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Abstract: We present a method for computing the conformal mapping func-
tion f of doubly connected regions bounded by two closed Jordan curves onto
a disk with a concentric circular slit of radius µ < r. Our mapping procedure
consists of two parts. First we solve a system of integral equations on the
boundary of the region we wish to map. The system of integral equations is
based on a boundary integral equation involving the Neumann kernel discov-
ered by the authors satisfied by f ′(z), f ′(a), r and µ, where a is a fixed interior
point with f ′(a) predetermined. The boundary values of f(z) are completely
determined from the boundary values of f ′(z) through a boundary relation-
ship. Discretization of the integral equation leads to a system of non-linear
equations. Together with some normalizing conditions, a unique solution to
the system is then computed by means of an optimization method called the
Lavenberg-Marquadt algorithm. Once we have determined the boundary val-
ues of f(z), we use the Cauchy integral formula to compute the interior of the
regions. Typical examples for some doubly connected regions show that nu-
merical results of high accuracy can be obtained for the conformal mapping
problem when the boundaries are sufficiently smooth.
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gion, Neumann kernel, Lavenberg-Marquardt algorithm, Cauchy’s integral for-
mula

1. Introduction

Numerical conformal mapping of doubly connected regions are pre-sently still a
subject of interest. Several methods for conformal mapping of doubly connected
regions have been proposed in the literature (see [1], [4], [8], [12], [13], [15], [16]
and [19]). One of the methods is the integral equation method. Some notable
ones are the integral equations of Warschawski, Gerschgorin, and Symm. All
these integral equations are extensions of those maps for simply connected re-
gions. Recently, conformal mapping of doubly connected regions onto an annu-
lus via the Kerzman-Stein is also discussed in Murid and Mohamed [12]. Murid
and Hu [11] have also discussed numerical conformal mapping of multiply con-
nected regions onto an annulus with circular slits via the Neumann kernel. But
Murid and Razali [13], Murid and Mohamed [12] and Murid and Hu [11] have
not yet formulated an integral equation method based on the Kerzman-Stein
and the Neumann kernel for conformal mapping of doubly connected regions
onto a disk with a circular slit.

The plan of the paper is as follows: In Section 2, we derive the system of
two boundary integral equations involving the Neumann kernel for conformal
mapping of doubly connected regions onto a disk |w| ≤ r with a circular slit
of radius µr, with 0 < µ < 1. The system however involved the unknowns µ
and r. In Section 3 we explain how to treat the system of integral equation
numerically. The discretizetion of the integral equations leads to a system of
non-linear equations which is then solved using the optimization method. The
computation of the interior of the regions is shown in Section 4. In Section 5 we
report our numerical results for some test regions and we draw some conclusions
in Section 6.

2. The Boundary Integral Equation for Doubly Connected Region

With Neumann Kernel

Let Γ0 and Γ1 be two smooth Jordan curves in the complex z-plane such that
Γ1 lies in the interior of Γ0. Denote by Ω the finite doubly connected regions
with boundary Γ = Γ0 ∪ Γ1.
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It is well known that if h is analytic and single-valued in Ω and continuous
on Ω ∪ Γ, we have [7, p. 176]

PV
1

2πi

∫

Γ

h(w)

w − z
dw =

1

2
h(z), z ∈ Γ. (1)

Suppose D(z) is analytic and single-valued with respect to z ∈ Ω and is
continuous on Ω ∪ Γ. Suppose further that D satisfies the boundary relationship

D(z) = c(z)

[

T (z)Q(z)D(z)

P (z)

]−

, z ∈ Γ, (2)

where the minus sign in the superscript denotes complex conjugation, T (z) =
z′(t)/|z′(t)| is the complex unit tangent function at z ∈ Γ, while c, P , and Q
are complex-valued functions defined on Γ with the following properties:

(P1) P (z) is analytic and single-valued with respect to z ∈ Ω,

(P2) P (z) is continuous on Ω ∪ Γ,

(P3) P (z) has a finite number of zeroes at a1, a2, ..., aM in Ω,

(P4) c(z) 6= 0, P (z) 6= 0, Q(z) 6= 0,D(z) 6= 0, z ∈ Γ.

