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ABSTRACT

Spectral energy transfers by internal gravity wave–wave interactions for given empirical energy spectra are

evaluated numerically from the kinetic equation that is derived from the assumption of weak interactions.

Wave spectrum parameters, such as bandwidth, spectral slope, and Coriolis frequency f, are varied, as is the

spectral resolution. In agreement with previous studies, we find in all cases a forward energy cascade toward

smaller vertical and horizontal wavelengths. Energy sinks due to the transfers are predominantly at fre-

quencies between 2f and 3f. While the mechanism of the energy transfer differs partly from findings of

previous studies, a parameterization for internal wave dissipation—which is used in the fine structure pa-

rameterization to estimate dissipation and mixing rates from observations—agrees well with the numerical

evaluation of the energy transfers. We also find a dependency of the energy transfers on the spectral slope,

offering the possibility to decrease the bias of the fine structure parameterization by improving the knowledge

about the spatial variations of this (and other) spectral parameter.

1. Introduction

The energy spectra of superinertial fluctuations in the

ocean show over wide regions a similar spectral shape

that is referred to as the Garrett–Munk (GM) spectrum

(e.g., Garrett andMunk 1975; Cairns andWilliams 1976;

Munk 1981). The spectral slopes in vertical and hori-

zontal wavenumber and frequency tend to be close to 2

for large wavenumbers and frequencies, but can also

vary regionally (Polzin and Lvov 2011). It can also be

shown that those superinertial fluctuations seen in the

ocean are consistent with the polarization relation of

internal gravity waves (e.g., Müller et al. 1978). The

universal GM spectrum is thought to be generated by

the energy transfer in wavenumber space because of

nonlinear interactions of gravity waves: If some forcing

process such as tidal flow over topography generates

waves at a certain wavenumber and frequency, non-

linearities can cause an energy transfer to waves of dif-

ferent wavenumbers and frequencies, such that in steady

state—when dissipation of the waves balances the

forcing—all possible wavenumbers and frequencies of

internal gravity waves are populated with energy at a

different level and a certain spectral shape results, as

seen in the observations.

Energy transfers by nonlinear wave–wave interac-

tions can be very complicated, and in general it appears

to be impossible to predict them. Under the assumption

of slowly changing wave amplitudes, however, it is

possible to predict the rate of change of wave energy by

nonlinear wave–wave interactions for a given spectrum

using the so-called scattering integral or kinetic equation

(Hasselmann 1966). The kinetic equation for internal

gravity waves was evaluated by, for example, Olbers

(1976), McComas and Bretherton (1977), and Pomphrey

et al. (1980) for different versions of the GM spectrum,

under different approximations, and using different

numerical methods. Assuming a steady balance between

forcing and dissipation of the wave field, the energy

transfers calculated by those studies would allow us to

localize the regions of forcing and dissipation in wave-

number space. The results and interpretations of the

different studies share some common features, but
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unfortunately they are also in parts contradictory, which

might be due to the different GM-like spectra, the dif-

ferent assumptions, or the different numerical methods

used in those studies. Furthermore, Lvov et al. (2012)

recently put doubts on the validity of the weak-interaction

assumption and thus on the studies we referred to above.

The dissipation of internal gravity waves is thought to

be related to breaking of the waves by gravitational or

shear instability, that is, to an energy transfer from the

wave field to small-scale turbulence, which ultimately

leads to density mixing and an increase in potential

energy in the stratified interior of the ocean. Such a

potential energy increase can then drive the large-scale

circulation of the ocean with potentially important

effects on Earth’s climate. In particular, the global me-

ridional overturning of the ocean is driven—in addition

to the winds over the Southern Ocean—to a substantial

part by this interior mixing (e.g., Talley et al. 2003).

Knowing the forcing and dissipation of the internal wave

field in the ocean, therefore, would help to understand

and to predict the large-scale ocean circulation and cli-

mate. A parameterization for the dissipation of internal

waves can be inferred from the earlier studies on the

kinetic equation (Olbers 1976; McComas and Müller

1981), which forms the basis of the so-called fine struc-

ture parameterization (e.g., Gregg 1989; Polzin et al.

2014). This parameterization is often used to estimate

dissipation and mixing rates from observed density and

velocity profiles (e.g., Kunze et al. 2006; Whalen et al.

2012), and much of our knowledge about the global

distribution of turbulent mixing in the ocean comes

from it.

Given the discrepancies between the previous studies

on the kinetic equation for internal gravity waves and

the relevance for our view of global mixing, we revisit

the issue in this study by numerically recalculating the

kinetic equation for GM-like spectra based on a new

analytical derivation. While most of the previous studies

focus on the resonant, that is, most important for in-

finitely long time scales, interactions only, Lvov et al.

(2012) discuss the effect of using also the nonresonant

interactions in an approximate form. Here, we include

all resonant and nonresonant interactions with greater

accuracy. Further, we use a numerical method with an

error in energy conservation as low as the numerical

precision allows. The error level is reported to be on the

order of 1% in Olbers (1976) using a rather coarse nu-

merical method, while the other studies do not give

information on that. We test the validity of the weak-

interaction assumption, use different forms of GM-like

spectra, and investigate the dependency of the results on

spectral parameters, resolution, and domain size. We

also compare the results of the evaluation of the kinetic

equation with the fine structure parameterization (e.g.,

Gregg 1989; Polzin et al. 2014), which is used to estimate

dissipation rates and mixing coefficients from observa-

tions (e.g., Kunze et al. 2006; Whalen et al. 2012).

