high-pressure/low-energy region of the adsorption is reported and

discussed for the EM algorithm, as well as the effect of signal-to-noise ratio on the degree of

heterogeneity that may be estimated experimentally. _ ,_ __



INTRODUCTION

The numerical estimation of adsorption energy distributions (AEDs) from adsorption isotherm

data, without any assumptions about the functional form of either the energy distribution or the

measured isotherm, has generally been considered as a highly desired approach to the calculation of

the energy distribution, t In this manner, all information encoded in the experimental data is translated

to the distribution function as evaluated by the local model of adsorption only, instead of the

information encoded in any presumed function(s)• The fundamental equation of adsorption on

heterogeneous surfaces is 2

- de (I>

where q(p)istheamountofsoluteadsorbedatsolutepartialpressurep,f(e)istheadsorptionenergy

distributionfunction,O(e,p)isthelocal(homogeneous)model ofadsorption,and e istheadsorption

energy. The integrationlimitsa and b correspondtotheminimum and maximum energyvalues

possible.

Adamson and Ling proposed an algorithm to solve this equation for the AED, without any a

priori assumptions, with iterative approximations. 3 This algorithm was subsequently improved with

the advent of high performance computers, and House and Jaycock proposed the HILDA algorithm

(Heterogeneity Investigation at Loughborough by a Distribution Analysis) as an alternative form of

the original Adamson and Ling method. 4 They showed the utility of the program with various

simulated distributions, as well as some applications to real experimental data. In the presence of

experimental errors, smoothing routines are needed in the HILDA program so these errors do not

amplify to the solution. In the core algorithm, the solution is represented as a cubic spline and must

be subjected to certain conditions to prevent oscillatory behavior. This is a general problem in the

estimation of ill-posed problems such as the inversion of equation l, which belongs to the class of

linear Fredholm integrals of first kind. s

Numerical inversion of these equations has proceeded along statistical and probabilistic lines
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slnce the mid-1970' s. Stanley et al. presented two regulafization methods and the method of

expectation-maximization (EM) as representative of the statistical limits achievable for high resolution

estimation of these problems in terms of maximum-likelihood and maximum entropy, for the case of

rate constant distribution estimation. 6 The EM algorithm was suggested as the most robust method

because of its iterative nature, and is shown here to apply well to AED estimation from noisy data

taken by the elution-by-characteristic points (ECP) method of gas chromatography. These statistical

methods do not require any smoothing or functional description of the data, approaches which in fact

are discouraged, as the likelihood of the actual data will not then be maximized. In other words, a

maximum-likelihood estimator should optimally smooth the data itself.

Finally, the sampling of the data used to characterize the AED is very important in determining

the reliability and accuracy of the results. Golshan-Shirazi and Guiochon showed for the case of a

Misra isotherm that if a significant portion of the data range was undersampled or not present, serious

errors or nonsense will result. 7 The effect of undersampling is investigated here for the EM algorithm

for data taken with the ECP method. The results are general, however, and apply to isotherm data

taken by other means as weil.



THEORY

HILDA. The HILDA algorithm was proposed by House and Jaycock for the numerical solution

of equation 1 for the distribution function, fiE)? In this method equation 1 is rewritten as

qa(pj) = foFfe)dO(epj) (2)

where qd(p) is the normalized adsorption isotherm (relative to the apparent saturation capacity, q, (i.e.

qd(p) = q(p)/q,), and F(e) is the integral energy distribution

F(ei)= fftf) ae (3)

This equation is then calculated as

q a(pj)=f °hO_)F(e)dO(e,p,)+F(emin)O_pj)+F(etmx)[I-0h(pj)] (4)
#0_,p

where0band 0tarethefractionalcoveragesof thesurfaceelementswiththehighestandlowest

adsorptionenergies,respectively.Theintegraldistributionfunction,F(e),isupdatediterativelywith

thecorrectionstep

F(e)k = F(e)k-I qexp(P) (5)
q/p)

where k is the iteration number, qcxpis the experimental data, and qc,_is the data estimated by equation

4 at iteration k. After each iteration the solution is subjected to

if:. F(ei+I) < F(_'i) (6)

then: F(ei+l) = F(ei)+ 10-6

The normalizing factor, or apparent monolayer capacity, is updated with the last point of the integral



distribution

k k-I

qs = qs Fk(e.u) (7)

and the distribution is normalized by

Fk(¢i)= Fk(%) (8)
ek(N)

The popularcondensationapproximation(CA) servesastheinitialguess

F(_.i) (9)= qo (p)

After the last iteration, a spline is fit to F(e) and differentiated, which then serves as the numerical

estimate of the desired function, fiE).

