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Abstract The bond shear strength between masonry

units and mortar is the weakest link in a masonry wall.

Different material tests have been developed in order

to characterize this bond behaviour. The objective of

this study is to evaluate three common test setups

through non-linear finite element analysis. The sim-

ulation method is based on our recent development of

cohesive elements, which allows for the first time to

fully capture the force-deformation characteristic of

shear tests in 3D from the onset of loading until the

residual shear strength and to retrieve typical shear

failure modes observed in experiments. This study

provides new insights into our understanding and

interpretation of such shear tests: (1) elastic analysis,

which has been widely used in the past, does not yield

a stress distribution that is representative of the stress

distribution at maximum resistance; (2) while friction

coefficient is well estimated (the error is less than

10%), the local cohesion is underestimated by all three

test setups of which the error lies between 13 and 32%;

(3) the randomness of the material properties leads to a

further underestimation of the mean value of the local

cohesion; (4) differences in the material properties of

the two joints of the triplet test units do not jeopardize

the applicability of this test setup and estimations of

the mean properties are obtained with similar relia-

bility as for couplet tests.

Keywords Masonry � Cohesion � Shear test � Triplet
test � Failure analysis � Cohesive elements

1 Introduction

Under seismic loading, unreinforced masonry (URM)

walls can fail due to in-plane or out-of-plane loading.

For in-plane loading,walls can fail in shear, flexure or a

combination of the two failure modes [1]. While the

flexural strength is relatively independent of material

properties and governed by static and kinematic

boundary conditions as well as the geometry of the

element, the shear strength is heavily dependent on

material properties. The first shear cracks pass typi-

cally through the joints and form stair-stepped cracks

(e.g. [2, 3]). To predict the shear behavior of URM

walls by means of analytical or numerical models,

information on the joint shear strength including the

cohesion and friction coefficient are required [4].

Different test procedures have been proposed by

various researchers, indicating the difficulty of finding

a consensus with regard to the best testing method.

Interested readers can consult [5, 6] for a review of the

historical development of the various testing methods.

This paper focuses on three frequently used test setups:
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(1) A test setup applied by Van der Pluijm [7] (Fig. 1a).

The results of this test series have been widely used for

the calibration of numerical models [8]. (2) A test

method proposed by Lourenço and his collaborators

[9] (couplet test), which is similar to the classical shear

box used in geomechanics (Fig. 1b). (3) The triplet test

(Fig. 1c), which has been adopted by the European

Committee for Normalization as the standard test for

determining the joint shear properties [10]. For differ-

ent experimental setups, cohesion is known to be the

most sensitive parameter, while the friction coefficient

is less sensitive to the setup [4].

In order to evaluate the performance of the various

setups, previous studies compared the normal and

shear stress distributions at the center line of the

mortar joint that are obtained from elastic analysis.

The following quality criteria were developed by

Riddington [11] for the evaluation of the test setups

and have been used since by others [5, 12].

1. The shear and normal stress should be uniform

along the joint length.

2. When failure is initiated at one point, the other

parts of the joint should be close to failure too.

3. Tensile stresses in the joint should be avoided.

4. The failure should not be initiated at the edge.

5. The experiment should be easy to implement.

The objective of these criteria is to ensure that the

material properties that are back-calculated from the

test match as well as possible the local ones. To back

calculate the cohesion and coefficient of friction from

the experimental results, the maximum shear resis-

tance needs to be determined at different normal stress

levels. In the ideal case where criteria 1–4 are satisfied,

the stress state at damage initiation is close to the stress

state at maximum shear resistance and elastic analysis

would lead to a representative shear stress distribution

at maximum shear resistance. The estimated material

properties obtained would be close to the local ones.

However, as will be shown later, even the more

complex setup by Van der Pluijm fails to fully meet

the criteria 1, 2 and 3.

