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Abstract This paper discusses the use of Product Simpson’s rule to solve
the integral equation eigenvalue problem λf(x) =

∫ 1

−1
k(|x − y|)f(y)dy where

k(t) = ln |t| or k(t) = t−α, 0 < α < 1, λ, f and are unknowns which we wish
to obtain. The function f(y) in the integral above is replaced by an interpolat-
ing function Lf

n(y) =
∑n

i=0 f(xi)φi(y), where φi(y) are Simpson interpolating
elements and x0, x1, . . . , xn are the interpolating points and they are chosen to
be the appropriate non-uniform mesh points in [−1, 1]. The product integra-
tion formula

∫ 1

−1
k(y)f(y)dy ≈

∑n
i=0 wif(xi) is used, where the weights wi are

chosen such that the formula is exact when f(y) is replaced by Lf
n(y) and k(y)

as given above. The five eigenvalues with largest moduli of the two kernels
K(x, y) = ln |x − y| and K(x, y) = |x − y|−α, 0 < α < 1 are given.

Keywords eigenvalue, product integration, singular kernel, integral equation.

Abstrak Kertas kerja ini membincangkan penggunaan aturan Simpson darab

untuk menyelesaikan masalah nilai eigen persamaan kamiran λf(x) =
∫ 1

−1
k(|x−

y|)f(y)dy dengan k(t) = ln |t| atau k(t) = t−α, 0 < α < 1, λ dan f adalah anu
yang hendak didapatkan. Fungsi interpolasi Lf

n(y) =
∑n

i=0 f(xi)φi(y), dengan
φi(y) unsur interpolasi Simpson dan x0, x1, . . . , xn adalah titik-titik dan ianya
dipilih supaya menjadi titik-titik interpolasi tak seragam yang tertentu dalam

[−1, 1]. Rumus pengamiran darab
∫ 1

−1
k(y)f(y)dy ≈

∑n
i=0 wif(xi) digunakan

dengan pemberat wi dipilih supaya rumus adalah tepat apabila f(y) diganti
oleh Lf

n(y) dan k(y) seperti di atas. Lima nilai eigen dengan modulus terbesar
bagi kedua-dua inti K(x, y) = ln |x − y| dan K(x, y) = |x − y|−α, 0 < α < 1
diberikan.

Katakunci nilai eigen, pengamiran darab, inti singular, persamaan kamiran.
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1 Introduction

The numerical solution of the integral equation eigenvalue problem

λf(x) =
∫ 1

−1

K(x, y)f(y)dy (1)

for an eigenvalue λ and a corresponding eigenfunction f(x) is considered in this paper. If
λ is an eigenvalue of the kernel K(x, y), then there is at least one non-null function f(x)
satisfying (1). The function f(x) is called a left-eigenfunction or only eigenfunction corre-
sponding to the eigenvalue λ. If there exists a function g(x) such that λg(x) =

∫ 1

−1
K(x, y)dy

then g(x) is called the right-eigenfunction corresponding to λ.
In this paper, we shall discuss only when K(x, y) is a weakly singular kernel and has

the form
K(x, y) = |x − y|−α, 0 < α < 1 and K(x, y) = ln |x − y| (2)

These two kernels are Hermitian and compact in C[−1, 1], and hence have countable infinite
numbers of eigenvalues with zero the only possible limit point (Atkinson [2]).

Solution of (1) is closely related to the solution of a n×n algebraic eigenvalue problem.
Indeed, the main goal of the numerical methods to solve (1) is to reduce it approximately
to an algebraic form. Then, the algebraic eigenvalue problem is solved and the solution
is taken to be the approximate solution of (1). The numerical treatment of an integral
equation involving weakly singular kernel should take into account the nature of this sin-
gularity. The available numerical methods are modified quadratures, product integration,
collocation and Galerkin method and smoothing the kernels. Razali [10] used product in-
tegration methods with piecewise polynomials (Midpoint, Trapezoidal and Simpson rules)
with uniform mesh points xi = i

n , i = 0, 1, . . . , n to find the eigenvalue with largest modulus
and its corresponding eigenfunction of the kernel in (2) with 0≤x, y≤1.

