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Summary. Three Fast Fourier Transform numerical methods for computing 
the Hilbert transform have been evaluated for their accuracy by numerical 
examples. All three methods employ the property that the Hdbert transform 
is a convolution. The first method uses the result that the Fourier transform 
of l/nx is - isgn(o). The second method is based on a discrete Hilbert trans- 
form introduced by Saito. The third method, introduced in this research 
note, uses linear interpolation to transform the Hilbert transform integral into 
a discrete convolution. The last method is shown by numerical examples from 
fault dislocation models to be more accurate than the other two methods 
when the Hilbert transform integral has high-frequency components. 

1 Introduction 

The Hilbert transform appears frequently in geophysics. Some of the examples are: 

(1) If the impulse response of a linear system is a causal real function of time, the real and 
imaginary parts of the transfer function form a Hilbert transform pair (Carlson 1968). The 
stress-strain relation for seismic wave propagation in the Earth’s crust and mantle can be 
modelled by a linear anelastic solid with a distribution of relaxation times (Liu, Anderson Lk 
Kanamori 1976). The impulse response of such a linear anelastic solid is causal and real (Liu 
et al. 1976). The corresponding Hilbert transform pair is the Kramers-Kronig relation con- 
necting phase velocity and attenuation, 

n (a) = 1 /up (a) t ior(w)/w 
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792 
where up(w) is the phase velocity and a(w) the attenuation factor. The letter P before the 
integral sign denotes the Cauchy principal value. Futterman (1 962) constructed several 
seismic wave absorption-dispersion pairs by analytically evaluating the Hilbert transform 
integral. (2) If the transfer function F(w)  of a causal system has no singularity in the com- 
plex lower half-plane, the logarithm of the amplitude response and the phase response from 
a Hilbert transform pair, i.e. if 

H-P.  Liu and D. D. Kodoff 

F ( o )  = A (a) exp [ i@ (a)] (4) 
then 

The class of functions with this property is called minimum-phase-shift (Papoulis 1962). 
Bolduc, Ellis & Russell (1972) determined the phase response of a minimum-phase-shift 
seismic system directly from the amplitude response by the Hilbert transform. They evaluated 
the Hilbert transform integral numerically for each w by Simpson’s rule. (3) If the Fourier 
components of a function f ( t )  are all advanced in phase by a constant amount, then the 
resulting function can be calculated from a linear combination of f ( t )  and its Hilbert trans- 
form (Arons & Yennie 19.50). This property can be applied in seismology to plane waves 
supercritically reflected or transmitted at discontinuous boundaries inside the Earth (Aki & 
Richards 1980). The Hilbert transform can therefore be used in the construction of syn- 
thetic seismograms. (4) Mathematically, the problem of quasi-static slip on a two-dimensional 
fault with a given frictional behaviour on the fault surface can be represented by movement 
of a continuous distribution of dislocations (Weertman 1967, 1979; Savage 1980). Let 
uf(x, t, 6 ,  &) be the friction stress as a function of x ,  distance along the fault, t ,  time, 6 ,  slip 
displacement, and d = a 6 / a t ,  slip velocity. If slip takes place only on a finite segment of the 
fault, c < x < d, the fault slip problem is described by the following equations, 

uo(x, t)+Ul(X, O = q ( x ,  t , 6 , & )  (7) 
and 

with the auxiliary condition 

where uo(x, t )  is the tectonic shear stress, u1 (x, t )  the internal shear stress as a result of slip 
on the fault, p the shear modulus, and under plane strain conditions a = 1 - v, where v is 
Poisson’s ratio if 6 is in the x-direction (edge-dislocation) and a = 1 if 6 is in the direction 
perpendicular to x and in the plane of the fault (screw dislocation). Equation (8) expresses 
the internal shear stress ul(x, t )  in terms of the finite Hilbert transform of the Burgers- 
vector density 36 (x. t)/ax. Weertman (1979) solved analytically two examples of fault slip 
with a step function friction stress uf(d) which depends only on the slip velocity d .  
Numerical schemes of solution for the fault problem equations (7)-(9) are required in 
general for more realistic fault friction behaviour. 
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Numerical evaluation of the Hilbert transform by the Fast Fourier Transform (FFT) 2 
technique 