Note that the boundary relationship (2) also has the following equivalent
form:

P (z) = c(z)
T (z)Q(z)D(z)2

|D(z)|2 , z ∈ Γ. (3)

By means of (1), Murid and Hu [11] have shown that an integral equation for
D may be constructed that is related to the boundary relationship (2):

Theorem 1. Let u and v be any complex-valued functions that are defined

on Γ. Then

1

2

[

v(z) +
u(z)

T (z)Q(z)

]

D(z) + PV
1

2πi

∫

Γ

[

c(z)u(z)

c(w)(w − z)Q(w)
− v(z)T (w)

w − z

]

× D(w)|dw| = −c(z)u(z)





∑

aj insideΓ

Res
w=aj

D(w)

(w − z)P (w)





−

, z ∈ Γ, (4)

where the minus sign in the superscript denotes complex conjugation.

Let w = f(z) be the analytic function which maps Ω conformally onto a
disk |w| < r with circular slit of radius µr, where 0 < µ < 1. The function f
could be made unique by prescribing that

f(a) = 0, f ′(a) > 0,

where a ∈ Ω is a fixed point.
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The boundary value of f can be represented in form

f(z0(t)) = reiθ0(t), Γ0 : z = z0(t), 0 ≤ t ≤ β0, (5)

f(z1(t)) = µreiθ1(t), Γ1 : z = z1(t), 0 ≤ t ≤ β1, (6)

where θ0(t) and θ1(t) are the boundary correspondence functions of Γ0 and Γ1

respectively.

The unit tangent to Γ at z(t) is denoted by T (z(t)) = z′(t)/|z′(t)|. Thus it
can be shown that

f(z0(t)) =
r

i
T (z0(t))

θ′0(t)

|θ′0(t)|
f ′(z0(t))

|f ′(z0(t))|
=

r

i
T (z0(t))

f ′(z0(t))

|f ′(z0(t))|
, (7)

f(z1(t)) =
µr

i
T (z1(t))

θ′1(t)

|θ′1(t)|
f ′(z1(t))

|f ′(z1(t))|
= ±µr

i
T (z1(t))

f ′(z1(t))

|f ′(z1(t))|
. (8)

Note that θ′0(t) > 0 while θ′1(t) may be positive or negative since the circular
slit f(Γ1) is traversed twice. Thus θ′1(t)/|θ′1(t)| = ±1.

The boundary relationships (7) and (8) can be unified as

f(z) = ±|f(z)|
i

T (z)
f ′(z)

|f ′(z)| , z ∈ Γ, (9)

where Γ = Γ0 ∪ Γ1. Note that the value of |f(z)| is either r or µr for z ∈ Γ.
However we cannot compare (9) with (3) due to the presence of the ± sign. To
overcome this problem, we square both sides of the boundary relationship (9)
to get

f(z)2 = −|f(z)|2T (z)2
f ′(z)2

|f ′(z)|2 , z ∈ Γ. (10)

Comparing (10) with (3), leads to a choice of c(z) = −|f(z)|2, P (z) = f(z)2,
D(z) = f ′(z), Q(z) = T (z), u(z) = T (z)Q(z) and v(z) = 1. Substituting these
assignments into (4) leads to an integral equation satisfied by f ′(z), i.e.,

f ′(z) + PV
1

2πi

∫

Γ

[

|f(z)|2T (z)2

|f(w)|2(w − z)T (w)
− T (w)

(w − z)

]

f ′(w)|dw|

= |f(z)|2T (z)2





∑

aj insideΓ

Res
w=aj

f ′(w)

(w − z)f(w)2





−

, z ∈ Γ. (11)

To evaluate the residue in equation (11) we use the fact that if f(w) =
g(w)/h(w) where g and h are analytic at a, and g(a) 6= 0, h(a) = h′(a) = 0,
h′′(a) 6= 0, which means a is a double pole of f(w), then (see [5])

Res
w=a

f(w) = 2
g′(a)

h′′(a)
− 2

3

h′′′(a)g(a)

h′′(a)2
. (12)
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Applying (12) and after several algebraic manipulations, we obtain

Res
w=a

f ′(w)

(w − z)f(w)2
= − 1

(a − z)2f ′(a)
. (13)

Thus integral equation (11) becomes

f ′(z) + PV
1

2πi

∫

Γ

[

|f(z)|2T (z)2

|f(w)|2(w − z)T (w)
− T (w)

(w − z)

]

f ′(w)|dw|

= −|f(z)|2 T (z)2

(a − z)2f ′(a)
, z ∈ Γ. (14)

