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Abstract 

The performance of the dynamic subgrid-scale eddy-viscosity model and the suitabil- 

ity of high-order accurate, upwind-biased numerical methods for large-eddy simula- 

tions of complex flows are investigated in the case of the turbulent wake behind a 

circular cylinder at Reynolds number 3,900, based on freestream velocity and cylinder 

diameter. 

The numerical method consists of high-order upwind-biased finite difference tech- 

niques applied to the compressible Navier-Stokes equations written in generalized 

coordinates. Integration in time is done using a fully implicit, second-order accurate 

iterative technique. The results of three fifth-order accurate simulations performed 

on identical grids with the least-squares version of the dynamic model, the fixed- 

coefficient Smagorinsky model, and with no subgrid-scale model are compared in the 

first 10 diameters of the wake. The impact of three-dimensionality is also examined 

via two and three-dimensional calculations without a subgrid-scale model. The effect 

of numerical dissipation is investigated by comparing two simulations using upwind- 

biased schemes, the first being fifth-order, and the second seventh-order accurate. 

It is found that the near-wake is highly three-dimensional at this Reynolds number. 

It contains pairs of counter-rotating streamwise vortices, the effect of which cannot 

be reproduced in two-dimensional calculations. Three-dimensional computations are 

essential for predicting flow statistics of engineering interest. 

Amongst the three-dimensional simulations, although the overall results are com- 

parable, the one which uses the dynamic subgrid-scale model predicts more accurate 

mean velocities and Reynolds stresses in the vortex-formation region, which includes 

the first four diameters of the wake. The fixed-coefficient model yields, overall, the 
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least accurate results in that region. The magnitude of the eddy-viscosity in the tran- 

sitioning free shear layers and the near-wake is in better agreement with expectations 

based on the flow physics when computed using the dynamic model rather than the 

fixed-coefficient model. Differences between the three calculations are largest in the 

vortex-formation zone. In the near-wake between 4 and 10 diameters downstream of 

the cylinder, the extent and magnitude of the differences diminish due to numerical 

dissipation. Ten diameters downstream, the three simulations predict comparable 

mean velocities and Reynolds stresses. 

In the near-wake where the mesh coarsens, numerical dissipation is found to signif- 

icantly affect the small scales computed using the fifth-order accurate, upwind-biased 

scheme. The seventh-order accurate scheme predicts improved low-order statistics at 

the cylinder surface and in the near-wake. With the seventh-order accurate scheme, 

smaller-scale structures emerge in the wake, which are absent in the simulations with 

the fifth-order scheme. Velocity power spectra indicate a significant increase in energy 

content at higher frequencies relative to the fifth-order accurate calculations, reflect- 

ing the impact of reduced levels of numerical dissipation. Based on these calculations, 

we have concluded that even high order upwind-biased schemes are overly dissipative 

and ill-suited for large-eddy simulations. 
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Chapter 1 

Introduction 

1.1      Review of Circular Cylinder Flow Regimes 

For the past century the flow over a circular cylinder has been the subject of numer- 

ous investigations, of theoretical, experimental, and more recently numerical variety. 

Extensive reviews of the knowledge accumulated on this flow appear every decade 

(Morkovin 1964, Berger & Wille 1972, Norberg 1987), yet our understanding of the 

subjacent physics is incomplete. The relevant non-dimensional parameter in the flow 

is the Reynolds number, but because of sensitivity to experimental conditions, global 

statistics such as drag, pressure coefficient, and Strouhal frequency vary by as much 

as 25% from one experiment to the next at a fixed Reynolds number (Cantwell & 

Coles 1983). These variations indicate that in addition to the Reynolds number, sev- 

eral parameters arising from experimental set-ups are important in the cylinder flow. 

These include the blockage ratio, the free-stream turbulence intensity, the cylinder 

aspect ratio, and the end boundary conditions, each of which has been the subject of 

numerous studies. 

A broad classification of the cylinder flow behavior in different regimes of Reynolds 

number is presented in table (1), which also lists some representative experiments for 

each flow regime. The table follows the descriptions of this flow presented by Morkovin 

(1964), Roshko (1954a,b, 1961, 1969), and Norberg (1987). 

At Reynolds numbers less than approximately 40, the flow is laminar and steady. 



The boundary layer on the cylinder surface separates at a Reynolds number of 3.2 

(Nisi k Porter 1923) to 5 (Taneda 1956), and a pair of steady symmetric vortices form 

behind the cylinder. A large body of early experimental work has documented that 

range of Reynolds numbers, detailing the main features of the boundary layer and 

near-wake region (e.g. Tritton 1959, Coutanceau k Bouard 1977, Thorn 1933, Taneda 

1956, Acrivos et al. 1965). Between Reynolds numbers 10 and 40, the velocity profiles 

in the wake are self-similar past 10 diameters downstream of the cylinder, the length 

of the recirculation zone behind the cylinder grows linearly with Reynolds number, 

and the velocity distributions on the rear symmetry axis in the recirculation zone at 

different Reynolds numbers exhibit similarity (Nishioka k Sato 1974). 

