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ABSTRACT Moving target defense (MTD) has recently emerged as a game-changer in the confrontation

between cyberattack and defense. MTD mechanism constantly and randomly changes the system config-

urations to create uncertainty of the attack surface against cyber-adversaries. To date, researches on the

evaluation of MTD techniques either focused on analyzing the effectiveness of MTD or studying the system

performance loss due to the use ofMTD. The impact on job/service running on the protected system is always

ignored. In this paper, we propose an SRN (Stochastic reward net) based analytical modeling approach to

investigate how MTD techniques influence the job running on protected system from the perspective of job

finish time. The SRN model developed in this paper captures the behaviors of both the adversary and the

job execution process. Furthermore, we carry out numerical analysis to study the impact of different system

parameters on job finish time and other evaluation metrics. The results in this paper can help defenders

choose a better MTD configuration to complete the job execution as soon as possible.

INDEX TERMS Moving target defense, job migration, stochastic reward net, job finish time.

I. INTRODUCTION

In cyber space, counterwork and game between adversaries

and defenders never stops. Traditional defense techniques

like IDS, Firewalls and Anti-virus are increasingly difficult

to resist new types of attacks due to the static properties

of the protected targets. Adversaries always have the time

advantage and can gather enough vulnerability information

of the target system before launching an attack. In order to

eliminate this disadvantage, Moving Target Defense (MTD)

[1] has emerged as a game changer as it provides a proac-

tive defense strategy by creating asymmetric uncertainty in

favor of defenders. To achieve this goal, MTD mechanism

constantly changes the system configurations and then makes

it hard for adversaries to find an vulnerable and available

attack surface of the target system. In the past few years,

various MTD techniques have been proposed and each of

them focused on one or more aspects of system parameters.

Meanwhile, there were also various researches studying how

effective a MTD mechanism is from the perspective of pro-

tecting the targeted system. Notice that, while introducing

a variable and unpredictable attack surface to the system,
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MTD technique also brings additional computational over-

head and reduces the system performance. The job running

on theMTDprotected systemwill also be affected. Therefore,

it is valuable to study the impact of MTD techniques on the

job execution process. However, existing researches on the

evaluation of MTD techniques either focused on analyzing

the effectiveness of theMTD to bring security to the protected

system or studying the system performance loss caused by

MTD mechanism. None of them investigated the impact of

MTD technique on the job executed on the protected system.

In this paper, we present a quantitative analytical modeling

approach to analyze how the MTD mechanism affects the

job execution process. Due to the existence of attack and

MTD, the actual whole job execution time will be longer

than needed. We use this time as a metric to investigate the

job performance and its security while using MTD tech-

nique. We use Migration-based Dynamic Platform (MDP)

as an example in this paper to illustrate our modeling

approach. Specifically, MDP is a kind ofMTDwhich dynam-

ically changes the properties of a computing platform in order

to complicate the attacks [2]. The computing platform here

can be hardware or different OS attributes. Jobs or services

can be constantly migrated among these platforms to reduce

the probability of being destroyed by attacks. In our paper,
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we consider a job which needs to run for a certain period of

time. To protect the job execution process and finish the exe-

cution as soon as possible, multiple virtual machines (VMs)

are prepared for running the job and the whole execution

process is divided into multiple stages. At each stage, the sys-

tem will randomly choose one VM to process the execution

progress and then migrate to next VM to continue. The

adversary’s goal in our paper is to constantly compromise a

VM and destroy the execution process if the job is found.

Our work aims at evaluating the performance and the secu-

rity impact caused by MTD techniques. The analytical model

proposed in this paper is based on Stochastic Rewards Nets

(SRN) [3]. Our model captures the typical behaviors of each

party in an MTD protected system.

The major contributions of our paper are summarized as

follows:

(1) Our work in this paper, for the first time, evaluates the

effectiveness of MTDmechanism from the perspective of the

completion time of a job, which follows preemptive-resume

(PRS) discipline [4]. Namely, the job we considered in this

paper can continue its execution from the end point of last

stage. More details are given in Section III.

(2) We proposed an SRN-based modeling approach to

capture the typical behavior of both the adversary and the

job execution process in an MTD protected system. Admin-

istrators or defenders can use our model to conduct a most

appropriate system configuration of the MTD system.