Expectation-Maximization (EM). The EM method was coined in 1982 by Shepp and Vardi as

a maximum-likelihood (ML) method for the image reconstruction of Poisson distributed positron

emission tomography (PET) data. g General application of the algorithm for parameter estimation was

suggested by Bialkowski, 9 and was shown by Stanley et al. to apply optimally for the solution of first-

order rate constant distributions (inverse Laplace transforms), and suggested generally for the optimal

evaluations of linear Fredholm integrals from noisy data. 6 Application to the solution of adsorption

energy distributions from adsorption isotherm data is straightforward.

In the solution of equation 1, the distribution function, fie), is evaluated directly from the data

at M grid points in energy-space. Equation 1 is thus evaluated as

where Ae is the grid spacing around ei. The distribution function is then updated iteratively

j_+,(e,)=fk(c,)_:0(pj:ci)A_ qexp(Pj) (I),)
• qcal(P)

This correction differs from equation 5 in that the correction vector, qoxp/qca,,is reconvoluted with the

model, 0(_,p), before updating the previous estimate. The correction is normalized by dividing the



c

sum over pressure points in equation 11 by :Cp0(pj;E.). The apparent monolayer capacity is obtained

at convergence by i'Juegrating the final distribution function.

The EM algorithm is guaranteed to converge to the global optimum at every iteration step for

Poisson and Gaussian distributed data, 6,s and negative values are impossible as positive multiplicative

correction is always applied. Oscillatory behavior is not a problem as long as the initial estimate is

plausible. Thus the HILDA constraints are moot here. Indeed, renormalizing F(E)on [0,1] at every

iteration may spoil the algorithm, as the estimated F(eN) should approach unity only at convergence.

The initial guess used is the "total ignorance" guess 1°

f(ei ) = qexv(pjv) (12)
M

where the total amplitude of adsorption observed is divided evenly among ali energy points considered.

This estimate guards against any possible experimental artifacts, introduces minimum bias into the

computed distribution function, and maximizes the entropy of the final solution without high sensitivity

to the specific model.

Model. The local model used in this study is the Langmuir model

O(e,p) = P (13)
p +Ke -_lm"

where K = Pve ^/RT,with Pv being the vapor pressure of the solute at the experimental temperature,

T, A the molar heat of vaporization of the solute, and R the ideal gas constant. The energy range

considered should be based on the minimum and maximum "characteristic" energies that are sampled

by the data. _ These are obtained from the maximum and minimum pressures measured, respectively,

using the CA. Equation 13 equals 1/2when pj = Kexp(-eJRT), therefore _m_= -RTln(p_,x/K) and e,=x

= -RTln(p,JK) in the CA; however, any range may be considered as long as it accommodates the

data. The number of energy values within this range determines the resolution that is possible in the

estimation of f(e).



EXPERIMENTAL

The EM algorithm is demonstrated by estimating the simulations of continuous energy

distributions corresponding to unimodal and bimodal Gaussian distributions, Poisson distributions, and

the distributions corresponding to Misra isotherms. The isotherms corresponding to these distributions

were directly evaluated over a specified pressure range with equation 1 and 2000 points in the energy

range. The ECP method of gas chromatography has been shown to be a very effective means of

obtaining high quality isotherm data, and is currently in use in our laboratory. _2_3 Therefore, the

simulation proceeds by calculating the theoretical diffuse rear of an overloaded chromatographic band

profile expected from the computed adsorption isotherm as predicted by the ideal model of

chromatography. _4 This band profile is then transformed into an "experimentally observed" band

profile by drawing each point from a uniform random distribution with the mean value expressed as

the corresponding true value and the standard deviation, a,_, determined by the desired signal-to-noise

ratio (SNR), using a procedure from the Numerical Algorithms Group. The precision of the "output"

in terms of significant digits is limited to that observed experimentally with the A/D board, in our

preser_t case seven. The SNR can vary widely, and is mainly determined by the pressure range

sampled. The SNR region generally observed in our experiments is 200-5000.

