
No. 91

NUMERICAL EXPERIMENTS IN
SEMI-INFINITE PROGRAMMING

by

C.J. Price and I.D. Coope
Department of Mathematics and Statistics,

University of Canterbury, Christchurch, New Zealand

June, 1993

Abstract - A quasi-Newton algorithm for semi-infinite programming using an Leo exact
penalty function is described, and numerical results are presented. Comparisons with
three Newton algorithms and one other quasi-Newton algorithm show that the algorithm
is very promising in practice.

AMS classifications: 65K05,90C30.

Keywords: semi-infinite programming, nonlinear optimisation, Leo exact penalty func­
tion.

Numerical Experiments in Semi-Infinite

Programming

C. J. Price and I. D. Coope,

Department of Mathematics and Statistics,

University of Canterbury, Private Bag 4800,

Christchurch 8001, New Zealand.

Abstract

A quasi-Newton algorithm for semi-infinite programming using an Leo ex­

act penalty function is described, and numerical results are presented. Com­

parisons with three Newton algorithms and one other quasi-Newton algorithm

show that the algorithm is very promising in practice.

AMS classifications: 65K05,90C30.

Keywords: semi-infinite programming, nonlinear optimisation, Leo exact penalty func-

tion.

1 Introduction

Semi-Infinite Programming (SIP) problems occur in a wide variety of fields, such as

computer aided design, and pollution control. Several globally convergent schemes

for solving SIP problems have been proposed [1, 2, 5, 10, 11, 12]. A common ap­

proach yielding global convergence is the use of sequential quadratic programming

techniques in conjunction with an Exact Penalty Function (EPF). It is shown by

Tanaka et al [11] (see also [10] for a graphical example) that, in the context of semi­

infinite programming, the Leo EPF is preferable to the L 1 EPF. In [10] it is shown

that the theoretical results for an algorithm based on the Leo EPF are applicablE; to

C1 problems; in contrast, for the L1 EPF some functions must be C2
. This paper

presents the results of numerical experiments with the quasi-Newton algorithm for

SIP described in [9, 10]. The theoretical properties of this algorithm are discussed

in [9, 10].

1

The problem considered herein is:

min f(x) subject to
xERn

(1)

g(x, t) :::;; 0 Vt E T. (2)

Here f (x) and g(x, t) are continuously differentiable functions mapping Rn -t R and

Rn x T -t R respectively, and T C RP is a Cartesian product of closed intervals. For

convenience only one semi-infinite constraint (0.2) has been considered, and auxiliary

finite constraints have been omitted. The algorithm is applicable to problems with

finite numbers of semi-infinite and ordinary constraints.

Rather than solve the SIP directly, the problem of minimising an exact penalty

function cp(x) over x E Rn is solved, where cp is chosen so that the solution points of

the SIP coincide with those of the Penalty Function Problem (PFP). The penalty

function used is

¢>(µ, 11; x) = f(x) + µB + t11B 2
where B = max [g(x, t)J+. (3)

tET

The penalty parameters µ and II are restricted to µ > 0, and 11 ~ 0. Clearly B(x) is

the infinity norm of the constraint violations, hence cp is continuous Vx E Rn.

As f and g are only required to be C1
, the problem of finding a local minimum

of the SIP is replaced by that of finding a stationary 'point.

Definition 1.1 Let x* E Rn satisfy the constraint (0.2}, and let there exist t 1 , ... , tm E

T and non-negative numbers 1*, Ai, ... , A~ such that

g(x*, ti)= 0 Vi E 1, ... ,m,

m

and ,*'vf(x*) + I:Ai'vxg(x*,ti) = 0.
i=l

Then x* is a stationary point of the SIP.

Assumption 1.2 At each stationary point of interest, an unspecified constraint

qualification holds which implies 1 * y:. 0. For convenience 1 * = 1 is assumed.

The stationary points satisfying assumption (0.1.2) will be referred to as Karush­

Kuhn-Tucker (KKT) points. The solution points of the PFP are characterized as

follows.

2

Definition 1.3 For fixed values µ0 and v0 ofµ and v, a point x0 is a critical

point of ¢>(µ 0 , v0 ; x) iff at x0 the direciJional derivative of ef>(µo, vo; x) with respect to

x along every direction is non-negative.

It can be shown [9, 10] that if x* is a KKT point of the SIP, then satisfaction of

the condition

µ > 11,*lli, (4)

where >. * = (>-t, ... , >.~f, ensures x* is also a critical point of¢>(µ, v; x). Conversely,

if x* is feasible, and is a critical point of q> for some µ > 0 and v ~ 0, then x* is

also a solution point of the SIP. The following assumption, which ensures the SIP is

tractable, is made.

Assumption 1.4 For each x E Rn, the set of global maximisers I'(x) of g(x, t) over

T is finite.

Using this assumption, for any x E Rn a continuous piecewise quadratic 'ljJ ap­

proximating q> about x can be constructed. Specifically,

where ((s) = max[g(x, t) + sTVd(x, t)J+,
tEA .

where H is positive definite, and where A C T is finite. The matrix H is used to

include second derivative information, and it is updated at each iteration. Clearly

·ip is strictly convex in s, and has a unique minimum with respect to s over s E Rn.

It can be shown [10] that if r(x) ~ A then, in the limit s ~ 0

¢>(µ, v; x + s) = 'ljJ(x, A;µ, v; s) + o(lls!I).

Therefore, for any so satisfying 'ljJ(s0) < 'ljJ(O), the convexity o{'ljJ implies the direc­

tional derivative of q> at x in the direction s0 (hereafter D so¢>(x)) is strictly negative.

Such an s0 exists unless the minimiser s* of ·z/J is zero. If s* =f. 0, then x is not a

critical point of q> and s* is a descent direction for q> at x. This provides the basis

for the algorithm described in the next section.

3

The problem of minimising 7/J is an '£00 Quadratic Programme (L00 QP), and can

be rewritten as the Quadratic Programme (QP)

g(x, t) + sT'Vxg(x, t) - (:::; 0 Vt EA,

and solved accordingly. The Lagrange multipliers). (k) from this QP are used as

estimates of the optimal Lagrange multipliers).* when updating Hand the penalty

parameters.

