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1 Introduction 

Semi-Infinite Programming (SIP) problems occur in a wide variety of fields, such as 

computer aided design, and pollution control. Several globally convergent schemes 

for solving SIP problems have been proposed [1, 2, 5, 10, 11, 12]. A common ap­

proach yielding global convergence is the use of sequential quadratic programming 

techniques in conjunction with an Exact Penalty Function (EPF). It is shown by 

Tanaka et al [11] (see also [10] for a graphical example) that, in the context of semi­

infinite programming, the Leo EPF is preferable to the L 1 EPF. In [10] it is shown 

that the theoretical results for an algorithm based on the Leo EPF are applicablE; to 

C1 problems; in contrast, for the L1 EPF some functions must be C2
. This paper 

presents the results of numerical experiments with the quasi-Newton algorithm for 

SIP described in [9, 10]. The theoretical properties of this algorithm are discussed 

in [9, 10]. 
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The problem considered herein is: 

min f( x) subject to 
xERn 

(1) 

g(x, t) :::;; 0 Vt E T. (2) 

Here f ( x) and g( x, t) are continuously differentiable functions mapping Rn -t R and 

Rn x T -t R respectively, and T C RP is a Cartesian product of closed intervals. For 

convenience only one semi-infinite constraint (0.2) has been considered, and auxiliary 

finite constraints have been omitted. The algorithm is applicable to problems with 

finite numbers of semi-infinite and ordinary constraints. 

Rather than solve the SIP directly, the problem of minimising an exact penalty 

function cp(x) over x E Rn is solved, where cp is chosen so that the solution points of 

the SIP coincide with those of the Penalty Function Problem (PFP). The penalty 

function used is 

¢>(µ, 11; x) = f(x) + µB + t11B 2 
where B = max [g(x, t)J+. (3) 

tET 

The penalty parameters µ and II are restricted to µ > 0, and 11 ~ 0. Clearly B( x) is 

the infinity norm of the constraint violations, hence cp is continuous Vx E Rn. 

As f and g are only required to be C1
, the problem of finding a local minimum 

of the SIP is replaced by that of finding a stationary 'point. 

Definition 1.1 Let x* E Rn satisfy the constraint (0.2}, and let there exist t 1 , ... , tm E 

T and non-negative numbers 1*, Ai, ... , A~ such that 

g(x*, ti)= 0 Vi E 1, ... ,m, 

m 

and ,*'vf(x*) + I:Ai'vxg(x*,ti) = 0. 
i=l 

Then x* is a stationary point of the SIP. 

Assumption 1.2 At each stationary point of interest, an unspecified constraint 

qualification holds which implies 1 * y:. 0. For convenience 1 * = 1 is assumed. 

The stationary points satisfying assumption (0.1.2) will be referred to as Karush­

Kuhn-Tucker (KKT) points. The solution points of the PFP are characterized as 

follows. 
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Definition 1.3 For fixed values µ0 and v0 ofµ and v, a point x0 is a critical 

point of ¢>(µ 0 , v0 ; x) iff at x0 the direciJional derivative of ef>(µo, vo; x) with respect to 

x along every direction is non-negative. 

It can be shown [9, 10] that if x* is a KKT point of the SIP, then satisfaction of 

the condition 

µ > 11,\*lli, (4) 

where >. * = ( >-t, ... , >.~f, ensures x* is also a critical point of¢>(µ, v; x). Conversely, 

if x* is feasible, and is a critical point of q> for some µ > 0 and v ~ 0, then x* is 

also a solution point of the SIP. The following assumption, which ensures the SIP is 

tractable, is made. 

Assumption 1.4 For each x E Rn, the set of global maximisers I'(x) of g(x, t) over 

T is finite. 

Using this assumption, for any x E Rn a continuous piecewise quadratic 'ljJ ap­

proximating q> about x can be constructed. Specifically, 

where ((s) = max[g(x, t) + sTVd(x, t)J+, 
tEA . 

where H is positive definite, and where A C T is finite. The matrix H is used to 

include second derivative information, and it is updated at each iteration. Clearly 

·ip is strictly convex in s, and has a unique minimum with respect to s over s E Rn. 

It can be shown [10] that if r( x) ~ A then, in the limit s ~ 0 

¢>(µ, v; x + s) = 'ljJ(x, A;µ, v; s) + o(lls!I). 

Therefore, for any so satisfying 'ljJ(s0 ) < 'ljJ(O), the convexity o{'ljJ implies the direc­

tional derivative of q> at x in the direction s0 (hereafter D so¢>( x)) is strictly negative. 

Such an s0 exists unless the minimiser s* of ·z/J is zero. If s* =f. 0, then x is not a 

critical point of q> and s* is a descent direction for q> at x. This provides the basis 

for the algorithm described in the next section. 
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The problem of minimising 7/J is an '£00 Quadratic Programme (L00 QP), and can 

be rewritten as the Quadratic Programme (QP) 

g(x, t) + sT'Vxg(x, t) - (:::; 0 Vt EA, 

and solved accordingly. The Lagrange multipliers ). (k) from this QP are used as 

estimates of the optimal Lagrange multipliers).* when updating Hand the penalty 

parameters. 

2 Description of the Algorithm 

The basic structure of each iteration of the algorithm is as follows. The superscript 

(k) denotes the iteration number. First the locally approximating LooQP about the 

current iterate x(k) is constructed. This L 00 QP is then solved to yield the proposed 

step s(k). If this step yields a sufficient reduction in the penalty function it is 

accepted. Otherwise a second order correction c(k) is calculated. The purpose of 

this second order correction is to prevent the Maratos effect from occurring. An 

Armijo linesearch is then conducted along the arc q(k)(a) = x(k) + as(k) + a 2c(k) for 

the next iterate. The process is repeated until a sufficiently accurate approximation 

to a critical point of the penalty function is found. 