2.1 T W O  E X I S T I N G  F O R M U L A E  

Let f (x) be the Hilbert transform of the function g(x), 

Equation (10) shows f(x) is a convolution o f g ( x )  and 1/7rx. By the convolution theorem of 
Fourier transform 

F(w)  = - isgn (0) . G (w) (11) 
where F ( w )  and C ( o )  are the Fourier transforms off(x) andg(x) respectively and - isgn(o) 
is the Fourier transform of the function 1 /7rx (Bracewell 1978), i.e. 

exp (- i27rwx) 
dx = - isgn (w). 

€-+ 0 

Equation (11) suggests one method of evaluation of the Hilbert transform (10). 
Method 1. Evaluate first the FFT of the function g(x) to obtain GFFT(O). Multiply 

GFFT(w) by - isgn(w). Finally, evaluate the inverse FFT of - isgn(w). GFFT(W) which 
yields an approximation to the Hilbert transform (10). 

Saito (1974) introduced a discrete Hilbert transform for sampled functions which con- 
serve all the important properties of the Hilbert transform (10). In correspondence to equa- 
tion (lo), this discrete Hilbert transform can be written as 

m,n=0,?1 ,172 ,?3  ,... 

where N is a power of 2 and the prime on the summation sign indicates the singular term 
when n = m is to be omitted. In the limit N -+ m, Ax + 0, and NAx -+ m, equation (13) 
reduces to the conventional Hilbert transform. Saito’s formula (1 3) suggests another method 
of evaluating equation (1 0) numerically. 

Method 2 (Saito’s method). First perform the FFT on g(x) and on (l-cos(nx/Ax))/nx 
sampled at x = m .Ax. Multiply the resulting FFTs to obtain FFFT(W). Finally take the 
inverse FFT of F F F ~ ( w )  to obtain the discrete Hilbert transform. 

Both methods 1 and 2 approach the correct answer to equation (10) in the limit N -+ 03, 

Ax +. 0 and N .  Ax -+ m. 

The relative accuracy of the two methods for given Nand Ax can be compared with the 
following two numerical examples. 

The first example is taken from the linear-friction model on a two-dimensional fault 
(Weertman 1964; Savage 1980). For the displacement 

the internal shear stress u1 (x) is given by 
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794 H.-P. Liu and D. D. Kosloff 

This integral can be evaluated analytically to give 

Fig. 1 shows the differences, A, between the stress ul(x) computed by the two FFT 
methods and the analytic result equation (15). The parameters are d = 2 ,  /J= 2, k =  1, 
Ax = 0.01 (arbitrary unit), (Y = 1, and N = 1024. The agreement between the values corn- 
puted by Saito’s method and those given by the analytical result, equation (IS), is better 
than 0.1 per cent in the range - 3 < x < 3 except at the two points x = k 2 (error = 3.2 per 
cent) where the analytical expression equation (1 5) has discontinuous derivatives of all 
orders. On the other hand, the error of the values computed by method 1 is greater than 
2.4 per cent except at the two points x = +_ 2 (error = 0.8 per cent). The reason the results 
computed by Saito’s method (method 2) deviate from the analytical solution towards both 
ends of the sampled region is that the discrete Fourier transform of a sampled function is 
periodic with a period of N -  Ax. This ‘wrap-around’ effect is illustrated in Fig. 2. Caution 
must therefore be taken when using this method to solve the fault slip problem by restricting 
the slipping region to the middle portion of the sampled region. This can always be achieved 
by including extra lengths of non-slipping fault segments outside of the region of interest 
into the sampling interval. This numerical example shows that Saito’s method (method 2 )  is 
superior to method 1 in approximating the Hilbert transform (equation 10). 