2 Description of the Algorithm

The basic structure of each iteration of the algorithm is as follows. The superscript

(k) denotes the iteration number. First the locally approximating LooQP about the

current iterate x(k) is constructed. This L 00 QP is then solved to yield the proposed

step s(k). If this step yields a sufficient reduction in the penalty function it is

accepted. Otherwise a second order correction c(k) is calculated. The purpose of

this second order correction is to prevent the Maratos effect from occurring. An

Armijo linesearch is then conducted along the arc q(k)(a) = x(k) + as(k) + a 2c(k) for

the next iterate. The process is repeated until a sufficiently accurate approximation

to a critical point of the penalty function is found.

Algorithm Summary:

1. Th~ global, and some local maximisers of g(x(k), t) with respect tot are found.

Let A(k) denote this set of points. This subproblem is referred to as the multi­

local optimisation subproblem.

2. The approximating L 00 QP at x(k) is formed, and its solution s(k) is calcu­

lated. If g(k) exceeds some positive parameter Bcap, then the capping constraint

((s(k)) :::; ((0) is imposed on the L00 QP. If s(k) = 0, but the Lagrange multiplier

estimates indicate that the penalty parameters are too small then the penalty

4

parameters are updated as described in step 4 and the L00 QP is re-solved -

such an occurrence is called a 'short' iteration. If the capping constraint is ac­

tive, then the penalty parameters are increased according to the rules given in

step 4, except fl).(k)lh is replaced by the quantity µ(k) +v(k)(;l(k) + 1(1, where (is

the Lagrange multiplier for the capping constraint from the L 00 QP's solution.

The L00 QP is then re-solved with these new penalty parameter values. With

these new penalty parameter values the capping constraint will be inactive

and the algorithm will proceed to the next step.

3. If x(k) + s(k) does not satisfy the sufficient descent condition:

calculate c(k), and perform the arc search. Here O < p < ! . For all results

presented herein, p = 0.33 was used.

4. Estimate the optimal Lagrange multipliers at the new iterate. If B is less than

some positive parameter Bcrossover, and if µ ::; Kil!A (k) Iii, then µ is increased

to K21!>-(k)ll1, where K 2 > K 1 > 1 are fixed parameters. Related research [3]

suggests ~hat K2 < 2 may be desirable. If e ~ Bcrossover, andµ+ vB ::; K3p (k) Iii'

then v is adjusted to give µ + vB = K4 p (k) Iii, where K4 > K3 > 1. Herein

K1 = 1.2, K2 = 1.5, K3 = 1.2, and K4 = 4 have been used.

5. Update H using the BFGS update provided the following condition (0.5) is

satisfied, otherwise do not update H.

\Ix E Rn - {O}, \/k, 0 < xT H(k)x ::; ,xT x, where 1 > 0. (5)

Here 1 = 108 was used.

6. If sufficient accuracy lias not been attained, another iteration is begun.

The vector c(k) is that of [8], and is determined as follows: The multi-local

optimisation subalgorithm is applied to g(x(k) + s(k), t), yielding the set A~~h· Let

Q(k) denote the set of elements t E A(k) which give rise to the optimal active set of

5

constraints for L
00

QP(k). Each member of Q(k) is then matched to the closest point

in Ai~b· If some element of Ai~b is matched with more than one member of Q(k) then

c(k) = 0 is used; ,0therwise c(k) is found as described in [SJ, where the above matching

is used to pair the constraint values at x(k) + s(k) with the constraint gradients at

x(k). If !!c(k)II ~ lls(k)II, then c(k) is reset to 0.

The purpose of the capping constraint in step 2 is to prevent directions of ascent

for e being chosen as s(k) whenever e(k) is large. Without this precaution, it is possi­

ble that the sequence { e(k)} diverges to infinity, because an increase in infeasibility

may be offset by a reduction in the objective function. The capping constraint was

found to be necessary to solve problem 13 (see section 3), for precisely this reason.

For the p ~ 1 case, each multi-local optimisation was performed by calculating

g(x(k), t) at a number of equally spaced points t0, ... , tN in T. A local search was

then performed in each interval [ti-I, ti+i] containing a local maximum.

For the case when p > 1, g(x(k), t) was calculated at a number of points in T,

where these points were generated using a Halton sequence. These test points were

then grouped into clusters, such that the algorithm considers that local searches

started at any two test points will find the same point if, and only if the two test

points lie in the same cluster. One local search is then performed for each cluster,

using a quasi-Newton algorithm. The highest test point in each cluster is used as

the starting point for that cluster's local search.

These multi-local optimisation algorithms are described in more detail in [9].

3 Numerical Results

The algorithm was tested on the 14 test problems of Watson and Coope [13, 5]

(hereafter kno:-vn as the Watson set of problems). The results for these problems

are summarised in Table 1. Here j and h respectively denote the number of iterations

and the number of multi-local optimisations performed in solving the problem. <I>'

is the magnitude of the minimum directional derivative of the L 1 exact penalty

function at the final iterate. The subscripts CW, T FI, B, and P respectively refer

6

to results by Coope and Watson [5], Tanaka et al [11], Bell [1], and by the algorithm

presented herein. The superscript ij denotes values taken by the various quantities

in the final iteration of the SIP algorithm.

All computations were performed on a VAX 3100 workstation in double precision

arithmetic. This gives approximately 16 digits accuracy; the machine precision being

l.39E-l 7.

3.1 Results for the Watson problem set.

For the problems in the Watson set with p = 1 (ie numbers 1-6, and 14), Bcap =

Bcrossover = 1 was used. The capping constraint was struck only on problem 6. The

trust region JJsJJ 00 ::::; 2 was also used. On problem 4 with n > 3, performance was

improved by replacing this simple bound with

(6)

All problems were solved to an accuracy of 10-5 except for problem 4 with n = 8:

for this problem an accuracy of 10-8 was sought.