Early research on these setups, which was con-

ducted in the 90s, concentrated on elastic analysis until

damage initiation [6, 11]. To better simulate the failure

process and estimate more accurately the stress

distribution for a small scale test like a shear test, a

full representation of the geometry, i.e., representing

brick, mortar and interfaces in the model, is necessary.

This is known as detailed micro-modeling approach

[5, 8, 13–15]. Previous studies that used such model-

ing approaches have not been able to reproduce the full

force-displacement relation for simple shear tests

(e.g., [5, 13, 16]).

This paper has five objectives: (1) evaluating to

which extent conclusions on the performance of the

test setups that were drawn from elastic analysis are

representative when evaluating the maximum shear

Fig. 1 Different setups for determining shear parameter. a Van
der Pluijm. b Lourenço. c Triplet
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resistance (Sects. 3.1 and 3.4); (2) investigating how

well the various setups can estimate the local material

parameters (Sect. 3.4); (3) analyzing whether a

damage initiation close to the edge (criterion 4) has

indeed a negative impact on the performance of the

test setup (Sect. 3.4); This is relevant as damage

initiation at the edge is often observed when perform-

ing such shear tests. The intention of criteria 4 was to

avoid adverse effects due to possible stress concen-

trations and other undesired phenomenon, e.g., tensile

stresses due to moments at the height of the joint (Sect.

3.4). (4) investigating how material randomness will

affect estimation of cohesion (Sect. 3.3); (5) evaluat-

ing, for triplet test in the presence of differences in

material properties of the two joints and asymmetric

boundary conditions, how well the maximum shear

resistance can be estimated (Sect. 3.5).

2 Numerical formulation

The finite element analysis is conducted with the open

source library Akantu [17]. In Sect. 2.1, the numerical

framework is introduced. To fully capture the shear

debonding process, a bilinear descending law is

proposed in Sect. 2.2.

2.1 Explicit integration and extrinsic insertion

After spatial discretization of the weak form of

equilibrium equation, the following well-known rela-

tionship is obtained:

M€uþ f int ¼ f ext ð1Þ

in which M is the mass matrix, €u is the acceleration

vector, f int and f ext are the internal and external force

vectors. The classical explicit second order central

difference method is used here for time integration.

The displacement, velocity and acceleration (umþ1,

_umþ1, €umþ1) at time step mþ 1 are estimated by

umþ1 ¼um þ Dt _um þ 1

2
Dt2 €um ð2Þ

€umþ1 ¼M�1ðf extmþ1 � f intmþ1Þ ð3Þ

_umþ1 ¼ _um þ 1

2
Dtð€umþ1 þ €umÞ ð4Þ

A constant time step Dt is used during simulation,

which is confined by

Dt\Dtstable ¼ a
lmine

cl
ð5Þ

in which cl represents the longitudinal wave speed,

lmine is the characteristic length of the minimum

element, a is a safety factor, chosen to be 0.15 here.

Calculating f int requires a constitutive law for the

bulk elements and a traction-separation law for

cohesive element. For bulk elements, an isotropic

linear elastic relation is assumed. Material non-

linearity comes from the cohesive elements [18, 19].

Here the extrinsic approach [20] is used, for which

cohesive elements are inserted dynamically during the

simulation while the following criteria is met

reff [ rc ð6Þ

in which rc is the critical stress, reff is the effective

stress for the current state calculated by [20]

reff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2nþ
t2s

b2

s

for tension/shear tn�0

1

b
� ðjtsj�ljtnjÞ for compression/shear tn\0

8

>

>

>

<

>

>

>

:

ð7Þ

in which tn ¼ r � n, ts ¼ r � s are the tractions in the

normal n and tangential s directions of the facets, as

illustrated in Fig. 2, b is the shear stress factor, l is the

friction coefficient. Two situations, tension/shear

tn � 0 and compression/shear tn\0, are distinguished.