(3) We give the numerical results of our model to quantify

the impact of each parameter in the system, also our model

can be easily modified by defenders according to the actual

evaluation environment.

The remainder of this paper is organized as follows:

Section II reviews related works of MTD. Section III

describes the system considered in this paper and the corre-

sponding SRN sub-models. We present the numerical analy-

sis in Section IV. Finally, Section V puts forward conclusions

and states our future works.

II. RELATED WORK

According to the research content, the researches related to

MTD are mainly classified into three categories, which are

theory research [5]–[7] including the design principles of

MTD, strategy formulation as well as game theory [8]–[11]

and new strategy research to find new moving parameters,

and evaluation research including the evaluation of effective-

ness and performance of MTD. Here we only focus on the

evaluation researches on MTD.

There are researchers evaluating the MTD with simulation

experiments. Zhuang et al. firstly used NeSSi2 to build a

simulation testbed of network moving target defense system

in [12]. They analyzed the effectiveness of MTD by simu-

lating continuous network attacks and observing the impact

of different system parameters on the success rate of attacks.

Then they presented an analytical model for the effectiveness

evaluation of MTD in enterprise networks and validated the

model with their testbed [13]. Similar to Zhuang’s work,

Zheng et al. analyzed the effectiveness of IP address mutation

basedMTDwith OMNet++ in [14]. Their simulation results

show the optimal IP address mutation rate. These simulation

works are not universal as they can only be applied to their

own mechanisms.

Despite those simulation experimental researches, there

are many evaluation works based on mathematical models

or theoretical analysis. Evans et al. proposed an effective-

ness analysis approach of diversity-based MTD mechanisms

in [15]. They used a network confrontation experiment

method to test the defense capability of diversity-based

MTD such as address space layout randomization (ASLR)

or instruction set randomization. Their results show that

dynamic randomization techniques are ineffective against

circumvention attacks or deputy attacks but can be used to

defense entropy reduction attacks in some cases. Han et al.

in [16] proposed a cyber epidemic dynamics approach to

quantitatively analyze the effectiveness of MTD. The algo-

rithm they offered shows an optimal deployment of MTD

mechanism with the minimum cost. Carter et al. in [17]

applied game theory and statistical analysis approach to study

the deployment strategy of dynamic platform based MTD.

They demonstrated that uniform deployment strategies are

near optimal under some threat environment they considered.

In addition, they developed a quantitative evaluation method

for Lightweight Portable Security (LPS) and IP Hopping

based MTD in [18]. Authors in [19] introduced a continuous

time modeling approach which can help to perform dynamic

platform based MTD while maintaining high network avail-

ability. Leeuwen et al. [20] developed an experimental tech-

nique to assess the effectiveness of network-based MTD.

They quantified system attributes like weakness, protection

and threat to measure the defense effect in a real experimental

environment.

Stochastic reward net (SRN) is a form of Petri net where

each transition is associated with a probability distribution

function for the firing time [21]. SRN has been adopted to

quantitative analysis of reliability, availability and perfor-

mance in many areas [22]–[24], including the evaluation of

MTD mechanisms. Torquato and Vieira [25] proposed a set

of SRN models to evaluate the MTD in cloud environment.

They analyzed the availability ofMTDunder different system

parameters such as software age rate and different workloads.

Cai et al. [26] also used SRN models for evaluating the

effectiveness of MTD. However, those works only focused

on the effectiveness of MTD but ignored the job performance

in the protected system. Our work in this paper considers the

job performance from the perspective of job finish time.

Connell et al. proposed a Markov chain analytic model to

quantitatively analyze the resource availability and perfor-

mance of MTD in [27]. Furthermore, in [28] they expanded

their work to allow their models supporting the limitation of

resources being reconfigured simultaneously. Different from

our work, their models can only capture the behavior of the

job and the computing resources under the MTD environ-

ment, but do not consider the impact or the attack on the
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TABLE 1. System parameter definition and default value.

system. However, our SRN models not only capture the job

execution behavior on multiple VMs but also capture the

attack’s behaviors in the system.

III. SYSTEM AND MODEL DESCRIPTION

In this section, we first describe the system scenarios includ-

ing the job execution behavior and the adversary’s behavior.