For Reynolds numbers higher than approximately 40, a characteristic frequency 

expressed in non-dimensional form as the Strouhal number is associated with the 

wake. Taneda (1956) puts the critical Reynolds number at which shedding first occurs 

at 30, whereas Homman (1936), Kovasznay (1949) and Roshko (1954b) find that 

shedding starts at Reynolds number 40. Local linear parallel stability theory applied 

to the cylinder wake (Monkewitz 1988) indicates that the flow becomes absolutely 

unstable at Reynolds number 25, approximately two-thirds the value at which a 

Karman vortex street develops experimentally, showing that the notion of absolute 

instability cannot by itself predict a precise Strouhal frequency even at the onset 

of vortex shedding. Chomaz, Huerre k Redekopp (1988) use the concept of global 

instability, and show that global oscillations of a shear flow will occur only once a 

critical sub-volume of the flow is absolutely unstable. 

For Reynolds numbers up to 150, the flow remains laminar (Bloor 1964, Roshko 

1954a), the shed vorticity decays as it convects downstream, and the Strouhal number 

increases with Reynolds number. A least-squares curve-fit of the Strouhal curve for 

Reynolds numbers between 50 and 180 is given by 

St = A/Re + B + C Re (1) 

where A = -3.3265, B = 0.1816 and C = 1.6 x 10"4 (Williamson 1991). 

Transition to three-dimensionality in the near-wake occurs around Re = 180, and 

is signaled by two discontinuities in the Strouhal-Reynolds number relation. The first, 



around Re = 180, arises from the generation of vortex loops evolving into pairs of 

counter-rotating streamwise vortices in the wake, the second comes from a transition 

to fine-scale streamwise vorticity at Re = 230 ~ 260. 

At Reynolds numbers between 300 and 2 x 105, the sub-critical range, the flow 

around the entire periphery of the cylinder is laminar, and transition to turbulence 

occurs in the separated free shear layers (Cardell 1993). At the lowest Reynolds num- 

bers in this range, the wake becomes fully turbulent in 40 to 50 cylinder diameters 

downstream (Uberoi 1969), after which distance the regular vortices have completely 

decayed. At the higher end of the Reynolds number range, transition occurs very 

near the wall surface, and the wake is fully turbulent close downstream of the cylin- 

der (Cantwell k Coles 1983). For Reynolds numbers larger than 104, transition in 

the shear layers occurs very close to the separation points, and the base-pressure co- 

efficient, drag coefficient and Strouhal number are approximately constant at values 

of -1.1, 1.2 and 0.2 respectively (Roshko k Fiszdon 1969). 

In the past fifteen years, studies of the turbulence structure in plane wakes have 

attempted to delineate the contributions of the organized and random motions using 

a triple decomposition of the flow into a global mean, a phase-averaged mean and a 

random component (Perry k Lim 1978, Perry k Watmuff 1981, Hussain 1983, 1986, 

Hayakawa k Hussain 1989, Matsumura k Antonia 1993). Analyses of flow statistics 

using this technique link the production of random Reynolds shear stress to the 

stretching of streamwise vortices (or braids) between adjacent spanwise rollers (Kiya 

k Matsumura 1988, Antonia et al. 1987). Two representative experiments at low and 

high sub-critical Reynolds numbers investigated the properties of the coherent and 

random Reynolds stresses in the wake. Cantwell k Coles (1983) analyzed transport 

processes in the near-wake at Reynolds number 1.4 x 105. Matsumura k Antonia 

(1993) examined the intermediate wake, from 10 to 40 diameters downstream, at 

Reynolds number 5,830. 

At a Reynolds number of 1.4 x 105, Cantwell k Coles found that in the first 8 

diameters downstream of the cylinder, the coherent and random Reynolds stresses are 

of comparable magnitude. The peak values of the mean random shear and streamwise 



Reynolds stresses are respectively 36% and 77% higher than their periodic counter- 

parts. The coherent motion makes a more important contribution to the vertical 

velocity fluctuations, and the periodic vertical Reynolds stress peaks are 17% higher 

than the random component. As vortices are shed from both sides of the cylinder 

and turbulent convective mixing occurs in the base region, approximately 55% of the 

originally shed vorticity is lost, and the emerging vortices convect downstream with 

their centroids close to the wake centerline. In a frame of reference moving with a 

shed vortex, the flow can be described as a series of centers and saddle points. Near 

these saddles lie peaks in turbulent random shear stresses, and turbulence produc- 

tion results from the stretching of vorticity aligned with the separatrices defining the 

topology. 