For instance, if during the simulation inequality 6 is

Fig. 2 Illustration of checking insertion criteria for cohesive

element
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satisfied on red facet, cohesive element will then be

inserted. The nodes will then be splitted, e.g., nodes i,

j were one node before insertion.

After insertion, the traction is determined by the

following traction-separation law [21]

T ¼ b2

j
dtsþ dnn

� �

T ð8Þ

in which j ¼ Gc;II=Gc;I , b indicates the ratio between

cohesion and tensile strength, T is a scalar value

determined by the traction-separation law. In [20, 21],

a linear descending law is used. While for quasi-brittle

material, a bilinear descending law is preferable [22].

2.2 Bilinear descending law

The implemented bilinear descending law is illus-

trated in Fig. 3, which can be represented by the

following equation

T ¼

rh þ
dh � d
dh

ðrc � rhÞ for opening d ¼ dmax � dh

dc � d
dc � dh

rh for opening d ¼ dmax [ dh

d
dmax

Tmax for closing=reopening d\dmax

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð9Þ

where dc represents the effective separation upon

which the cohesive element is totally damaged, dmax is

the current maximum effective separation, Tmax is the

traction-separation at d ¼ dmax, dh and rh indicate the
position of the kink point which is determined by h and

Gc;I

h ¼ rh
dh

ð10Þ

Gc;I ¼
1

2
ðrhdc þ rcdhÞ ð11Þ

The effective separation is calculated in the same way

as in [21]

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2

j2
d2t þ d2n

s

ð12Þ

For contact, the same node-to-node contact and

friction algorithm as in [15] with an extension to 3D,

in which the contact and friction forces, f mcont;ij and

f mfric;ij, at time step m for node pair i, j is calculated by

predicting the displacement and velocity at time step

mþ 1.

3 Results and discussion

This section starts with a classical elastic analysis of

Van der Pluijm’s test setup (Sect. 3.1). In Sect. 3.2, a

non-linear model is set up following the approach

outlined in the previous section and the material

properties are calibrated by fitting experimental

results from Van der Pluijm’s test [7]. A 3D analysis

is further carried out to validate the 2D simulations. In

Sect. 3.3, the influence of a random spatial variation of

the material properties along the interface is studied.

In Sect. 3.4, the simulation results are compared for

different test setups with regard to their ability of

estimating local strength parameters. This section ends

by a discussion on the triplet test (Sect. 3.5). To

facilitate comparison, all the test setups use the same

brick dimensions (200 mm � 100 mm � 50 mm)

and mortar thickness (15 mm) as in Van der Pluijm’s

test [7]. To further consider the fact that the mortar

does not occupy the whole space between bricks, a

setback distance of half the mortar thickness (7.5 mm)

is left for all mortar layers (Fig. 1) in our model.

3.1 Elastic analysis

As mentioned in the introduction, elastic analysis is

only valid until damage initiation. In addition, previ-

ous studies evaluated the stress state at the center line

of the mortar joint [6, 11]. However, in shear tests,

Fig. 3 Traction-separation law
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cracks develop commonly along the interface between

unit and mortar, which is weaker than the mortar itself

[23]. Due to the finite thickness of the mortar joint, the

stresses along the interface can differ significantly

from the stresses at the center line of the mortar joint,

as will be shown in this section. This holds also for the

Van der Pluijm test (Fig. 1a), which was especially

designed to minimize the effect of the bending

moment on the stress distribution within the mortar.

The adopted elastic material properties are included

in Table 1. As an example, for a normal stress of 0.5

MPa, the stress distribution is computed at the damage

initiation state, i.e., at the instant when the criteria of

Eq. 6 is first met at the boundary between unit and

mortar and therefore the first cohesive element is

inserted. For this state, the normal stress and shear

stress distributions are shown in Fig. 4a. The distance

from the insertion criteria, calculated by rc � reff (in
this subsection, to concentrate on the difference

caused only by position, the same insertion criteria

rc for mortar and for interface is temporarily

assumed), is shown in Fig. 4b. As can be seen from

this figure, the first cohesive element is inserted in the

middle of the specimen. Note that the damage will

normally be initiated only at the interface, because the

mortar is generally much stronger than the interface,

i.e., mortar has a higher rc as compared to the

interface.