Then the stochastic models developed for the system and

the evaluation metrics used in this paper are exhibited. The

system parameters and their default value used in this paper

are defined in LABLE1. The default values of attack-related

parameters are from [29] and the others are set to show the

effectiveness of MTD. All parameters in our model can be

easily modified by defenders according to the actual evalua-

tion environment.

A. SYSTEM DESCRIPTION

In this paper, we consider a scenario that a critical job needs

to be executed for a certain period of time, we use t_ask to

indicate this time. However, given the existence of adversaries

and attacks, the actual completion time T is longer than the

required time. In order to eliminate security concerns and

finish the job execution as soon as possible, the administrator

adopts MTD mechanism to protect the execution process.

Here we take dynamic platform techniques (DPTs) based

MTD as example which is by altering the computing platform

to complicate attacks [30].

Specific to our system, there are multiple (N ) virtual

machines (VMs) in distributed cloud data center prepared

for the critical job execution. They can be the same system

environment or different system environments. Each VM has

one or several vulnerabilities and can be exploited by adver-

saries. In order to resist the attacks, the execution is divided

into multiple (M ) stages. At each stage, the MTD system

randomly chooses one VM to perform the job execution

progress. There are only two cases where a new VM needs

to be chosen. One is that the job at the current stage has been

successfully executed. The other is that the job is disrupted

due to attacks during the execution at current stage. Note

that in either case, the selection of the VM has a memory,

which means that the job will not be executed on the same

VM whether it is starting the next stage or re-executing the

current stage.

Turning now to the adversary’s behaviors. We consider a

determined and strong single adversary whose goal is to dis-

rupt the job execution progress. As we said previously, there

are N VMs that can be used to execute the target job. At any

time, only one VM runs the job.We assume that the adversary

cannot distinguish whether the VM is currently running the

job execute progress before he successfully attacking the

VM and getting the privileges. Another assumption is that

the adversary can exploit all vulnerability to gain access to

all VMs, but he can only attack one VM at a time, i.e., there

is no parallel attacks. Based on these assumptions, typical

attacking behaviors can be summarized as following steps:

First, the adversary randomly selects a VM to attack. After

the attack is successful and getting the access to the VM,

the adversary determines whether the target job is running on

this VM. If so, the adversary will destroy the job progress and

reselects the next target VM immediately. If not, the adver-

sary waits for a while to see if a job arrives. Noted that

this waiting period has an upper limit Tmax = 1/µ. Once

this limit is reached, the adversary will abandon the current

VM and return to do the VM selection progress. Different

from VM selection for the job, the adversary’s choice of

the target VM is memoryless. That is, the adversary may

select the same VM at the subsequent attacking phase. Note

that the purpose of choosing this VM selection strategy is

just to show that our model described next can be easily

adapted to other VM selection methods. In other words,

the job execution VM selection can be memoryless and the

adversary VM selection can also have memory. Administra-

tors of defenders can easily customize the evaluation model

according to their needs.

According to the system description above, we give the

evaluation metrics of interest in the paper as follows:

Metric 1:Mean completion time of job execution

Metric 2: Job fail times (The number of successful attacks

to the target job)

Metric 3:Defender’s profit for finishing the job execution.

B. STOCHASTIC MODEL DESCRIPTION

In this section, we present the SRN model, including

three SRN sub-models, which are developed for the system

described in the previous section. In order to understand the

logic of our model easily, we take N = 3 as an example,

as shown in the solid line parts in the figures. In other words,

there are three VMs available for each job. The dotted line
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parts in the figures are only used to indicate that our model

supports large-scale evaluation, i.e. large N .

1) ATTACK SUB-MODEL

Figure1 illustrates Attack SRN sub-model. As we said in

section III.A, the adversary’s attacking behavior is memo-

ryless, that is, the adversary may repeatedly select the last

VM to attack. The guard functions of attack SRN sub-model

are summarized in Table 2. The halting function myhalt() is

used to determine whether the sub-model has completed the

evaluation progress.

FIGURE 1. Attack SRN sub-model under MTD environment.

TABLE 2. Guard function definition in attack srn sub-model.

In Attack SRN sub-model, place PAttack initially has a

token, representing that the adversary started to select tar-

get VM. Place PAttack has three output arcs pointing to

immediate transitions tA1, tA2 and tA3, respectively. The

three immediate transitions have the same priority in our

sub-model, indicating that they have the same probability of

being fired. Once one of them is fired, the token in Pattack

will be transferred to the corresponding output place. We use

adversary to choose attack VM1 as an example, i.e. tA1 will

be fired and the token from PAttack will be deposited to PA1.