On problem 2 the algorithm converged to a different solution than that given

by Watson [13], as did the algorithm of Tanaka et al [11]. Following Tanaka et al,

on using x(
0

) = 0 the algorithm found the solution listed by Watson. The results

for the original, and altered starting points are listed in rows 2 and 3 of Table 2

respectively.

The algorithm was also tested on its ability to cope with remote starting points

on problem 2. The algorithm took 12 iterations and 12 function evaluations to find

the same solution from 100 times the original starting point. It took 21 iterations, 23

function evaluations, and one short iteration to find the same solution from 10,000

times the original starting point.

The capping constraint and quadratic penalty term played only passive roles in

the solution of each 1 dimensional problem, excluding problem 6: for the remaining

problems in the Watson set it was decided to reduce the values of Bcap and Bcrossove~

from 1 in order to increase their influence on the algorithms behaviour. These

7

problem n p Jr*J JP hp <I>' p)TFI hr FI <f!~FI Jew <I>~w

1 2 1 1 17 21 8.2E-6 17 19 4.8E-7 16 8.2E-6

2 2 1 2 8 10 l.4E-8 5 11 2.7E-8 7 1.4E-8

2 1 2 7 8 4.9E-7 - - - - -

3 3 1 1 11 23 l.3E-6 9 12 5.5E-8 10 6.2E-12

4 3 1 2 10 11 l.9E-6 5 15 2.7E-7 5 5.4E-8

6 1 4 57 119 7.7E-6 8 27 7.7E-6 20 6:4E-6

8 1 5 84 164 l.OE-7 3 14 3.4E-6 16 7.4e-6

5 3 1 2 8 14 6.2E-6 4 9 6.8E-7 4 6.9E-6

8 1 2 7 13 4.3E-6 2 6 l.2E-6 4 2.3E-8

10 1 2 7 13 2.2E-6 2 6 7.lE-7 4 l.2E-9

12 1 2 7 14 8.7E-6 3 7 9.2E-8 4 l.SE-8

15 1 2 8 13 3.8E-6 3 7 6.2E-8 4 l.3E-9

6 2 1 1 27 87 5.2E-6 16 19 l.3E-18 9 l.lE-8

7 3 2 1 9 14 7.0E-9 2 4 0.0 3 0.0

8 6 2 4 34 40 4.lE-8 11 · 41 l.lE-7 9 l.lE-8

10 2 5 21 27 6.7E-7 12 56 3.4E-6 - -

15 2 ? - - - 10 57 3.SE-6 - -

9 6 2 00 41 192 - 2 6 0.0 18 4.SE-2

10 3 2 1 2 3 l.2E-6 2 3 8.lE-7 3 2.8E-7

11 3 2 2 10 18 9.8E-7 7 18 l.6E-14 12 2.2E-7

12 3 2 1 9 17 3.8E-6 3 5 3.0E-12 4 l.7E-11

13 3 2 1 11 22 7.5E-6 4 6 2.lE-15 4 3.5E-7

14 2 1 1 6 7 8.lE-6 5 8 3.4E-7 5 8.2E-7

Table 1: A comparison of results with those obtained by Tanaka et al.

8

problems were run with Bcap = 0.01 and Bcrossover = 0.1.

The only published results from the solution of SIP problems usmg a quas1-

Newton algorithm known to the authors are those by Bell [1]. These comprise

problem 4 of the Watson set with n = 3, ... , 6, and are as follows: for n = 3,

JB = 29 and jp = 10; for n = 4, JB = 41 and jp = 22; for n = 5, JB = 81 and

jp = 32; and for n = 6, JB = 100 and jp = 57. Bell's algorithm takes more iterations

to reach a solution than the one presented herein. This is hardly surprising as Bell's

algorithm starts by using quite coarse approximations to the global maximisers in

the early iterations, and increases the accuracy required of these approximations as

the solution process proceeds.

The three algorithms with which almost all comparisons are made here are New­

ton type algorithms. On the easier problems (1, 2, 3, 4 with n = 3, 5, 7, 10, 11, and

14) the algorithm performed well. In most cases the number of iterations taken was

at most double that required by any of the Newton type algorithms, and the number

of multi-local optimisations performed was less than twice the number of multi-local

optimisations that the algorithm of Tanaka et al. required. The more non-linear

problems (6, 12, and 13) produced greater discrepancies, but the algorithm had no

difficulty in solving them.

The extended version of problem 4 was much more testing: the algorithm was

able to solve it for the various values of n, however many more iterations and multi­

local optimisation calls were needed than for the Newton type algorithms. In par­

ticular, the algorithm of Coope and Watson was able to achieve a higher accuracy

on this problem (with n = 8) in lower precision arithmetic than the algorithm pre­

sented here. Both of these algorithms were able to locate all global maximisers, as

was that of Tanaka et al. Watson's [13] algorithm respectively missed 1, and 2 of

the global maximisers on then = 6 and n = 8 problems.

The margin between the Newton type algorithms, and that described here was

greatest on problem 8. The algorithm coped quite well with then = 6 case, requiring

one less multi-local optimisation call than the algorithm of Tanaka et al. although

9

many more iterations were taken. The n = 10 case was very different: the local

search procedure used in the multi-local optimisations experienced much difficulty in

accurately calculating the local maximisers of the constraint function. Convergence

was obtainable, but only by using the n = 6 solution as a starting point.

3.2 Results for C1 problems.

The algorithm is designed to be capable of solving C1 problems. To test its ability

on such problems it was applied to the following three problems. The results are

listed with each problem.

Problem L.

f = (x1 + X2 - 2)
2 + (x1 - x2)

2 + 30(min{O, X1 - x2})2

g(x, t) = x1 cos(t) + x2 sin(t) - 1 T = [O, 1r]

x(o) = (0, -O.lf

The objective function of this problem has discontinuous second derivatives at the

solution. The following solution was found in 11 iterations and 17 multi-local opti­

misations:

xti = (0.7071,0.707lf i = 0.3431; r" = {0.7854}; A" - r" = 0.