Models of the internal wave energy propagation (Olbers

and Eden 2013) are also using the same parameteriza-

tion for the dissipation of internal wave energy.

In section 2, we specify the (GM-like) energy spec-

trum and the kinetic equation we use in this study, while

the numerical methods used to evaluate the kinetic

equation are presented in section 3. In section 4, we

present the results of the evaluation using different nu-

merical methods, test the validity of the weak-interaction

assumption, discuss the effect of different spectral res-

olution and the dependency on spectral parameters and

Coriolis frequency on the evaluation in comparison to

the fine structure parameterization of wave dissipation,

and investigate the mechanism of the energy transfers.

In the last section, we summarize and discuss the results

of the evaluation of the kinetic equation. In the appendix,

we give details on the interaction coefficients of the

kinetic equation.

2. GM-like spectra and kinetic equation

There are various versions of GM-like spectra, differing

in details of their analytical form; see, for example, Polzin

and Lvov (2011) for a discussion. Here, we use the

general wave spectrum considered also by Müller et al.

(1978) and vary parameters in the expression. The en-

ergy density E of the internal gravity wave field in the

ocean is expressed as,

E(m,v,f, x, z)5
E

0
(x, z)

4p

A(m/m
+
)

m
+

B(v) , (1)

where

A(x)5 n
a
(11 jxjs)2r/s and

B(v)5 n
b
jf jv21(v2

2 f 2)21/2 ,
(2)

are dimensionless functions with the normalizations

na 5 sG(r/s)G(1/s)21
G[(r2 1)/s]21 and nb 5 2/p (the lat-

ter forN/f � 1) given by
Ð

‘

0
A(x) dx5 1 and

Ð N

f
Bdv5 1.

The parameter m+ is given by m2
+
(v)5 (N2

2v2)/c2
+

with c+5 1/(j+p)
Ð

N dz, and with the modal bandwidth

j+ in the range 3–15. While the total energy level E0

may vary in physical space, the spectral shape is fixed by

the functions A and B and the parameters j+ (or c+), s,

and r. The spectral shape depends on the horizontal

wavenumber magnitude k and the frequency v but not

on the horizontal wavenumber vector angle f and fol-

lows for large k and v a k2r and v22 power law,
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respectively. Note that GM76 (Cairns and Williams

1976; Munk 1981) uses r5 s5 2 with na 5 2/p, while

GM75 (Garrett and Munk 1975) uses s5 1 and r5 2:5

with na 5 1:5.

Since it is more convenient for the numerical evalua-

tion of the nonlinear wave–wave interaction to work in

(k, m) space, where k denotes the horizontal wave-

number vector and m the vertical wavenumber, we

transform the energy density E from (m, v, f) to (k, m)

space, which yields,

E(k,m, x, z)5
E

0

4p

A(m/m
+
)

m
+

B(v) J21 and

J5
›(k

1
, k

2
,m)

›(m,v,f)
5m2v

(N2
2 f 2)

(N2 2v2)2
, (3)

with the squared internal wave frequency v2(k, m)5

(N2k2 1 f 2m2)/(k2 1m2). If not otherwise noted, we

set in this study the parameters f 5 1024 s21, N5

53 1023 s21, E0 5 33 1023 m2 s22, and c+5 0:5m s21

(corresponding to a vertical wavelength 2p/m5 2pc+/N’

630m for small v and a bandwidth of j+’ 10 for a depth

of 3000m) and r5 s5 2, that is, GM76.

The spectral energy density E given by Eq. (1) or (3)

can be used to evaluate the kinetic equation, which

describes the energy transfers due to weak nonlinear

wave–wave interactions in the internal gravity wave

field. A kinetic equation can be derived for many

dynamical systems. Often, a rather complicated La-

grangian or Hamiltonian description of the equations of

motions forms the starting point as in, for example,

Hasselmann (1966), but the normal Eulerian form of the

equations can also be used. A Fourier ansatz allows us to

identify the linear-wave solutions of the system under

consideration—in our case, the Navier–Stokes equa-

tions for an incompressible fluid under rotation featur-

ing internal gravity waves—but the ansatz also generates

from the nonlinear terms of the equations of motion an

integral over wavenumbers, coupling the rate of change

of a particular wave amplitude to the amplitudes of

other waves. To simplify and to better understand these

complicatedwave–wave interactions, the weak-interaction

assumption (Hasselmann 1966; Nazarenko 2011) can be

invoked. It implies that the amplitudes of the waves are

only weakly changing by the nonlinearities, a state that is

also sometimes called wave turbulence. It is then pos-

sible to transform the integral originating from the

nonlinear terms into the so-called scattering integral or

kinetic equation for the (statistical) second moment of

the amplitudes, which is proportional to the wave en-

ergy. As seen below, the kinetic equation still involves

integrals in wavenumber, but allows us to predict the

energy transfers by the nonlinear terms in the equations

of motions for a given energy spectrum—in our case,

Eq. (1) or (3).