When transition TA1 fires, representing that the adversary

has successfully attacked VM1 and the token from PA1 is

deposited to PS1. There are two input arcs from PS1, one

input to an immediate transition tD1, and another one input to

a timed transition TMax1. Note that, as soon as the adversary

successfully attacks VM1 and gets the required privileges,

he will check to see if the job is executing here. In our sub-

model, we use guard function guardtD1() to represent this

checking operation. The return value of guardtD1() depends

on the state of the Job Migration SRN sub-model which

will be explained later. If the job was running on the VM1,

function guardtD1() will return 1, and the transition tD1 fires.

The token from PS1 to PAttack represents that the adversary

has reached his target and destroyed the execution of the

job under the current VM and proceed to the next round of

attack. Otherwise, if the job is not running on VM1, function

guardtD1() will return 0 and tD1 will not be fired, the token

will stay at place PS1 indicating that the adversary stays

at VM1 waiting for his target job. It is impossible for the

adversary to wait for VM1 all the time. We use timed tran-

sition TMax1 to indicate the maximum waiting time. Once

Tmax1 fires, the token in PS1 will also return to PAttack,

representing that the adversary can not wait for the job to be

migrated to VM1 and can only go back and carry out to start

the next round of attack. Here we take VM1 as an example.

The adversary attacks VM2 or VM3 in the same way.

2) JOB MIGRATION SUB-MODEL

Job Migration SRN sub-model captures the migration behav-

iors of job across heterogeneous VMs, illustrated in Figure2.

The guard functions of job migration sub-model are summa-

rized in Table3.

TABLE 3. Guard function definition in job migration srn sub-model.

In Job Migration SRN sub-model, place PDelay initially

has a token, and an input arc pointing to time transition TDe-

lay. From a practical point, the adversary can not recognize

the starting of the job execution, so the start time of the two

sub-models should be different. We use this time transition

to eliminate the time difference between the start of attack

and the job execution.As soon as the transition TDelay fires,

the token in PDelay will be deposited to place PJob. The

immediate transitions t1, t2 and t3 have the same effect as

tA1, tA2 and tA3 in Attack SRN sub-model, which are used

to indicate that the job randomly selects a VM to start its

current stage of execution. Similarly, we use the chosen of

VM1 as an example, i.e. t1 fires and the token from PJob

deposited into P1. Once P1 has a token, it indicates that the

job starts its execution on VM1. We use a timed transition
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FIGURE 2. Job migration SRN sub-model under MTD environment.

TS1 to represent the complete execution time of the job on

VM1. Unlike other transitions, we use gray solid rectangles

to represent transition TSi, as we said before, the whole job

execution was divided into multiple phases. At each phase,

the job needs to be executed for a constant time, which is

1/λ, see TABLE 1. Therefore, the firing time of transition TSi

should be deterministic rather than exponential distributed

like other timed transitions in our sub-model. After the job

successfully finishes its current phase of execution on VM1,

TS1 fires and the token in P1 will be deposited to PS1.

It should be noted that P1 not only has an input arc to TJS1,

but also an input arc to immediate transition tF1. Here, tF1 has

a guard function guardtF1 to check whether if VM1 has

been attacked. If the place PS1 in Adversary SRN sub-model

has a token, guardtF1 returns 1, and tF1 fires, the token in

PJ1 will move to place PF1. Notice that, when tF1 fires,

the job may have already executing on VM1 for a while.

After the VM1 is attacked the job need to be migrated to

another VM to continue its execution.We use timed transition

TFM1 to represent the time taken by the migration process.

Also, even if the job has finished this phase of execution, i.e.

PS1 has a token. The job still needs to be migrated to another

VM to start its next phase of execution, so that there is a timed

transition TSM1 between PS1 and PM1. Since TSM1 and

TFM1 both represent the migration delay, they have the same

transition rate. When TSM1 or TFM1 fires, the token in

PS1 or PF1 will move to PM1, respectively. Place PM1 has

two input art to transition t1_2 and t1_3 respectively. They get

the same priority, indicating that the job will randomly select

another VM to run next.

