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Using numerical simulations of the 3D Ising spin glass we find evidence that spontaneous replica
symmetry breaking theory and not the droplet model describes with good accuracy the equilibrium
behavior of the system.
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The behavior of disordered spin models at equilibrium
is well understood in the framework of the mean field
approximation [1,2]. The main prediction of the mean
field approach is the existence of a low-temperature glassy
phase. Such a phase is characterized by the existence
of many different equilibrium states [spontaneous replica
symmetry breaking (SRSB)].

On the other hand, it is possible to define a different
consistent theory [3] by starting from the Migdal-Kadanoff
approach. We will refer to this approach in the following
as the droplet model. Here one expects the equilibrium
state to be unique (apart from global inversions in zero
magnetic field) and that the most relevant excitations are
obtained by reversing large domains of spins (the droplets).

We have two different starting points. One is the infinite
range approximation which leads to the replica symmetry
breaking picture, and the other is the Kadanoff-Migdal
approximation which leads to the droplet model. Although
each of the two pictures is correct in its range of validity,
we have to establish which qualitatively describes the
physics of real three-dimensional spin glasses.

A physical model behaving as a droplet would be
reminiscent of a usual phase transition of the Curie type.
On the contrary mean-field-like behavior would imply
new features. Experimentalists are working hard trying
to detect or falsify such behavior, and the question is far
from settled [4].

The main result of this work (which continues the inves-
tigation started in [5], and follows a long series of Monte
Carlo simulations of spin-glass systems [6]) has been to
gather new and strong evidence that in three dimensions
the SRSB picture (and not the droplet model) describes
correctly what is observed in numerical simulations.

Let us start by summarizing the evidence we will present
in this Letter and the scheme of our reasoning (for a more
detailed exposition of these and more data see Ref. [7]).
We will start by showing that the probability distribution
of the overlap among two systems at equilibrium, Psqd, has
a nontrivial structure. Psq . 0d is different from zero, and

its shape does not depend on the volume. We will analyze
(following a suggestion contained in the third reference
of [8]) sample to sample fluctuations of the spin-glass
susceptibility, and find that they are incompatible with the
droplet model, while their size is very well explained (even
in a quantitative manner) by SRSB theory. In order to
show that the structure of the different equilibrium states
is not compatible with a droplet structure we will compute
and analyze equal time correlation functions. From this
analysis we deduce the existence of many equilibrium
states that cannot be described by a dropletlike structure.
On the contrary, we will show that even at a quantitative
level SRSB theory explains very well the numerical data.

Further evidence on the inadequacy of the droplet model
to describe the 3D spin glasses and support for a SRSB
mechanism is provided by analyzing the distribution of
overlaps of boxes of side R, qRsxd ; R2D

P
y sx1ytx1y

(where y is an integer vector which takes all the RD values
compatible with the conditions 0 # yn , R) and by dis-
cussing the behavior of the box overlap Binder cumulant

gsR, td ;
3

2 2 kq4
Rly2kq2

Rl2.
The model we will mainly consider is defined by the

simple Edwards-Anderson Hamiltonian on a 3D simple
cubic lattice H ; 2

P
hi,kj siJi,ksj , where the sum runs

over nearest neighbor couples of sites. The quenched
disordered couplings J are distributed according to a
Gaussian law. A study of the overlap susceptibility and
of the Binder cumulant shows that (under the a priori

assumption of the existence of a phase transition at a
nonzero temperature with a power law divergence) the
transition is located at T ­ 1.00 6 0.05. In order to check
universality of our results we have also studied a model [7]
with integer J ­ 61 variables, where each spin is coupled
with equal strength to 26 neighboring sites (all the ones
contained in a cube of 33 sites). The results we discuss
are confirmed by our findings about this second model.