The kinetic equation considered here is given by

›
t
E
0
5 4

ð

dK
1

ð

dK
2
fD(v

1
1v

2
2v

0
)d(K

1
1K

2
2K

0
)C1 1 1

K0K1K2
[(C1 1 1

K0K1K2
)*E

1
E
2
2C1 2 1

K22K1K0
E
0
E
1
2C1 2 1

K12K2K0
E
0
E
2
]

1 2D(v
1
2v

2
2v

0
)d(K

1
2K

2
2K

0
)C1 1 2

K0K12K2
[(C1 1 2

K0K12K2
)*E

1
E
2
2C2 2 1

2K22K1K0
E
0
E
1
2C1 1 1

K1K2K0
E
0
E
2
]g1 c.c .;

(4)

withK5 (k, m) and the notation En 5 E(Kn), vn 5v(Kn)

for the energy spectrum and (positive) internal gravity

wave frequencies. The interaction coefficients C we use

here and the time response functionD(v, Dt) can be found

in the appendix. The function D(v, Dt) depends on the

argumentv and timeDt (and is complex as the coefficients

C) but for timeDt/‘ it follows thatD(v)/pd(v). The

interactions for which the argumentv of the time response

function D vanishes become, therefore, resonant and will

dominate over all other nonresonant interactions with

nonvanishing arguments on long time scales Dt.

The derivation of the particular version of the kinetic

equation [Eq. (4)] is discussed in detail in Eden et al.

(2019). We use only the first two terms of their Eq. (25),

which describe sum and difference interactions, and

exclude the last term of their Eq. (25), which is never

resonant and in general small in all examples we tested.

There are several other versions of the kinetic equation

for internal gravity waves in the literature as discussed

by Lvov et al. (2012), with different interaction co-

efficients and using different approximations. The co-

efficients C given in the appendix can be related to the

ones given in Olbers (1974, 1976) andMüller andOlbers

(1975a) for the resonant interactions but differ in gen-

eral for the nonresonant interactions.

3. Methods to evaluate the kinetic equation

We apply here the method by Eden et al. (2019) to

calculate all resonant and nonresonant interactions from

Eq. (4) (method 1), a simplified version of that method

(method 2), and a method to calculate only the resonant

interactions (method 3). For the first two methods, it is
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necessary to specify a time scale Dt for which the time

response function D in the kinetic equation is evaluated.

Here, we use Dt 5 10 days if not noted otherwise. The

effect of this choice is discussed below.

a. Method 1

For method 1, the kinetic equation is evaluated nu-

merically as in Eden et al. (2019) on an equidistant grid

in K space with an uneven number of grid points in all

(positive and negative) directions including the point

(k, m)5 0. It is found that the wavenumber grid needs to

be of this shape to allow for exactly matching triads, for

which all three wavenumbers (k, m) can be exchanged.

When that exchange was not possible, we were not able

to exactly conserve energy in the calculation of the kinetic

equation. Energy conservation is checked by evaluating
Ð

d(k, m)›tE/
Ð

d(k, m)j›tEj, and it is given by zero for the

first method within the numerical precision error.

b. Method 2

Since the GM-like spectrum [Eq. (1)] is isotropic in

horizontal wavenumber k, the resulting energy transfer

from Eq. (4) shares the same property, that is, ›fE5 0

and ›f›tE5 0 where f denotes the horizontal wave-

number vector angle. It is in principle therefore suffi-

cient to evaluate Eq. (4) for a certain direction in

k5 (kx, ky) only, say for k5 (kx, 0). The energy transfer

›tEjky50 should then conserve energy by itself, that is, it

holds that,

ðð

2pk
x
›
t
Ej

ky50
dmdk

x
5 0: (5)

On the discrete grid in (kx, ky) space, this property is not

exactly satisfied anymore. Evaluating Eq. (4) for a cer-

tain direction in k only generates a small relative error

of a few per mill in the total energy conservation, but the

numerical calculation is of coursemuch less cost intensive.

We will use both approaches here, the exact three-

dimensional calculation (method 1) and the approximate

one for a certain direction in k only (method 2).

c. Method 3

The delta function in wavenumber in Eq. (4) can be

used to resolve the integral over K2, but still, a three-

dimensional integral needs to be solved numerically for

each point inK space [or for the points of a certain slice of

it, for example, (kx, 0, m)], which is numerically cost in-

tensive. Concentrating on the resonant interactions only,

that is,D(v)/pd(v) inEq. (4), a further simplification of

the calculation of the kinetic equation becomes possible.

The kinetic equation for time Dt/‘ simplifies to

›
t
A

0
5

ð

dK
1

ð

dK
2
[ d(v

1
1v

2
2v

0
)d(K

1
1K

2
2K

0
)T1(A

1
A

2
2A

0
A

1
2A

0
A

2
)

1 2 d(v
1
2v

2
2v

0
)d(K

1
2K

2
2K

0
)T2(A

1
A

2
1A

0
A

1
2A

0
A

2
)] , (6)

with wave action spectrum A5 E/v and the scattering

cross section,

T6
5 8pv

1
v
2
jC1 1 6

K0K16K2
j2/v

0
, (7)

which are identical to the ones given in Olbers (1974,

1976), Müller andOlbers (1975a), andOlbers et al. (2012).