Algorithm Summary: 

1. Th~ global, and some local maximisers of g(x(k), t) with respect tot are found. 

Let A(k) denote this set of points. This subproblem is referred to as the multi­

local optimisation subproblem. 

2. The approximating L 00 QP at x(k) is formed, and its solution s(k) is calcu­

lated. If g(k) exceeds some positive parameter Bcap, then the capping constraint 

((s(k)) :::; ((0) is imposed on the L00 QP. If s(k) = 0, but the Lagrange multiplier 

estimates indicate that the penalty parameters are too small then the penalty 
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parameters are updated as described in step 4 and the L00 QP is re-solved -

such an occurrence is called a 'short' iteration. If the capping constraint is ac­

tive, then the penalty parameters are increased according to the rules given in 

step 4, except fl).(k)lh is replaced by the quantity µ(k) +v(k)(;l(k) + 1(1, where ( is 

the Lagrange multiplier for the capping constraint from the L 00 QP's solution. 

The L00 QP is then re-solved with these new penalty parameter values. With 

these new penalty parameter values the capping constraint will be inactive 

and the algorithm will proceed to the next step. 

3. If x(k) + s(k) does not satisfy the sufficient descent condition: 

calculate c(k), and perform the arc search. Here O < p < ! . For all results 

presented herein, p = 0.33 was used. 

4. Estimate the optimal Lagrange multipliers at the new iterate. If B is less than 

some positive parameter Bcrossover, and if µ ::; Kil!A (k) Iii, then µ is increased 

to K21!>-(k)ll1, where K 2 > K 1 > 1 are fixed parameters. Related research [3] 

suggests ~hat K2 < 2 may be desirable. If e ~ Bcrossover, andµ+ vB ::; K3p (k) Iii' 

then v is adjusted to give µ + vB = K4 p (k) Iii, where K4 > K3 > 1. Herein 

K1 = 1.2, K2 = 1.5, K3 = 1.2, and K4 = 4 have been used. 

5. Update H using the BFGS update provided the following condition (0.5) is 

satisfied, otherwise do not update H. 

\Ix E Rn - {O}, \/k, 0 < xT H(k)x ::; ,xT x, where 1 > 0. (5) 

Here 1 = 108 was used. 

6. If sufficient accuracy lias not been attained, another iteration is begun. 

The vector c(k) is that of [8], and is determined as follows: The multi-local 

optimisation subalgorithm is applied to g( x(k) + s(k), t), yielding the set A~~h· Let 

Q(k) denote the set of elements t E A(k) which give rise to the optimal active set of 
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constraints for L
00

QP(k). Each member of Q(k) is then matched to the closest point 

in Ai~b· If some element of Ai~b is matched with more than one member of Q(k) then 

c(k) = 0 is used; ,0therwise c(k) is found as described in [SJ, where the above matching 

is used to pair the constraint values at x(k) + s(k) with the constraint gradients at 

x(k). If !!c(k)II ~ lls(k)II, then c(k) is reset to 0. 

The purpose of the capping constraint in step 2 is to prevent directions of ascent 

for e being chosen as s(k) whenever e(k) is large. Without this precaution, it is possi­

ble that the sequence { e(k)} diverges to infinity, because an increase in infeasibility 

may be offset by a reduction in the objective function. The capping constraint was 

found to be necessary to solve problem 13 (see section 3), for precisely this reason. 

For the p ~ 1 case, each multi-local optimisation was performed by calculating 

g(x(k), t) at a number of equally spaced points t0, ... , tN in T. A local search was 

then performed in each interval [ti-I, ti+i] containing a local maximum. 

For the case when p > 1, g(x(k), t) was calculated at a number of points in T, 

where these points were generated using a Halton sequence. These test points were 

then grouped into clusters, such that the algorithm considers that local searches 

started at any two test points will find the same point if, and only if the two test 

points lie in the same cluster. One local search is then performed for each cluster, 

using a quasi-Newton algorithm. The highest test point in each cluster is used as 

the starting point for that cluster's local search. 

These multi-local optimisation algorithms are described in more detail in [9]. 

3 Numerical Results 

The algorithm was tested on the 14 test problems of Watson and Coope [13, 5] 

(hereafter kno:-vn as the Watson set of problems). The results for these problems 

are summarised in Table 1. Here j and h respectively denote the number of iterations 

and the number of multi-local optimisations performed in solving the problem. <I>' 

is the magnitude of the minimum directional derivative of the L 1 exact penalty 

function at the final iterate. The subscripts CW, T FI, B, and P respectively refer 
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to results by Coope and Watson [5], Tanaka et al [11], Bell [1], and by the algorithm 

presented herein. The superscript ij denotes values taken by the various quantities 

in the final iteration of the SIP algorithm. 

All computations were performed on a VAX 3100 workstation in double precision 

arithmetic. This gives approximately 16 digits accuracy; the machine precision being 

l.39E-l 7. 

3.1 Results for the Watson problem set. 

For the problems in the Watson set with p = 1 (ie numbers 1-6, and 14), Bcap = 

Bcrossover = 1 was used. The capping constraint was struck only on problem 6. The 

trust region JJsJJ 00 ::::; 2 was also used. On problem 4 with n > 3, performance was 

improved by replacing this simple bound with 

(6) 

All problems were solved to an accuracy of 10-5 except for problem 4 with n = 8: 

for this problem an accuracy of 10-8 was sought. 

On problem 2 the algorithm converged to a different solution than that given 

by Watson [13], as did the algorithm of Tanaka et al [11]. Following Tanaka et al, 

on using x(
0

) = 0 the algorithm found the solution listed by Watson. The results 

for the original, and altered starting points are listed in rows 2 and 3 of Table 2 

respectively. 

The algorithm was also tested on its ability to cope with remote starting points 

on problem 2. The algorithm took 12 iterations and 12 function evaluations to find 

the same solution from 100 times the original starting point. It took 21 iterations, 23 

function evaluations, and one short iteration to find the same solution from 10,000 

times the original starting point. 