<I>' = 5.3E - 6; e" = 9.5E - 14; µ". = 2.5909; v" = 0.1;

The sequence of iterates crossed the line x1 = x2 (along which the second derivatives

are discontinuous) three times whilst solving this problem.

Problem M.

f = (X1 - 2)2 + X~

g(x, t) = x1 cos(t) + x2 sin(t) - 1 T = [O, 1r]

and IJxlloo ~ 1, where x(o) = (0, O.lf

10

In this problem strict complementarity fails to hold for the global maximiser of g at

x = x*. Accordingly, at x* the boundary of the feasible region changes over from the

envelope g(x, arctan(x2/x1)) = 0 to the ordinary constraint g(x, 0) = 0. The join

between these two pieces is C1
, but not C 2

. The problem was solved in 4 iterations

with 4 multi-local optimisations being made. In addition to this one 'short' iteration

was also performed. The solution found is:

<I>'= 6.8E - 16; B~ = O; µ~ = 3.5147; vH = 0.1;

Problem N.

f = X2

g(x, t) = 2.0xit
2 + t4 + Xi - X2 T = [-1, 1]

X(O) = (0.5, 0.5f

In this problem the implicit function theorem fails to hold for the global maximiser

of g at the SIP's solution x*. Actually, for x 1 > xi there are two global maximisers

which combine into one at x1 = xi, For x 1 :S xi there is only one global maximiser.

The following solution was found in 9 iterations and 11 multi-local optimisations:

<I>' = 2.5E - 6; eH = 6.9E - 16; µH = 1.5270; v~ = 0.1;

In solving this problem the number of local maximisers changed four times.

4 Higher Dimensional Problems.

Three problems involving constraint index sets of dimension greater than two were

looked at. The first (problem S) was designed to be a non-trivial problem, but one

which was not overly difficult. The second (problem T) was chosen to be quite testing

11

I Problem II n p I 1r*) II J h I cpu time I

s 4 3 1 24 60 64.05

s 4 4 1 20 37 152.36

s 4 5 1 21 36 331.59

s 4 6 1 23 43 1081. 71

T 4 3 4 23 48 125.52

T 4 4 4 20 39 456.29

T 4 5 4 26 68 988.23

T 4 6 4 26 64 5855.90

u 4 6 2 17 18 414.11

Table 2: Results for the higher T dimensional problems.

of the algorithm's ability to keep track of local maximisers which merge into one

another, and then split apart as the iteration number k is increased. Fortuitously,

this problem is also a good test of an algorithm's ability to cope with a constraint

function which has an almost flat region taking values close to the global maximum.

On all runs performed on the higher dimensional problems the trust region (0.6)

was used, as was Bcap = Bcrossover = 1. A summary of the results for these three

problems is given in Table 0.2. The symbol)f* I denotes the actual number of global

maximisers active at the solution x*. The cpu time is in seconds, and includes

input/output time which is of the order of 4 to 10 seconds.

The results for problems S and T show a steady and large increase in computa­

tional time as p is increased. This follows from the increased effort needed to solve

the multi-local optimisation subproblems as the dimension of T increases.

Problem S.

f (X) X1X2 + X2X3 + X3X4

g(x, t) - 2(Xi + x~ + x~ + x~) - 6 - 2p

12

+ sin(t1 - x1 - x4) + sin(t2 - x2 - x3)

+ sin(t3 - x1) + sin(2t4 - x2) + sin(ts - X3) + sin(2t6 - x4)

T = [O,l]P

x(o) = (1, 1, 1, lf

This problem was solved for p = 3, 4, 5, and 6. The results are as follows:

For p = 3:

For p = 4:

For p = 5:

For p = 6:

xtt = (0.894135, -1.290617, 1.235788, -0.748821f

J' = -3.674298; ett = O; µtt = 1.012; ,) = 1.0

rtt = {(1.7161, 1.5160, 2.oooof }; Au - rtt = 0

xtt = (0.948247, -1.361576, 1.300981, -0.787553f

Jtt = -4.087086; ett = 2.689491E - 8; µtt = 0.932; vtt = 1.0

rtt = {(1.7315, 1.5102, 2.0000, o.1046f };

Au - rtt = { (1. 7315, 1.5102, 2.0000, 2.oooof}

xtt = (0.913759, -1.391873, 1.516069, -0.868445f

Jtt = -4.698634; ett = O; µtt = 0. 7335; vtt = 1.0

rtt = {(1.6161, 1.6950, 2.0000, 0.0895, 2.oooof };

Au - rtt = {(1.6161, 1.6950, 2.0000, 2.0000, 2.oooof}

xtt = (0.960921, -1.456291, 1.581476, -0.905873f

Jtt = -5.135086; ett = 2.254294E - 10; µtt = 1.013; vtt = 1.0

rtt = {(1.6258, 1.6960, 2.0000, o.0573, 2.0000, o.3325f}

13

{ (1.6258, 1.6960, 2.0000, 2.0000, 2.0000, 2.oooof

(1.6258, 1.6960, 2.0000, 2.0000, 2.0000, 2.oooof

(1.6258, 1.6960, 2.0000, 0.0573, 2.0000, 0.3325f

(1.6258, 1.6960, 2.0000, 0.0573, 2.0000, 2.oooof}

Problem T.

where

f(x)

g(x, t)

T

4

I: x; - Xi

i=l

4 4 1
-I:x;+ I:--

i=l i=l 1 + Wi

[-3,3]P

(-2.25, -2.5, -2.75, -3.0f

j=l

p

W2 I:;[tj - X2(-l)j]2

j=l

p

W3 I:[tj - X3(-l)jdiv2]2
j=l

p

W4 = I:[tj - X4(-l)(j+l)div2]2
j=l

This problem was solved for values of p ranging from 3 to 6. For each value of

p there are four global maximisers active at the solution x*. Lagrange multiplier

estimates indicate that at most two of the four global maximisers are needed to

satisfy the first order KKT conditions at x*.