For given k0,m0 and k1, the conditionv0 2v1 2v2 5 0

yields an implicit condition on m1, that is, g(m1)5v0 2

v1(m1)2v2(m0 2m1)5 0 for the sum interaction

[first term in Eq. (6)], and similar for the difference

interaction [second term in Eq. (6)]. All integrals in

m1 showing up in Eq. (6) can then be resolved ac-

cording to

ð

h(m
1
)d[g(m

1
)] dm

1
5

h(m
1
*)

jg0(m
1
*)j , where

g0 5
m

1

v
1

v2
1 2 f 2

k2
1 1m2

1

2
m

2

v
2

v2
2 2 f 2

k2
2 1m2

2

, (8)

with m1*5 g21(0), which we find numerically from the

condition g(m1*)5 0 with a standard root-finding algo-

rithm, which converges after a few iterations; g0 is

identical for sum and difference interactions. We find

that energy conservation using this method is also only

approximate, and we use it (for a slice in K space) to re-

duce the computational costs further as a third method

(method 3). Note thatmethod 3 is similar to the evaluation

method of Eq. (6) described by Olbers (1974, 1976).

4. Numerical evaluation of the energy transfers

Figure 1 shows ›tE for the spectrum given by Eq. (1)

and using method 1. The domain for the calculation has

an extent of 25 km3 25km in the horizontal and 2km in

the vertical. The grid resolution is about 100m in the

horizontal and about 8m in the vertical, with the cor-

responding constant grid spacing in wavenumber space.

Formethod 1, all interactions in all positive and negative

directions of the wavenumber vector are calculated.
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This requires us to compute about 1014 triad interactions

for this grid, which takes about 2 days of computing

(real) time using 100 nodes with 36 CPUs each of the

supercomputing facilities of the DKRZ in Hamburg,

Germany.

In Fig. 1, the energy transfer ›tE is shown integrated

over wavenumber angle f as the so-called content

spectrum, that is, mkdtE(m, k), where k5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(k2
x 1 k2

y)
q

,

which we choose to better visualize the content of energy

transfer in logarithmic wavenumber space: The volume

under the surface shown in the figures is directly propor-

tional to the spectral content of the corresponding func-

tion. The figure shows ›tE only for positive m since it is

vertically symmetric. There is energy loss predominantly

for waves with v between exactly 2f and about 3f over a

wide range of k and m, while there is energy gain pre-

dominantly atv* 3f at larger k andm, but also forv, 2f .

Figure 2 shows the energy transfer ›tE on a larger grid

but using method 2. The domain for the calculation

also has a larger lateral extent; the grid resolution is

about 90m in the horizontal and about 2m in the

vertical. For waves with 2f ,v& 3f , the energy loss

extends now over the whole wavenumber space. The

energy gain is predominantly at large k and m, but it is

difficult to see if the energy gain takes place pre-

dominantly for v* 3f or v, 2f , since ›tE is in general

even noisier than for method 1.

Figure 3 shows the effect of using different times Dt to

evaluate the function D(v, Dt) in the kinetic equation. For

Dt/‘ the function converges to d(v), and only resonant

interactions are possible, whereas for finite times also,

nonresonant interactions contribute to ›tE. Truly resonant
interactions, for which v5v(K1)6v(K2)2v(K0)5 0

holds, are hardly possible on the discrete three-

dimensional wavenumber grid, which we use to calculate

the kinetic equation formethods 1 and 2. Correspondingly,

the effect of using larger Dt is that results of the calcu-

lation become noisier, while for smaller Dt the results

become smoother. We expect that the noise in the cal-

culation for large Dt would vanish if we used a better

FIG. 1. Content spectra of ›tE(k, m) for Lx 5Ly 5 25 km, Lz 5 2 km, and 2513 grid points and method 1 for

(a) positive and (b) negative values of the transfer rate, displayed with logarithmic scales. The white lines denote

v/f 5 2, 3, 4, 5, 10, 20.

FIG. 2. As in Fig. 1, but for Lx 5Ly 5 75 km, Lz 5 2 km, and 8012 3 1001 grid points and method 2.
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resolution in wavenumber space, since then more triad

interactions on the discrete grid would approach the

resonant condition v5 0, but we have not tested this

assumption. However, the principal character of the

evaluation does not change for large Dt even on the grid

shown in Fig. 1, and it is also similar to the evaluation for

Dt/‘, as shown next. Therefore, we can conclude that

the choice of finite or infinite Dt plays no large role for

the evaluation.

Figure 4 shows the energy transfer ›tE using method 3,

where only the resonant interactions for infinite times

are calculated, for a grid with about 40-m horizontal

resolution and 2-m vertical resolution. The relative error

in energy conservation is 0.6%. The energy transfer ›tE
is now much smoother than when including also non-

resonant interactions for finite times. For v/N, there is

another region with ›tE, 0, and for even larger v, large

positive ›tE can be observed, as already indicated in

Figs. 1 and 2. However, in this case, turnover time scales

of the interaction are becoming shorter than the wave

periods—as demonstrated in the next section—such that

the weak-interaction assumption breaks down, and the

results should not be interpreted literally.