At the lower sub-critical Reynolds number of 5,830, Matsumura & Antonia de- 

scribe the relative importance of the random and periodic components of the flow. As 

in the case of Cantwell k Coles at higher Reynolds number, the coherent motion con- 

tributes a large portion of the vertical Reynolds stresses. Ten diameters downstream, 

random stresses account for only 25% of the total vertical Reynolds stress, but for 

70% of the streamwise Reynolds stress. The Reynolds shear stress at the same lo- 

cation is closely equi-partitioned between the periodic and random components, and 

its peak value occurs in the centers, not in the saddle points as is found at Reynolds 

number 1.4 x 105. 

Much of the literature dealing with experiments on the cylinder documents phe- 

nomena in the sub-critical Reynolds number region. It has been known since the work 

of Gerrard in 1965 that the mean aerodynamic properties of the cylinder are particu- 

larly sensitive to free-stream disturbances in the sub-critical range of Reynolds num- 

ber. These disturbances, as well as acoustic noise levels, cylinder vibrations, surface 

roughness, blockage ratio, and other geometric parameters which have not been care- 

fully documented in most experiments, have been shown by Norberg (1987), amongst 

others, to influence transition to turbulence in the free shear layer, as well as mixing 

and entrainment in the wake region for sub-critical and critical Reynolds numbers up 

to 3 x 105. This may account for the lack of agreement in the literature on the near- 

wake properties of the flow. The influence of such perturbations is best illustrated by 



the dependence of mean cylinder-surface statistics on surface roughness for Reynolds 

numbers larger than 105 (Shih, Wang, Coles k Roshko 1992). Surface roughness is 

quantified by a parameter representing the mean protrusion height (k) at the cylinder 

surface, normalized by the cylinder diameter (D). At a Reynolds number of 106, the 

mean drag and base-pressure coefficients of smooth cylinders are approximately 0.25 

and —0.3 respectively. For k/D = 0.0003, the mean drag increases by a factor of 3 

to 0.75, and the base-pressure coefficient drops to —0.8. As (k/D) further increases 

to 0.01, the drag rises to 1.1, while the base-pressure coefficient falls to —1.3. Ex- 

perimental results of Achenbach (1971), Roshko (1961), and Shih, Wang, Coles & 

Roshko (1992) suggest that in the extreme case of very rough cylinders, some mean 

statistics, including the base-pressure coefficient, the pressure rise near separation, 

and the boundary layer separation angle, become Reynolds-number independent and 

vary only with surface roughness beyond a Reynolds number of 2 x 106. 

The critical range of Reynolds numbers, between 2 x 10s and 3.5 x 106, displays two 

transitions in the drag coefficient, labeled the lower and upper transitions by Roshko 

(1961). In the lower transition range (2 x 105 < Re < 5 x 105), the drag coefficient 

drops abruptly from 1.2 to about 0.3 due to an increase in base pressure at a Reynolds 

number of approximately 3.6 x 105. A laminar separation of the boundary layer is 

followed by transition to turbulence, reattachment and a final turbulent separation. 

The separation point moves from the front to the downstream side of the cylinder, 

and the width of the near-wake decreases to less than 1 diameter. In the upper 

transition region (5 x 105 < Re < 3.5 x 106), the base-pressure coefficient decreases 

monotonically from approximately —0.2 to —0.5, while the drag coefficient increases 

from 0.3 to 0.7, and remains at that value for Reynolds numbers of up to 10r. With 

increasing Reynolds number the separation point moves forward, but it remains on 

the downstream side of the cylinder, and the wake width increases but stays smaller 

than 1 diameter. The sensitivity of the flow to disturbances in the critical regime, 

in particular the non-zero mean lift which can develop around the cylinder, has been 

experimentally investigated by Schewe (1986). 

In the post-critical regime, past Reynolds number 3.5 x 106, the boundary layer 



on the cylinder surface transitions to turbulence before separating. The separation- 

reattachment bubble present in the critical region disappears. The base-pressure 

coefficient pursues its monotonic decrease started at Reynolds number 5 x 105, reach- 

ing -0.6 at Reynolds number 8 x 106; the drag coefficient is constant at around 0.7, 

and vortices are shed regularly at an approximately constant Strouhal frequency of 

0.27 (Roshko 1961). 

1.2      On Comparison with Experiments and the 

Case Selected for Simulations 

The flow in the sub-critical Reynolds number range (300 < Re < 2 x 105) features 

several challenging phenomena for large-eddy simulations: a laminar boundary layer 

including unsteady separations and reattachments, flow reversals at the cylinder sur- 

face and in the near-wake, adverse pressure gradients, transitioning free shear layers, 

and a turbulent wake with random and periodic Reynolds stresses of comparable 

magnitudes. 

The selection of a particular Reynolds number represents a compromise between 

competing effects. At higher Reynolds numbers, random motions account for an in- 

creasingly larger share of the total Reynolds stresses close to the cylinder, but the 

laminar cylinder boundary layer and the transitioning separated shear layers become 

thinner. The resolution requirements of these layers increase with the Reynolds num- 

ber, independently of whether the turbulent wake is simulated via direct or large-eddy 

simulations. 