For p = 3:

XU= (0.659449, 0.659446, 0.659446, 0.659441f

JU = -0.898308; {}U = 0; µU = 2.128; z) = 1.0

ru { (0.4502, 0.4502, 0.4502f, (0.4502,. -0.4502, -0.4502f,

(-0.4502, 0.4502, -0.4502f}

14

A" - r" = {(0.0000, 0.0000, o.oooof}

In this problem the multi-local optimisation algorithm actually misses the

global maximiser at (-0.4502, -0.4502, 0.4502f. The value taken by g(xtt,.)

at the origin is ~0.00382. The closeness of this value to zero indicates that

g(xtt, t) is very nearly flat in the region 'between' the four global maximisers.

This near flatness, and the fact that all the global maximisers lie in a small

part of T make them quite difficult to locate. Similar remarks apply to the

constraint function at x* for p = 4, 5, and 6.

For p = 4:

xtt = (0.659442, 0.659450, 0.659448, 0.659443f

jH = -0.898308; ett = l.734531E - 6; µH = 2.317; vtt = 1.0

r" = { (0.4502, 0.4502, 0.4502, o.6594f,

(-0.4502, -0.4502, 0.4502, 0.6594f,

(0.4502, -0.4502, -0.4502, 0.6594f}

AH - rtt = { (0.0000, 0.0000, 0.0000, 0.6594f}

Once again one of the global maximisers has been missed by the algorithm.

For p = 5:

xtt = (0.636215, 0.636215, 0.636216, 0.636215f

jH = -0.925782; ett = 0.0; µH = 2.232; vH = 1.0

rtt = {(0.5420, 0.4941, o.4941, o.6362, o.542of,

(-0.5420, 0.4941, -0.4941, 0.6362, -0.5420)T,

(-0.5420, -0.4941, 0.4941, 0.6362, -0.5420f,

(0.5420, -0.4941, -0.4941, 0.6362, 0.5420f}

15

For p = 6:

XU = (0.617580, 0.617580, 0.617579, 0.61758Qf

i = -0.944700; BU= 0.0; µtt = 2.287; vU = 1.0

ru { (-0.5410, -0.5410, o.5227, o.6176, -0.5410, -0.5410f,

(0.5410, 0.5410, 0.5227, 0.6176, 0.5410, 0.5410f,

(-0.5410, 0.5410, -0.5227, 0.6176, -0.5410, 0.5410f,

(0.5410, -0.5410, -0.5227, 0.6176, 0.5410, -0.5410f

Problem U.

4 1
~

10
x; - Xi

i=l

f(x)

g(x,t) ~
4

sin (30t1 sin(x1) + 30t2 cos(x2))

X3 , (t1i2) +
10

sm 10 + t3x1 + t4x2 + t 5x 3 + t 6x4 - 4

T [-1, 1]6

(3, 2, 1, of

The linearity of g in t 3, t 4, t 5, and t 6 means that finding the maximisers of g over T

can be reduced from a search over six dimensions to a search over two dimensions.

This feature was put in the problem to make it possible to check the algorithm's

answer by hand. The algorithm made no allowance for the fact that the number

of dimensions over which the local and global maximisers of g are sought can be

reduced from six to two.

The results for p = 6 are

xtt = (1.173288, 1.179673, 1.142275, 0.412150f

Jtt = -3.483097; ett = 2.374750E - 11; µtt = 1.462; vtt = 1.0

rtt {(1, 1, 1, 1, 1, 1f, (-0.8928, -1, 1, 1, 1, 1f }; rtt - Att = 11 local maximisers.

16

5 Using an NLP First Phase.

A two phase approach was examined. In the first phase a discretized version of the

SIP was solved using an NLP algorithm. The NLP's solution was then used as the

starting point for the SIP algorithm in the second phase.

The objective function of the NLP was identical to that of the SIP. The set of

constraints of the NLP was {g(x, t) s; 0 : t E 'Hm}, where 'Hm is the set of the first

m test points generated.

The algorithm used to solve the NLP was identical to that used to solve the SIP,

except that A(k) = 'Hm· was used at each iteration instead of choosing A(k) as the

set of global (and other local) maximisers of g(x(k), t).

Once the NLP is solved to the required accuracy, the SIP algorithm is applied

with the NLP solution as the starting point. No alterations were made to the SIP

algorithm. It did, however, use as starting values the first phase's final values of the

penalty parameters and the estimate of the Hessian.

Problem S with p = 4 was used to test this two phase algorithm. Results were

generated for various accuracies required of the NLP solution, and also for various

values of m, where m is the number of constraints in the NLP. These are listed in

Tables 0.3 and 0.4. The two phase algorithm found the same solution to that listed

in section 4 in each case.

In Table 0.3, the parameter Tol represents the accuracy required of the NLP's

solution. More precisely, Tol is both the maximum NLP constraint violation permit­

ted, and the maximum (2-norm) residual of the derivative of the NLP's Lagrangian

allowed at an acceptable solution to the NLP. The row labelled Tol = oo in Table 0.3

contains the results obtained by applying the SIP algorithm proper without an NLP

first phase. The rest of the legend for Tables 0.3 and 0.4 is as follows: j 1 and)2 are

respectively the number of iterations performed in solving the NLP, and the SIP; h1

is the number times the set of NLP constraints is evaluated, and h2 is the number of

multi-local optimisation calls made in solving the SIP; J
1
~LP is the value off at the

solution of the NLP;· and llx~LP - xttll is the Euclidean distance between the NLP's

17

Tol First Phase second phase combined

)1 h1 time /fl.rLP II xi LP - x~ II)2 h2 time cpu time

00 0 0 0.00 +3.000 2.9775 20 37 152.36 152.36

l.OE-1 24 43 20.80 -4.139 0.2875 9 13 30.29 51.09

l.OE-2 26 45 21.72 -4.132 0.3645 10 14 32.59 54.31

l.OE-5 28 47 22.54 -4.132 0.3641 10 14 32.02 54.56

Table 3: Results for a two phase algorithm on problem S with p = 4. Here the

number of constraints in the first phase has been fixed at 160, and the accuracy to

which the NLP was solved has been varied.

m First Phase second phase combined

)1 h1 time ft LP llxiLP - x~II)2 h2 time cpu time

50 19 23 6.46 -4.340 0.7170 13 17 45.11 51.57

160 28 47 22.54 -4.132 0.3641 10 14 32.02 54.56

500 21 30 51.89 -4.128 0.1080 10 15 34.50 86.39

1600 21 25 173.58 -4.128 0.1080 11 14 33.12 206.70

Table 4: Results for a two phase algorithm on problem S with p = 4. Here the

number of constraints in the NLP has been varied, and each NLP was solved to an

accuracy of 1. OE-5.