We tested the impact of different grid sizes. The large

energy transfers for v/N tend to show up with high

horizontal and vertical resolution, while the transfers for

smaller v remain insensitive to the grid resolution and

domain size. We believe that the large transfers for

v/N are caused by a finite box effect: The spectrum

and thus the energy transfers are horizontally isotropic,

but the rectangular grid that we use is anisotropic.

Therefore, certain triads with members in the corners of

the rectangular grid in phase space cannot be realized in

all lateral directions. The effect is then what can be seen

in Fig. 4, which is reminiscent of wiping out a ramp

feature in energy density for large wavenumbers, as seen

in, for example, McComas and Bretherton (1977). A

solution to the problem would be to use an infinite grid

in the horizontal, which seems impossible, or a finite but

horizontally isotropic grid, that is, a cylinder in physical

space. But to treat this arrangement, one would need to

use Hankel transforms in the horizontal instead of

FIG. 3. As in Fig. 1, but for (a) Dt 5 1 day and (b) Dt 5 100 days instead of 10 days.

FIG. 4. As in Fig. 2, but for Lx 5Ly 5 75 km, Lz 5 6 km, and 20012 3 2801 grid points and method 3.
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simple Fourier transforms, and this is beyond our scope.

We therefore believe that the specific pattern for v/N

is artificial, but we cannot answer the question of what

would happen with a better-suited grid.

a. The normalized Boltzmann rate

The underlying assumption of the kinetic equation is

that wave amplitudes are only slowly changing, and it is

necessary to test if this is really the case for the wave

spectra of Eq. (1). This is in particular relevant if we

consider only the resonant interactions that dominate

after long times. The Boltzmann rate is given by

l5 ›tE/E and represents an inverse turnover time scale

of the energy transfer due to wave–wave interactions.

Following Nazarenko (2011) and Lvov et al. (2012), l is

normalized by the wave period, that is, ln 5 ›tE/(Ev) is
the normalized Boltzmann rate. If jlnj, 1, the turnover

time scale of the wave–wave interaction is large com-

pared to the wave period and the weak-interaction as-

sumption is valid, but if jlnj$ 1, the weak-interaction

assumption is violated and the validity of the kinetic

equation is in question.

Figure 5 shows ln for the energy transfers in Figs. 2

and 4. For both cases, the normalized Boltzmann rate ln

is indeed very small for most regions in wavenumber

space. Only for largem and k and forv/N do the rates

become large. This implies that the weak-interaction

assumption is valid over most parts of the wavenumber

domain shown here, except for large m, k, and large v.

TheBoltzmann rate ln is also similar to the one shown in

Lvov et al. (2012, their Fig. 5). It depends on the total

wave energy level as ln ;E0. We have used here the

canonical value of E0 5 33 1023 m2 s22 suggested by the

earlier studies on the internal gravity wave spectrum in

the ocean cited above. However, comparing this value

with the global estimates by Pollmann et al. (2017) of

wave energy from Argo floats shows that this value is

rather high, which would indicate lower values of ln in

most regions of the ocean. On the other hand, even if

jlnj. 1 and the formal assumption of Hasselmann’s

weak-interaction theory breaks down, that does not

mean that there are no energy transfers or that the re-

sults of the evaluation are completely worthless, as they

still may indicate qualitatively the nature of the wave–

wave interactions. Direct numerical simulations (with

their own problems) might prove useful to study the

nature of the interactions for jlnj � 1 with strongly

nonlinear behavior.

b. Energy transfer in vertical wavenumber

Figure 6a shows ›tE integrated over all horizontal

wavenumbers as a function of vertical wavenumber m

using different grids and method 3. Regions for which

the normalized Boltzmann rate is becoming too high are

excluded, that is, ›tE(v. 40f ) is set to zero for the

integral over k, with the rationale explained above. In-

cluding ›tE(v. 40f ) leads to an increase of the magni-

tude of theminimum in all curves (not shown) but has no

effect for larger m.

For all estimates of energy transfer in this study, it

holds that there is energy loss for vertical wavelengths

larger than about 50–70m and energy gain for smaller

wavelengths, indicative of a downward energy cascade.

The same is true for the energy loss and gain as functions

of horizontal wavenumber (not shown) but with a sep-

aration wavelength of about 600m. However, the sep-

aration wavelength and the region of maximum energy

gain depends on the grid resolution. The higher the

resolution, the smaller the separation wavelength. This

is an indication that the integral in Eq. (6) may not

converge to a finite value form/‘, since themaximum

energy gain also increases with increasing grid resolu-

tion. This effect seems to be less prominent in the GM75

spectrum (Fig. 6b), for which the spectral slopes of E in k

FIG. 5. Normalized Boltzmann rate ln for the energy transfers in (a) Fig. 2 and (b) Fig. 4.
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and m are slightly steeper (22.5 instead of 22 for

GM76). Here, the separation wavelength also decreases

with increasing resolution, but the maximum energy

gain decreases with increasing grid resolution.

c. Parameter dependency of the energy transfers

We can compare the negative energy transfer and its

dependency on parameters with the fine structure pa-

rameterization (e.g., Gregg 1989; Polzin et al. 2014).