The noise levels used in the simulations were specified for "worst case" scenarios, i.e. a,_, >_

tr, p, where a_xphas been estimated from numerous baseline traces obtained from the flame ionization

detector (FID) supplied by a Perkin Elmer gas chromatograph (Model 8500). Interpretation and

extension of the results with respect to real experimental data assumes that the corresponding noise

is constant with signal amplitude, or Gaussian in nature; i.e. the introduction of a sample into the FID

does not introduce an additional error distribution. Therefore the EM solution should optimally predict

the data, and the results given here reflect the minimum accuracy to be expected if the error is truly

random. The assumption of single random experimental FID noise distributions is currently under

investigation.

The calculations were performed on the VAX 9000-420 computer of the University of

Tennessee Computing Center. Five hundred points were prepared as above; however, in the



procedure to calculate the isotherm from the band profile, the tail of the data is truncated and

discarded at the first occurrence of a negative measurement. This is done to prevent negative

pressures from being considered in the isotherm determination. Therefore 300-400 points were

typically analyzed in this work. The number of grid points was set equal to the number of data points.

This need not be the case, however, and reducing the number of grid points will save computation

time. Twenty thousand iterations are sufficient in allowing EM to satisfactorily approach the global

maximum. This requires ca. 45 minutes of CPU time for a 350x350 problem. Two thousand

iterations yields a fairly adequate solution, however, with the probable structure being delineated.

Further iteration simply enhances the resolution. Iteration beyond 20,000 has never been observed

to produce any new structure in the solution.



RESULTS And DISCUSSION

For the robust, high resolution, numerical estimation of distribution functions from real (i.e.

noisy) isotherm data, it is imperative that the algorithm used be stable and convergent to a statistically

valid answer. If the data are pre-smoothed, this statistical judgment becomes biased. Therefore, the

algorithm itself must smooth or filter the data according to the local model of adsorption, which

fortunately is a smooth function. If the HILDA algorithm is used without the use of smoothing

functions or cubic spline approximations, the stability of the algorithm is seen to be poor. This is

illustrated with a narrow Gaussian distribution with a mean energy of 10.0 kcal/mol and a standard

deviation of a = 0.2 kcal/mol defining a q, = 1.0xl0 s mol/g. The true isotherm is completely

sampled over a pressure range of pE [1.0xl0 6, 1.0] atm. If no noise is introduced into the data,

HILDA produces the estimate pictured in Figure la. If noise is introduced as described in the

Experimental section, with SNR = 439, the result of Figure lb is obtained. This data possesses a

mean energy of 12.0 kcal/mol, tr = 0.2 kcal/mol, ch = 1.0xl0 5 mol/g, and a sampled pressure range

of pE [5.3x10-7,9.9x10 -3]atm. Figures of merit for the estimation are given in Table I. Note that th_"

standard prediction error, SEP, is evaluated after each iteration with the integral distribution, via

equation 4. The normalized area is calculated from the distribution function, which is the desired final

solution. The SEP of this distribution function is poor if A < 1.0.

As can be readily seen, when perturbations are present in the data, these perturbations are

amplified and the estimated solution does not accurately portray the true distribution. Furthermore,

the integral area of the distribution function is less than unity, and divergent correction steps are

observed at high iteration numbers. The shape of the estimated distribution suggests that the

constraints of equation 7 were indeed operative, and illustrates that the core of the HILDA algorithm

is not stable. This is why the smoothing options and cubic splines are required in the HILDA

program. The EM solutions are shown in Figure 2, with the corresponding figures of merit in Table

II. The algorithm is seen to be both accurate and robust.

The effect of undersampling on the EM solution is illustrated by analyzing the Misra isotherm

data of Golshan-Shirazi and Guiochon. v The HILDA estimations from that study have been



reproduced here alongside the corresponding EM solutions in Figure 3. No noise has been added to

these dam. These results show that EM is unable to predict, sharp discontinuities well, although the

first statistical moment is always predicted weil. This is a consequence of the stability imposed with

the initial uniform estimate, and shar_._changes in the spectrum are prevented in the EM algorithm.

Of more interest, however, is the effect of missing data on the EM solution. Divergence of the

solution at the respective spectral end point results and the rest of the spectrum remains smooth. The

divergence is large and artificial peaks appear if large portions are missing (dashed line, missing high-

p data). The effect is correspondingly small if small portions are missing (dotted line, missing low-p

data).

To ascertain the amount of data (relative to the entire isotherm range) that is needed for

accurate analysis of the distribution function, progressive fractions of the Misra isotherm were

truncated at the high pressure end. Figure 4 indicates that at least 70% of the entire range of the

isotherm is needed in order to prevent sharp divergence at the cut end of the spectrum. As sharp

divergence develops, a small artifactual peak(s) develops to compensate for the poor fit. At greater

than 43% cut data, a pronounced valley develops between this divergence and the artificial peak.