If the function f(x) is smooth and f∈Cm+1[−1, 1], de Hoog and Weiss [8] showed that,
if the product integration methods with piecewise interpolating polynomial of degree m, is
used with uniform mesh points xi = −1 + 2

n i, i = 0, 1, . . . , n to solve the Fredholm second
kind integral equation with the kernel given in (2), then the method is of order O(n−m−2+α)
for the first kernel and O(n−m−2 ln n) for the second kernel in (2). Weakly singular integral
equations have solutions containing mild singularities at the end points {−1, 1} introduced
by the kernel. The best result for a uniform mesh, as shown in Chandler [5], is O(n−2+2α)
for the first kernel and O(n−2 ln n) for the second kernel in (2). Schneider [11] showed
that the order of convergence is O(n−m−2+α) for the first kernel and O(n−m−2 ln n) for the
second kernel in (2) if appropriate non-uniform mesh points are used.

Baratella [4] proved that if the product integration with piecewise polynomial of degree
m is used in solving a Fredholm second kind integral equation with the kernel K(x, y) =
|x − y|−α, 0 < α < 1, then the convergence of the method is optimal if the method is used
with (Nm + 1) non-uniform mesh points xmi+j = τi + sj(τi+1 − τi) where i = 0, 1, . . . , N −
1, j = 0, 1, . . . , m − 1, sj∈[0, 1] and

τi =
{

−1 + ( 2i
N )q , 0≤i≤N

2

−τN−i,
N
2 < i≤N

(3)

where q = m−1
1−α and N is an even integer. It is a common belief that this method is the

most efficient in the solution of (1). By taking the local polynomial degree m to arbitrarily
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Table 1: Estimated condition numbers

N m=2 m=3 m=4 m=5 m=6
q=2.6 q=3.1 q=3.6 q=4.1 q=4.6

4 3.6E+00 4.4 E+00 4.9 E+00 5.3 E+00 4.6 E+12
8 4.0E+00 5.0 E+00 5.7 E+00 6.4 E+00 5.2E+31
16 4.6 E+00 5.3 E+00 5.9 E+00 7.0 E+04 2.4 E+65
32 4.8 E+00 5.3 E+00 2.7 E+04 3.1 E+12
64 5.0 E+00 5.4 E+00 1.5 E+09 2.6 E+19

large, we can obtain an order of convergence as high as we want. In practice, however,
using computer arithmetic, this last statement does not appear to be true. Indeed, as
the local degree increases, or when q is large, the concentration of the knots near the
end points of the interval of integration is so high, which increases as n becomes large,
resulting in the final linear system becoming more rapidly ill-conditioned. Moreover, this
implementation becomes more expensive. For example, Table 1, as given in Monegato and
Scuderi [9], reported some values of the condition numbers estimated, when the product
integration with piecewise polynomials of degree m was applied to the equation (1) with
K(x, y) = ln |x − y|.

In this paper, the product integration method with piecewise polynomial of degree m = 2
(Simpson’s rule) is used to solve the equation (1) with the non-uniform mesh points (3) when
q = 2. Here, the kernels being considered are weakly singular kernels of the types in (2). In
Section 2, the product Simpson integration rule is obtained. To reduce an integral equation
eigenvalue problem into an algebraic eigenvalue problem, we need to calculate the necessary
matrix Kn. This is discussed in Section 3. The numerical results of this work are displayed
in Section 4.

2 Product integration methods

Product integration is a simple technique for handling integrals of the form

I(f) =
∫ 1

−1

k(x)f(x)dx (4)

where k(x) is a real-valued absolutely integrable function, which needs not be continuous or
of one sign, and f(x) is any continuous function on [−1, 1]. Integrals with finite end points
other than −1 and 1 can be transformed to the form (4) by a simple linear transformation.

A product integration rule for is an expression of the form

In(f) =
n∑

j=0

wjf(xj) (5)

where xj , j = 0, 1, . . . , n are a set of distinct points in [−1, 1], and wj , j = 0, 1, . . . , n are
suitable weights. To obtain (5), the function f(x) in (4) is replaced by an interpolating
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function fn(x), where fn(xj) = f(xj), j = 0, 1, . . . , n such that the integral
∫ 1

−1 k(x)fn(x)dx
can be integrated exactly or, at least, very accurately and the weights are determined by
requiring the rule (5) is exact when f is replaced by fn , i.e. I(fn) = In(fn)

The interpolating function fn(x) can be written as

fn(x) =
n∑

j=0

φj(x)f(xj) (6)

where φj(x), j = 0, 1, . . . , n are suitable interpolating elements. Therefore,

In(f) =
∫ 1

−1

k(x)fn(x)dx

=
∫ 1

−1

k(x)(
n∑

j=0

φj(x)f(xj ))dx

=
n∑

j=0

(
∫ 1

−1

k(x)φj(x)dx)f(xj ) (7)