The capping constraint and quadratic penalty term played only passive roles in 

the solution of each 1 dimensional problem, excluding problem 6: for the remaining 

problems in the Watson set it was decided to reduce the values of Bcap and Bcrossove~ 

from 1 in order to increase their influence on the algorithms behaviour. These 
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problem n p Jr*J JP hp <I>' p )TFI hr FI <f!~FI Jew <I>~w 

1 2 1 1 17 21 8.2E-6 17 19 4.8E-7 16 8.2E-6 

2 2 1 2 8 10 l.4E-8 5 11 2.7E-8 7 1.4E-8 

2 1 2 7 8 4.9E-7 - - - - -

3 3 1 1 11 23 l.3E-6 9 12 5.5E-8 10 6.2E-12 

4 3 1 2 10 11 l.9E-6 5 15 2.7E-7 5 5.4E-8 

6 1 4 57 119 7.7E-6 8 27 7.7E-6 20 6:4E-6 

8 1 5 84 164 l.OE-7 3 14 3.4E-6 16 7.4e-6 

5 3 1 2 8 14 6.2E-6 4 9 6.8E-7 4 6.9E-6 

8 1 2 7 13 4.3E-6 2 6 l.2E-6 4 2.3E-8 

10 1 2 7 13 2.2E-6 2 6 7.lE-7 4 l.2E-9 

12 1 2 7 14 8.7E-6 3 7 9.2E-8 4 l.SE-8 

15 1 2 8 13 3.8E-6 3 7 6.2E-8 4 l.3E-9 

6 2 1 1 27 87 5.2E-6 16 19 l.3E-18 9 l.lE-8 

7 3 2 1 9 14 7.0E-9 2 4 0.0 3 0.0 

8 6 2 4 34 40 4.lE-8 11 · 41 l.lE-7 9 l.lE-8 

10 2 5 21 27 6.7E-7 12 56 3.4E-6 - -

15 2 ? - - - 10 57 3.SE-6 - -

9 6 2 00 41 192 - 2 6 0.0 18 4.SE-2 

10 3 2 1 2 3 l.2E-6 2 3 8.lE-7 3 2.8E-7 

11 3 2 2 10 18 9.8E-7 7 18 l.6E-14 12 2.2E-7 

12 3 2 1 9 17 3.8E-6 3 5 3.0E-12 4 l.7E-11 

13 3 2 1 11 22 7.5E-6 4 6 2.lE-15 4 3.5E-7 

14 2 1 1 6 7 8.lE-6 5 8 3.4E-7 5 8.2E-7 

Table 1: A comparison of results with those obtained by Tanaka et al. 
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problems were run with Bcap = 0.01 and Bcrossover = 0.1. 

The only published results from the solution of SIP problems usmg a quas1-

Newton algorithm known to the authors are those by Bell [1]. These comprise 

problem 4 of the Watson set with n = 3, ... , 6, and are as follows: for n = 3, 

JB = 29 and jp = 10; for n = 4, JB = 41 and jp = 22; for n = 5, JB = 81 and 

jp = 32; and for n = 6, JB = 100 and jp = 57. Bell's algorithm takes more iterations 

to reach a solution than the one presented herein. This is hardly surprising as Bell's 

algorithm starts by using quite coarse approximations to the global maximisers in 

the early iterations, and increases the accuracy required of these approximations as 

the solution process proceeds. 

The three algorithms with which almost all comparisons are made here are New­

ton type algorithms. On the easier problems (1, 2, 3, 4 with n = 3, 5, 7, 10, 11, and 

14) the algorithm performed well. In most cases the number of iterations taken was 

at most double that required by any of the Newton type algorithms, and the number 

of multi-local optimisations performed was less than twice the number of multi-local 

optimisations that the algorithm of Tanaka et al. required. The more non-linear 

problems (6, 12, and 13) produced greater discrepancies, but the algorithm had no 

difficulty in solving them. 

The extended version of problem 4 was much more testing: the algorithm was 

able to solve it for the various values of n, however many more iterations and multi­

local optimisation calls were needed than for the Newton type algorithms. In par­

ticular, the algorithm of Coope and Watson was able to achieve a higher accuracy 

on this problem ( with n = 8) in lower precision arithmetic than the algorithm pre­

sented here. Both of these algorithms were able to locate all global maximisers, as 

was that of Tanaka et al. Watson's [13] algorithm respectively missed 1, and 2 of 

the global maximisers on then = 6 and n = 8 problems. 

The margin between the Newton type algorithms, and that described here was 

greatest on problem 8. The algorithm coped quite well with then = 6 case, requiring 

one less multi-local optimisation call than the algorithm of Tanaka et al. although 
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many more iterations were taken. The n = 10 case was very different: the local 

search procedure used in the multi-local optimisations experienced much difficulty in 

accurately calculating the local maximisers of the constraint function. Convergence 

was obtainable, but only by using the n = 6 solution as a starting point. 

3.2 Results for C1 problems. 

The algorithm is designed to be capable of solving C1 problems. To test its ability 

on such problems it was applied to the following three problems. The results are 

listed with each problem. 

Problem L. 

f = (x1 + X2 - 2)
2 + (x1 - x2)

2 + 30(min{O, X1 - x2} )2 

g(x, t) = x1 cos(t) + x2 sin(t) - 1 T = [O, 1r] 

x(o) = (0, -O.lf 

The objective function of this problem has discontinuous second derivatives at the 

solution. The following solution was found in 11 iterations and 17 multi-local opti­

misations: 

xti = (0.7071,0.707lf i = 0.3431; r" = {0.7854}; A" - r" = 0. 