Significant increases in estimation variance or SEP accompany this result (SEP more than doubles in

going from 43 % to 51% cut). These results are summarized in Table III. Thus it is very important

to determine whether the divergence at the end of a numerical energy distribution is rapid and steep

when considering real data. If it is, the experiment must be modified to increase the sample range.

Even if shallow divergence is observed the conditions should be altered to investigate this region of

the spectrum, as it may contain useful information. Physicochemical variables may also be varied and

the resulting effect on the computed distribution evaluated. Artifactual peaks will not consistently

follow predicted spectral trends.

If a bimodal distribution with E_ = 10.0 kcal/mol and E2 = 14.0 kcal/mol, ai = _2 = 0.2

kcal/mol, and q_.l = 1-0xl0S mol/g and q_.2= 0.5x105 mol/g is estimated with the EM algorithm at

various pressure ranges and SNR, the results in Figure 5 and Table IV are obtained. In Figure 5a the

sampled pressure range is pE[4.0xlO 7, 0.099] atm (94% sampled), in Figure 5b it is pE[3.8xl0

7,9.9x10-3] atm (82% sampled), and in Figure 5c it is pE[3.4xl0 -7, 9.9x10 -4] atm (50% sampled).

The constant noise levels in each simulation are also given in Table IV (in pressure units), which are

slightly different and are not directly obvious from the SNR values.

These data show that the higher energy component is less accurately estimated than is the lower
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energy component because the relative SNR in this region (low pressure) is significantly lower than

the relative SNR of the high pressure region for the ECP experiment; and the results worsen if the

noise level increases. The high-E, diffusive end of the true spectrum approaches the detection limit

in terms of the CA (2a in pressure units converted to energy units). Thus this region of the spectrum

is indistinguishable from the noise although the total magnitude of adsorption is accurately estimated.

Detection around this limit depends on the magnitude of adsorption in this region, owing to the amount

of retention experimentally measured. EM in general underestimates the width of distributions in the

presence of random noise. These results indicate that not ali diffuse heterogeneity can be detected

from experimental data.

The results of Figure 5 and Table IV also show that undersampling of low-e components does

not affect the detection of high-e components significantly if at least 50% is sampled, lt also appears

that if the low pressure signal is supported by a true high energy component, small artificial peak(s)

are washed. This is an important result. Experimental studies in our laboratory of the heterogeneous

adsorption of organic vapors on silica gel indicate that a significant amount of adsorption occurs at

solute partial pressures corresponding to energies less than 10 kcal/mol (according to the Langmuir

model of adsorption), _6yet it is often only possible to experimentally sample to emm= 9 kcal/mol.

The divergence observed at low-e is shallow, however, or non-existent with detection of maxima posi-

tioned at e > em_. These lower energy peaks are harder to determine precisely, although it is the high

energy modes of adsorption that are more important in the consideration of critical process parameters

for pulverulent materials. _7 This general feature of low-e adsorption (with respect to the heat of

liquefication) is in agreement with published results of similar systems obtained by different methods

of calculation. _._3,_8

It is of interest to note here that as the sampled energy range approaches the heat of

liquefication for the particular probe studied, the shock discontinuity in the chromatographic band

profile approaches the ho!d-up time of an unretained compound to within the precision with which the

retention time can be measured, i.e. the retention becomes very small and accuracy is poor. For

example, in the simulations above a AECvap= 6.3 kcal/mol and a hold-up time of to = 0.34 min was

used. For the data of Figure 5c, the first data point in the band profile was obtained at t_ = 0.3997

min, which is easy to measure. But for the data in Figure 5b, which was sampled to higher pressures "

to more accurately describe the low-E adsorption, the first chromatographic data point was at t_a =

0.3456 min, which is only 1.6% different from to. Thus experimental limits are obvious in obtaining

11



the distribution function at low energies (if the true distribution possesses a large amplitude in this region).

Finally, to further demonstrate the ability of EM tc estimate unsymmetrical distributions in

energy space (which is probably a more realistic event), a broad Poisson distribution with maximum

at 10.1 kcal/mol and q, = 1.0x10 -5mol/g was simulated at SNR = 500. The pressure range sampled

was pE [3.Sx107,9.9x10 3] atm (82%). The EM results are shown in Figure 6. Again the high-e end

of the spectrum has been affected by the noise. A hump occurs at energies just within the detection

limit so that the total amplitude is accurately estimated. The error observed at the low-e end is due

to the undersampling at high pressure. This result is intermediate to that observed between Figure 5b

and Figure 5c. These results a_°equite satisfactory as a predictive measure of the heterogeneity present

and obtainable from raw isotherm data.