=
n∑

j=0

wjf(xj)

where

wj =
∫ 1

−1

k(x)φj (x)dx, j = 0, 1, . . . , n (8)

can be computed exactly or very accurately.
In this paper, the function fn(x) is chosen to be a piecewise interpolating polynomial of

degree two (Product Simpson’s rule method) with (n+1) non-uniform mesh points x2i = τi,
i = 0, 1, . . . , N and x2i+1 = 1

2 (τi + τi+1),i = 0, 1, . . . , N − 1 where N = n
2 , N is an even

integer, and

τi =
{

−1 + ( 2i
n )2, 0 ≤ i ≤ N

2

−τN−i,
N
2 < i ≤ N

(9)

The function f(x) is approximated at each sub interval [x2i, x2i+2], i = 0, 1, . . . , N
2 − 1

by a quadratic polynomial interpolating f(x) at the points x2i, x2i+1 and x2i+2.
By defining, ∆i,j≡xj − xi, then the interpolating elements {φj(x)}n

j=0 in 6 are:

φ2j(x) =





(x − x2j−2)(x − x2j−1)
∆2j−2,2j∆2j−1,2j

, x2j−2 < x≤x2j

(x − x2j+1)(x − x2j+2)
∆2j+1,2j∆2j+2,2j

, x2j < x < x2j+2

0 otherwise

for j = 1, 2 . . . ,
N

2
− 1

φ0(x) =
(x − x1)(x − x2)

∆1,0∆2,0
, x0≤x≤x2,

φn(x) =
(x − xn−2)(x − xn−1)

∆n−2,n∆n−1,n
, xn−2≤x≤xn, (10)

and
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φ2j+1(x) =





(x − x2j)(x − x2j+2)
∆2j,2j+1∆2j+2,2j+1

, x2j < x < x2j+2

0 otherwise
for j = 1, 2 . . . ,

N

2
− 1

The error in the approximation above is given by

|I(f) − In(f)| ≤
∫ 1

−1

|k(x)| |f(x) − Lf
n(x)| dx (11)

≤ ‖k‖1‖f − Lf
n‖

provided that

‖k‖1 =
∫ 1

−1

|k(x)|dx exists and bounded

and
‖f − Lf

n‖ = max
x∈[−1,1]

|f(x) − Lf
n(x)|.

It is clear that the interpolating piecewise polynomial Lf
n converges uniformly to f(x) for all

f(x) ∈ C[−1, 1], provided that lim
n→∞

max
1≤i≤n

|xi − xi−1| = 0. Since, lim
n→∞

max
1≤i≤n

|xi − xi−1| = 0

when xi, i = 0, 1, . . . , n, are as given in 9, then In(f) → I(f) as n → ∞ for all f ∈ C[−1, 1]
provided only ‖k‖1 exists and bounded.

3 The matrix elements

To solve (1) numerically, we reduce it to the algebraic eigenvalue problem

λ(n)f = Knf (12)

where λ(n) is the approximate value to λ and Kn is the n×n matrix which we obtain from
the kernel K(x, y). Under suitable conditions, the eigenvalues of (12) will approximate those
of (1). Equation (12) will always have eigenvalues, in general distinct, while equation (1), in
general, may have none, a finite number, or a denumerable infinite number of eigenvalues.
So we can not claim to have solved (1) completely using numerical methods.

The eigenvalues of (1), in general, are complex numbers, but if the kernel is Hermitian
then all eigenvalues are real and the right eigenfunction is equal to the left eigenfunction
corresponding to the same eigenvalue. In this paper, the kernel K(x, y) is assumed to be
weakly singular as in (2) which is symmetric, so all its eigenvalues are real. Indeed, it has
an infinite number of real eigenvalues with zero as its limit point (Baker [3]).