Before proceeding to the next sub-model description, it is

important to solve a problem which will restrict the model’s

numeric analysis later. Since there are non-exponentially dis-

tributed transitions TSi existing in job migration sub-model

which make our model a Non-Markovian SRN. This com-

plicates the numeric analytic method to solve our model.

Therefore, in this paper, we use a 3-phase Erlang sub-net

to approximate the deterministic firing time of transition

TSi and eliminate the restriction. We show this approximate

replacement in Figure3. Transition TSi is replaced by 3 series

FIGURE 3. Sub-net of Job execution on each VM.

VOLUME 8, 2020 11441



Z. Chen et al.: Numerical Evaluation of Job Finish Time Under MTD Environment

timed transition TSi0, TSi1 and TSi2. The firing time of them

is λ/3, i.e. the rate of transition TSi0, TSi1 and TSi2 is 3/λ.

Meanwhile, the middle places PSi0 and PSi1 both indicate

that the job is still executing on VMi for its current phase.

Immediate transition tFi0 and tFi1 have the same guard func-

tion with tFi as the job execution process can be broken

by adversaries at any time before it completes the current

execution phase. i.e. the token from Pi arrives at PSi.

3) TIME CALCULATION SUB-MODEL

The time calculation SRN sub-model is used to calculate the

total execution time of the job, illustrated in Figure 4. Guard

functions and halting function to be used in this sub-model is

defined in TABLE 4.

FIGURE 4. Sub-net of Job execution on each VM.

TABLE 4. Guard function definition in time calculation srn sub-model.

In this sub-model. Place PJStart initially has M tokens.

M indicates the total number of rounds required for the job

execution. Immediate transition tJFinish has a guard func-

tion guardDone(). Function guardDone() checks the token in

place PS1, PS2 and PS3, whenever one of them has a token,

guardDone() returns 1 and tJFinish fires, indicating that the

job has successfully finished the current phase of execution

on a VM and a token will move from PJStart to PJFinish.

We use immediate transition tJM to represent the delay of

Job migration to the next VM after the job finishes its current

phase of execution. tJM has a guard function guardEnd().

When PM1, PM2 or PM3 has a token, it means that the job has

finished the migration process and started to choose its next

running VM, guardEnd() returns 1 and tJMfires. The token in

PJFinish will be deposited to PJEnd. Notice that when place

PMi has a token, immediate transitions ti_j and tJM can all be

fired at the same time, and this creates a conflict lock in our

model. Once the transition ti_j fired firstly, the token in place

PMi will be removed and the value of function guardEnd()

will change from 1 to 0, which means the transition tJM

can’t be fired anymore and the token in PJFinish can only be

stuck there. Therefore, we set the priority of transition tJM to

2 instead of its default value 1. This setting guarantees that

all the tokens in PJStart can be moved to PJEnd one by one.

After allM tokens from PJStart arrive to PJEnd, this indicates

that the job has finished all the execution and the sub-model

will be halted in an absorbed state. We use a halting function

myhalt() to determine this state. By calculating the MTTA,

we can get the total job execution time.

C. RUNNING PROCESS OF THE SRN MODEL

To better describe our SRN model and the interactions

between the sub-models, we provide pseudo code shown

as Algorithm 1 which demonstrates how tokens are moved

Algorithm 1 Running Process of the Model

1: function Attack

2: PAttack = 1

3: while 1 do

4: i = random(0,N )

5: PAttack → PASi

6: if Pi==1 then

7: PASi → PAttack

8: else

9: Wait Tmax

10: PASi → PAttack

11: end if

12: end while

13: end function

14: function Job

15: PDelay = 1

16: j = random(0,N )

17: while 1 do

18: PDelay → PJob

19: PJob → Pj

20: if PASj==1 then

21: Pj → PFj

22: else

23: Wait TS

24: Pj → PSj

25: end if

26: k = random(0,N )

27: while k == j do

28: k = random(0,N )

29: end while

30: j = k

31: end while

32: end function

33: function JTime

34: functionAttack()

35: functionJob()

36: PJStart = M ,PJEnd = 0

37: while PJEnd < M do

38: if PSi==1 then

39: PJStart → PJEnd

40: end if

41: end while

42: end function
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among the places. → represents one token moves from the

left place to the right place. Note that, we miss out some

places and transitions due to space limitation.

