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Abstract. In this study we focus on a comparative numerical approach
of two reaction-diffusion models arising in biochemistry by using expo-
nential integrators. The goal of exponential integrators is to treat exactly
the linear part of the differential model and allow the remaining part of
the integration to be integrated numerically using an explicit scheme.
Numerical simulations including both the global error as a function of
time step and error as a function of computational time are shown.

1 Introduction

Reaction-diffusion equations are frequently encountered in mathematical biol-
ogy, ecology, physics and chemistry. This type of equations leads to interesting
phenomena, such as, pattern formation far from equilibrium, pulse splitting and
shedding, reactions and competitions in excitable systems, nonlinear waves and
spatio-temporal chaos. The efficient and accurate simulation of such systems,
however, represent a difficult task. This is because they couple a stiff diffusion
term with a (typically) strongly nonlinear reaction term. When discretised this
leads to large systems of strongly nonlinear, stiff ODEs.

In this work we perform a comparative numerical approach of two reaction-
diffusion models arising in biochemistry by using exponential integrators. The
paper is organized as follows. Section 2 briefly describes the exponential integra-
tors and their features. In Section 3 the two reaction kinetics – Gierer-Meinhardt
and Thomas models, respectively – are presented on the basis of which the nu-
merical study is carried out. Section 4 is devoted to a short description of the
numerical schemes applied to the models under study, together with results of
the numerical simulations. Finally, some concluding remarks are drawn in the
last section.

2 Exponential Integrators

The exponential integrators represent numerical schemes specifically constructed
for solving differential equations (see for details [8]), where it is possible to split
the problem into a linear and a nonlinear part

ẏ = Ly + N(y, t), y(tn−1) = yn−1 , (1)



where y ∈ Cd, L ∈ Cd×d and N : Cd × R → Cd. In specific applications
(discretizations of PDEs) the matrix L is unbounded. Generally, solving such
problems requires an implicit scheme; the goal of the exponential integrators is
to treat the linear term exactly and allow the remaining part of the integration
to be integrated numerically using an explicit scheme.

An exponential integrator has two main characteristics: (i) If L = 0, then
the scheme reduces to a standard general linear scheme. This is often called
the underlying general linear scheme; (ii) If N(y, t) = 0 for all y and t, then
the scheme reproduces the exact solution of (1). To satisfy (i) the exponential
function must be used within the numerical scheme. Despite the fact that L is
unbounded, typically the coefficients of the scheme will be bounded.

For an s-stage exponential integrator of Runge-Kutta type, we define the
internal stages and output approximation:

Yi = h

s∑
j=1

aij(hL)N(Yj , tn−1 + cjh) + ui1(hL)yn−1 , i = 1, . . . , s ,

yn = h
s∑

i=1

bi(hL)N(Yj , tn−1 + cjh) + v1(hL)yn−1 . (2)

The feature (i) above is satisfied if we require in (2) as ui1(0) = 1, aij(0) = aij ,
v1(0) = 1, and bi(0) = bi, where the real numbers aij and bj represent the
coefficients of the underlying Runge-Kutta scheme.

The extension to general linear schemes is carried out as follows. A step of
length h in an exponential general linear scheme, requires to import r aproxima-
tions into the step, denoted as y

[n−1]
i , i = 1, . . . , r. The internal stages (as in the

Runge-Kutta case) are written as Yi, i = 1, . . . , s. After the step is completed,
r updated approximations are computed. These are then used in the next step.
Each step in an exponential general linear scheme can be written as

Yi = h
s∑

j=1

aij(hL)N(Yj , tn−1 + cjh) +
r∑

j=1

uij(hL)y[n−1]
j , i = 1, . . . , s ,

y
[n]
i = h

s∑
j=1

bij(hL)N(Yj , tn−1 + cjh) +
r∑

j=1

vij(hL)y[n−1]
j , i = 1, . . . , r. (3)

The exponential integrators of Runge-Kutta type are easily seen to be a special
case when r = 1 with ui1(z) = ai0(z), v11(z) = b0(z) and b1j(z) = bj(z).

3 Model Equations

In this section we shortly describe the models governing different reaction kinet-
ics arising in biochemistry, which will be solved numerically in Section 4.

Gierer-Meinhardt reaction kinetics. This represents a phenomenological
model suggested by Gierer and Meinhardt ([5]), whereby reaction kinetics are



chosen in such a way that one of the chemicals (termed activator) activates
the production of the other chemical (the inhibitor) which, in turn, inhibits the
production of the activator. The non-dimensionalised reaction-diffusion system
is given by

∂u
∂t

= Du∇2u + γ

(
a − bu + u2

v(1 + κu2)

)
,

∂v
∂t

= Dv∇2v + γ(u2 − v) ,
(4)

where u(x, t) is the concentration of the activator, v(x, t) is the concentration
of the inhibitor, t is time and ∇2 is the 1-dimensional Laplacian. Du, Dv, a,
b and γ are all nondimensionalised positive parameters and k is a measure of
the saturation concentration ([10]). The biological interpretation of the reaction
kinetics in (4) is that u is produced at a constant rate γa and is degraded linearly
at rate γb. The γ u2

v(1+κu2) term implies autocatalysis in u with saturation at high
concentration values of u, and inhibition of u through the production of v. In the
second equation of the system (4), v is activated (produced) by u and degraded
linearly.