The integral equation eigenvalue problem (1) is reduced to a problem finding the eigen-
value of the matrix Kn in (12) as follows. The function f(y) in (1) is replaced by

fn(y) =
n∑

j=0

φj(y)f(xj) (13)

where φj(y), j = 0, 1, . . . , n are as given in (10), and xj ,j = 0, 1, . . . , n are as in (9). Then

λf(x) =
∫ 1

−1

K(x, y)fn(y)dy + Rn(x) (14)
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where the error, Rn(x), is given by

Rn(x) =
∫ 1

−1

K(x, y)(f(x) − f(y))dx (15)

Using (5), (8) in (14) we obtain

λf(x) =
n∑

j=0

wj(x)f(xj ) + Rn(x) (16)

where

wj(x) =
∫ 1

−1

K(x, y)φj(y)dx, j = 0, 1, . . . , n (17)

In (16), on ignoring Rn(x), by successively setting x = xi, i = 0, 1, . . . , n and replacing f(x)
by fn(x), λ by λ(n) , the resulting equation is

λ(n)f(xi) =
n∑

j=0

wj(xi)f(xj), i = 0, 1, . . . , n (18)

where λ(n) is an approximate value for λ.
System (18) represents an algebraic eigenvalue problem

(Kn − λ(n)I)fn = 0 (19)

where
(Kn)ij = wj(xi), i, j = 0, 1, . . . , n (20)

and
fn = (f(x0) f(x1) . . . f(xn))T (21)

Then λ(n) is an eigenvalue of Kn and fn its corresponding eigenvector.
Suppose that λ is an eigenvalue of the symmetric kernel K(x, y) and f(x) is the cor-

responding eigenfunction with ‖f(x)‖2, where K(x, y) is given in (2). Since K(x, y) is
symmetric, f(x) is the right and left eigenfunction corresponding to λ, i.e.

λf(x) =
∫ 1

−1

K(x, y)f(y)dy =
∫ 1

−1

f(y)K(y, x)dy, −1≤x≤1.

Suppose also that the approximate eigenvalue is λ(n) and the approximate eigenfunction
fn(x) gives rise to a function

η(x) =
∫ 1

−1

K(x, y)fn(y)dy − λ(n)fn(x).

The function η(x) can be computed since λ(n) and fn(x) are known. Then

∫ 1

−1

η(x)f(x)dx =
∫ 1

−1

∫ 1

−1

K(x, y)fn(y)f(x)dydx − λ(n)

∫ 1

−1

fn(x)f(x)dx
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that is,

(η, f) = (Kfn, f) − λ(n)(fn, f) = (fn, Kf) − λ(n)(fn, f) = (λ − λ(n))(fn, f) (22)

Thus, to estimate λ − λ(n) we need to compute η(x). Suppose that fn(x) is scaled so
that ‖f(x)− fn(x)‖∞ → 0, where f(x) is the fixed normalized eigenfunction corresponding
to λ. Then it has been shown in Baker [3] that

‖fn(x)‖2 → 1, and (fn, f) → (f, f) = 1.

Therefore, for n sufficiently large, (fn, f) 6= 0. Thus, from (22) and since ‖f(x)‖2 = 1,

|λ − λ(n)| ≤ |(η, f)|
|(fn, f)|

≤ ‖η(x)‖2

|(fn, f)|
≤ ‖η(x)‖2

|(f, f)|
{1 + O(1)}.

Therefore
|λ − λ(n)| ≤ ‖η(x)‖2{1 + O(1)} ≤

√
2‖η(x)‖∞{1 + O(1)},

and we have an asymptotic bound for |λ − λ(n)| in terms of η(x).

4 The numerical results

Case 1: K(x, y) = |x − y|−1/2

From (20), the matrix elements are given by

(Kn)ij = wj(xi), i, j = 0, 1, . . . , n

where xi, i = 0, 1, . . . , n are given in (9), ∆i,j = xj − xi, n is an even integer. Then from
(17)

wj(xi) =
∫ 1

−1

|xi − y|−1/2φj(y)dx, i, j = 0, 1, . . . , n (23)

The matrix elements are given in Appendix A. Table 2 shows the five eigenvalues of the
largest moduli for the kernel K(x, y) = |x − y|−1/2 obtained with varying orders of the
matrix Kn using inverse iteration method.