The test setup has been designed in such a way that

the moment at the center line of the mortar joint is

zero. This is achieved by applying the horizontal force

F at that height. Since the joint has a certain thickness

(15 mm here), the moment at the two interfaces

between unit and mortar will not be zero. As a result,

the normal stress distribution is no longer symmet-

ric (Fig. 4a) with regard to the y-axis (Fig. 1a). Due to

the normal stresses that result from the bending

moments at the heights of the interfaces, the left part

of the interface 1 and the right part of the interface 2

have a lower shear resistance, as shown in Fig. 4b. This

suggests that under uniform material properties, the

cracks will propagate from the middle to the left along

interface 1 and from the middle to the right along

interface 2 at the same time.

This section shows that the additional moment that

results from the thickness of the mortar joint is non

Table 1 Material properties used from calibrating the exper-

imental results in [7]

Elastic property Inelastic property

Mortar Interface

Emortar (MPa) 5500 rc (MPa) 1.2 0.4

mmortar 0.15 a (10�6m) 446.1 148.7

qmortarðkg/m3Þ 1800 b (N/m) 198.06 66.02

Ebrick (MPa) 16700 j 10 10

mbrick 0.15 b 3 3

qbrickðkg/m3Þ 1994 l 0.8 0.8

Esteel (MPa) 200,000 h (106N) 1666.7 1666.7

msteel 0.3 dc (10�3m) 0.15 0.15

qsteelðkg/m3Þ 8000

Fig. 4 Comparison of stress distribution for the test setup of

Van der Pluijm. a Compressive and shear stress at failure

initiation. b Distance from the insertion criteria at failure

initiation
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negligible. The stress distributions should be evalu-

ated at the interfaces, instead of at the center line of the

mortar joint, when accessing a shear test setup through

criteria 1 to 4.

3.2 Calibration material properties with Van der

Pluijm’s test

To retrieve force-deformation characteristics for dif-

ferent compression levels, the fracture energy is

assumed to be determined by the global normal stress

using the following linear relation

Gc;II ¼ arN þ b ð13Þ

in which rN is the normal stress, a and b are constants.

The parameters a, b and other material parameters are

chosen by fitting the experimental curve in [7]. The

calibrated material parameters are listed in Table 1.

More specifically: the brick elastic modulus and

density are already given in [7], while the elastic

modulus of mortar is selected to match the stiffness

obtained from the experiment; a typical value of 0.15

is selected for the Poisson’s ratio of brick and mortar;

the inelastic parameters of cohesive elements are

selected such that force-displacement characteristic

matches experimental results, with the assumption that

the mortar is three times stronger than the interface.

Experimental information on mortar to interface

strength ratio does not exist, but a parametric study

can be found in [15].

A 2D analysis is firstly carried out. In the mesh,

10564 second order plane strain elements are used,

within which 444 9-node quadrilateral elements form

a structured mesh for the mortar and brick, while 10120
6-node second order triangular elements form an

unstructured mesh for the loading shoe. The compar-

ison with experimental data is presented in Fig. 5,

which shows that the simulation results and experi-

mental data match well. Further refining the mesh has

limited influence on the maximum shear resistance,

e.g., under compression level of 0.5 MPa, decreasing

the element size by half only results in 2 % difference

for the maximum shear resistance. Unless indicated

otherwise, the mesh resolution for other simulations in

this paper are as outlined at the beginning of this

paragraph.