We have used an isotropic lattice of linear size L,
and we have computed the probability distribution PJsqd
of the overlap q ; V21

P
i siti among two thermalized
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configurations s and t in a box of volume V ­ L3. We
have studied the behavior of the function Psqd averaged
over a large number of realizations of the quenched dis-
ordered couplings J [i.e., the average over the J random
variables of PJ sqd]. We have used a maximum of 2560

samples for the smallest lattice sizes and a minimum of
512 samples for the largest sizes. It was already known
(see, for example, [5] and references therein) that PJsqd
is nontrivial and has a shape quite similar to the one pre-
dicted in the mean field model. Mainly thanks for the use
of large computer resources (we have mainly used the APE
parallel computer [9], which turns out to be very effective
for this kind of problem [7]: we flip about 2 3 108 spins
per second on the tower version of the machine) and of the
tempering (an annealinglike improved Monte Carlo tech-
nique introduced in [10]) we have been able to study sys-
tems of larger size than before (up to 143), and to bring
them to thermal equilibrium quite deep in the cold phase.
In this case we have equilibrated the system up to distance
14. The tempering method allows one to check thermal-
ization by monitoring the distribution of the temperature
values dynamically selected by the system. We have also
checked that for each individual sample the function Psqd
is symmetric under the exchange q $ 2q (this is a very
strong thermalization check). We will see that this infor-
mation is complemented by our dynamical study, where
we work on time scales on which we can equilibrate the
system on distances up to order 6. This gives a good con-
trol over the fractal geometry of the typical excitations and
of their boundaries. The number of points we are con-
sidering in an elementary cluster is, in other words, large
enough to allow a characterization of the intrinsic geome-
try. This is what we need in order to distinguish between
SRSB theory and Migdal-Kadanoff droplets.

The first crucial comment is that the general form of
the function Psqd is size independent in our statistical
precision. We stress that the nonzero plateau at low q

values, down to q ­ 0, is size independent. For example,
at T ­ 0.7 the Binder cumulant of q is practically
independent of the lattice size and it is equal to 0.85 6
0.01. This means that the system has a nontrivial structure
of equilibrium states with a continuous distribution of the
allowed overlap values (even if one should be careful
about possible dangerous finite size effects below Tc).
By using our measurements of equal time correlation
functions we will argue in the following that such states
cannot be described by the droplet approach, while they
have all features predicted by the SRSB approach.

In this Letter we do not answer a very important
question: whether if in the infinite volume limit a low-
temperature phase characterized by the existence of
a nonzero order parameter qEA exists. On the lattice
volumes we are able to investigate the high q peak of
the Psqd is very slowly shifting toward lower q values,
even if, as we already said, the shape of the Psqd does
not change. The extrapolation to the infinite volume limit

appears to be a very delicate issue, and many potential
systematic errors (even in the definition of the finite vol-
ume qEA) are involved. Here we will not address in detail
this point, and assume that we are working in conditions
where the system is effectively frozen in a phase with
a nonzero value of qEA. A possible scenario [5] of a
correlation length diverging exponentially for T ! 0 or of
a Kosterlitz-Thouless-like transition would be compatible
with this approach, since on our finite lattice we would
be measuring properties of a frozen system. It is also
important to note that this ambiguity only concerns the
behavior of the high q peak of the Psqd (which could tend
to q ­ 0 on very large lattices), while on the contrary the
Psqd for small q values is nontrivial and does not depend
on the lattice size.

The agreement with mean field theory becomes quantita-
tive if we study sample to sample fluctuations. Mean field
theory tells us how much the function PJsqd for a given
realization of the quenched disorder differs from the aver-
age. For example, if we consider kqklJ ;

R
dq PJsqdqk ,

we have in mean field

kqklJ kqmlJ ­

2

3 kqklJ kqmlJ 1
1

3 kqk1mlJ , (1)

where by the overline we indicate an average over the
quenched noise. We have verified that in the low-T region
this equality is very well satisfied. For example, for k ­ 2

and m ­ 2 at T ­ 0.7 and L ranging from 4 to 10 the ratio
of the left-hand side to the right-hand side of (1) is equal
to 1.0 with an error never larger than 0.1. The relation
would be trivially satisfied by a delta function, but this is
not our case.