Multiply both sides by f ′(a)T (z) and use the fact T (z)T (z) = |T (z)|2 = 1 gives

f ′(a)T (z)f ′(z) + PV
1

2πi

∫

Γ

[

|f(z)|2T (z)

|f(w)|2(w − z)
− T (z)

(w − z)

]

f ′(a)T (w)f ′(w)|dw|

= −|f(z)|2 T (z)

(a − z)2
, z ∈ Γ. (15)

Equation (15) can also written as

g(z, a) +

∫

Γ
N∗(z,w)g(w, a)|dw| = |f(z)|2h(a, z), z ∈ Γ , (16)

where

g(z, a) = f ′(a)T (z)f ′(z), h(a, z) = − T (z)

(a − z)2
,

N∗(z,w) =
1

2πi

[

T (z)

(z − w)
− |f(z)|2T (z)

|f(w)|2(z − w)

]

.

For the doubly connected region map onto a circle with a concentric circular
slit, the single integral equation in (16) can be separated into a system of
equations

g(z0, a) +

∫

Γ0

N(z0, w)g(w, a)|dw| −
∫

−Γ1

P (z0, w)g(w, a)|dw|

= r2h(a, z0), z0 ∈ Γ0, (17)

g(z1, a) +

∫

Γ0

Q(z1, w)g(w, a)|dw| −
∫

−Γ1

N(z1, w)g(w, a)|dw|

= µ2r2h(a, z1), z1 ∈ Γ1, (18)

where

P (z,w) =
1

2πi

[

T (z)

(z − w)
− T (z)

µ2(z − w)

]

,
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Q(z,w) =
1

2πi

[

T (z)

(z − w)
− µ2T (z)

(z − w)

]

,

N(z,w) =



















1

2πi

[

T (z)

z − w
− T (z)

z − w

]

, if w, z ∈ Γ, w 6= z,

1

2π

Im[z′′(t)z′(t)]

|z′(t)|3 , if w = z ∈ Γ.

The kernel N is also known as Neumann kernel.

Note that there are four unknown quantities in the integral equations (17)
and (18), namely, f ′(a)T (z0)f

′(z0), f ′(a)T (z1)f
′(z1), r and µ. Naturally it is

also required that the unknown mapping function f(z) be single-valued in the
problem domain [6], i.e.

∫

−Γ1

f ′(w)dw = 0, (19)

which implies
∫

−Γ1

g(w, a)|dw| = 0. (20)

Several conditions can be obtained to help achieve uniqueness. We first consider
equation (5). Upon differentiation and taking modulus to both sides of equation
(5), gives

|f ′(a)T (z0(t))f
′(z0(t))z

′
0(t)| = |f ′(a)T (z0(t))re

iθ0(t)iθ′0(t)|
= f ′(a)r|θ′0(t)|. (21)

Since the boundary correspondence function θ0(t) is an increasing monotone
function its derivative is positive which implies |θ′0(t)| = θ′0(t). Upon integrating
(21) with respect to t form 0 to 2π gives

∫ 2π

0
|g(z0(t), a)z′0(t)|dt = f ′(a)r

∫ 2π

0
θ′0(t)dt = f ′(a)r2π. (22)

Next we consider the Cauchy integral formula

f ′(a) =
1

2πi

∫

Γ

f ′(z)

z − a
dz, (23)

which implies

f ′(a)2 =
1

2πi

∫ 2π

0

f ′(a)f ′(z0(t))z
′
0(t)

z0(t) − a
dt − 1

2πi

∫ 2π

0

f ′(a)f ′(z1(t))z
′
1(t)

z1(t) − a
dt. (24)

Thus the system of integral equations comprising of (17), (18), (20) with the
conditions (22) and (24) should lead to a unique solution.
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3. Numerical Implementation

Using the parametric representations z0(t) of Γ0 for t : 0 ≤ t ≤ β0 and z1(t)
of −Γ1 for t : 0 ≤ t ≤ β1 the system of integral equation (17), (18) and (20)
becomes

g(z0(t), a) +

∫ β0

0
N(z0(t), z0(s))g(z0(s), a)|z′0(s)|ds

−
∫ β1

0
P (z0(t), z1(s))g(z1(s), a)|z′1(s)|ds = r2h(a, z0(t)), z0(t) ∈ Γ0, (25)

g(z1(t), a) +

∫ β0

0
Q(z1(t), z0(s))g(z0(s), a)|z′0(s)|ds

−
∫ β1

0
N(z1(t), z1(s))g(z1(s), a)|z′1(s)|ds = r2µ2h(a, z1(t)), z1(t) ∈ Γ1, (26)

∫ β1

0
g(z1(s), a)|z′1(s)|ds = 0. (27)