18

and SIP's solutions. For the case when Tol = oo, x~LP = x(o) and ftLP = f(x(0
))

have been used. The cpu times required to complete the first, and the second phases

are listed in the two columns headed 'time.' The total time required to solve the

problem is listed under the heading 'combined cpu time.' Unfortunately it was not

possible to separate the input/output times from the cpu times. The input/output

times are of the order of 4 to 10 seconds for the test runs listed here, with the in­

put/output time for each run being approximately proportional to }1 + }2. In spite

of this uncertainty in the times, they still provide useful information on the effects

of using an NLP first phase.

The results show that the use of a first phase reduces the total time required to

solve the problem. A relatively coarse discretization of the semi-infinite constraint

performed better than a finer discretization. As the discretization became finer the

time taken to complete the first phase increased accordingly. Curiously, the time

taken to complete the second phase was relatively independent of the discretization;

the second phase times for m = 160, 500, and 1600 being very similar.

The results for m = 160 and varying values of Tol also show that there is little

to be gained by solving the NLP to great accuracy. Discretizing the semi-infinite

constraint introduces an error between the solution of the NLP (xNLP), and x*.

There is little point in reducing the error in the calculated value of x~LP too much

below llxNLP - x~II·

6 Advantages of an Extra Penalty Parameter.

The penalty function ¢ (0.3) is a hybrid of the standard Single Parameter Exact

non-differentiable Penalty Function (SPEPF) and the classical Quadratic Penalty

Function (QPF). These are respectively¢ with v = 0, and.withµ= 0. The char­

acteristics of this hybridization are investigated by varying the threshold parameter

Bcrossover· When () is above this threshold value, any adjustments to the penalty

parameters are made to v; below this threshold the adjustments are made to µ. If

Bcrossover is very large, then the algorithm's behaviour imitates that of an algorithm

19

based on a SPEPF. If e is very small, then the algorithm mimics a QPF based

algorithm.

Problem 6 was chosen as the test problem on which to explore the effects of

altering Bcrossover· The results are presented in Table 0.5. The first and last rows of

Table 0.5 list the results obtained by using a SPEPF (v = 0), and a QPF (µ = 0)

respectively. For these two rows the initial penalty parameter values were µ = 0.1

and v = 1.0 respectively. For all other rows, µ = 0.1 and v = 1.0 were the initial

values, with Bcrossover as listed. Two sets of results were generated: the first set was

computed using the algorithm without a capping constraint, and the second set was

calculated by the ~lgorithm with a capping constraint set at Bcap = 1.

The results show that without the capping constraint, the pure non-differentiable

penalty function needed over twice as many iterations, and more than four times as

many multi-local optimisation calls as the hybrid penalty function with Bcrossover = 1.

With Bcrossover = 100, the algorithm did not alter v, in which case rp was effectively

the sum of the SPEPF and a +!B2 term. Even this simple alteration produced a

significant improvement in performance. Using lower values of Bcrossover improved

performance further.

The SPEPF performed so poorly without either a non-zero v or a capping con­

straint because many iterations are needed before a sufficiently large value of µ

is obtained. vVith v = 0, and without a capping constraint, µ(k) can be at most

1,,2µ(k-l), where 1,, 2 = 1.5 was used. This is a consequence of using the Lagrange mul­

tiplier estimates from the L 00 QP, which means that Jl)Jk-l) 11 1 is bounded above by

µ(k-l). The updating scheme for the penalty parameters is designed to ensure that

µ(k) is at most 1,,2 //>.(k-l)/h, So, if µ(0) is small, many iterations may be needed before

a reasonable value ofµ is reached. If v > 0 then µ(k) ~ 1,,2(µ(k-l) + v(k-l\·(k-l)) and

µ can grow faster than for the SPEPF.

One might expect that the QPF's performance would be much worse than that

of the hybrid penalty function. However the results did not bear this out. All

calculations in all test runs were performed in double precision. This was enough to

cope with the ill-conditioning arising from the high value of v, whilst still achieving

20

the required accuracy of about five digits. However the deficiencies of the QPF are

well known.

With the capping constraint in place, the differences between the various penalty

functions were not great. The result for Bcrossover = 100 appears to be something

of an anomaly. For Bcrossover ~ 10 the uncapped algorithm consistently performed

better than the capped algorithm; the difference however was not large.

6.1 Unrestricted increases in µ and v

To investigate the relative merits of the SPEPF and the hybrid penalty function fur­

ther, the algorithm was modified to permit arbitrarily large increases·in the penalty

parameters. This was accomplished by solving the L 00 QP subproblem with µ reset

to a very large number: here l.OES was used. The Lagrange multiplier estimates

calculated whilst solving this L 00 QP were then used to update the penalty parame­

ter values in accordance with the rules given in section 2. The search direction was

then calculated by re-solving the L00 QP with the new penalty parameter values. The

relevant results are presented in Table 0.6. In these, the SPEPF does better than

the hybrid penalty function with Bcrossover = 1. An examination of the sequences of

iterates generated shows that the hybrid penalty function with Bcrossover = 1 allows

the sequence of iterates to penetrate deeper into the infeasible region than does the

SPEPF. The deeper forays into the infeasible region take longer to correct. The

presence or absence of a capping constraint had no effect on these numerical results.

Allowing arbitrarily large increases in µ and z; does not quite make the capping

constraint irrelevant. The method used to estimate the Lagrange multipliers when

unlimited increases are permitted ensures that the capping constraint will never be

active at the solution of the L00 QP; the capping constraint itself becomes redundant.