Case 2: K(x, y) = ln |x − y|
From (20), the matrix elements are given by

(Kn)ij = wj(xi), i, j = 0, 1, . . . , n

where xi, i = 0, 1, . . . , n are given in (9), ∆i,j = xj − xi, n is an even integer. Then from
(17)

wj(xi) =
∫ 1

−1

ln |xi − y|φj(y)dx, i, j = 0, 1, . . . , n (24)

The matrix elements are given in Appendix B. Table 3 shows the five eigenvalues of the
largest moduli for the kernel K(x, y) = ln |x−y| obtained with varying orders of the matrix
Kn using inverse iteration method.
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Table 2: Five eigenvalues of the largest moduli of |x − y|−1/2

n = 128 n = 256 n = 512 n = 1024
λ1 3.794218403203 3.794219417592 3.794219544603 3.794219560631
λ2 1.692241206139 1.692242499027 1.692242644505 1.692242661217
λ3 1.304165823783 1.304167694375 1.304167877801 1.304167897931
λ4 1.087026120637 1.087030930371 1.087031312905 1.087031344743
λ5 0.957630643222 0.957639508606 0.957640168011 0.957640219525

Table 3: Five eigenvalues of the largest moduli of ln |x − y|
n = 128 n = 256 n = 512 n = 1024

λ1 -1.76423854863 -1.76423854617 -1.764238546033 -1.764238546026
λ2 -1.56600479947 -1.56600508801 -1.566005107041 -1.566005108285
λ3 -0.78833193093 -0.78833270962 -0.7883327596266 -0.788332762815
λ4 -0.61295592575 -0.61295819569 -0.6129583418883 -0.612958351179
λ5 -0.45609158915 -0.45609603958 -0.4560963270175 -0.456096345285

5 Conclusion

In this paper, we have used Product Simpson’s rule with non-uniform mesh points to find
the eigenvalues of a weakly singular integral equation. The order of the convergence is
optimal. The five eigenvalues with largest moduli are found. The results obtained are
found to be of great accuracy.

Appendix A

To evaluate the integral (23) when φj(y) is as in (11), define

P (i, k) ≡
∫ ∆i,2k+2

∆i,2k

|u|−αdu, P (i, k) ≡
∫ ∆i,2k+2

∆i,2k

u|u|−αdu and P (i, k) ≡
∫ ∆i,2k+2

∆i,2k

u2|u|−αdu.

Then

P (i, k) =





1
1−α (∆i,j+2)1−α , i = 2k

1
1−α ((∆i−1,j)1−α + (∆i,j+1)1−α) , i = 2k + 1

1
1−α ((∆i,2k+2)1−α − (∆i,2k)1−α) , i < 2k

1
1−α ((∆2k,i)1−α − (∆2k+2,i)1−α) , i > 2k + 1

Q(i, k) =





1
2−α (∆i,j+2)2−α , i = 2k

1
2−α ((∆2k+1,2k+2)2−α − (∆2k,2k+1)2−α) , i = 2k + 1

1
2−α ((∆i,2k+2)2−α − (∆i,2k)2−α) , i < 2k

1
2−α ((∆2k+2,i)2−α − (∆2k,i)2−α) , i > 2k + 1
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and

R(i, k) =





1
3−α (∆i,i+2)3−α , i = 2k

1
3−α ((∆2k,2k+1)3−α + (∆2k+1,2k+2)3−α) , i = 2k + 1

1
3−α ((∆i,2k+2)3−α − (∆i,2k)3−α) , i < 2k

1
3−α ((∆2k,i)3−α − (∆2k+2,i)3−α) , i > 2k + 1

Hence, using integration by substitution with h = (y − xi)/u in (23), we get

w0(xi) =
1

∆1,0∆2,0
(R(i, 0) + (∆1,i + ∆2,i)Q(i, 0) + ∆1,i∆2,iP (i, 0)),

for i = 0, 1, . . . , n

w2j(xi) =
R(i, j − 1) + (∆2j−2,i + ∆2j−1,i)Q(i, j − 1) + ∆2j−2,i∆2j−1,iP (i, j − 1)

∆2j−2,2j∆2j−1,2j

+
R(i, j) + (∆2j+1,i + ∆2j+2,i)Q(i, j) + ∆2j+1,i∆2j+2,iP (i, j)

∆2j+1,2j∆2j+2,2j
,

for j = 0, 1, . . . ,
n

2
− 1 and i = 0, 1, . . . , n

wn(xi) =
R(i, n

2 − 1) + (∆n−2,i + ∆n−1,i)Q(i, n
2 − 1) + ∆n−2,i∆n−1,iP (i, n

2 − 1)
∆n−2,n∆n−1,n

,

for i = 0, 1, . . . , n

and

w2j+1(xi) =
R(i, j) + (∆2j,i + ∆2j+2,i)Q(i, j) + ∆2j,i∆2j+2,iP (i, j)