The choice of Reynolds number is also dependent on the available experimental 

data. Accurate measurements of velocities and stresses are difficult in low or reversed 

mean velocity regions where turbulence intensities are high, as well as in high flow- 

angle regions, which accounts for the dearth of complete, published experimental data 

in the near wake. A careful review of the literature reveals that despite the imposing 

volume of published work on the circular cylinder, most experiments concentrate 

on the mean and fluctuating properties at the cylinder surface (e.g Achenbach 1968, 



Roshko 1954a, West 1990, Farell k Blessmann 1983, Schewe 1983, Norberg 1987), the 

intermediate wake region between 10 and 40 diameters downstream (e.g. Matsumura 

k Antonia 1993, Zhou k Antonia 1992, Hayakawa k Hussain 1989), or the small- 

deficit far-wake region extending from 50 to several hundred diameters downstream 

(e.g Townsend 1949, Antonia k Browne 1987, Wygnanski et ai. 1986, Fabris 1979, 

Papailiou k Lykoudis 1974, Ferre et al. 1990). 

Experiments detailing near-wake properties at sub-critical Reynolds numbers are 

few, and all but one provide inadequate or insufficient data for comparison with a 

numerical simulation. Bouard k Coutanceau (1980) study the time evolution of the 

near-wake velocity profiles at Reynolds numbers between 40 and 104, but provide no 

Reynolds-stress information. Bloor (1964), Wei k Smith (1986) and Kourta et ai. 

(1987) concentrate on transitional waves in the separated shear layers and do not 

discuss other statistics. Bloor k Gerrard (1966) provide mean streamwise velocity 

profiles, at Reynolds numbers of 2,000 and 16,000, at different locations downstream 

of the recirculation region, but give no details on the Reynolds stresses, the mean 

vertical velocities, or the velocity distribution inside the bubble. 

One experiment which provides detailed Reynolds stress and velocity information 

within the stagnation zone and in the near-wake region was performed by Cantwell 

and Coles (1983), at a Reynolds number of 1.4 x 105. Mean and phase-averaged 

velocity and Reynolds stress fields are documented within 8 diameters downstream 

of the cylinder, as well as mean and fluctuating quantities at the cylinder surface. 

At the lower Reynolds number of 3,900, two separate experiments provide details on 

the velocity and Reynolds-stress distributions. Lourenco et al. (1993) used a Particle 

Image Velocimetry technique to compile mean and phase-averaged data within three 

diameters downstream of the cylinder. In the near-wake region, between the closure 

point of the recirculation bubble and 10 diameters downstream, single sensor mea- 

surements of the mean velocities and Reynolds stresses have been documented by Ong 

and Wallace (1994). The data at both Reynolds numbers of 3,900 and 1.4 x 105 are 

adequate for comparison with large-eddy simulation results. On a structured mesh, 

and with the fifth-order spatially-accurate numerical method used in this work, the 

number of mesh points in the plane of mean motion required at the higher Reynolds 



number is approximately one order of magnitude larger than at Reynolds number 

3,900, a point further discussed in chapter 4. For this reason, the lower Reynolds 

number is selected for comparison with large-eddy simulations. 

1.3     On Computing the Flow Over Circular Cylin- 

ders 

The many physical phenomena arising in the turbulent flow around circular cylinders 

(section 1.1) represent a difficult challenge for numerical prediction methods. At the 

1980-1981 HTTM-Stanford Conference on Complex Turbulent Flows, the experiment 

of Cantwell & Coles (1983), documenting mean flow quantities in the near wake at 

Reynolds number 1.4 x 105, was suggested as a test case for numerical methods. Of 

the 52 participating computational groups, none attempted simulating this case, for 

reasons which were not documented. In recent years, the advent of more powerful 

computers and sophisticated numerical methods has led to new efforts to simulate 

the transitional and turbulent cylinder flow regimes. The features and principal 

conclusions of several representative calculations are discussed below. 

In the transitional Reynolds number range (150 < Re < 300), two-dimensional 

simulations can accurately predict a restricted number of global parameters, such as 

mean drag on the cylinder and Strouhal number, without modeling three-dimensional 

effects. Braza, Chassaing k Ha Minh (1986) use a finite-volume method, second- 

order accurate in space and time, to discretize the two-dimensional Navier-Stokes 

equations written in logarithmic-polar coordinates. At Reynolds numbers of 100 and 

200, the computed Strouhal frequency and mean drag coefficient are in good agree- 

ment with experimental measurements. Franke, Rodi & Schönung (1990) attempt 

to predict these coefficients at Reynolds numbers as high as 5,000 with a spatially 

third-order accurate, first-order time-accurate, finite-volume method applied to the 

equations written in standard polar coordinates. Having confirmed the grid and 

time-step independence of their results, they noted that Strouhal frequency and drag 

coefficient could be accurately computed only for Reynolds numbers under 300. Past 



this Reynolds number, in the sub-critical regime, the computed drag increases with 

Reynolds number, contrary to the experimental trend, which the authors surmise is 

a consequence of neglecting the three-dimensionality of the flow. 