However, using the capping constraint also imposes the extra requirement on the

line search: 'if e(k) > Bcap then e(k+i) ~ B(k).' This extra condition is still able to

influence how the algorithm selects each iterate.

21

6.2 Decreasing the penalty parameters

Additionally, the possibility of allowing reductions in the penalty parameter values as

well as unlimited increases was also looked :1t, To stop the algorithm from endlessly

increasing and decreasing the penalty parameters it was necessary to assign µ and

v minimum values µrn1n and Vrn1n: initially µrn1n = 0.1 and Vrn1n = 1.0 were used.

Each time a penalty parameter was decreased, the corresponding minimum value

was subsequently doubled.

The necessary changes were implemented as follows. Firstly, A (k) was calculated

as described earlier for the case of arbitrarily large increases. Any consequent in­

creases in the penalty parameters were then made. Immediately following this, if

O(k) ~ Bcrossover then decreasing either or both of the penalty parameters was consid-

ered. If

then the following adjustments were made, in this order:

(k) (k) µ(k) - max (1.sp(k)ll1,µrn1n)
v ~ v + ----~-----~

Bcrossover

The first adjustment ensures µ + vB is decreased only on the part of the infeasible

region where B < Bcrossover• For many problems this is the part of the infeasible

region which borders on the feasible region. If

then v(k) was reset as follows:

(k) (4p(k)ll1 - µ(k))
V ~ max e , VrnJn .

crossover

If B > Bcrossover then the penalty parameters were not reduced.

The results for this are presented in Table O. 7. They show that allowing decreases

in the penalty parameters led to improvements in the performance of the algorithm

in most cases. Once again the SPEPF did better than the hybrid penalty function.

22

Bcrossover Not Capped Capped

JP hp µH vH Jp hp µH vH

SPEPF 42 130 977.1 0 21 40 334.0 0

100 35 99 16970 1.0 16 25 431.0 1.0

10 16 34 210.8 24.64 19 39 429.4 86.97

1 16 31 46.49 234.5 17 34 75.13 86.97

0.1 16 31 22.42 877.0 18 35 7.583 86.97

0.01 17 32 11. 79 877.0 20 38 7.341 1182

1.0E-4 19 34 7.398 55760 21 39 7.381 78030

1.0E-6 21 36 7.383 1.5E+7 24 42 7.383 5.2E+6

QPF 22 42 0 1.0E+9 22 39 0 2.1E+6

Table 5: Variations of the algorithm's performance on problem 6 with respect to

changes in e crossover·

The best result is that of the original algorithm, with Bcap = 1 and Bcrossover =

100. Other than this apparently rather anomalous result, the best results were

obtained using the hybrid penalty function with only restricted increases in the

penalty parameters permitted, and without a capping constraint.

6.3 The effects of excessive penalty parameter values

Problem K was used to investigate the effects of excessively high values of the penalty

parameters.

Problem K.

f(x)

g(x' t)

T

x1 cos(t) + x 2 sin(t) - 1

[O, 11']

(0.9, of

23

Bcrossover Not Capped Capped

Jp hp µtt vtt JP hp µtt vtt

SPEPF 21 40 334.4 0 21 40 334.4 0

100 21 40 334.4 1.0 21 40 334.4 1.0

1 28 66 1625 3.2E+7 28 66 1625 3.2E+7

0.01 28 68 407.9 3.2E+7 28 68 407.9 3.2E+7

Table 6: The hybrid PF1 and the SPEPF with unlimited increases in the penalty

parameters permitted.

Bcrossover Not Capped Capped

JP hp µU vtt JP hp µtt vU

SPEPF 19 34 6.490 0 19 36 7.006 0

100 19 34 6.490 1.142 19 36 7.006 1.237

1 24 37 6.781 4.000 26 41 6.711 10.57

0.01 32 65 7.365 19.64 29 63 7.340 19.57

Table 7: The hybrid PF
1

and the SPEPF with unlimited increases! and with decreases

in the penalty parameters permitted.

24

The exact solution of this problem is:

x* = (0, lf; f* = -3;

r* = { % } ; and A* - I'* = 0.

Also µ~ > 2 is required for x* to be a local minimum of the penalty function.

This problem contains a single convex constraint. The initial point lies near this

constraint, and the solution lies on it. Between the initial point and the solution the

gradient of the objective function points into the constraint. This problem tests an

algorithm's ability to generate a sequence of iterates which efficiently skirts around

the convex constraint to the solution. As the penalty parameters are increased, the

constraint becomes more nearly impenetrable - forcing the algorithm to generate

iterates which are either feasible, or only marginally infeasible.

Results were generated for a variety of values of µ and v. These parameters were

kept constant during each run of the algorithm. The results are listed in Table 0.8

in two groups. The first is for the SPEPF: v = 0 is used for each of these runs. The

second group is for the hybrid penalty function. In the latter group µ = 3 has been

used, as this is "'2 (=1.5) times the minimum value ofµ needed to make the solution

of problem K a local minimum of ¢>.

The results show that the number of iterations and multi-local optimisation calls

required to solve the problem rises with increasing values of either penalty parameter.

The degradation in the SPEPF algorithm's performance caused by increasing µ by

a factor I is roughly the same as the degradation in the hybrid penalty function

algorithm's performance caused by scaling v by 1
2

.

7 Discussion

The !vB 2 penalty term of (0.3) was included to provide a mechanism for reducing the

risk that µ would be set at an excessively high value (in fact it has also proved to be

advantageous in the NLP case [4]). Problem K was designed specifically to test the

effects of including the second penalty term. As expected [3], excessively high values

25

µ v I jp hp I

3 0 8 15

10 0 9 17

30 0 16 43

100 0 28 82

300 0 35 124

1000 0 44 139

3 1 8 15

3 10 8 15

3 1E+2 9 17

3 1E+3 22 60

3 1E+4 20 54

3 1E+5 38 105

3 1E+6 40 152

3 1E+7 53 152

Table 8: Results for problem !(with various values of the penalty parameters. Both

penalty parameters were fixed during each run.