Multipling (25) and (26) respectively by |z′0(t)| and |z′1(t)| gives

|z′0(t)|g(z0(t), a) +

∫ β0

0
|z′0(t)|N(z0(t), z0(s))g(z0(s), a)|z′0(s)|ds

−
∫ β1

0
|z′0(t)|P (z0(t), z1(s))g(z1(s), a)|z′1(s)|ds

= r2|z′0(t)|h(a, z0(t)), z0(t) ∈ Γ0, (28)

|z′1(t)|g(z1(t), a) +

∫ β0

0
|z′1(t)|Q(z1(t), z0(s))g(z0(s), a)|z′0(s)|ds

−
∫ β1

0
|z′1(t)|N(z1(t), z1(s))g(z1(s), a)|z′1(s)|ds

= r2µ2|z′1(t)|h(a, z1(t)), z1(t) ∈ Γ1. (29)

Defining

φ0(t) = |z′0(t)|g(z0(t), a), φ1(t) = |z′1(t)|g(z1(t), a),

γ0(t) = r2|z′0(t)|h(a, z0(t)), γ1(t) = r2µ2|z′1(t)|h(a, z1(t)),

K00(t0, s0) = |z′0(t)|N(z0(t), z0(s)), K01(t0, s1) = |z′0(t)|P (z0(t), z1(s)),

K10(t1, s0) = |z′1(t)|Q(z1(t), z0(s)), K11(t1, s1) = |z′1(t)|N(z1(t), z1(s)),
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the system of equations (28), (29), (27), (22) and (24) can be briefly written as

φ0(t) +

∫ β0

0
K00(t0, s0)φ0(s)ds −

∫ β1

0
K01(t0, s1)φ1(s)ds = γ0(t), (30)

φ1(t) +

∫ β0

0
K10(t1, s0)φ0(s)ds −

∫ β1

0
K11(t1, s1)φ1(s)ds = γ1(t), (31)

∫ β1

0
φ1(s)ds = 0, (32)

∫ β0

0
|φ0(s)|ds = f ′(a)r2π, (33)

1

2πi

∫ β0

0

φ0(s)

z0(s) − a
ds − 1

2πi

∫ β1

0

φ1(s)

z1(s) − a
ds = f ′(a)2. (34)

Since the functions φ, γ, and K in the above systems are β-periodic, a reliabbe
procedure for solving (30) to (34) numerically is using the Nyström’s method
with trapezoidal rule [2]. The trapezoidal rule is the most accurate method
for integrating periodic functions numerically [3, pp. 134-142]. We choose
β0 = β1 = 2π and n equidistant collocation points ti = (i − 1)β0/n, 1 ≤ i ≤ n
on Γ0 and m equidistant collocation points t̃i = (̃i − 1)β1/m, 1 ≤ ĩ ≤ m, on
Γ1. Applying the Nyström’s method with trapezoidal rule to discretize (30) to
(34), we obtain

φ0(ti) +
β0

n

n
∑

j=1

K00(ti, tj)φ0(tj) −
β1

m

m
∑

=1

K01(ti, t)φ1(t) = γ0(ti), (35)

φ1(tı) +
β0

n

n
∑

j=1

K10(tı, tj)φ0(tj) −
β1

m

m
∑

=1

K11(tı, t)φ1(t) = γ1(tı), (36)

m
∑

=1

φ1(t) = 0, (37)

n
∑

j=1

|φ0(tj)| = f ′(a)rn, (38)

1

ni

n
∑

j=1

1

z0(tj) − a
φ0(tj) −

1

mi

m
∑

=1

1

z1(t) − a
φ1(t) = f ′(a)2. (39)

Equations (35) to (39) lead to a system of (n + m + 3) non-linear complex
equations in n unknowns φ0(ti), m unknowns φ1(tı), f ′(a), r and µ. By defining
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the matrices

Bij =
β0

n
K00(ti, tj), Ci =

β1

m
K01(ti, t),

Eıj =
β0

n
K10(tı, tj), Dı =

β1

m
K11(tı, t),

Fj =
1

in

n
∑

j=1

1

z0(tj) − a
, G =

1

im

m
∑

=1

1

z1(t) − a
,

x0i = φ0(ti), x1ı = φ1(tı),

γ0i = γ0(ti), γ1ı = γ1(tı),

the system of equations (35), (36) and (39) can be written as n + m + 1 by
n + m system of equations