<I>' = 5.3E - 6; e" = 9.5E - 14; µ". = 2.5909; v" = 0.1; 

The sequence of iterates crossed the line x1 = x2 ( along which the second derivatives 

are discontinuous) three times whilst solving this problem. 

Problem M. 

f = ( X1 - 2)2 + X~ 

g(x, t) = x1 cos(t) + x2 sin(t) - 1 T = [O, 1r] 

and IJxlloo ~ 1, where x(o) = (0, O.lf 
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In this problem strict complementarity fails to hold for the global maximiser of g at 

x = x*. Accordingly, at x* the boundary of the feasible region changes over from the 

envelope g(x, arctan(x2/x1 )) = 0 to the ordinary constraint g(x, 0) = 0. The join 

between these two pieces is C1
, but not C 2

. The problem was solved in 4 iterations 

with 4 multi-local optimisations being made. In addition to this one 'short' iteration 

was also performed. The solution found is: 

<I>'= 6.8E - 16; B~ = O; µ~ = 3.5147; vH = 0.1; 

Problem N. 

f = X2 

g(x, t) = 2.0xit
2 + t4 + Xi - X2 T = [-1, 1] 

X(O) = (0.5, 0.5f 

In this problem the implicit function theorem fails to hold for the global maximiser 

of g at the SIP's solution x*. Actually, for x 1 > xi there are two global maximisers 

which combine into one at x1 = xi, For x 1 :S xi there is only one global maximiser. 

The following solution was found in 9 iterations and 11 multi-local optimisations: 

<I>' = 2.5E - 6; eH = 6.9E - 16; µH = 1.5270; v~ = 0.1; 

In solving this problem the number of local maximisers changed four times. 

4 Higher Dimensional Problems. 

Three problems involving constraint index sets of dimension greater than two were 

looked at. The first (problem S) was designed to be a non-trivial problem, but one 

which was not overly difficult. The second (problem T) was chosen to be quite testing 
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I Problem II n p I 1r*) II J h I cpu time I 

s 4 3 1 24 60 64.05 

s 4 4 1 20 37 152.36 

s 4 5 1 21 36 331.59 

s 4 6 1 23 43 1081. 71 

T 4 3 4 23 48 125.52 

T 4 4 4 20 39 456.29 

T 4 5 4 26 68 988.23 

T 4 6 4 26 64 5855.90 

u 4 6 2 17 18 414.11 

Table 2: Results for the higher T dimensional problems. 

of the algorithm's ability to keep track of local maximisers which merge into one 

another, and then split apart as the iteration number k is increased. Fortuitously, 

this problem is also a good test of an algorithm's ability to cope with a constraint 

function which has an almost flat region taking values close to the global maximum. 

On all runs performed on the higher dimensional problems the trust region (0.6) 

was used, as was Bcap = Bcrossover = 1. A summary of the results for these three 

problems is given in Table 0.2. The symbol )f* I denotes the actual number of global 

maximisers active at the solution x*. The cpu time is in seconds, and includes 

input/output time which is of the order of 4 to 10 seconds. 

The results for problems S and T show a steady and large increase in computa­

tional time as p is increased. This follows from the increased effort needed to solve 

the multi-local optimisation subproblems as the dimension of T increases. 

Problem S. 

f ( X) X1X2 + X2X3 + X3X4 

g( x, t) - 2( Xi + x~ + x~ + x~) - 6 - 2p 
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+ sin(t1 - x1 - x4) + sin(t2 - x2 - x3) 

+ sin(t3 - x1) + sin(2t4 - x2) + sin(ts - X3) + sin(2t6 - x4) 

T = [O,l]P 

x(o) = (1, 1, 1, lf 

This problem was solved for p = 3, 4, 5, and 6. The results are as follows: 

For p = 3: 

For p = 4: 

For p = 5: 

For p = 6: 

xtt = (0.894135, -1.290617, 1.235788, -0.748821f 

J' = -3.674298; ett = O; µtt = 1.012; ,) = 1.0 

rtt = {(1.7161, 1.5160, 2.oooof }; Au - rtt = 0 

xtt = (0.948247, -1.361576, 1.300981, -0.787553f 

Jtt = -4.087086; ett = 2.689491E - 8; µtt = 0.932; vtt = 1.0 

rtt = {(1.7315, 1.5102, 2.0000, o.1046f }; 

Au - rtt = { (1. 7315, 1.5102, 2.0000, 2.oooof} 

xtt = (0.913759, -1.391873, 1.516069, -0.868445f 

Jtt = -4.698634; ett = O; µtt = 0. 7335; vtt = 1.0 

rtt = {(1.6161, 1.6950, 2.0000, 0.0895, 2.oooof }; 

Au - rtt = {(1.6161, 1.6950, 2.0000, 2.0000, 2.oooof} 

xtt = (0.960921, -1.456291, 1.581476, -0.905873f 

Jtt = -5.135086; ett = 2.254294E - 10; µtt = 1.013; vtt = 1.0 

rtt = {(1.6258, 1.6960, 2.0000, o.0573, 2.0000, o.3325f} 
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{ (1.6258, 1.6960, 2.0000, 2.0000, 2.0000, 2.oooof 

(1.6258, 1.6960, 2.0000, 2.0000, 2.0000, 2.oooof 

(1.6258, 1.6960, 2.0000, 0.0573, 2.0000, 0.3325f 

(1.6258, 1.6960, 2.0000, 0.0573, 2.0000, 2.oooof} 

Problem T. 

where 

f(x) 

g(x, t) 

T 

4 

I: x; - Xi 

i=l 

4 4 1 
-I:x;+ I:--

i=l i=l 1 + Wi 

[-3,3]P 

(-2.25, -2.5, -2.75, -3.0f 

j=l 

p 

W2 I:;[tj - X2(-l)j]2 

j=l 

p 

W3 I:[tj - X3(-l)jdiv2]2 
j=l 

p 

W4 = I:[tj - X4(-l)(j+l)div2]2 
j=l 

This problem was solved for values of p ranging from 3 to 6. For each value of 

p there are four global maximisers active at the solution x*. Lagrange multiplier 

estimates indicate that at most two of the four global maximisers are needed to 

satisfy the first order KKT conditions at x*. 