Visualization experiments (Bays-Muchmore &; Ahmed 1992, Williamson 1989, 

1991b) demonstrate the presence of counter-rotating streamwise vortices in the braid 

region between consecutive spanwise vortices, directly behind the cylinder, for Reynolds 

numbers higher than approximately 200. The importance of accounting for the con- 

sequent three-dimensionality is further corroborated by the results of Karniadakis &; 

Triantafyllou (1992), who performed direct numerical simulations of the cylinder flow 

at Reynolds numbers between 175 and 500 with a mixed spectral/spectral-element 

technique. The time-trace of the velocity at a representative point in the near-wake, 

calculated from a two-dimensional simulation at Reynolds number 500, exhibits a 

quasi-periodic behavior. In the three-dimensional simulations however, the flow be- 

havior alternates between apparently random and almost periodic states, which is in 

qualitative agreement with the experimental observations of Bloor (1964). 

These low Reynolds number simulations investigated the onset of three-dimensional 

motions in the wake as well as the mechanisms involved in transition to turbulence. 

Three-dimensionality in the wake was found to arise from a secondary instability of 

the vortex street appearing in the computations between Reynolds numbers of 200 

and 210, and was not accompanied by the hysteresis phenomenon documented ex- 

perimentally by Williamson (1988). Transition to turbulence is analyzed from power 

spectra and three-dimensional phase portraits at locations in the near-wake. These 

indicate that a period-doubling bifurcation cascade may be responsible for transition 

to turbulence. However, time-averaged statistics at the cylinder surface and in the 

near-wake are not compared with experimental data, making it difficult to assess the 

accuracy of the computations. 

Steady Reynolds-averaged computations at higher than transitional Reynolds 

numbers were undertaken by Majumdar & Rodi (1985), who used & k — e model 

to compute sub-critical and post-critical cases, at Reynolds numbers of 1.4 x 105 and 

3.6 x 106 respectively. Majumdar & Rodi sought to establish the level of inaccuracy 



of predictions based on steady RANS simulations. Their method consisted of a finite- 

volume formulation, with a hybrid central/upwind scheme applied to the convective 

terms. Neither the mean forces acting on the cylinder, nor the near-wake mean flow 

were predicted accurately. At the sub-critical Reynolds number of 1.4 x 105, the 

solution was compared with the experiments of Achenbach (1968) and Cantwell k 

Coles (1983). The quantities which compared well with these experiments are the 

wall shear stress upstream of separation, and the wake spreading-rate downstream of 

the stagnation region. However most other relevant quantities were predicted incor- 

rectly. The boundary-layer separation occured too far downstream, the base pressure 

was too high and the drag coefficient correspondingly too low. In the wake region, 

the maximum shear stress was 4 times smaller, and the recirculation bubble 80% 

longer than found experimentally. These results were qualitatively insensitive to the 

treatment of the eddy viscosity in the laminar and attached part of the cylinder 

boundary layer. Setting the eddy viscosity to zero in that region, or using a Van 

Driest damping function resulted in an improved wall shear stress distribution past 

the separation point. At the post-critical Reynolds number of 3.6 x 106, separation 

was predicted 11% too far downstream along the cylinder surface, the base pressure 

was too high although the minimum pressure coefficient compared fairly well with 

experimental measurements, and the wall shear stress was far too large, with a peak 

2.8 times higher than found experimentally. Similar discrepancies were reported by 

Sugawanam k Wu (1982). 

Seeking the cause of the difficulties encountered in these computations, Franke, 

Rodi k Schönung (1989) studied the phase-averaged experimental data of Cantwell k 

Coles at Reynolds number 1.4 x 105, in which they examined the validity of the k - t 

formulation. Their principal finding was that the eddy viscosity is anisotropic, and 

is negative in regions where history and transport effects dominate over production 

of Reynolds stresses, indicating that in the case of the circular cylinder, the k - e 

model is not adequate. Algebraic stress models have been applied to flows around 

square cylinders (Franke, Rodi k Schönung 1989, Franke k Rodi 1991, Murakami et 

al. 1991, Murakami 1990), but not to circular cylinders. 
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The difficulties encountered by Reynolds-averaged models have recently moti- 

vated the undertaking of three-dimensional simulations of the sub-critical and critical 

regimes. These efforts have been restricted to demonstrating improvements in the 

predictions of the mean and fluctuating forces acting on the cylinder when three- 

dimensionality is introduced in the simulations, and do not concentrate on the sta- 

tistical description of the wake region. At Reynolds number 104, a finite-element 