[Inn + Bnn]x0n − Cnmx1m = γ0n, (40)

Emnx0n + [Imm − Dmm]x1m = γ1m, (41)

Fnx0n + Gmx1m = f ′(a)2. (42)

Since φ = Reφ + iImφ, equations (37) and (38) become
m

∑

=1

(Rex1 + iImx1) = 0, (43)

n
∑

j=1

√

(Rex0j)2 + (Imx0j)2 = f ′(a)rn. (44)

The result in matrix form for the system of equations (40), (41) and (42) is
















Inn + Bnn · · · −Cnm
...

. . .
...

Emn · · · Imm − Dmm
...

. . .
...

Fn · · · Gm























x0n
...

x1m






=

















γ0n
...

γ1m
...

f ′(a)2

















. (45)

Defining

A =

















Inn + Bnn · · · −Cnm
...

. . .
...

Emn · · · Imm − Dmm
...

. . .
...

Fn · · · Gm

















, x=







x0n
...

x1m






and y =

















γ0n
...

γ1m
...

f ′(a)2

















,

the (n + m + 1)× (n + m) system can be written briefly as Ax = y. Separating
A, x and y in terms of the real and imaginary parts, the system can be written
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as

Re ARex − ImAImx + i( ImARex + ReA Imx) = Rey + iImy. (46)

The single (n+m+1)× (n+m) complex system (46) above is equivalent to the
2(n + m + 1) × 2(n + m) system matrix involving the real (Re) and imaginary
(Im) of the unknown functions, i.e.,







Re A · · · Im A
...

. . .
...

Im A · · · Re A













Re x
...

Im x






=







Re y
...

Im y






. (47)

Note that the matrix in (47) contains the unknown parameters r and µ. The
value of f ′(a) is predetermined. The system of equations (47), (43) and (54) is
an over-determined system of non-linear equations involving 2(n + m + 1) + 2
equations in 2(n + m) + 2 unknowns.

Methods for solving over-determined system are best dealt with as problems
in optimization [24, p. 146]. We use a modification of the Gauss-Newton called
the Lavenberg-Marquardt with the Fletcher’s algorithm [22, pp. 233-246] to
solve this nonlinear least square problem. Our nonlinear least square problem
consists in finding the vector x for which the function S : R2(n+m)+4 → R1

defined by the sum of squares

S(x) = fTf =

2(n+m)+4
∑

i=1

(fi(x))2

is minimal. Here, x stands for the 2(n + m) + 2 vector (Re x01, Re x02, ...,
Re x0n, Rex11, Re x12, ..., Re x1m, Im x01, Imx02, ..., Imx0n, Im x11, Im x12,
..., Imx1m, µ, r), and f = (f1, f2, ..., f2(n+m)+4). The Lavenberg-Marquardt
algorithm is an iterative procedure with starting value denoted as x0. This
initial approximation, which, if at all possible, should be well-informed guess
and generate a sequence of approximations x1, x2, x3, ... based on the formula

xk+1 = xk − H(xk)f(xk), λk ≥ 0, (48)

where H(xk) = ((Jf (xk))
T Jf (xk) + λkI)−1(Jf (xk))

T .

The strategy for getting the initial estimation is to provide rough estimates
of the slit radius, µ ≈ 0.5, r = 1 and set f ′(a) = 1 for the test region. Then the
non-linear system of equations (47) and (43) reduces to over-determined linear
system. Writing the over-determined system as Bx = y, we use the least-
squares solutions of Bx = y which are precisely the solutions of BTBx = BTy,
see [9]. The solutions are then taken as initial estimation. These initial guesses
are applied for the lowest number of n and m of our experiments. In all our
experiments, we have chosen the number of collocation points on Γ0 and Γ1
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being equal, i.e., n = m. The information from the solution of µ and r of
lower n is then exploited as an estimate of µ and r for the next 2n number of
collocations points.