For p = 3: 

XU= (0.659449, 0.659446, 0.659446, 0.659441f 

JU = -0.898308; {}U = 0; µU = 2.128; z) = 1.0 

ru { (0.4502, 0.4502, 0.4502f, (0.4502,. -0.4502, -0.4502f, 

( -0.4502, 0.4502, -0.4502f} 
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A" - r" = {(0.0000, 0.0000, o.oooof} 

In this problem the multi-local optimisation algorithm actually misses the 

global maximiser at ( -0.4502, -0.4502, 0.4502f. The value taken by g( xtt,.) 

at the origin is ~0.00382. The closeness of this value to zero indicates that 

g(xtt, t) is very nearly flat in the region 'between' the four global maximisers. 

This near flatness, and the fact that all the global maximisers lie in a small 

part of T make them quite difficult to locate. Similar remarks apply to the 

constraint function at x* for p = 4, 5, and 6. 

For p = 4: 

xtt = (0.659442, 0.659450, 0.659448, 0.659443f 

jH = -0.898308; ett = l.734531E - 6; µH = 2.317; vtt = 1.0 

r" = { (0.4502, 0.4502, 0.4502, o.6594f, 

( -0.4502, -0.4502, 0.4502, 0.6594f, 

(0.4502, -0.4502, -0.4502, 0.6594f} 

AH - rtt = { (0.0000, 0.0000, 0.0000, 0.6594f} 

Once again one of the global maximisers has been missed by the algorithm. 

For p = 5: 

xtt = (0.636215, 0.636215, 0.636216, 0.636215f 

jH = -0.925782; ett = 0.0; µH = 2.232; vH = 1.0 

rtt = {(0.5420, 0.4941, o.4941, o.6362, o.542of, 

(-0.5420, 0.4941, -0.4941, 0.6362, -0.5420)T, 

(-0.5420, -0.4941, 0.4941, 0.6362, -0.5420f, 

(0.5420, -0.4941, -0.4941, 0.6362, 0.5420f} 
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For p = 6: 

XU = (0.617580, 0.617580, 0.617579, 0.61758Qf 

i = -0.944700; BU= 0.0; µtt = 2.287; vU = 1.0 

ru { (-0.5410, -0.5410, o.5227, o.6176, -0.5410, -0.5410f, 

(0.5410, 0.5410, 0.5227, 0.6176, 0.5410, 0.5410f, 

(-0.5410, 0.5410, -0.5227, 0.6176, -0.5410, 0.5410f, 

(0.5410, -0.5410, -0.5227, 0.6176, 0.5410, -0.5410f 

Problem U. 

4 1 
~ 

10
x; - Xi 

i=l 

f(x) 

g(x,t) ~
4 

sin (30t1 sin(x1 ) + 30t2 cos(x2)) 

X3 , (t1i2) + 
10 

sm 10 + t3x1 + t4x2 + t 5x 3 + t 6x4 - 4 

T [-1, 1]6 

(3, 2, 1, of 

The linearity of g in t 3, t 4, t 5, and t 6 means that finding the maximisers of g over T 

can be reduced from a search over six dimensions to a search over two dimensions. 

This feature was put in the problem to make it possible to check the algorithm's 

answer by hand. The algorithm made no allowance for the fact that the number 

of dimensions over which the local and global maximisers of g are sought can be 

reduced from six to two. 

The results for p = 6 are 

xtt = (1.173288, 1.179673, 1.142275, 0.412150f 

Jtt = -3.483097; ett = 2.374750E - 11; µtt = 1.462; vtt = 1.0 

rtt {(1, 1, 1, 1, 1, 1f, (-0.8928, -1, 1, 1, 1, 1f }; rtt - Att = 11 local maximisers. 
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5 Using an NLP First Phase. 

A two phase approach was examined. In the first phase a discretized version of the 

SIP was solved using an NLP algorithm. The NLP's solution was then used as the 

starting point for the SIP algorithm in the second phase. 

The objective function of the NLP was identical to that of the SIP. The set of 

constraints of the NLP was {g(x, t) s; 0 : t E 'Hm}, where 'Hm is the set of the first 

m test points generated. 

The algorithm used to solve the NLP was identical to that used to solve the SIP, 

except that A(k) = 'Hm· was used at each iteration instead of choosing A(k) as the 

set of global (and other local) maximisers of g(x(k), t). 

Once the NLP is solved to the required accuracy, the SIP algorithm is applied 

with the NLP solution as the starting point. No alterations were made to the SIP 

algorithm. It did, however, use as starting values the first phase's final values of the 

penalty parameters and the estimate of the Hessian. 

Problem S with p = 4 was used to test this two phase algorithm. Results were 

generated for various accuracies required of the NLP solution, and also for various 

values of m, where m is the number of constraints in the NLP. These are listed in 

Tables 0.3 and 0.4. The two phase algorithm found the same solution to that listed 

in section 4 in each case. 