12



CONCLUSION

The EM algorithm is both rigorous and elegant in its simplicity, and has been shown to be a

very acceptableand highly desirablemethodof unbiasedcalculationfor the determinationof adsorption

energy distributionsfrom experimental adsorption isotherm data. The method converges with high

stability to the maximum-likelihood, or most probable, estimate of the data with respect to the

hypothesized model. As such, this estimate represents the maximum amount of information that can

be obtained from the data with respect to tbo model. The computation time of this method can be a

hindrance, however, if access to powerful computers is limited. Reconvolution in Fourier space would

speed up execution times considerably.

The results of this paper were obtained under "high-resolution mode", i.e. a large numberof

data points and energy grid points, to minimize the effect of numerical broadening. Under lower

resolution, numerical broadeningmay become significant. Numerical broadeningcan be distinguished

from surface heterogeneity by increasing the number of data points/grid points. If the distribution

na,':ows, numerical broadeningis observed at the lower resolution. For other isotherm experiments

which pragmatically limit the number of data points (e.g. frontal analysis, static methods), high

resolution may not be feasible. Furthermorethe SNR may be lower than that simulated here. Note

thatthe experimental noise incurred in a chromatogram is low-pass filtered in the integration used with

the ECP method, which further reduces the effect of this noise on the AED. In any case, the EM

estimates of these data would still define the information content of the isotherms. Broadening

mechanisms reflect the additional uncertainty that results from less and/or noisier data. If the

resolution possible is too low or the SNR is too poor, numerical artifacts will result, and correlation

with chemical and physical variables and reproducibility will be strained. Under these conditions,

accurate unbiased estimation of AEDs is not possible.

13
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FIGURE CAFrIONS

Figure 1. HILDA estimation of a simulated Gaussian distribution. (a) F__ = 10.0 kcal/mol, tr = 0.2

kcal/mol, and q, - 1.0xl0 5 mol/g, SNR = oo; (b) Em= 12.0 kcal/mol, tr = 0.2 kcal/mol, and q,

= 1.0xl0 5 mol/g, SNR = 439. Solid line: estimated distribution; Dashed line: actual distribution.

Figure 2. EM estimation of a simulated Gaussian distribution. (a) F__ = 10.0 kcal/mol, tr = 0.2

kcal/mol, and q, = 1.0xl0 -5mol/g, SNR = oo; (b) E, = 12.0 kcal/mol, tr = 0.2 kcal/mol, and q,

= 1.0xl0 5 mol/g, SNR = 439. Solid line: estimated distribution; Dashed line: actual distribution.

Figure 3, Estimation of a Misra isotherm with the Langmuir model at different sampling ranges.

Solid line corresponds to well sampled data (93.5 %), dotted line corresponds to high-dlow-p data cut

if > 4 kcal/mol, and dashed line corresponds to low-E/high-p data cut if < 2 kcal/mol. (a) HILDA

estimates taken from Ref 7. (b) Corresponding EM estimates.

Figuie 4, EM estimates of Misra isotherms with the Langmuir model at various degrees of missing

low-dhigh-p data. (a) Low-E progressiw:ly cut at 0.0 (6.5% cut), 0.2 (9% cut), 0.4 (12% cut), 0.6

(17% cut), 0.8 (22% cut), and 1.0 kcal/mol (28% cut). (b) Blow-up of (a). (c) Low< progressively

cut at 1.0 (28% cut), 1.2 (35% cut), 1.4 (43% cut), 1.6 (51% cut), 1.8 (58% cut), and 2.0 kcal/mol

(63 % cut). (d) Blow-up of (c).

Figure 5. EM estimation of a bimodal Gaussian distribution: F-_.t = 10.0 kcal/mol, Eta.2 = 14.0

kcal/mol, tr_ = tr2 = 0.2 kcal/mol, q,.t = 1.0x105 mol/g, and q,.2 = 0.5x105 mol/g. (a) Sampled

pressure range = px[4.0x107,0.099] atm, SNR = 5000. (b) Sampled pressure range = px[3.8xl0

7,9.9x103] atm, SNR = 500. (c) Sampled pressure range = px[3.4x107,9.9x10 4] atm, SNR = 200.