∆2j,2j+1∆2j+2,2j+1
,

for j = 0, 1, . . . ,
n

2
− 1 and i = 0, 1, . . . , n

Appendix B

To evaluate the integral (24) when φj(y) as in (10), define

P (i, k) ≡
∫ ∆i,2k+2

∆i,2k

ln |u|du, Q(i, k) ≡
∫ ∆i,2k+2

∆i,2k

u ln |u|du and R(i, k) ≡
∫ ∆i,2k+2

∆i,2k

u2 ln |u|du.
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Then

P (i, k) =





∆i,i+2 ln ∆i,i+2 − ∆i,i+2 , i = 2k
∆2k,2k+1 ln ∆2k,2k+1 − ∆2k,2k+1

+∆2k+1,2k+2 ln ∆2k+1,2k+2 − ∆2k+1,2k+2 , i = 2k + 1
∆i,2k+2 ln ∆i,2k+2 − ∆i,2k+2 − ∆i,2k ln ∆i,2k + ∆i,2k , i < 2k
∆2k,i ln ∆2k,i − ∆2k,i − ∆2k+2,i ln ∆2k+2,i + ∆2k+2,i , i > 2k + 1

Q(i, k) =





1
2 (∆i,i+2)2 ln ∆i,j+2 − 1

4 (∆i,i+2)2 , i = 2k

1
2 (∆2k+1,2k+2)2 ln ∆2k+1,2k+2 − 1

4 (∆2k+1,2k+2)2

− 1
2 (∆2k,2k+1)2 ln ∆2k,2k+1 + 1

4 (∆2k,2k+1)2 , i = 2k + 1

1
2 (∆i,2k+2)2 ln ∆i,2k+2 − 1

4 (∆i,2k+2)2

− 1
2 (∆i,2k)2 ln ∆i,2k + 1

4 (∆i,2k)2 , i < 2k

1
2 (∆2k+2,i)2 ln ∆2k+2,i − 1

4 (∆2k+2,i)2

− 1
2 (∆2k,i)2 ln ∆2k,i + 1

4 (∆2k,i)2 , i > 2k + 1

and

R(i, k) =





1
3 (∆i,i+2)3 ln ∆i,i+2 − 1

9 (∆i,i+2)3 , i = 2k

1
3 (∆2k,2k+1)3 ln ∆2k,2k+1 − 1

9 (∆2k,2k+1)3

+ 1
3 (∆2k+1,2k+2)3 ln ∆2k+1,2k+2 − 1

9 (∆2k+1,2k+2)3 , i = 2k + 1

1
3 (∆i,2k+2)3 ln ∆i,2k+2 − 1

9 (∆i,2k+2)3

− 1
3 (∆i,2k)3 ln ∆i,2k + 1

9 (∆i,2k)3 , i < 2k

1
3 (∆2k,i)3 ln ∆2k,i − 1

9 (∆2k,i)3

− 1
3 (∆2k+2,i)3 ln ∆2k+2,i + 1

9 (∆2k+2,i)3 , i > 2k + 1
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Hence, using integration by substitution with h = (y − xi)/u in (24), we get

w0(xi) =
1

∆1,0∆2,0
(R(i, 0) + (∆1,i + ∆2,i)Q(i, 0) + ∆1,i∆2,iP (i, 0)),

for i = 0, 1, . . . , n

w2j(xi) =
R(i, j − 1) + (∆2j−2,i + ∆2j−1,i)Q(i, j − 1) + ∆2j−2,i∆2j−1,iP (i, j − 1)

∆2j−2,2j∆2j−1,2j

+
R(i, j) + (∆2j+1,i + ∆2j+2,i)Q(i, j) + ∆2j+1,i∆2j+2,iP (i, j)

∆2j+1,2j∆2j+2,2j
,

for j = 1, . . . ,
n

2
− 1 and i = 0, 1, . . . , n

wn(xi) =
R(i, n

2 − 1) + (∆n−2,i + ∆n−1,i)Q(i, n
2 − 1) + ∆n−2,i∆n−1,iP (i, n

2 − 1)
∆n−2,n∆n−1,n

,

for i = 0, 1, . . . , n

and

w2j+1(xi) =
R(i, j) + (∆2j,i + ∆2j+2,i)Q(i, j) + ∆2j,i∆2j+2,iP (i, j)

∆2j,2j+1∆2j+2,2j+1
,

for j = 0, 1, . . . ,
n

2
− 1 and i = 0, 1, . . . , n
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