To further validate our 2D simulation, a full 3D

analysis is carried out for the compression level of

0.5 MPa. In the 3D mesh, 700344 10-node tetrahedron
elements are used. The material parameters are the

same as in Table 1. Figure 6 compares the force-

displacement relation and the inserted cohesive ele-

ments at maximum shear resistance. The maximum

shear resistance obtained by the 2D analysis is only

2.4% lower than the maximum shear resistance

obtained with the 3D simulation. The crack patterns

at maximum shear resistance are also similar. It can

therefore be concluded that 3D effects are negligible

and that the performance evaluation of the test setups

can be based on the results of 2D simulations.

Fig. 5 Calibration of material properties with Van der Pluijm

tests

Fig. 6 Comparison of 2D and 3D simulation
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3.3 Discussion on the influence of random

parameters

In the previous calibration, the interface properties are

assumed to be uniform along the interface. However,

in reality, the material properties will vary along the

interface due to the natural aleatoric variability of

material properties. The variation of the interface

properties will affect the initiation and propagation of

the crack, and further more will influence the obtained

maximum shear resistance. The objective of this

section is to investigate the influence of random

variation of material properties on the values esti-

mated for cohesion and friction coefficient on the

interface.

The cohesion and the friction coefficient, are

calculated by evaluating the maximum shear resis-

tances at different normal stress levels [10]. Here five

normal stress levels rN;i are selected and the maximum

shear resistances si is obtained from simulation. A

linear regression is then conducted, with regard to the

estimated cohesion and friction, cest and lest (Fig. 7).

si ¼ cest þ lestrN;i ð14Þ

in which si is the maximum shear resistance corre-

sponding to rN;i, calculated by the following equation

si ¼
Fi;max

A
ð15Þ

where Fi;max is the maximum shear load under normal

stress rN;i, A is the nominal cross-sectional area of a

specimen parallel to the bed joints, e.g., for the current

specimen A ¼ 200 mm � 100 mm.

With uniform material properties on the interface,

the maximum shear resistances under five normal

stress levels are indicated by ‘‘w/ mean properties’’ in

Fig. 7. The corresponding linear regression of estima-

tion is noted as ‘‘estimation/mean’’. From the linear

regression, we have cest ¼ 0:95 MPa and lest ¼ 0:83.

For considering randomness, the assumption is

adopted that the variation of interface properties

follows a Gaussian random distribution. Spectral

representation is used for generating random samples

[24]. An alternative approach is stochastic harmonic

function representation method [25]. The critical

stress, fracture energy, and friction coefficient of the

cohesive elements are considered to be random

variables and are assumed to be fully correlated. The

standard deviation for critical stress and the fracture

energy is assumed to be 0.3, while for the friction

coefficient, the standard deviation is assumed to be

0.2. The correlation length is assumed to be 0.0125m,

1/16 brick length.

Under each normal stress level, eight samples are

generated and the maximum shear resistances are

indicated by ‘‘w/random properties’’ in Fig. 7. The

corresponding linear regression of estimation is noted

as ‘‘estimation/mean’’ from which it is obtained that

cestran ¼ 0:85 MPa and lestran ¼ 0:73. Therefore, failing to

consider randomness will lead to a 17% overestima-

tion of cohesion.

We then compare the estimated cohesion with the

local cohesion. Due to the set backs of the mortar joint,

the effective interface area between mortar and brick

is smaller than the nominal cross section of the brick.

The mean value of the local cohesion is calculated by

c ¼ Anet

A
brc ð16Þ

in which A is the nominal cross-sectional area defined

in Eq. 15, Anet is the net cross-sectional area of a

specimen parallel to the bed joints, e.g., for the current

case Anet ¼ 185mm� 100mm, b and rc are from

Table 1. Therefore we have c ¼ 1.11MPa. Since

variation of material properties is unavoidable in

reality, a larger correction factor, compared to the

assumption with uniform material properties, should

be used when calculating local cohesion value from

estimated cohesion. For example, for Van der Pluijm’s

test, which was analyzed here, it is obtained that c ¼

Fig. 7 Comparison of maximum shear resistance with or

without considering randomness of material properties of the

interface
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1:31cest with the specified random field and c ¼
1:17cest with uniform material properties.