Solid line: estimated distribution; Dashed line: actual distribution.

Figure 6. EM estimation of a Poisson distribution with F-._x = 10.1 kcal/mol, and q, = 1.0xl0 5

mol/g. Sampled pressure range = px[3.8x107,9.9x10 3] atm, SNR = 500. Solid line: estimated

distribution; dashed line: actual distribution.
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Table I. Figures of merit for tLe HILDA estimation of raw isotherm data corresponding to a Gaussian

distribution in energy-space.

Figure of Merit SNR = oo SNR = 439

SEP 2.071x104 0.01568

Area 1.000 G.3621

q, 1.O00xlO s 1.O01xlO -s

_x 9.973 11.86,12.31

convg, iter. 20,000 19,896

SEP = {[EpmmPm_(q_xp(p)-qc,l(p))2]/N}la = standard error of prediction

Area = normalized area of final solution of the distribution

function.

qs = apparent saturation capacity

E._x = maximum position of peaks observed

convg, iter. = number of convergent steps c_bserved

17



Table II. Figures of merit for the EM estimation of raw isotherm data corresponding to a Gaussian

distribution in energy-space.

Figure of Merit SNR = oo SNR = 439

SEP 3.246x 104 8.586x 103

q, 1.000xl0 5 9.992x10 -_

_m 9.999 12.00

a 0.2029 0.1784

SEP = {[_.i._"_X(q_p(p)-q_._o)_2!/N} la = standard error of prediction

q, = apparent saturation capacity

em= mean energy calculated from 1't statistical moment

a = standard deviation calculated from 2ndstatistical moment

18



Table Ell. EM energy distribution analysis of Misra isotherm. Atot = 1.0 simulated.

Emin,Em, x % CUT SEP # % Al % A 2 % A 3 Atot

x 10.3 PEAKS

0.0,6.0 6.5 1.114 1 100.0 - - 1.068

0.2,6.0 9 1.518 2 99.94 0.06" - 1.008

0.4,6.0 12 1.414 2 99.94 0.06" - 1.011

0.6,6.0 17 1.138 2 99.94 0.06" - 1.015

0.8,6.0 22 0.799 2 99.94 0.06" - 1.013

1.0,6.0 28 1.252 2 99.96 0.04" - 0.9996

1.2,6.0 35 1.898 1 100 - - 0.9670

1.4,6.0 43 2.512 2 90.86 9.14 - 0.9112

1.6,6.0 51 5.249 3 91.74 8.10 0.16 0.8331

1.8,6.0 58 7.510 3 94.30 5.58 0.12" 0.7375

2.0,6.0 63 7.227 3 96.27 3.64 0.09" 9.6292

SEP = {[Epmi_pm_x(qcxp(p)-qc,l(p))2]/N} _/2= standard error of prediction

%A = percentage of observed peak to total amplitude observed, Atot. Peaks are numbered from low-_ to high-

" Peak is a gradual divergence at em,x.
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Table IV. Figures of merit for the EM estimation of raw isotherm data corresponding to a bi-

Gaussian distribution in energy-space.

Figure of p_x=.099 atm p_x=9.9xl0 3 Pm.x=9.9xl0 4
merit SNR = 5000 SNR = 500 SNR = 200

a,_ (atm) 1.4x10.6 2. lxl0 -6 1.2x10.6

SEP 0.03307 0.04962 0.02933
.... ,

q.,tot 1.442x 10"s 1.492x 10.5 1.423x 10.5
, ,,,, ,,,

q,,l 9.871 x 10.6 1.009x 10.5 9.268x 10.6
.....

Em,l 9.967 9.935 10.05"

al 0.1468 0.1539 0.05035"
,,

qs,2 4.546x 10.6 4.833x 10s 4.962x 10.6
,,

em,2 13.73 13.78 13.94
,,

a2 0.1052 0.08383 0.1013

SEP = {[_pmmPm_x(qcxp(p)-q.a(p))2]/N}1/2 = standard error of prediction

qs,tot "- total apparent saturation capacity

qs,_ = apparent saturation capacity for 1't component

_m,t -- mean energy calculated from 1" statistical moment for 1st component

a_ = standard deviation calculated from 2ndstatistical moment for 1stcomponent

qs,2 = apparent saturation capacity for 2ndcomponent

eta,2= mean energy calculated from 1st statistical moment for 2"a component

a2 = standard deviation calculated from 2_a statistical moment for 2nacomponent

" Values are prejudiced because of the lack of detection of a peak maximum.
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