Olbers (1976) and McComas and Müller (1981) suggest

the form D5m0fc
22
+

E2
0 for the dissipation of internal

wave energy, which is also found by Henyey et al. (1986;

but with slightlymodified f dependency relevant only for

small f /N). This expression for the dissipation of internal

wave energy is used in the fine structure parameteriza-

tion to obtain an observational estimate of the dissipa-

tion of small-scale turbulent kinetic energy (TKE) and

turbulent mixing rates, assuming a constant ratio be-

tween production of TKE by internal wave dissipation

and decrease of TKE because of the transfer to potential

energy (Osborn 1980). Figures 7a and 7b compare D

(using m0 5 0:6) with ›tE integrated over the frequency

range 2f ,v, 3f for different f and c+, showing indeed a

surprisingly good agreement. Similar results are obtained

using other regions of the (k,m) plane or for
Ð

dkdmj›tEj,
but in these cases, different values for m0 are needed.

Olbers (1976) has shown that the above scaling is re-

trieved by analytical means.

Henyey et al. (1986) andMcComas andMüller (1981)

use the GM76 spectrum with r5 s5 2 spectral slopes,

while Olbers (1976) uses the GM75 spectrum with a

different slope. Here, we see that varying the spectral

slope r5 s also generates different dissipation rates

as shown in Fig. 7c. The extended parameterized

form,

D5m
0
fc22
+

(r2 1)23
E2

0 , (9)

fits ›tE well using m0 5 0:6. The range of slopes shown

in Fig. 7c roughly corresponds to what is reported by

Polzin and Lvov (2011) for different regions of the

ocean. Using a fixed value for the slope r thus yields a

FIG. 6. Energy transfer ›tE integrated over horizontal wavenumbers for (a) GM76 (r5 s5 2) and (b) GM75 (r5

2.5, s5 1) for a grid with Lx 5Ly 5 75 km, Lz 5 6 km, and 6012 3 1201, 8012 3 1601, and 20012 3 2801 points and

method 3.

FIG. 7. Parameterized energy transferD (solid) from Eq. (9) and
Ð

dkdmj›tEj2f,v,3f (units: 10
29m2 s23; dots) as a function of (a) f, (b) c+,

and (c) r5 s; ›tE was calculated using method 3 using a grid with Lx 5Ly 5 75 km, Lz 5 6 km, and 8012 3 1601 points.
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corresponding error (factor of 4–5) in existing fine

structure estimates of the dissipation rate. The error

could in principle be reduced by applying Eq. (9)

instead.

Besides the amplitude, the different spectral slopes do

not change the character of the energy transfer drasti-

cally, since there is still negative ›tE predominantly for

2f ,v& 3f and energy gain at large k and m. The main

effect is that the region of energy loss in
Ð

dk›tE shifts to

smaller m for larger r. The same effect as varying r can

be seen by varying c+, that is, the region of energy loss in
Ð

dk›tE shifts to smaller m for smaller c+. For different

f, the vertical separation wavelength does not change.

d. Mechanism of the energy transfers

The first term in Eq. (4) in the integral is called the

sum interaction, and the second term is called the dif-

ference interaction. Both are shown in Fig. 8, demon-

strating that the sum interaction is the dominant one for

v0 . 2f (as long as v0 does not become too large), while

the difference interaction is the only active one for

v0 , 2f . Similar results are seen varying the parameters

as in the previous section. A resonant sum interaction

v0 5v1 1v2 is only possible for v0 . 2f , which explains

the sharp change in ›tE at 2f. Apparently, the sum

interaction starts here to dominate the difference

interaction, a feature usually attributed to parametric

subharmonic instability (PSI; McComas and Bretherton

1977). PSI is an instability of a wave of frequency v0,

which decays in a weakly nonlinear system at the ex-

pense of waves with infinitesimally small amplitudes and

half the frequency, that is, v0/2. The situation for a

spectrum where all frequencies are populated with finite

energy is not an instability but rather a specific type of

triad interaction among other resonant triads in the

spectral domain. At v0 5 2f , however, the only triad

partners have frequencies of v1 5v2 5 f . At higher

frequencies (v0 . 2f ), more triad combinations be-

come possible, always including the PSI interaction

v1 5v2 5v0/2. The fact that PSI interactions dominate

›tE at and a little above v0 5 2f in GM-type spectra is

caused by the shape of the frequency distribution of such

spectra: most of the energy is located at near-inertial

frequencies, and these waves are the triad partners for

PSI at v0*;
2f . At higher frequencies, the PSI in-

teraction competes with difference interaction and is

therefore no longer dominant.