When considering random properties along the

interface, another typical failure mode, where the

failure plane switches from one interface to the other,

can also be retrieved (failure mode shown in the lower

right corner of Fig. 7). This failure mode is also often

observed in experiments [7].

3.4 Compare the ability of different test setups

to estimate local material properties

In this subsection, the stress distributions, estimated

cohesion and friction coefficient for the three test

setups in Fig. 1, are compared. To simplify the

discussion, the material properties is assumed to be the

same as in Table 1 and random variation is neglected.

The cohesion and the friction coefficient are estimated

by Eq. 14 while the maximum shear resistance si is
calculated by the following equation

si ¼

Fi;max

2A
for triplet test

Fi;max

A
for Van der Pluijm / Lourenco test

8

>

<

>

:

ð17Þ

where the parameters are already defined in Eq. 15.

For comparison, the Mohr-Coulomb law in Fig. 8 is

also plotted, which is obtained from the material

properties specified in the analysis:

sðrNÞ ¼ cþ lrN ð18Þ

in which rN is the average normal stress, l is the

friction coefficient, and c is the local value of the

cohesion, defined by Eq. 16.

Figure 8 shows that: (1) for all three test setups, the

local cohesion is underestimated. More specifically,

the underestimation for the Van der Pluijm setup, the

triplet test setup, and the test setup by Lourenço is 14,

13, 32%, respectively; (2) the error of the friction

coefficient is 3, 4, 10% for the three test setups

respectively; (3) Fig. 8 also shows that the error related

to estimating the cohesion and friction coefficient is

also influenced by the range of the normal stress

considered when conducting a linear regression

(Eq. 14), which represents the Mohr-Coulomb law.

The maximum shear resistances obtained from the

Van der Pluijm test setup and the triplet test setup are

similar. However, the stress distributions are in fact

quite different. For a normal stress level of 0.5MPa,

Fig. 9a shows the distance from the insertion criteria at

damage initiation and also at maximum shear resis-

tance (indicated by thick lines, for which ‘‘From

insertion criteria’’ is only calculated at positions where

cohesive elements are not yet inserted ). For the triplet

test and for the test setup by Lourenço, the damage

initiates from the edge of the interface at a very early

stage, 35–40% of maximum shear resistance. All other

regions are still far from insertion at this moment. For

the Van der Pluijm test setup, damage initiates quite

late, almost at 90% of maximum shear resistance.

However, at maximum shear resistance, a large part

of the interfaces has been damaged in all three setups;

the damaged parts are indicated by the thin line in

Fig. 9 and by the hatched region in Fig. 9a. The normal

and shear stresses along the interface corresponding to

the maximum strength for different test setups are

shown in Fig. 9b, in which thick lines indicate again

the positions where cohesive elements have not yet

been inserted. As shown in Fig. 9b, the criteria 3,

which says that tensile stresses should be avoided, is

violated even for the Van der Pluijm test setup, and the

advantage of Van der Pluijm’s test setup over the other

test setups is less obvious at maximum shear resistance

than at the point of damage initiation (Fig. 9). Thus,

even if the stresses are evaluated at the interface level,

elastic analysis does not yield stress distributions that

are representative of the stress distribution at maxi-

mum shear resistance and non-linear analysis is

required to fully evaluate the validity of a test setup.Fig. 8 Maximum shear resistances for different setups w.r.t

different normal compression levels
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At maximum strength, for the test setup proposed by

Lourenço, cohesive elements have not yet been

inserted over a large part of the interface, which

explains why the estimated cohesion is smaller

compared to other two test setups.