Thomas reaction kinetics. This model is based on a specific substrate-
inhibition reaction involving the substrates oxygen v(x, t), and uric acid u(x, t),
which react in the presence of the enzyme uricase. The reaction kinetics, derived
by fitting the kinetics to experimental data ([12]), can be written in nondimen-
sional form as

∂u
∂t

= Du∇2u + γ (a − u − h(u, v)) ,

∂v
∂t = Dv∇2v + γ (αb − αv − h(u, v)) ,

(5)

with h(u, v) = ρuv
1+u+Ku2 . Here Du, Dv, a, α, b, γ and ρ are positive parameters.

The term h(u, v) indicates the rate at which u and v are used up, in particular
h(u, v) exhibits what is known as substrate-inhibition, that is, for small u, h(u, v)
increases with u, while it decreases with large u.

4 Description of the Numerical Schemes and
Computational Issues

In what follows, we briefly describe the numerical schemes defining the exponen-
tial integrators that have been used in our comparative study. All these integra-
tors belong to the package EXPINT written in Matlab ([1]). In this description
we will use two terms of order. The non-stiff order refers to the case when the
operator L is bounded, such conditions were derived in [8]. The stiff order refers
to the case when L is unbounded ([3]), for various schemes. We remark here that
the stiff order convergence analysis is performed for the parabolic case only.

The first scheme that has been applied to our models is named Lawson4.
The scheme Lawson4 belongs to the Lawson schemes constructed by applying
the Lawson transformations ([7]) to the semi-linear problem. It is based on the
clasical fourth order scheme of Kutta (see [2], Eq. (235i)), and this scheme has
stiff order one.



Fig. 1. The variation profile of the variable u(x, t) in the model (4) representing the
concentration of the activator which stimulates the production of the inhibitor denoted
by v(x, t) (Gierer-Meinhardt reaction kinetics).

The scheme denoted by hochost4 was developed by Hochbruck and Oster-
mann. It has five-stages and is the only known exponential Runge-Kutta method
with stiff order four.

Nørsett designed in [11] a class of schemes which reduced to the Adams-
Bashforth methods when the linear part of the problem is zero.

ABLawson4 has stiff order one and is based on the Adams-Bashforth scheme
of order four and is represented in this way so that the incoming approximation
has the form y[n−1] = [yn−1, hNn−2, hNn−3, hNn−4]T .

ABNørsett4 is a stiff order four scheme of Norsett ([11]), which is imple-
mented so that the incoming approximation has the same form as in ABLawson4.

ETD schemes are based on algebraic approximations to the nonlinear term in
the variation of constants formula. ETD means “Exponential Time Differencing”
and the name stems from [4]. The scheme ETD4RK due to Cox and Matthews in
([4], Eqs. (26)-(29)) started the recent focus on exponential integrators, unfortu-
nately it has only stiff order two. ETD5RKF is a non-stiff fifth order scheme based
on the six stage fifth order scheme of Fehlberg.

The scheme RKMK4t uses a convenient truncation of the dexp−1 operator,
leading to the method of Munthe-Kaas [9], which again is of stiff order two but
suffers from instabilities, especially when non-periodic boundary conditions are
used.



Fig. 2. The variation profile of the variable u(x, t) in the model (5) representing the
concentration of the uric acid in the substrate-inhibition reaction involving the sub-
strate oxygen v(x, t) (Thomas reaction kinetics).

Krogstad [6] constructed the generalized Lawson schemes as a means of over-
coming some of the undesirable properties of the Lawson schemes. This class of
schemes uses approximations of the nonlinear term from previous steps, result-
ing in an exponential general linear method. The scheme genlawson45 included
in the package mentioned above is also used for our numerical study.

Figures 1 and 2 present the variation profiles for the concentration variable of
u(x, t) in the two reaction kinetics, Gierer-Meinhardt and Thomas, respectively.

Figures 3 and 4 illustrate comparison results concerning the quality of the
numerical schemes that have been used in this analysis. There are shown re-
lationships between the global error and the timestep h varying from 10−2 to
10−1. We note that for Gierer-Meinhardt model good behaviours have had the
schemes lawson4, hochcost4, etd4rk, ablawson4, while the schemes rkmk4t,
and etd5rkf indicated a more significant increasing rate of the global errors
with respect to the computed global error (see Fig. 3). In the case of Thomas
reaction kinetics, the scheme etd5rkf has had the best behaviour (see Fig. 4).

Figures 5 and 6 give timing results in the sense that present dependencies
of the global error as a function of computational time for the two models. In
this respect, good results are obtained with the schemes lawson4, etd4rk and
ablawson4 for the Gierer-Meinhardt model (see Fig. 5), and lawson4, rkmk4t,
etd5rkf for the Thomas model (see Fig. 6).
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Fig. 3. Comparative results concerning the quality of the numerical schemes: the global
error as a function of timestep h for the Gierer-Meinhardt reaction kinetics.

All the plots indicate in their title: “ND=128” and “IC: Smooth”. This means
that we have used 128 Fourier modes in the spatial direction (must be power
of 2), and as initial condition for the model variables, we have chosen a set of
values with a Gaussian distribution.

5 Conclusions

In this paper we focused on a comparative numerical study for two models arising
in biochemsitry: Gierer-Meinhardt reaction kinetics and Thomas reaction kinet-
ics. The numerical approach has been performed by using several exponential
integrators belonging to Matlab package EXPINT ([1]). The numerical findings
together with global error and timing results were presented in illustrative plots.
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Fig. 5. Comparative results concerning the global error as a function of computational
time for the Gierer-Meinhardt reaction kinetics.
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Fig. 6. Comparative results concerning the global error as a function of computational
time for the Thomas reaction kinetics.