The system of equations (47) with (43) and (54) are then solved for the
unknown function

φ0(t) = |z′0(t)|f ′(a)T (z0(t))f
′(z0(t)),

φ1(t) = |z′1(t)|f ′(a)T (z1(t))f
′(z1(t)),

µ and r. Finally the boundary correspondence functions θ0(t) and θ1(t) are
computed approximately by the formulas

θ0(t) = Arg f(z0(t)) ≈ Arg(−iφ0(t)),

θ1(t) = Arg f(z1(t)) ≈ Arg(±iφ1(t)).

4. The Interior of Doubly Connected Regions

Once the boundary values of the mapping function f are known, the values of
the mapping function may be calculated by quadrature at any interior points of
its domain of definition through Cauchy’s integral formula for doubly connected
region which read as follows:

Theorem 2. (Cauchy’s Integral Formula) Let f be analytic on the bound-

aries Γ = Γ0 ∪ Γ1 and the region Ω bounded by Γ0 and Γ1. If ζ is any point on

Ω, then

f(ζ) =
1

2πi

∫

Γ

f(z)

z − ζ
dz =

1

2πi

∫

Γ0

f(z)

z − ζ
dz − 1

2πi

∫

−Γ1

f(z)

z − ζ
dz. (49)

The Cauchy’s integral formula (49) can be also written in the parametrized
form, i.e.

f(ζ) =
1

2πi

∫ β0

0

f(z0(t))z
′
0(t)

z0(t) − ζ
dt − 1

2πi

∫ β1

0

f(z1(t))z
′
1(t)

z1(t) − ζ
dt. (50)

By means of (5) and (6), the Cauchy’s integral formula (49) can then be
written in the form

f(ζ) =
1

2πi

∫ β0

0

reiθ0(t)z′0(t)

z0(t) − ζ
dt − 1

2πi

∫ β1

0

µreiθ1(t)z′1(t)

z1(t) − ζ
dt. (51)

For the points which are not close to the boundary, the integrands are well
behaved. However for points near the boundary, the numerical integration is
inaccurate due to the influence of the singularity. This difficulty is overcome
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through the introduction of an iterative technique as given in [18, p. 303]. If
we define f0(ζ) to be f(z) where z is a point on the boundary which is closest
to ζ, then we can define

fk+1(ζ) =
1

2πi

∫

Γ

f(z) − fk(ζ)

z − ζ
dz + fk(ζ). (52)

In practice the iteration converges rapidly. Using this technique, we are able to
maintain the same accuracy throughout the region Ω.

5. Numerical Results

For numerical experiments, we have used five test regions whose exact boundary
correspondence functions are known. The test regions are annulus, frame of
Limacon, elliptic frame, circular frame and frame of Cassini’s oval. We set
f ′(a) = 1 for all test regions. Note that, f(z) maps Ω conformally onto a disk
|w| < r with a circular slit of radius µr, where 0 < µ < 1. Thus g(z) =
f(z)/r maps Ω onto a disk |w| < 1 with a circular slit of radius µ. This
implies that f and g have the same values of θ0(t), θ1(t) and µ. The results
for the sub-norm error between the exact values of θ0(t), θ1(t), µ and their
corresponding approximations θ0n(t), θ1n(t), µn are shown in Tables 1 to 5. All
the computations are done using Mathematica package [23] in single precision
(16 digit machine precision).

Example 3. (Annulus) Consider a frame of circular annulus A = {z : r̃ <
|z| < 1}, r̃ = q = e−πτ , τ > 0.

Γ0 : {z(t) = cos t + i sin t},
Γ1 : {z(t) = r̃(cos t + i sin t)}.

The exact mapping function that maps A onto unit disk with a circular slit is
given by [20]

g(z) = −e2σ

θ4

(

1

2i
log z +

iπτ

2
− iσ

)

θ4

(

1

2i
log z +

iπτ

2
+ iσ

) , 0 < σ <
πτ

2
, (53)

with µ = e−2σ and θ4 being the Jacobi Theta-functions. We have chosen
τ = 0.50 and σ = 0.20. Since θ4(πτ i/2) = 0 [21], this implies a = e−2σ = µ.
Figure 1 shows the region and image based on our method. See Table 1 for
results.
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Figure 1: Annulus: A rectangular grid in Ω with grid size 0.05 and its
image with τ = 0.50, σ = 0.20, r̃ = e−πτ and a = e−2σ

n = m ‖θ0(t) − θ0n(t)‖∞ ‖θ1(t) − θ1n(t)‖∞ ‖µ − µn‖∞
16 1.9(−02) 6.3(−01) 1.7(−02)
32 5.0(−05) 8.9(−04) 2.8(−05)
64 2.4(−10) 2.3(−09) 8.2(−11)
128 8.9(−16) 7.0(−14) 2.2(−16)