In Table 0.3, the parameter Tol represents the accuracy required of the NLP's 

solution. More precisely, Tol is both the maximum NLP constraint violation permit­

ted, and the maximum (2-norm) residual of the derivative of the NLP's Lagrangian 

allowed at an acceptable solution to the NLP. The row labelled Tol = oo in Table 0.3 

contains the results obtained by applying the SIP algorithm proper without an NLP 

first phase. The rest of the legend for Tables 0.3 and 0.4 is as follows: j 1 and )2 are 

respectively the number of iterations performed in solving the NLP, and the SIP; h1 

is the number times the set of NLP constraints is evaluated, and h2 is the number of 

multi-local optimisation calls made in solving the SIP; J
1
~LP is the value off at the 

solution of the NLP;· and llx~LP - xttll is the Euclidean distance between the NLP's 
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Tol First Phase second phase combined 

)1 h1 time /fl.rLP II xi LP - x~ II )2 h2 time cpu time 

00 0 0 0.00 +3.000 2.9775 20 37 152.36 152.36 

l.OE-1 24 43 20.80 -4.139 0.2875 9 13 30.29 51.09 

l.OE-2 26 45 21.72 -4.132 0.3645 10 14 32.59 54.31 

l.OE-5 28 47 22.54 -4.132 0.3641 10 14 32.02 54.56 

Table 3: Results for a two phase algorithm on problem S with p = 4. Here the 

number of constraints in the first phase has been fixed at 160, and the accuracy to 

which the NLP was solved has been varied. 

m First Phase second phase combined 

)1 h1 time ft LP llxiLP - x~II )2 h2 time cpu time 

50 19 23 6.46 -4.340 0.7170 13 17 45.11 51.57 

160 28 47 22.54 -4.132 0.3641 10 14 32.02 54.56 

500 21 30 51.89 -4.128 0.1080 10 15 34.50 86.39 

1600 21 25 173.58 -4.128 0.1080 11 14 33.12 206.70 

Table 4: Results for a two phase algorithm on problem S with p = 4. Here the 

number of constraints in the NLP has been varied, and each NLP was solved to an 

accuracy of 1. OE-5. 

18 



and SIP's solutions. For the case when Tol = oo, x~LP = x(o) and ftLP = f(x( 0
)) 

have been used. The cpu times required to complete the first, and the second phases 

are listed in the two columns headed 'time.' The total time required to solve the 

problem is listed under the heading 'combined cpu time.' Unfortunately it was not 

possible to separate the input/output times from the cpu times. The input/output 

times are of the order of 4 to 10 seconds for the test runs listed here, with the in­

put/output time for each run being approximately proportional to }1 + }2. In spite 

of this uncertainty in the times, they still provide useful information on the effects 

of using an NLP first phase. 

The results show that the use of a first phase reduces the total time required to 

solve the problem. A relatively coarse discretization of the semi-infinite constraint 

performed better than a finer discretization. As the discretization became finer the 

time taken to complete the first phase increased accordingly. Curiously, the time 

taken to complete the second phase was relatively independent of the discretization; 

the second phase times for m = 160, 500, and 1600 being very similar. 

The results for m = 160 and varying values of Tol also show that there is little 

to be gained by solving the NLP to great accuracy. Discretizing the semi-infinite 

constraint introduces an error between the solution of the NLP (xNLP), and x*. 

There is little point in reducing the error in the calculated value of x~LP too much 

below llxNLP - x~II· 

6 Advantages of an Extra Penalty Parameter. 

The penalty function ¢ (0.3) is a hybrid of the standard Single Parameter Exact 

non-differentiable Penalty Function (SPEPF) and the classical Quadratic Penalty 

Function (QPF). These are respectively¢ with v = 0, and.withµ= 0. The char­

acteristics of this hybridization are investigated by varying the threshold parameter 

Bcrossover· When () is above this threshold value, any adjustments to the penalty 

parameters are made to v; below this threshold the adjustments are made to µ. If 

Bcrossover is very large, then the algorithm's behaviour imitates that of an algorithm 
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based on a SPEPF. If e is very small, then the algorithm mimics a QPF based 

algorithm. 

Problem 6 was chosen as the test problem on which to explore the effects of 

altering Bcrossover· The results are presented in Table 0.5. The first and last rows of 

Table 0.5 list the results obtained by using a SPEPF (v = 0), and a QPF (µ = 0) 

respectively. For these two rows the initial penalty parameter values were µ = 0.1 

and v = 1.0 respectively. For all other rows, µ = 0.1 and v = 1.0 were the initial 

values, with Bcrossover as listed. Two sets of results were generated: the first set was 

computed using the algorithm without a capping constraint, and the second set was 

calculated by the ~lgorithm with a capping constraint set at Bcap = 1. 

The results show that without the capping constraint, the pure non-differentiable 

penalty function needed over twice as many iterations, and more than four times as 

many multi-local optimisation calls as the hybrid penalty function with Bcrossover = 1. 

With Bcrossover = 100, the algorithm did not alter v, in which case rp was effectively 

the sum of the SPEPF and a +!B2 term. Even this simple alteration produced a 

significant improvement in performance. Using lower values of Bcrossover improved 

performance further. 

The SPEPF performed so poorly without either a non-zero v or a capping con­

straint because many iterations are needed before a sufficiently large value of µ 

is obtained. vVith v = 0, and without a capping constraint, µ(k) can be at most 

1,,2µ(k-l), where 1,, 2 = 1.5 was used. This is a consequence of using the Lagrange mul­

tiplier estimates from the L 00 QP, which means that Jl)Jk-l) 11 1 is bounded above by 

µ(k-l). The updating scheme for the penalty parameters is designed to ensure that 

µ(k) is at most 1,,2 //>.(k-l)/h, So, if µ(0) is small, many iterations may be needed before 

a reasonable value ofµ is reached. If v > 0 then µ(k) ~ 1,,2(µ(k-l) + v(k-l\·(k-l)) and 

µ can grow faster than for the SPEPF. 

One might expect that the QPF's performance would be much worse than that 

of the hybrid penalty function. However the results did not bear this out. All 

calculations in all test runs were performed in double precision. This was enough to 

cope with the ill-conditioning arising from the high value of v, whilst still achieving 
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the required accuracy of about five digits. However the deficiencies of the QPF are 

well known. 

With the capping constraint in place, the differences between the various penalty 

functions were not great. The result for Bcrossover = 100 appears to be something 

of an anomaly. For Bcrossover ~ 10 the uncapped algorithm consistently performed 

better than the capped algorithm; the difference however was not large. 