Strictly speaking, the nontriviality of the function Psqd
is not in violent contradiction with the droplet model. In
the framework of the droplet approach it is always possible
to suppose that states where domains that take a finite part
of the whole system are reversed have a finite probability.
This hypothesis is, however, rather unnatural, and it is
definitely wrong in the Kadanoff-Migdal approximation.
Moreover, we have already seen that the ability of the
SRSB theory to predict quantitatively the fluctuations of
the function Psqd is remarkable.

A further argument against the possibility discussed in
the last paragraph comes from considering q-q correlation
functions restricted to those pairs of configuration which
have a small value of q. The analysis of such correlation
functions, together with the nontriviality of the Psqd,
constitute an ultimate test of the failure of the droplet
model.

More precisely we consider a system of side L and we
define the relevant correlation function as

Csx, Ld ­ V21

*X
i

si1xti1xsiti

+
, (2)

where the brackets indicate the thermal average. The
droplet model predicts that Csx, `d goes to the constant
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value q
2
EA for large x. In the SRSB approach Csx, `d ~

jxj2ã , where ã is an exponent which has been computed
in less than six dimensions for the q ­ 0 correlation
functions [11].

We have studied this problem by considering large sys-
tems, with L ­ 64. In this case we are always very far
from equilibrium. We have run numerical simulations
starting from two random configurations selected indepen-
dently (for four realizations of the quenched couplings).
We have verified that q2 stays small in the whole run so
that the difference in the initial configurations, for not too
large times, enforces the condition q ø 0. Eventually in
a finite system global equilibrium will be reached and q

will become of order 1. However, if we let L ! ` first,
we can use this approach to study the equilibrium value of
the correlation function with the constraint of having zero
overlap. So, we practically never impose the constraint,
but just check that our run is short enough (even if very
long) not to create a nonzero overlap.

In order to do that we consider the time dependent equal
time correlation function at time t

Gsx, td ­ V21
X

i

ksi1xti1xsitilt , (3)

where the average is done at time t; i.e., after t Monte
Carlo cycles after the random start. We find that for
large times t the correlation function Gsx, td is essentially
different from zero for distances not too much larger than
a dynamic correlation length jstd which increases (and
maybe diverges) with time. Our numerical data are well
represented with the functional form

Gsx, td ­

AsT d

xa
exp

Ω
2

µ
x

jsT , td

∂
d
æ

, (4)

where we have defined jsT , td ; BsT dtlsTd. In the whole
range of distances 1 # x # 8 for Monte Carlo times
which range from 102 to 106 full lattice sweeps and a large
range of temperatures T , Tc (we have done measure-
ments at different temperatures, down to Tmin . 0.3Tc)
we get good fits. The exponents a and d are weakly
dependent on T . For example, at T ­ 0.70 we get the
best values a ­ 0.50 6 0.02 and d ­ 1.48 6 0.02. The
correlation length exponent lsT d is approximately given
by 0.16T . Such power law growth of the correlation
length was already observed by Rieger [12]. In order to
study the limit t ! ` in a safe way it is even better to
avoid global fits and to fit the data at fixed distance x as

Gsx, td ­ G̃`sxd exph2Asxdt2lsTdj . (5)

In this way the extrapolation to infinite time (with the
self-implemented constraint of q ­ 0 always satisfied) is
performed in a very safe way. We plot in Fig. 1 the
correlations G̃`sxd (computed at T ­ 0.7) as a function
of the distance in double logarithmic scale.

We have also computed the same quantities by using
a different temperature scale. In this second numerical

FIG. 1. logfG̃`sxdg logsxd, where log is the natural logarithm.
The upper line is from cooling, the lower one from the normal
dynamics (see the text for details).

experiment we slowly cool down the system from T ­

1.5 . Tc to the final temperature. To perform the cooling
we use a number of steps proportional to t, the waiting
time we want to look at the correlation function. After
that the system evolves at the fixed temperature of interest
T for t more time steps before measurement. In this
way one can obtain a much better equilibration. As a
matter of principle, in this case one does not expect a pure
power law but a combination of different powers generated
by different temperature contributions. However, a fit
similar to the previous one (5) works very well with a
slightly larger value of l. At T ­ 0.7 one obtains the
results shown in Fig. 1. The data obtained with the two
techniques behave in a very similar way. The t ­ ` data
are well described by a power decay x2a with a ­ 0.50 6
0.03, as predicted by the replica theory and in variance with
the droplet model predictions.