Table 1: Error norm (annulus)

Example 4. (Circular Frame) Consider a pair of circles [17]

Γ0 : {z(t) = eit},
Γ1 : {z(t) = c + ρeit}, t : 0 ≤ t ≤ 2π ,

such that the domain bounded by Γ0 and Γ1 is the domain between a unit circle
and a circle center at c with radius ρ. Since θ4(πτ i/2) = 0 and r̃ = q = e−πτ ,

this implies τ = ln(r̃)
−π and a = λ−e−2σ

1−λe−2σ . We choose a real number σ such that
0 < σ < πτ/2. Then the exact mapping function is given by

g(z) = e2σ

θ4

(

1

2i
log p(z) +

iπτ

2
− iσ

)

θ4

(

1

2i
log p(z) +

iπτ

2
+ iσ

) , 0 < σ <
πτ

2
, (54)

where p(z) = (z − λ)/(λz − 1) with

λ =
2c

1 + (c2 − ρ2) +
√

(1 − (c − ρ)2)(1 − (c + ρ)2)
,
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Figure 2: Circular frame: A rectangular grid in Ω with grid size 0.05
and its image with c = 0.3, ρ = 0.1, σ = 0.50, µ = e−2σ

n = m ‖θ0(t) − θ0n(t)‖∞ ‖θ1(t) − θ1n(t)‖∞ ‖µ − µn‖∞
4 1.0(−01) 5.9(−01) 4.9(−01)
8 2.3(−04) 2.0(−03) 1.6(−04)
16 1.0(−08) 4.2(−07) 2.0(−08)
32 8.9(−16) 5.1(−14) 1.8(−15)

Table 2: Error norm (circular frame)

r̃ =
2ρ

1 − (c2 − ρ2) +
√

(1 − (c − ρ)2)(1 − (c + ρ)2)
.

Figure 2 shows the region and image based on our method. See Table 2 for
results.

Example 5. (Frame of Limacon) Consider a pair of Limacon [10]:

Γ0 : {z(t) = a0 cos t + b0 cos 2t + i(a0 sin t + b0 sin 2t), a0 > 0, b0 > 0},
Γ1 : {z(t) = a1 cos t + b1 cos 2t + i(a1 sin t + b1 sin 2t), a1 > 0, b1 > 0},

with a0 = 10, a1 = 5, b0 = 3 and b1 = b0/4 where t : 0 ≤ t ≤ 2π. The
values of a0, a1, b0 and b1 are chosen so that b1/b0 = a1/a0 and r̃ = a1/a0.

Since θ4(πτ i/2) = 0 and r̃ = q = e−πτ , this implies τ = ln(a1/a0)
−π and a =

(2b0e−2σ+a0)2−a2

0

4b0
. We choose a real number σ satisfying 0 < σ < πτ/2. The
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Figure 3: Frame of Limacons: A rectangular grid in Ω with grid size
0.4 and its image with σ = 0.10

n = m ‖θ0(t) − θ0n(t)‖∞ ‖θ1(t) − θ1n(t)‖∞ ‖µ − µn‖∞
32 2.5(−02) 4.0(−02) 6.9(−03)
64 6.3(−05) 2.4(−04) 1.5(−05)
128 2.9(−10) 3.8(−09) 5.8(−11)

Table 3: Error norm (frame of Limacon)

exact mapping function is given by

g(z) = −e2σ

θ4

(

1

2i
log p(z) +

iπτ

2
− iσ

)

θ4

(

1

2i
log p(z) +

iπτ

2
+ iσ

) , 0 < σ <
πτ

2
, (55)

where p(z) =

√

a2
0 + 4b0z − a0

2b0
, µ = e−2σ . Figure 3 shows the region and image

based on our method. See Table 3 for results.

Example 6. (Elliptic Frame) Elliptic frame is the domain bounded by
two Jordan curves, Γ0 and Γ1 such that

Ω :
x2

a2
0

+
y2

b2
0

< 1,
x2

a2
1

+
y2

b2
1

> 1,

with the complex parametric of its boundary is given by [1]

Γ0 : {z(t) = a0 cos t + ib0 sin t, a0 > 0, b0 > 0},
Γ1 : {z(t) = a1 cos t + ib1 sin t, a1 > 0, b1 > 0}, 0 ≤ t ≤ 2π.