6.1 Unrestricted increases in µ and v 

To investigate the relative merits of the SPEPF and the hybrid penalty function fur­

ther, the algorithm was modified to permit arbitrarily large increases·in the penalty 

parameters. This was accomplished by solving the L 00 QP subproblem with µ reset 

to a very large number: here l.OES was used. The Lagrange multiplier estimates 

calculated whilst solving this L 00 QP were then used to update the penalty parame­

ter values in accordance with the rules given in section 2. The search direction was 

then calculated by re-solving the L00 QP with the new penalty parameter values. The 

relevant results are presented in Table 0.6. In these, the SPEPF does better than 

the hybrid penalty function with Bcrossover = 1. An examination of the sequences of 

iterates generated shows that the hybrid penalty function with Bcrossover = 1 allows 

the sequence of iterates to penetrate deeper into the infeasible region than does the 

SPEPF. The deeper forays into the infeasible region take longer to correct. The 

presence or absence of a capping constraint had no effect on these numerical results. 

Allowing arbitrarily large increases in µ and z; does not quite make the capping 

constraint irrelevant. The method used to estimate the Lagrange multipliers when 

unlimited increases are permitted ensures that the capping constraint will never be 

active at the solution of the L00 QP; the capping constraint itself becomes redundant. 

However, using the capping constraint also imposes the extra requirement on the 

line search: 'if e(k) > Bcap then e(k+i) ~ B(k).' This extra condition is still able to 

influence how the algorithm selects each iterate. 
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6.2 Decreasing the penalty parameters 

Additionally, the possibility of allowing reductions in the penalty parameter values as 

well as unlimited increases was also looked :1t, To stop the algorithm from endlessly 

increasing and decreasing the penalty parameters it was necessary to assign µ and 

v minimum values µrn1n and Vrn1n: initially µrn1n = 0.1 and Vrn1n = 1.0 were used. 

Each time a penalty parameter was decreased, the corresponding minimum value 

was subsequently doubled. 

The necessary changes were implemented as follows. Firstly, A (k) was calculated 

as described earlier for the case of arbitrarily large increases. Any consequent in­

creases in the penalty parameters were then made. Immediately following this, if 

O(k) ~ Bcrossover then decreasing either or both of the penalty parameters was consid-

ered. If 

then the following adjustments were made, in this order: 

(k) (k) µ(k) - max (1.sp(k)ll1,µrn1n) 
v ~ v + ----~-----~ 

Bcrossover 

The first adjustment ensures µ + vB is decreased only on the part of the infeasible 

region where B < Bcrossover• For many problems this is the part of the infeasible 

region which borders on the feasible region. If 

then v(k) was reset as follows: 

(k) (4p(k)ll1 - µ(k) ) 
V ~ max e , VrnJn . 

crossover 

If B > Bcrossover then the penalty parameters were not reduced. 

The results for this are presented in Table O. 7. They show that allowing decreases 

in the penalty parameters led to improvements in the performance of the algorithm 

in most cases. Once again the SPEPF did better than the hybrid penalty function. 
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Bcrossover Not Capped Capped 

JP hp µH vH Jp hp µH vH 

SPEPF 42 130 977.1 0 21 40 334.0 0 

100 35 99 16970 1.0 16 25 431.0 1.0 

10 16 34 210.8 24.64 19 39 429.4 86.97 

1 16 31 46.49 234.5 17 34 75.13 86.97 

0.1 16 31 22.42 877.0 18 35 7.583 86.97 

0.01 17 32 11. 79 877.0 20 38 7.341 1182 

1.0E-4 19 34 7.398 55760 21 39 7.381 78030 

1.0E-6 21 36 7.383 1.5E+7 24 42 7.383 5.2E+6 

QPF 22 42 0 1.0E+9 22 39 0 2.1E+6 

Table 5: Variations of the algorithm's performance on problem 6 with respect to 

changes in e crossover· 

The best result is that of the original algorithm, with Bcap = 1 and Bcrossover = 

100. Other than this apparently rather anomalous result, the best results were 

obtained using the hybrid penalty function with only restricted increases in the 

penalty parameters permitted, and without a capping constraint. 

6.3 The effects of excessive penalty parameter values 

Problem K was used to investigate the effects of excessively high values of the penalty 

parameters. 

Problem K. 

f(x) 

g( x' t) 

T 

x1 cos(t) + x 2 sin(t) - 1 

[O, 11'] 

(0.9, of 

23 



Bcrossover Not Capped Capped 

Jp hp µtt vtt JP hp µtt vtt 

SPEPF 21 40 334.4 0 21 40 334.4 0 

100 21 40 334.4 1.0 21 40 334.4 1.0 

1 28 66 1625 3.2E+7 28 66 1625 3.2E+7 

0.01 28 68 407.9 3.2E+7 28 68 407.9 3.2E+7 

Table 6: The hybrid PF1 and the SPEPF with unlimited increases in the penalty 

parameters permitted. 

Bcrossover Not Capped Capped 

JP hp µU vtt JP hp µtt vU 

SPEPF 19 34 6.490 0 19 36 7.006 0 

100 19 34 6.490 1.142 19 36 7.006 1.237 

1 24 37 6.781 4.000 26 41 6.711 10.57 

0.01 32 65 7.365 19.64 29 63 7.340 19.57 

Table 7: The hybrid PF
1 

and the SPEPF with unlimited increases! and with decreases 

in the penalty parameters permitted. 
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The exact solution of this problem is: 

x* = (0, lf; f* = -3; 

r* = { % } ; and A* - I'* = 0. 

Also µ~ > 2 is required for x* to be a local minimum of the penalty function. 