PSI is identified byMcComas andMüller (1981) as the

dominant energy transfer mechanism toward smaller m

(besides induced diffusion at higher frequencies). We

approximately isolate the interactions by PSI by in-

tegrating in Eq. (6) only the negative sum interactions

for jv1 2v2j smaller than 10% of (v1 1v2)/2 and only

the positive difference interactions for jv0 2v2j smaller

than 10% of (v0 1v2)/2. Figure 8 shows this estimate

and demonstrates that PSI indeed dominates for v0

FIG. 8. Energy transfer ›tE by (a),(d) difference interactions, (b),(e) sum interactions, and (c),(f) approximate PSI for a grid with

Lx 5Ly 5 75 km, Lz 5 6 km, and 8012 3 1601 grid points and method 3.
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close to 2f and leads to an energy transfer toward small

m. Using less (more) than 10% as a threshold for the

estimate sharpens (smoothens) the maximum of ›tE at

v0*;
2f . However, PSI accounts only for a small fraction

of the total transfer, and forv0 . 2f , other, more general

triad interactions seem to dominate the energy loss in

the frequency band 2f ,v0& 3f . On the other hand, we

expect that a more energetic near-inertial peak in the

spectrum would increase PSI and thus the increase the

transfers out of 2f–3f to frequencies below 2f. However,

we do not expect that the principal pattern of the

transfer (transfer out of 2f–3f to lower and higher fre-

quencies) would change in a significant way.

5. Summary and discussion

Observed spectra of internal gravity waves in the

ocean show over wide regions a similar spectral shape

that is called the Garrett–Munk (GM) spectrum. We

have evaluated numerically the kinetic equation for the

(weak) interaction of internal gravity waves in GM-like

spectra using three different methods. The first method

considers all resonant and nonresonant interactions in

three-dimensional wavenumber space with energy con-

servation at numerical precision, while the second

(numerically cheaper) method exploits the horizontal

isotropy of the observed wave spectrum but has a larger

error in energy conservation. The third (even cheaper)

method considers only resonant interactions among the

waves that dominate over the nonresonant ones on long

time scales. All methods show an energy transfer from

regions in wavenumber space with 2f ,v0& 3f to lower

and higher frequencies and to higher vertical wave-

numbers, for a wide range of domain sizes and param-

eters of the GM-like spectra. Since the principal

character of the evaluations does not depend on the

choice of time Dt, we can conclude that nonresonant

interactions that are active only for finite Dt are of less

importance.

In general, the time scales for the wave–wave in-

teractions stay large compared to the wave periods such

that the underlying weak-interaction assumption used

to derive the kinetic equation appears valid for most

interactions. This holds both for resonant and non-

resonant interactions. However, for v/N and for very

large m, the interactions become too fast and the as-

sumption is violated. A similar behavior is reported by

Lvov et al. (2012) using approximate nonresonant in-

teractions, but here we argue that the interactions in the

wave field leading to the most important energy trans-

fers can be well described by the weak-interaction the-

ory. To our present knowledge, the effect of too-fast

interaction time scales at large v and m can only be

assessed by direct numerical simulations. However, such

simulations and comparisons to the kinetic equation

have their own limitations; examples are numerical

grid dispersion errors and the unavoidable numerical

damping. We aim to discuss this in a follow-up study,

and first results suggest that there is indeed no significant

effect of the too-fast interaction time scales; that is, the

energy transfers in the direct numerical simulations

agree well with the predictions from the evaluation of

the kinetic equation and remain small for large v andm.

One advantage of our method compared to the pre-

vious ones by Olbers (1976), McComas (1977), and

Pomphrey et al. (1980) is that we do not focus only on

the resonant interactions for Dt/‘, but also assess the

effects of nonresonant interaction at finite time scales

Dt. In Lvov et al. (2012), the effects have been only ap-

proximately incorporated. We find for smooth, GM-like

spectra given by Eq. (1) that a finite Dt only results in a

noisier transfer spectrum that provides no additional

insight relative to the pure resonant limit. For a spec-

trum with a more complex structure, that is, with

asymmetry inm, anisotropy in k, and narrowband peaks

at tidal or other frequencies, this might be different and

demands further work.

In all cases we considered, we find a forward energy

cascade toward large m and k within the wave field

with energy gain for vertical wavelengths smaller than

50–100m and loss for larger wavelengths. For the spec-

tral slope r5 2 (as in theGM76 spectrum) themaximum

energy gain increases with resolution pointing toward

a possible divergence of the integrals in the kinetic

equation for infinitively large m, which is not seen for

slope r 5 2.5 (as in the GM75 spectrum). However, this

issuemight bemore of academic nature, since variability

on wavelengths smaller than a meter would be rather

interpreted as turbulence and not as waves in the in-

terior ocean. On the other hand, there might well be

wave–wave interactions where one or two partners of the

interacting triad are given by small-scale turbulence, a

process similar to scattering at topography (e.g., Müller

and Xu 1992) but beyond the scope of this study. In any

case, a stationary spectrum as largely observed points to-

ward dissipation of wave energy in regions of energy gain

and forcing in regions of energy loss.

Previous studies (Olbers 1976; McComas and Müller

1981) developed a parameterization for the energy

transfer in the internal wave field, which is used today to

estimate dissipation rates of gravity waves, small-scale

turbulence, and mixing coefficients (e.g., Gregg et al.

2003)—the so-called fine structure parameterization.

We found good agreement of our calculations with the

parameterization by the previous studies, which is sur-

prising since the energy transfers also disagree to some
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extent with the previous studies: Parametric subharmonic

instability (PSI) is an important process but not the only

active one and is only responsible for a small fraction of

the total energy transfer. Furthermore, there appears to

be an equal share of net energy transfer from

2f ,v0& 3f to larger and smaller v0 and not only di-

rected to smaller v0 as for PSI, as argued by McComas

and Müller (1981). The other process that was discussed

by McComas and Müller (1981)—induced diffusion—

involves interaction at largev0where theweak-interaction

assumption is most likely violated. Despite these dis-

agreements, we find good agreement of the calculated net

energy transferwith the parameterization, which is derived

for PSI and induced diffusion only.