large-eddy simulation was performed by Kato & Ikegawa (1991), using the standard 

Smagorinsky model and a linear wall-damping function. The computed mean drag 

coefficient (1.14), base-pressure coefficient (-1.08), Strouhal number (0.20) and fluc- 

tuating lift coefficient (0.27) are in good agreement with experimental values. In a 

similar effort to demonstrate the improvements in these coefficients when extracted 

from three-dimensional simulations, Tamura, Ohta & Kuwahara (1990) performed 

finite-difference calculations at Reynolds numbers of 104, 105 and 106 without tur- 

bulence models. The incompressible Navier-Stokes equations, written in generalized 

coordinates in the plane of mean motion, are discretized with an upwind, third-order 

accurate scheme for the convective terms, and marched in time with a semi-implicit 

first-order accurate method. The mean drag is in reasonable agreement with ex- 

perimental results at the aforementioned Reynolds numbers, although the computed 

base-pressure coefficient, of —0.5 at Reynolds number 106, is far lower than the ex- 

perimental value of —0.3. 

The collective findings of the simulations described in this section are summa- 

rized in table (2). Two-dimensional, unsteady Navier-Stokes simulations can predict 

Strouhal numbers and drag coefficients at transitional Reynold numbers, but be- 

come unreliable in the sub-critical regime. Direct numerical simulations, performed 

to examine the physics of the transition to three-dimensionality and turbulence in 

the near-wake, have been limited to maximum Reynolds numbers of 500. Steady 

Reynolds-averaged (RANS) simulations using the k — e model at sub-critical and 

post-critical Reynolds numbers predict inaccurate velocity and Reynolds stress dis- 

tributions in the near-wake, while giving mixed results at the cylinder surface. Coarse 

direct simulations improve on the RANS calculations, predicting reasonable drag co- 

efficients up to a critical Reynolds number of 106, providing further evidence that 
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resolving the three-dimensionality of the flow is of foremost importance past the 

transitional regime. A large-eddy simulation at the low sub-critical Reynolds number 

of 104 was able to predict both drag and wall-pressure coefficients in agreement with 

experiments, although an accurate resolution of the near-wake was not attempted. 

1.4     Present Status of Large-Eddy Simulation 

In large-eddy simulation the dynamically important large-scale motions are computed 

directly, while a subgrid-scale turbulence model represents the effect of the unresolved 

small scales on the large scales. 

In the Smagorinsky subgrid-scale eddy-viscosity model, the eddy viscosity is lo- 

cally proportional to the large-scale strain-rate tensor, and includes an adjustable 

coefficient. A brief review of the adjustments required in different flows is presented 

by Germano, Piomelli, Moin k Cabot (1991), who note that although specific compli- 

cating factors in a given flow may be accommodated by altering the model constant, 

no single coefficient performs well under arbitrary flow conditions. Further empiricism 

is introduced into the Smagorinsky model by the use of wall damping and intermit- 

tency functions, which ensure the proper asymptotic behavior of the subgrid-scale 

stresses near solid boundaries and in transitioning flows. 

The mismatch between the premise that small scales tend to be more universal 

than large ones, and the degree of arbitrariness prevalent in early LES applications 

motivated the use of modern statistical turbulence theories in the search for more 

general models. A description of the models which subsequently emerged in the 1980's 

and early 1990's is given by Moin k Jimenez (1993). The model of Yakhot k Orszag 

(1986) based on renormalization group theory has incorrect limiting wall behavior; in 

a modified version developed by Piomelli et ai. (1990), grid-independent results are 

found difficult to achieve. Chollet k Lesieur (1981), following Kraichnan's (1976) eddy 

viscosity model in spectral space, proposed a simplified model formulated in Fourier 

space. This model cannot be used in complex flow applications. A related model, 

developed by Metais k Lesieur (1992) to remedy this shortcoming and expressed in 

physical space, does not have the correct asymptotic behavior near walls and is nearly 
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identical to Smagorinsky's model. 

The concept of dynamic subgrid-scale modeling, introduced by Germano, Piomelli, 

Moin & Cabot in 1991, is based on the scale-similarity ideas of Bardina et ai. (1980), 

in which spectral information available from the resolved scales is used to model 

the small scales. When used in conjunction with the Smagorinsky formulation, the 

Smagorinsky coefficient becomes a function of space and time, dynamically computed 

from the resolved large-scale fields. The distinguishing properties of the dynamic 

eddy viscosity model are its correct asymptotic behaviors near solid surfaces, and its 

intrinsic ability to differentiate between laminar and turbulent regions of the flow, 

without ad hoc damping or intermittency functions. 

The dynamic subgrid-scale model has been generalized to compressible flows and 

scalar transport by Moin, Squires, Cabot & Lee (1991) and Cabot &; Moin (1991). The 

method for computing the coefficient of the model, initially restricted in applicability 

to flows statistically homogeneous in at least one direction, has been generalized by 

Ghosal, Lund & Moin (1992) to apply to inhomogeneous flows using a constrained 

optimization formulation. This model, tested in the decay of homogeneous isotropic 

turbulence and in channel flow, gives results in good agreement with the experimental 

data. 