This problem contains a single convex constraint. The initial point lies near this 

constraint, and the solution lies on it. Between the initial point and the solution the 

gradient of the objective function points into the constraint. This problem tests an 

algorithm's ability to generate a sequence of iterates which efficiently skirts around 

the convex constraint to the solution. As the penalty parameters are increased, the 

constraint becomes more nearly impenetrable - forcing the algorithm to generate 

iterates which are either feasible, or only marginally infeasible. 

Results were generated for a variety of values of µ and v. These parameters were 

kept constant during each run of the algorithm. The results are listed in Table 0.8 

in two groups. The first is for the SPEPF: v = 0 is used for each of these runs. The 

second group is for the hybrid penalty function. In the latter group µ = 3 has been 

used, as this is "'2 ( =1.5) times the minimum value ofµ needed to make the solution 

of problem K a local minimum of ¢>. 

The results show that the number of iterations and multi-local optimisation calls 

required to solve the problem rises with increasing values of either penalty parameter. 

The degradation in the SPEPF algorithm's performance caused by increasing µ by 

a factor I is roughly the same as the degradation in the hybrid penalty function 

algorithm's performance caused by scaling v by 1
2

. 

7 Discussion 

The !vB 2 penalty term of (0.3) was included to provide a mechanism for reducing the 

risk that µ would be set at an excessively high value (in fact it has also proved to be 

advantageous in the NLP case [4]). Problem K was designed specifically to test the 

effects of including the second penalty term. As expected [3], excessively high values 
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µ v I jp hp I 

3 0 8 15 

10 0 9 17 

30 0 16 43 

100 0 28 82 

300 0 35 124 

1000 0 44 139 

3 1 8 15 

3 10 8 15 

3 1E+2 9 17 

3 1E+3 22 60 

3 1E+4 20 54 

3 1E+5 38 105 

3 1E+6 40 152 

3 1E+7 53 152 

Table 8: Results for problem !( with various values of the penalty parameters. Both 

penalty parameters were fixed during each run. 
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of either penalty parameter impair the algorithm's performance. These results also 

show that an excessively high value of v degrades the algorithm's performance less 

than a correspondingly high value of µ. Accordingly, the scheme used to update 

the penalty parameters should try to avoid selecting unnecessarily large values, 

particularly for µ. Unfortunately such values may be unavoidable for a variety of 

reasons, notably: 

• Reductions in the penalty parameters are not permitted, and the initial values 

of the penalty parameters are excessive. 

• A highly infeasible iterate is encountered, and one or other penalty parameter 

must be large if near feasibility is to be subsequently attained. 

• The Lagrange multiplier estimates are highly inaccurate. 

The inclusion of the second penalty parameter does reduce the susceptibility 

to the last two causes listed. However if µ(
0

) is excessive, then the !vB2 term is 

of little use. In spite of the results, permitting only restricted increases of the 

penalty parameters could easily lead to excessive values on some problems, especially 

as a result of the second reason listed. Many iterations may be wasted before µ 

and v are large enough to achieve feasibility. In addition, the restrictions on the 

increases in µ and v are a product of using the Lagrange multiplier estimates from 

the L=QP's solution. If the Lagrange multiplier estimates are calculated in some 

other way (for example, first order estimates are used) then any restriction of the 

form µ(k) :S K2µ(k-l) becomes essentially ad hoc in nature. Hence permitting both 

increases and decreases is apparently advantageous. It should be noted that on 

some problems, permitting decreases in µ and v may allow the algorithm to cycle 

until the minimum values of the penalty parameters become high enough to force 

convergence. In such cases the early iterations are likely to achieve little other than 

waste time. It appears there is no 'right' strategy: the best scheme depends on the 

nature of the problem being solved. It is reasonable to expect that, on average, 

allowing both increases and decreases would be the better strategy on more difficult 

problems. 
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The best choice for the capping constraint value Bcap varies from problem to prob­

lem. If Bcap is too small then the sequence of iterates may be forced to follow closely 

a tightly curving constraint: a task that can require many iterations. In contrast, if 

Bcap is too large, then it is possible for the sequence of iterates to penetrate deeply 

into the infeasible region. This risks having to set one or other penalty parameter 

to a large value in order to regain near feasibility. More seriously, it is possible that 

B( x) has strict local minimisers in the infeasible region. For sufficiently large µ and 

v, there will be corresponding infeasible local minimisers in ¢. Convergence to such 

a local minimiser is tantamount to failure of the algorithm. An appropriate value of 

Bcap may lessen the risk of an infeasible local minimiser of¢ 'trapping' the sequence 

of iterates. 

8 Conclusion 

The numerical results show that the algorithm is effective on a wide variety of 

problems, including those which are C1 but not C2
. In contrast, the algorithms 

of Watson, Coope and Watson, and Tanaka et al require second derivatives. The 

differences in the performances of the quasi-Newton algorithm and of the Newton 

type algorithms are typical of those for finite nonlinear programmes. 

The results for problems S, T, and U indicate that the main increase in compu­

tational effort asp increases is due to the increasing computational expense of each 

multi-local optimisation; the number of multi-local optimisations did not change 

much as p increased. The development of efficient multi-local optimisation algo­

rithms is crucial if SIP problems with p large are to be solved in a reasonable 

amount of time. 

On problem S, with n = 4, the use of an NLP first phase reduced the time 

required to solve the problem by almost a factor of three. The best results were 

obtained by using a coarse discretization of the semi-infinite constraint, and then 

calculating the solution of the resultant NLP to a low accuracy only. The accuracy 

of the approximation to the solution found by the first phase could be improved 
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by either using a finer discretization of the semi-infinite constraint, or solving the 

resulting NLP to a higher accuracy, or both. However, the benefits of a more 

accurate initial value for the second phase were more than offset by the extra effort 

required to obtain it. 

The work of this paper shows that the time taken to solve an SIP can be re­

duced by employing a two phase approach: for instance, the discretization strategy 

described by Hettich and Gramlich [6, 7] could be used as a first phase, followed by 

the algorithm presented herein as a second phase. 
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