Since θ4(πτ i/2) = 0 and r̃ = q = e−πτ , this implies τ = − ln(r̃)/π and a =
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Figure 4: Elliptic frame: a rectangular grid in Ω with grid size 0.25 and
its image with a0 = 7, a1 = 5, b0 = 5, b1 = 1, σ = 0.10

n = m ‖θ0(t) − θ0n(t)‖∞ ‖θ1(t) − θ1n(t)‖∞ ‖µ − µn‖∞
16 1.6(−01) 6.4(−01) 1.7(−02)
32 8.9(−04) 2.3(−03) 3.2(−04)
64 1.0(−07) 8.7(−07) 2.8(−08)
128 1.2(−14) 3.2(−13) 1.2(−14)

Table 4: Error norm (elliptic frame)

e−4σ(a0+b0)2+(a0−b0)2

2e−2σ(a0+b0)
. The two ellipses Γ0 and Γ1 are confocal such that a2

0−b2
0 =

a2
1 − b2

1. We choose a real number σ satisfying 0 < σ < πτ/2. Then the exact
mapping function is given by equation (55), where

p(z) =
z +

√

z2 − (a2
0 − b2

0)

a0 + b0
, r̃ =

a1 + b1

a0 + b0
, µ = e−2σ.

Figure 4 shows the region and image based on our method. See Table 4 for
results.

Example 7. (Frame of Cassini’s Oval) If Ω is the region bounded by two
Cassini’s oval, then the complex parametric equation of its boundary is given
by [1]

Γ0 : {z(t) =

√

b2
0 cos 2t +

√

a4
0 − b4

0 sin2 2t eit, a0 > 0, b0 > 0},

Γ1 : {z(t) =

√

b2
1 cos 2t +

√

a4
1 − b4

1 sin2 2t eit, a1 > 0, b1 > 0}, 0 ≤ t ≤ 2π.
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Figure 5: Frame of Cassini’s oval: A rectangular grid in Ω with grid size

0.25 and its image with a0 = 2
√

14, a1 = 2, b0 = 7, b1 = 1 and σ = 0.15

n = m ‖θ0(t) − θ0n(t)‖∞ ‖θ1(t) − θ1n(t)‖∞ ‖µ − µn‖∞
32 4.0(−03) 5.0(−03) 6.0(−04)
64 1.0(−06) 1.1(−06) 1.2(−07)
128 4.9(−14) 7.5(−12) 8.4(−14)

Table 5: Error norm (frame of Cassini’s oval)

such that

Ω : |z2 − b2
0| < a2

0, |z2 − b2
1| > a2

1 .

Since θ4(πτ i/2) = 0, r̃ = q = e−πτ and f ′(a) > 0, this implies τ = − ln(r̃)/π and

a =

√

e−4σ(a4

0
−b4

0
)

a2

0
−b2

0
e−4σ . The boundaries Γ0 and Γ1 are chosen such that (a4

0−b4
0)/b

2
0 =

(a4
1 − b4

1)/b
2
1. We choose a real number σ satisfying 0 < σ < πτ/2. Then the

exact mapping function is given by equation (55), where

p(z) =
a0z

√

b2
0z

2 + a4
0 − b4

0

, r̃ =
a0b1

a1b0
, µ = e−2σ .

Figure 5 shows the region and image based on our method. See Table 5 for
results.

6. Conclusion

In this paper we have constructed a system of integral equations for numerical
conformal mapping from a doubly connected regions onto a disk of radius r

International Journal of Pure and Applied Mathematics (ISSN 1311-8080)
Volume 51, Issue 4 (2009), 537 − 556

2009 Academic Publications



554 A.H.M. Murid, L.-N. Hu

with a concentric circular slit of radius µr. The system involved the Neumann
kernel and unknown parameters µ and r with f ′(a) predetermined. Due to the
presence of µ in the kernel, the discretized integral equation leads to a sys-
tem of nonlinear equations which is solved using optimization method. Several
mappings of the test regions were computed numerically using the proposed
method. The advantage of our method is that it calculates the boundary corre-
spondence functions and the unknown parameters µ and r simultaneously with
same degree of accuracy. Having computed the boundary values of the mapping
function, the interior values are then calculated by means of the Cauchy inte-
gral formula. The numercial examples show the effectiveness of the proposed
method.
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