Various formulations of the dynamic model have been successfully tested against 

experimental and direct numerical simulation results in a variety of flows involv- 

ing specific complications. These include transitional and fully developed turbulent 

channel flow (Germano, Piomelli, Moin k Cabot 1991), channel flow with passive 

scalars (Cabot & Moin 1991), isotropic turbulence decay (Moin, Squires, Cabot & 

Lee 1991, Ghosal, Lund & Moin 1992), planetary boundary layer (Bohnert & Ferziger 

1993), three-dimensional channel flow (Cabot 1993), channel flow with system rota- 

tion (Squires & Piomelli 1993 and Cabot 1993), boundary layers with imbedded 

streamwise vortices (Liu & Piomelli 1993), flow over a backward-facing step (Ak- 

selvoll &; Moin 1993a,b) and driven cavity flows (Zang, Street & Koseff 1993). The 

quality of the results achieved in these simulations suggests that the dynamic pro- 

cedure is highly successful for the simulation of flows in which a variety of physical 

phenomena are present in different sub-regions. 
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1.5      Objectives and Overview 

The first objective of this study is to evaluate the performance of the dynamic subgrid- 

scale eddy model in a complex flow where Reynolds-averaged turbulence models have 

faced difficulties. One of the most challenging applications of dynamic models to date 

has been the computation of the flow over a backward-facing step by Akselvoll k Moin 

(1993a,b). The turbulent wake behind a circular cylinder is the first application of 

dynamic models to external flows. It involves unsteady separation and reattachment, 

laminar sub-regions and transition to turbulence. Past attempts at simulating the 

sub-critical regime with a k - e model reveal the inability of the Reynolds-averaged 

approach to accurately predict the near-wake statistics. The previous results of large- 

eddy simulations using the Smagorinsky model and coarse direct simulations were 

restricted in scope to evaluating the forces acting on the cylinder. The sub-critical 

cylinder wake flow is then appropriately suited for a validation study of a dynamic 

subgrid-scale eddy viscosity model, which adapts to local flow conditions without 

using adjustable constants. 

Assessing the importance of three-dimensional effects is another objective of this 

work. To this end, the near-wake and cylinder-surface statistics obtained from two- 

dimensional and large-eddy simulations are compared. 

The contribution of the subgrid-scale eddy viscosity model per se is evaluated by 

comparing mean velocities and Reynolds stresses computed from simulations without 

a turbulence model, with the dynamic subgrid-scale model, and with a fixed-coefficient 

Smagorinsky model. 

Finally, one of our objectives is to evaluate the suitability of high-order accu- 

rate, upwind-biased finite-difference methods for the large-eddy simulation of flows in 

complex geometry. Results of two simulations which use the dynamic subgrid-scale 

turbulence model are compared to evaluate the impact of upwinding on the computed 

solution. One uses a fifth-order accurate, one point upwind-biased method (Rai & 

Moin 1991), the other a seventh-order accurate, one point upwind-biased scheme to 

discretize the convective derivatives. In both cases, viscous fluxes are evaluated using 

sixth-order accurate, central differencing schemes. 
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This study describes one of several concurrent efforts at Stanford to evaluate 

various formulations of dynamic models in complex flows. These include a curved 

boundary layer at Reynolds number 1,200 based on momentum thickness, the flow 

around an airfoil at Reynolds number 106, and the flow through a plane diffuser at 

Reynolds number 9,000. For further information on these calculations, the reader is 

referred to forthcoming reports published by the Center for Turbulence Research. 

The findings and contributions of this report are as follows: 

• A high-order accurate, upwind-biased numerical method was developed for solv- 

ing compressible flow problems in generalized coordinates. 

• At Reynolds number 3,900, the near-wake behind the circular cylinder con- 

tains pairs of counter-rotating streamwise vortices between the spanwise rollers. It is 

strongly three-dimensional, and cannot be accurately simulated with a two-dimensional 

calculation. 

• At the same Reynolds number, a large-eddy simulation using the least-squares 

version of the dynamic subgrid-scale eddy-viscosity model was overall more accurate 

in the first four diameters of the wake than its counterparts using the fixed-coefficient 

Smagorinsky model or no subgrid-scale model. 

• The magnitude of the eddy viscosity in the separated free shear layers and the 

near-wake region is in better agreement with expectations based on the flow physics 

when using the dynamic model rather than the fixed-coefficient model. 

• The numerical dissipation generated by the fifth-order accurate, upwind-biased 

scheme applied to the convective fluxes, was found to have a significant impact on 

the turbulence in the near-wake. 