The second example is taken from another fault dislocation model. Slip is confmed in this 
case to - d < x  < d where the frictional stress is a given constant. The solution with a 
constant applied shear stress is given by 

t 
LT 
Q a L O  - 
m 
LT 
Q 
v 

Q 
111 
0 z 

i 

0 

Figure 1. Difference, A,  between the stress u1 (x) computed by two FFT methods and the analytical 
result of example 1 (linear-friction model on a two-dimensional fault). Triangular symbols: method 1. 
Diamond symbols: Saito’s method (method 2). Dashed line indicates the position where the analytical 
expression equation (15) has discontinuous derivatives of all orders. 
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Figure 2. Showing the ‘wrap-around’ effect of FFT methods. Solid line, analytic results of stress as a 
function of distance in the linear-friction model on a two-dimensional fault. Crosses, results computed 
by Saito’s method (method 2). 

This integral can also be evaluated analytically to  give 

The internal shear stress u1 ( x )  is discontinuous and it has a singularity at x = f d (Weertman 
1964; Savage 1980). Fig. 3 shows the difference, A ,  between the stress calculated by FFT 
method 1 and the analytic result (equation 17). Fig. 4 is the corresponding figure for Saito’s 
method (method 2). The parameters are d = 2, p = 2, Ax = 0.01, ut - uf = 1 (arbitrary units) 
01 = 1 and N = 1024. The FFT results computed by Saito’s method (method 2) oscillate 
around the analytical result (17). The FFT results computed by method 1 oscillate mostly to 
one side of the analytical solution (17). These oscillations persist even away from the points 
of discontinuity x = k 2 where Gibbs’ phenomenon of the Fourier methods is normally 
expected. These results indicate that both methods 1 and 2 are inadequate in approximating 
Hilbert transforms with high-r’requency contents. We have devised a new FFT method to 
evaluate numerically the Hilbert transform which does not have this shortcoming. 

2.2 A N E W  M E T H O D  

Let x = mAx where m is an integer and break the x-axis into intervals of size Ax. The 
Hilbert transform integral (10) is now given by 
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Figure 3. Difference, A,  between the stress u, ( x )  computed by FFT method 1 and the analytical result of 
example 2 (confined slip on a two-dimensional, constant-friction fault). The oscillations of A persist away 
from the point of discontinuity at x = 2 as indicated by the dotted line. 
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Figure 4. Difference, A ,  between the stress u,(x) computed by Saito’s method (method 2) and the 
analytical result of example 2 (confined slip on a two-dimensional constant-friction fault). The oscilla- 
tions of A persist away from the point of discontinuity at x = 2 as indicated by the dotted line. 

Consider the contribution to I from the (n -1)th and the nth intervals. Using linear inter- 
polation, 

g ( x ) = P n  -1(x>gn - 1  + P n ( x ) g n  (19) 

g ( x )  = Pn(X) gn + pn + 1 ( X I  gn (20) 

in the (n - 1)th interval and 
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in the nth interval, where g ,  - , g , ,  and g ,  + are function values of g ( x )  at x = (n - l)Ax, 
n AX and (n +l)Ax respectively and the interpolation function P,(x) is given by 

x - (n - 1)Ax 
(n-l)Ax< X G  nAx 

P ( ) -  (n+l)Ax-x 
nAx Q x G (n +l)Ax 

n x - \  Ax ’ 
I 0,  x < (n -1)Ax or x > (n +l)Ax. 

Denote the contribution to I containing g ,  by Z,. Substituting equations (19) and (20) into 
equation (1 8), 

1 ( n  + l ) A x  ((n + 1)Ax - .$}g, 
d.$. __ _ _ ~  -~ 

+; /,Ax ( x  - .$)Ax 

With x = mAx, equation (22) is integrated to yield 

Therefore 
m 

I =  C hrn - n g n / n  
n = - m  

which is a discrete convolution where 

n # O  

h n =  1 0 ,  n = O .  

h ,  is set to zero because the Hilbert transform integral (10) is a Cauchy principal value 
integral. The first fewvaluesofthesequence {h,)  areh,= 1.38629,h,=0.52325,h3=0.33980, 
h4=0.25267, h5=0.20136, . ._ . It can be shown from equation (25) that h , -+l /n  as 
n -+ 00. A third method, method 3, to evaluate the Hilbert transform integral (10) numeric- 
ally can be constructed from the discrete convolution formula equation (24). 