D. AUTOMATIC MODEL GENERATION PROGRAM

So far, we use N = 3 as an example when explaining our

model. Yet in real evaluation environment, defenders may

have more VMs prepared for the critical job execution and

may test different parameters of the model. We developed

an automatic model generation program written by Python.

As all the SRN sub-models in this paper are described in a

language called CSPL (C-based SPN Language) which is an

extension of C language [31]. It is easy for our program to

generate the large-scale models with arbitrary parameters.

IV. MODEL RESULTS AND DISCUSSIONS

In this section we first obtain a number of numerical values

for the system metrics given at section III.A based on the

model and parameters described in the previous section. The

numerical results are used for investigating the improvement

of the job security as well as the performance loss while using

the MTD mechanism. Then we present a verification of our

model by comparing the numerical results with simulation

results of the model. All the numerical evaluations of our

model are obtained by using SPNP tool [32]. The SPNP soft-

ware package also provides the simulation functions. We use

the same parameters in the simulation as in the numerical

analysis and compare their results to prove the accuracy of

our model.

A. TOTAL JOB EXECUTION TIME UNDER DIFFERENT

NUMBERS OF VMs

In this section, we give three sets of comparisons of job

completion times for different numbers of VMs using for the

job’s running. The results are used to assess the effectiveness

of MTD mechanism. We conduct statistic experiments by

changing the amount of VM (N ) from 2 to 9 while all other

parameters are given the default values except the attack rate.

We set the attack rate β to be 1/3, 1.0 and 5.0, indicating the

strong, medium and weak attack environment, respectively.

In addition, we give a case of how different number of VMs

affects the profit of the defender.

Figure 5 presents the three comparisons results we

obtained. The Y-axis represents the job finish time, and the

FIGURE 5. Job finish time under different number of VMs.

X-axis represents the number of VMs. The three lines in the

figure show the three different results under different attack

rates. As we can see from the gray line with triangle marks,

when the number of VMs increases from 2 to 9, job finish

time decreases from 48.3 days to 24.3 days. The main reason

is that as the number of VM increases, the VM compromised

by the adversary is less likely happens to be the VM that

running the job and the job is less likely to be destroyed by

the adversary. As a result, the job execution process can be

completed faster. This result also happens in the other two

cases, as shown by the orange line and blue line in Figure 5.

The difference is that when the attack is weak, the decrease

trend of the job completion time is not as obvious as when

the attack is strong. We can see that the orange line decreases

from 26.8 to 21.4 and the blue line decreases from 22.4 to

20.6. The other thing we can observe from Figure 5 is that as

theN becomes larger, the decreasing rate of the job finish time

becomes slower. See that the 3 lines decline more gently with

the growth of N. As in the real computing environment, more

VMs mean higher costs. Therefore, it is important to choose

the right number of VMs before processing the job execution.

Here in this section, we show a case result of how defenders

can use our model to choose the best number of VMs to

execute the job when considering the job execution benefits.

In our case, defenders choose a cloud service provider(CSP)

and pays for the VMs for the job execution. According to

the service level agreement(SLA), there is a slowest time

threshold A, and the defender must complete the job execu-

tion progress before this time threshold. Moreover, the sooner

the job is completed, the more benefits the defender will get.

We use B to indicate the benefits the defender earns each day

before the threshold. Except the benefits earn from the job

execution, the defender also needs to pay for the cost of the

virtual machine.We use C to indicate the cost of one VM. The

default value of C = 1.429 dollars/hour is set according

to Digital Ocean pricing list [33]. Given these parameters,

we can calculate the defender’s profit as follow:

P = (A− T ) ∗ B− T ∗ N ∗ C

Figure 6 shows the results when A = 100 days and B =

10, 20, 30 dollars/day, respectively.We can see from all three

FIGURE 6. Job profit of cloud servive provider under different number
of VMs.
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lines that even though more VMs will shorten the job finish

time, the total cost of the VMs will increase resulting in the

lost of total profit. The highest points of the curves in Figure 6

represent the maximum benefit of the defenders.

In general, we can draw the conclusion that more VMs

prepared for the job makes the execution more secure and

more quicker. However, an appropriate number of VMs is

necessary when considering the efficiency.