3.5 Discussion on triplet test

Despite serving as a standard test method and been

widely used [13, 26, 27], the interpretation of triplet

tests is difficult because the two joints do not fail at the

same time [28]. In reality, the mortar properties of the

two joints are not the same. An absolutely symmetrical

force boundary condition, as shown in Fig. 1c, is also

often difficult to realize due to constraints in the test

setup. Sometimes a displacement boundary condition

is used on one side and a force boundary condition on

the other [27]. The effects of the different material

properties of the two joints and different boundary

conditions with regard to the x-axis in Fig. 1c have not

been well understood. To examine the validity of the

triplet test and to deepen our understanding, the

influence of three factors on the maximum shear

resistance obtained are studied here, i.e., the influence

of (1) the boundary conditions, (2) a difference in the

elastic modulus of mortar of the two joints and (3) a

difference in the interface properties of the two joints.

To simplify the discussion, only the setup for the

intermediate compression level with a normal stress of

0.5MPa is analyzed.

In Fig. 10, two different boundary conditions are

considered: The term ‘‘force boundary’’ refers to two

Neumann boundary conditions, fixed to 0.5MPa,

applied on either side of the triplet (Fig. 1c). For the

‘‘displacement boundary’’ case, which was used in the

previous sections, a force boundary is applied only on

one side (right side) of the specimen while the

y displacement is fixed on the left side. Hence the

rotation is restraint. With constant and equal material

properties along both joints (Table 1), the maximum

strength obtained for the force boundary condition is

5% lower than the one obtained for the displacement

boundary condition.

The influence of differences in the interface prop-

erties of the two joints is studied next. The strength,

i.e., critical stress, fracture energy and friction coef-

ficient, is decreased for the two interfaces of the right

joint. The average of the two interface strengths,

indicated by ‘‘predicted strength’’ in Fig. 10a, is

expected to be

sðaÞ ¼ fintf1 þ fintf2

2
¼ fintf þ afintf

2
ð19Þ

in which sðaÞ is the mean maximum shear resistance,

and fintf1 and fintf2 are the two weakest interface

(a)

(b)

Fig. 9 Comparison of stress distributions for different test

setups at damage initiation and at maximum shear resistance

(thick lines indicate undamaged parts). a Distance from the

insertion criteria. b Stresses at maximum shear resistance
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maximum resistance on each side. In Eq. 19, it is

assumed that fintf1 ¼ fintf , fintf2 ¼ afintf . a indicates the

reduction of the interface strength on the right side,

and fintf is the maximum strength obtained with

constant and equal material properties, e.g., under

normal stress 0.5MPa, for ‘‘displacement boundary’’

fintf ¼ 1.41MPa (Fig. 8), while for ‘‘force boundary’’

fintf ¼ 1.34MPa. The maximum shear resistance is

normalized by sðaÞ=fintf . The maximum resistance

obtained from simulation is shown in Fig. 10a.

While interface strength of the right joint is reduced

to 60% of the initial value (a is equal to 0.6), the

estimated strength reduces from fintf to sð0:6Þ ¼
0:8fintf (Eq. 19), i.e., from 1.41 to 1.13 MPa for

‘‘displacement boundary’’ and from 1.34 to 1.07 MPa

for ‘‘force boundary’’. For the displacement boundary

condition, the strength is generally overestimated,

with the maximum error 7% reached at a ¼ 0:1

(Fig. 10a). While for the force boundary condition, the

strength is generally underestimated. The error

increases with the decrease of a and reaches the

maximum 18% for a ¼ 0:6 (Fig. 10a). With small

difference between the two mortar joints, i.e.,

0:8\a\1:0, ‘‘force boundary’’ exhibits a higher

accuracy. While with large difference between the

two mortar joints, i.e., 0:6\a\0:7, ‘‘displacement

boundary’’ is preferable (Fig. 10a). It is expected that

in real setups the boundary conditions will often fall in

between the displacement and force boundary condi-

tion; for this reason, the error of estimation is likely to

be acceptable.

Another factor that may influence the result is a

different elastic modulus of the mortar in the two

joints. To investigate this factor, the mortar elastic

modulus on the right side is reduced by up to 40% of

the initial value. The maximum strengths obtained for

the two boundary conditions are plotted in Fig. 10b. It

can be seen that its influence on the maximum shear

resistance is negligible (error within 2%) for both

boundary conditions.