Method 3 (Liu-Kosloff method or L-K method). Perform FFT on g(x )  sampled at 
x = mAx and on {h,) . Multiply the resulting FFTs to obtain FFFT(u). Finally take the 
inverse FFT of FFF~(u) to obtain the discrete Hilbert transform. 

The same two numerical examples used to test methods 1 and 2 have been applied to 
method 3. The agreement between the values computed by the L-K method (method 3 )  
and the analytical expression equation (15) of example 1 is better than 0.1 per cent in the 
range - 3 < x < 3 except at the two points x = k 2 (error = 4.97 per cent). This accuracy is 
the same as that obtained by Saito’s method (method 2). Fig. 5 shows the difference, A, 
between the stress calculated by the L-K method (method 3 )  and the analytical expression 
equation (17) of example 2 .  The FFT results computed by the L-K method (method 3) 
oscillate around the analytical solution (17) only near the points of discontinuity at x = * 2 
and converges rapidly to the analytical solution away from the points of discontinuity. 
Moreover, the successive oscillations near the points of discontinuity average to withm 4 per 
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Figure 5. Difference, A, between the stress u ,  (x) computed by the L-K method (method 3) and the 
analytical result of example 2 (confined slip on a two-dimensional, constant-friction fault). The oscil- 
lations of A diminish rapidly away from the point of discontinuity at x = 2 (indicated by the dashed 
line). 

cent of the analytical solution. Such behaviour characterizes the Gibbs phenomenon which is 
common to all Fourier series and transform methods. In summary, the L-K method 
(method 3) is superior to both methods 1 and 2 because of its better approximation to 
Hilbert transform integrals whose spectra cover a wide frequency range. 

3 Discussion 

We have compared three FFT numerical methods which compute the Hilbert transform 
integral. The first method uses the result that the Fourier transform of l /nx is -isgn(o). 
The second method (Saito’s method) is based on a discrete Kilbert transform which in the 
limit of an infinite number of sampling points passes into the Hilbert transform integral 
(Saito 1974). Our devised third method uses linear interpolation to transform the Hilbert 
transform integral into a discrete convolution of the function values (gn} sampled at discrete 
points and another sequence { h ,  }.  The last method is shown by numerical example to be 
superior to the first two methods. We have not conducted a numerical analysis into the 
reason why the third method works the best. However, a few heuristic arguments can be 
offered. (1) Because the value of l /nx  decreases slowly with x, the FFT of l / r x  approaches 
-isgn(w) very slowly with an increase in the number of sampling points. This means that 
using the result that the Fourier transform integral of l /nx  is -isgn(w) in the FFT tech- 
nique will cause some error. (2) The difference between Saito’s (1974) method 2 and our 
method 3 is the same as that between the rectangle rule of grid interval 2Ax and trapezoid 
rule of grid interval Ax in numerical integration. The integrand g(t;)/(x - t ; )  in equation (10) 
near the singularity t; = x  is better approximated by the trapezoid rule (L-K method, 
method 3 )  than by the rectangle rule (Saito’s method, method 2 ) .  Reducing the grid interval 
of Saito’s method by a factor of 2 (thereby doubling the number of points used in the FFT) 
reduces the oscillation amplitude in Fig. 4 by - 25 per cent without changing its oscillatory 
behaviour. 

Because of its capability to approximate accurately the Hilbert transform integrals with a 
wide frequency spectrum, method 3 has applications in solving quasi-static fault creep 
problems formulated by equations (7)-(9) when friction properties vary abruptly along the 
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Numerical evaluation of  the Hilbert transform 799 

fault (which implies a wide frequency spectrum in the stress solution) and when a large 
number of time steps are required to solve numerically the fault slip problem (which implies 
caution must be taken to reduce error accumulation during time stepping). 
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