B. TOTAL JOB EXECUTION TIME UNDER DIFFERENT

PHASES

Remember that the job execution is divided into M phases for

using the MTD mechanism. In this section, we do numeric

experiments by varying the number of M from 1 to 10 and

investigates the impact of job execution phases on the whole

processing time. Accordingly, the mean time of job execution

on a VM 1/λ changes from 20days to 2days as the whole

time needed for the job is 20days in our experiments. Again,

we give three sets of results with different attack rates, repre-

sented by the three lines in Figure 7 and Figure 8.

FIGURE 7. Job finish time under different number of phases.

FIGURE 8. Job fail rate under different number of phases.

The purpose of dividing the job execution into multiple

phases is to make it harder for the adversary to meet the target

VM and reduce the total execution time since the job needed

to be re-executed after being destroyed by the adversary.

Therefore, intuitively, the more phases we split the execution

process, the more secure the job is. Correspondingly, the job

finish time will be shorter. However, the gray line with trian-

gle marks in Figure 7 shows that, before a specific phase M ,

which is 7 in our model, the job finish time decreases as

the number of phases M increases. After 7 phases, it keeps

increasing. This counterintuitive result is more conspicuous

in the other two cases. The orange line illustrates that when

the attack rate is 1.0, the job finish time increases with the

increasing number of phases M after 3 phases. For the weak

attack case, this turning point is 2, illustrated by the blue

line. The main reason for this counterintuitive result is that

as the number of phases increases, the job migration times

grows and the delay caused by the migration becomes longer.

Therefore, when the attack is strong, more phases for the

job execution would be necessary and effective. Otherwise,

more stages may bring more delays. Such results also appear

in Figure 8. In Figure 8, Y-axis represents the job fail times

which is also the number of successful attacks. Similarly,

the job fail times is decreasing before a certain M , then

increasing. The main reason is that too many phases means

too many migrations. Moreover, as the attacker can wait on

PM for a period of time, which makes is more likely to meet

the job.

C. IMPACT OF ADVERSARY’S ATTACKING CAPABILITY

So far, we have analyzed the impact of the defender’s behav-

ior on the job execution process. In this section, we investigate

the impact of the adversary’s behavior on the whole execution

process. Remember the attack SRN sub-model in Figure 1.

There are two parameters related to the adversary’s behavior

which are attack rate andwait rate. Therefore, by changing the

values of these two parameters and calculating the completion

time of the job, we can evaluate the adversary’s impact on

the job. Here we use three VMs as an example and other

parameters are set as default.

Figure 9 illustrates the job finish time under different attack

capabilities. Since the attack rate and the wait rate affect the

job execution simultaneously. We present the results in one

figure, as shown by the rainbow surface in Figure 9. We can

FIGURE 9. Job finish time under different attack capabilities.
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observe that whether the attack rate gets faster or the waiting

time in aVMgets shorter, it will both lead to an increase in job

finish time. Therefore, form the perspective of the adversary,

waiting for the job after completing the attack of a VM is a

bad strategy, even though the attack rate is slow.

D. VERIFICATION OF THE SRN MODEL RESULTS

In this section, we use job finish time to verify our model

and evaluations in the previous sections as the job finish

time is the main metric defined in this paper. We do simu-

lation experiments by varying the number of VMs N from

2 to 9 and all other values are set as default which are the

same as in the numeric experiments in section A. Thus, our

simulation results will be compared with the results shown

in Figure 5. Figure 10 illustrates the comparison. We can see

that the two results are close, verifying the accuracy of our

evaluation results.

FIGURE 10. Comparison of simulation results and numerical results.

V. CONCLUSION AND FUTURE WORK

This paper presents an analytic modeling framework to evalu-

ate the effectiveness ofMTD technology from the perspective

of job completion time.We use dynamic platform basedMTD

as an example and design several SRN sub-models to capture

the behaviors of the adversary’s and the job migration in the

system. We carry out numerical solutions of the model and

evaluate the impact of different parameters of both sides on

the whole job execution time. Defenders can use our model

to calculate an effective and cost-efficient defense strategy.

Also, our evaluation model is flexible and can be used on

other types of MTD.

Our work in this paper adopts a variety of assumptions

on system environment and model parameters. Although,

we believe that our assumptions are reasonable, we will try

to improve the confidence of our model, such as using simu-

lation verification or building a testbed.
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