26

of either penalty parameter impair the algorithm's performance. These results also

show that an excessively high value of v degrades the algorithm's performance less

than a correspondingly high value of µ. Accordingly, the scheme used to update

the penalty parameters should try to avoid selecting unnecessarily large values,

particularly for µ. Unfortunately such values may be unavoidable for a variety of

reasons, notably:

• Reductions in the penalty parameters are not permitted, and the initial values

of the penalty parameters are excessive.

• A highly infeasible iterate is encountered, and one or other penalty parameter

must be large if near feasibility is to be subsequently attained.

• The Lagrange multiplier estimates are highly inaccurate.

The inclusion of the second penalty parameter does reduce the susceptibility

to the last two causes listed. However if µ(
0

) is excessive, then the !vB2 term is

of little use. In spite of the results, permitting only restricted increases of the

penalty parameters could easily lead to excessive values on some problems, especially

as a result of the second reason listed. Many iterations may be wasted before µ

and v are large enough to achieve feasibility. In addition, the restrictions on the

increases in µ and v are a product of using the Lagrange multiplier estimates from

the L=QP's solution. If the Lagrange multiplier estimates are calculated in some

other way (for example, first order estimates are used) then any restriction of the

form µ(k) :S K2µ(k-l) becomes essentially ad hoc in nature. Hence permitting both

increases and decreases is apparently advantageous. It should be noted that on

some problems, permitting decreases in µ and v may allow the algorithm to cycle

until the minimum values of the penalty parameters become high enough to force

convergence. In such cases the early iterations are likely to achieve little other than

waste time. It appears there is no 'right' strategy: the best scheme depends on the

nature of the problem being solved. It is reasonable to expect that, on average,

allowing both increases and decreases would be the better strategy on more difficult

problems.

27

The best choice for the capping constraint value Bcap varies from problem to prob­

lem. If Bcap is too small then the sequence of iterates may be forced to follow closely

a tightly curving constraint: a task that can require many iterations. In contrast, if

Bcap is too large, then it is possible for the sequence of iterates to penetrate deeply

into the infeasible region. This risks having to set one or other penalty parameter

to a large value in order to regain near feasibility. More seriously, it is possible that

B(x) has strict local minimisers in the infeasible region. For sufficiently large µ and

v, there will be corresponding infeasible local minimisers in ¢. Convergence to such

a local minimiser is tantamount to failure of the algorithm. An appropriate value of

Bcap may lessen the risk of an infeasible local minimiser of¢ 'trapping' the sequence

of iterates.

8 Conclusion

The numerical results show that the algorithm is effective on a wide variety of

problems, including those which are C1 but not C2
. In contrast, the algorithms

of Watson, Coope and Watson, and Tanaka et al require second derivatives. The

differences in the performances of the quasi-Newton algorithm and of the Newton

type algorithms are typical of those for finite nonlinear programmes.

The results for problems S, T, and U indicate that the main increase in compu­

tational effort asp increases is due to the increasing computational expense of each

multi-local optimisation; the number of multi-local optimisations did not change

much as p increased. The development of efficient multi-local optimisation algo­

rithms is crucial if SIP problems with p large are to be solved in a reasonable

amount of time.

On problem S, with n = 4, the use of an NLP first phase reduced the time

required to solve the problem by almost a factor of three. The best results were

obtained by using a coarse discretization of the semi-infinite constraint, and then

calculating the solution of the resultant NLP to a low accuracy only. The accuracy

of the approximation to the solution found by the first phase could be improved

28

by either using a finer discretization of the semi-infinite constraint, or solving the

resulting NLP to a higher accuracy, or both. However, the benefits of a more

accurate initial value for the second phase were more than offset by the extra effort

required to obtain it.

The work of this paper shows that the time taken to solve an SIP can be re­

duced by employing a two phase approach: for instance, the discretization strategy

described by Hettich and Gramlich [6, 7] could be used as a first phase, followed by

the algorithm presented herein as a second phase.

References

[1] Bell, B. M., Global convergence of a Semi-Infinite Optimisation method, Appl.

Math. Opt. 21, pp 89-110 (1990).

[2] Conn, A. R. and N. I. M. Gould, An exact penalty function for semi-infinite

programming, Math. Prog. 37, pp 19-40 (1987).

[3] Coope, I. D., The Nfaratos effect in sequential quadratic programming algo­

rithms using the L 1 exact penalty function, Technical Report CS85-32, Com­

puter Science Department, University of Waterloo (1985).

[4] Coope, I. D. and C. J. Price, A two parameter Exact Penalty Function for

Nonlinear Programming, to appear.

[5] Coope, I. D. and G. A. Watson, A projected Lagrangian algorithm for semi­

infinite programming, Math. Prog. 32, pp 337-356 (1985).

[6] Hettich R., An implementation of a discretization method for semi-infinite pro­

gramming, Math. Prog. 34, pp 354-361 (1986).

[7] Hettich R. and G. Gramlich, A note on an implementation of a method for

semi-infinite quadratic programming, Math. Prog. 46, pp 249-254 (1990).

[8] Mayne D. Q. and E. Polak, A superlinearly convergent algorithm for constrained

optimisation problems, Math. Prog. Study 16, pp 45-61 (1982).

29

[9] Price, C. J., Nonlinear Semi-Infinite Programming, Ph.D. Thesis, Department

of Mathematics, University of Canterbury, New Zealand (1992).

[10] Price, C. J. and I. D. Coope, An exact penalty function algorithm for semi­

infinite programmes, BIT 30, pp 723-734 (1990).

[11] Tanaka, Y., M. Fukushima, and T. Ibaraki, A globally convergent SQP method

for semi-infinite nonlinear optimisation, J. Comp. Appl. Math. 23, pp 141-153

(1988).

[12] Watson, G. A., Globally convergent methods for semi-infinite programming,

BIT 21, pp 362-373 (1981).

[13] Watson, G. A., Numerical experiments with globally convergent methods for

semi-infinite programming problems, pp 193-205 in 'Semi-infinite programming

and applications,' A. V. Fiacco and K. 0. Kortanek (Eds.), Proceedings of an

international symposium, @Springer-Verlag Berlin 1983.

30