The typical failure modes for the two boundary

conditions (with reduced mortar elastic modulus for

the right joint) are shown in Fig. 10b. For force

boundary conditions, the failure surface is along the

left mortar layer where the mortar layer is stiffer (the

failure mode on the right). For the displacement

boundary condition (the failure mode on the left), the

failure mode is different because the rotation is

restrained. Despite different failure modes, it is

interesting to notice that the two specimens have

almost the same maximum shear resistance (Fig. 10b).

4 Conclusion

The purpose of the current study is to re-evaluate three

common setups for shear tests. Based on our recent

development on cohesive elements, for the first time,

the force-deformation characteristic can be fully

captured in 3D (up until the residual shear resistance)

and typical failure modes are retrieved for shear tests

on couplet or triplet samples. This study has shown

that: (1) when assessing different shear test setups, due

to the non-negligible bending moment caused by the

mortar joint thickness, the stresses should be directly

evaluated at the interfaces between mortar and unit

instead of at the center line of the mortar joint; (2)

elastic analysis, commonly conducted in previous

studies, does not provide a realistic stress distribution

at maximum resistance; it is only representative up to

damage initiation, which starts at a force around

Fig. 10 Influence of one side interface strength and mortar

stiffness on maximum shear resistance w.r.t perturbation of

material properties on one side. a Influence of reduced interface
strengths. b Influence of reduced elastic modulus of mortar
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35–40% of the maximum resistance for the triplet and

Lourenço’s test setup; for Van der Pluijm’s test,

although the damage initiates at 90% of the maximum

resistance, the stress distribution at damage initiation

is still significantly different from the stress distribu-

tion at maximum resistance. (3) contrary to the

common belief, initiation of damage at the extremity

of the interface does not significantly influence the

maximum shear resistance; (4) for the shear tests

analyzed here, 3D effects are negligible and the

performance evaluation of the test setups can be based

on the results of 2D simulations; (5) the random

variation of the material properties has a non-negligi-

ble effect on the estimation of the cohesion, e.g., for

Van der Pluijm’s test setup, it was found, for the

material distribution assumed here, a 17% difference

in the estimated mean values of the cohesion using

constant material properties and using random prop-

erties; (6) while the accuracy of estimation for friction

coefficient is rather good (error less than 10%), the

local cohesion is underestimated by all three test

setups. The error obtained for the case studies

analyzed here were between 13 and 32% with the

smallest error obtained for Van der Pluijm’s test setup

and a similar error for the triplet test; (7) the maximum

shear resistance obtained from triplet tests is influ-

enced by the boundary condition and difference of the

interface properties in the two mortar joints; however,

the error introduced by these effects is limited.

This paper justifies the use of triplet tests for

determining the cohesion and friction coefficient of

mortar-unit interfaces. However, as with other test

setups that have been proposed for this purpose, the

estimated cohesion from the triplet test is lower

compared to the local cohesion. Therefore, a correc-

tion needs to be introduced, if the estimated cohesion

is to be used in a detailed micro-modeling approach.

The correction factor of the estimated cohesion for the

case studies analyzed here is around 1.15, with

constant material properties. Note that the correction

factor depends on parameters such as specimen

dimensions, material parameters, and material ran-

domness. Further studies are required to generalize

such factors. In addition, the proposed traction-sepa-

ration law (Sect. 2.2) is based on the classical one

proposed by Camacho and Ortiz [20], which is only

valid for monotonic loading conditions. Dilatancy

effect is not considered by the current traction-

separation law, related information can be found in

[29–31]. Another limitation of the traction-separation

law is the fixed dependency on normal stress which

can affect the simulation accuracy. Further work needs

to include a dynamic dependence of the traction-

separation law on the normal stress.
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