We propose here to extend the fine structure param-

eterization with a functional dependency on the spectral

slope parameter given by Eq. (9), which we find from an

empirical fit to the results of the evaluation of the kinetic

equation varying the slope parameter r. Figure 9 shows an

observational estimate of the distribution of spectral slopes

in the global ocean. Density profiles from theArgo dataset

are used to calculate vertical wavenumber spectra from

200-m segments of strain jz 5 (N2
2N2

fit)/N
2, where Nfit

is a smooth quadratic fit to the buoyancy frequency profile

N(z) calculated from the Argo data and N2 its vertical

mean. Wave energy spectra E(m) are obtained from jz
using the polarization relation of internal gravity waves.

For m � m+, the dependency on m in Eq. (1) can be

approximated as A(m);m2r, and the slopes r shown

in Figs. 9a and 9b are estimated from linear fits to

log[E(m)] from each spectrum.

More sophisticated spectral fits, as proposed in, for

example,Müller et al. (1978) using all available data, are

clearly in demand, but our first rough estimate shows

already a large range of the slope parameter in the in-

ternal wave spectra. On average, the slope r decreases

with depth and with latitude: in the lower depth range,

that is, between 1000 and 2000m, the variability is

weakest with a mean slope of 1.60 6 2.46, while the

highest values of r as well as the strongest variability are

observed in the 200–500-m-depth range with a mean

slope of 2.316 3.25. Also the decrease of r with latitude

is especially pronounced between 200 and 500m, where

50% (75%) of the slope estimates exceeding twice the

global average for this depth range occur equatorward

of 238 (378). Among the three ocean basins, the Atlantic

features the smallest slopes and weakest variabilities in

any depth range, as well as the strongest concentration

of high slope estimates in the (sub)tropics above 500-m

depth. From these variations and the dependency in

Eq. (9), changes of the dissipation rates and thus the

mixing coefficients of a factor of 4–5 can be expected

compared to estimates using a fixed slope parameter.

Figure 9b shows a rather complex spatial structure in

the spectral slope similar to the total energy content

shown in Fig. 2 of Pollmann et al. (2017). Such spatial

variations in slope, total energy content, and in the

bandwidth parameter m* are also discussed in Polzin

and Lvov (2011), where a similar variation in the spec-

tral law for the frequency dependency is found, which

we have not varied here. We believe that more research

should be devoted to observe and to understand the

spatial variations of the internal wave spectrum—

including the role of spectral peaks in the continuous

spectrum—and its consequences for the nonlinear en-

ergy transfers implied by the kinetic equation.

The effects of forcing and dissipation and the effect of

energy transports in physical space and phase space

(refraction) can be added to Eq. (4) to form a complete

energy balance of internal waves in the ocean. Other

effects like scattering at topography, at the balanced

flow, at small-scale turbulence, and at surface waves

also need consideration, but methods to do so are, at

hand, using weak-interaction theory; see, for example,

Müller and Olbers (1975b), Müller (1977), Olbers and

Herterich (1979), Müller and Xu (1992), and more

FIG. 9. Estimates of spectral slopes of internal gravity waves. Slopes are calculated from fits to internal wave vertical wavenumber spectra

derived from a global dataset of vertical profiles from the Argo program (Argo 2000). Data from 2006 to 2017 are considered.
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recently Savva and Vanneste (2018). We propose to

quantify the role of these effects to balance the non-

linear energy transfer and its spatial variations given by

Eq. (4) in order to understand the internal gravity wave

field in the ocean and its role for mixing.
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APPENDIX

Interaction Coefficients of the Kinetic Equation

The interaction coefficients C are derived in the way

detailed in Eden et al. (2019) from the Navier–Stokes

equations for an incompressible fluid under constant

rotation and are given by

C6 6 6

K0K1K2
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
0
n
1
n
2
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2n
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0 � fQ6
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1 (Q6
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1
]g , (A1)

with K5 (k, m), with the left and right eigenvectorsQ6

and P6 of the linear system matrix,
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, (11)

with the notation Q6

n 5Q6(kn, mn), similar for P and

q6, and with the normalization,

n(k,m)5
(N2

2v2)(v2
2 f 2)

2(k2
1m2)v2

. (A2)

The eigenvectors are orthogonal to each other and

normalized to one, and their components of Q6 and P6

correspond to horizontal and vertical velocity and

buoyancy. The interaction coefficients C6 6 6

K0K1K2
are sym-

metric in the last two arguments K
6

1 and K
6

2.

The vector k: denotes counterclockwise rotation of the

vector k by p/2; that is, k
:
5 (2k2, k1) for k5 (k1, k2).

The time response function D(v, Dt) is given by

D(v,Dt)5 eivDt
ð

Dt

0

dt0e2ivt0
5

eivDt 2 1

iv
for

lim
Dt/‘

D(v,Dt)5pd(v) . (A3)

The interactions become resonant for6v1 6v2 7v0 5 0.
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