The value of the correlation function at distance 1 is par-
ticularly interesting. Indeed in the model with Gaussian
quenched disorder one can easily prove by a simple in-
tegration by part that E ­ 2bf1 2 Cs1dg, where E is the
energy per link and Csxd is the overlap correlation function
of the fully equilibrated system (i.e., summed over differ-
ent ergodic components). Only if replica symmetry is bro-
ken does it differ by our correlation function G where the
two replicas have been kept (by their own will) in two dif-
ferent ergodic components with zero mutual overlap. The
energy can be computed with high accuracy and from its
value we can deduce Cs1d. The equality

Cs1d ­ G̃`s1d (6)

should be violated as soon as replica symmetry is broken,
in the same way in which the equality E ­ 2bs1 2
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q
2
EAdy2 is violated in the Sherrington-Kirkpatrick model

at low temperature.
The value of the energy per link is very well fitted by

the form E` 1 At2DsTd. The exponent DsTd turns out
to be quite large; i.e., we find DsTd . 0.44T , so that it
is not difficult to extrapolate the value of the energy to
infinite time. If we use the computation of the interface
energy done by using SRSB theory [13], we expect that
DsT d ­ 2.5lsT d, which is very well satisfied by our data.

While we find that the equality (6) is correct above and
at the critical temperature (with less than a relative 1%

error), it is definitely violated below Tc; at T ­ 0.7 we find
Cs1d ­ 0.612 6 0.001 and G̃`s1d ­ 0.56 6 0.01, at T ­

0.35 we find Cs1d ­ 0.802 6 0.001 and G̃`s1d ­ 0.67 6
0.01. The failure of the equality (6) implies the existence
of different ergodic components. The q-q correlation
function depends on the choice of the component, in
agreement with the main prediction of the SRSB theory.

As final evidence we discuss the value of qRsxd. We
evaluate the probability distribution PRsqRd. In the mean
field SRSB limit the function PRsqRd is Gaussian, but in
a finite (not too large) number of dimensions it is quite
natural to expect deviations from the Gaussian limit.

On the contrary in the droplet model the function
PRsqRd should have two peaks at qR ø qEA, and should
become the sum of two delta functions in the limit R ! `
(at least for R ø L). Indeed here the quantity qR is
different from qEA with a probability that goes to zero
as a power of R.

We have measured the Binder cumulant gsR, td after t

Monte Carlo steps. At a given temperature we expect that

FIG. 2. The logarithm of the Binder cumulant for the box
overlap versus rescaled ratio of time and distance. Stars are for
R ­ 2, hexagons are for R ­ 3, and asterisks for R ­ 4. The
straight line is only to guide the eye.

for large R the data will collapse as

gsR, td ­ fssssRjstd21ddddd . (7)

In Fig. 2 we show data for T ­ 0.7 from R ­ 3 and
4. The scaling law we are proposing works very well.
The Binder cumulant extrapolates to something definitely
different from 1, which would be the prediction of the
droplet model, since in that case the distribution should be
asymptotically a pair of delta functions. The data obtained
with the alternative temperature scheduling, by relatively
slow cooling, give similar results for the extrapolated value
of the Binder cumulant.

We can summarize by saying that none of our findings
gives support to the predictions of the droplet model, while
the broken replica approach is able to predict qualitatively
(and in a few cases even quantitatively) the behavior of the
3D spin-glass systems.

We thank J. P. Bouchaud for pointing out to us the
potential relevance of local overlaps, and the APE group
for continuous assistance and support.
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