• The simulation using the seventh-order accurate, upwind-biased scheme applied 

to the convective terms demonstrated the effects of decreased numerical dissipation 

on the computed solution. Smaller-scale structures appeared in the near-wake that 

were not present when using the fifth-order accurate upwind-biased scheme, and the 

energy of the computed solution was substantially increased at higher frequencies. 
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1.6      Summary 

The next chapter describes the numerical method used in all the simulations in this 

report. Chapter 3 presents the test-problems validating the method and its imple- 

mentation: the laminar, two-dimensional flow over a circular cylinder at steady and 

unsteady Reynolds numbers, as well as the linear-stability analysis of a forced channel 

flow in three dimensions. Large-eddy simulations of the flow over a circular cylinder 

at Reynolds number 3,900 are documented in chapter 4, where the dynamic eddy 

viscosity model is evaluated and compared to the Smagorinsky model. Comparisons 

of the results obtained with the fifth and seventh-order accurate, upwind biased dif- 

ferencing schemes are presented in chapter 5. Conclusions regarding the performance 

of the dynamic model and the suitability of the numerical method are presented in 

chapter 6, where recommendations for extensions of this work are provided. 
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Table 1: Summary of cylinder flow regimes 
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Re Range —> Transitional 
regime 

Sub-critical 
regime 

Critical 
regime 

Post-critical 
regime I Simulation j 

Two-dimensional 
Unsteady 

Navier-Stokes 
CD, St Unreliable 

RANS 
with 

k — t model 

Wall shear ahead 
of separation 

Wall CP up 
to recovery 

Inaccurate near-wake velocity 
and Reynolds stress distributions 

LES 
CD, St, Wall CP 

(Wake not resolved, 
Re = 104) 

DNS Onset of 3-D Transition 
(fie = 500) 

CD 

(Wake not 
resolved) 

Table 2: Status of prediction capabilities for flow over a cylinder 
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Chapter 2 

Mathematical Formulation 

2.1      Large-Scale Equations of Motion 

The equations governing large-scale motions of the flow are derived by first considering 

the continuity, momentum and total energy equations: 

dip+d7k
{pUk) = 0 

ßj(PUi) + -ß — {pUkUi + pSik ~ CTik) = 0 

ß-e + — («fc(e + p) - crikUi + Qk) = Q 

where the molecular heat flux and stress tensor are given by 

7 dT 
Qi = (7 - l)RePr dx{ 

_±fdui,9uk\_U_c 
°ik~ Re\dxk     dxi)     3 Re" ' dxj' 

(2) 

(3) 

(4) 

(5) 

(6) 

The fluid is assumed to obey the perfect-gas law. The total energy and pressure are 

thus related through 
v 1 

e = r + -pukuk (7) P 1 
7— + ^kuk 

These equations are normalized with free-stream sound-speed CQO and cylinder radius 

Rc. The quantity Re refers to the Reynolds number, Re = PooCooRc/ni the molecular 
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viscosity // is assumed to be independent of temperature; the Prandtl number Pr and 

Mach number M^ are fixed at 0.72 and 0.2 respectively in all cylinder simulations. 

The compressible formulation is chosen to facilitate the potential inclusion of 

zonal methods into the numerical scheme. The principal issue in these methods 

is the prescription of boundary conditions at zonal interfaces. Boundary conditions 

based on momentum and energy fluxes across sub-volumes can be easily implemented 

for compressible methods, and have been successfully applied to a variety of flow 

situations (Rai 1985, 1986a,b). 

The large-scale equations are obtained by applying a filtering operation, denoted 

by an overbar, to the governing equations. A filtered quantity 4> is defined as: 

?(*) = f G(x,y)<l>(y)dy (8) 
JD 

where D is the entire flow domain. G is a spatial filter which removes high spatial- 

frequency information, with characteristic length in direction a;,- given by A,-. Filtering 

the equations leads to: 
d        a      n /nx 

ä?+te""i=0 (9) 

—pul + ^— (püküi + pSik ~ CTik) = 0. (10) 
at oxk 

|^£r(^^)-^-(^fe^T)=0-      (11) 

Momentum fluxes are decomposed into resolvable and modeled components as 

      put puk 
pukUi = — 1- 

pui puk 
pukUi r 

P 
(12) 

where Tik is the subgrid-scale stress tensor. Following Moin et ai. (1991), the subgrid- 

scale viscous work is assumed to be negligible in the energy balance, leading to: 

öikül = &ik üi (13) 

The subgrid-scale transport term to be modeled in the filtered energy equation: 

Ufc(e + p)-u*(e + p), (14) 
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upon using (7) for the total energy, can be written as: 

7 uk(e + p) - uk(e + p) = -qic + -(pUkVjUj - ukpujUj) 
T — 1 Z 

(15) 

where qk is the subgrid-scale heat flux: 

p puk 
qk = pTuk - Tpük = puk  

P 
(16) 

The second term on the right-hand side of (15) represents the subgrid-scale transport 

of total kinetic energy, which is smaller than the subgrid-scale heat flux by a factor 

proportional to M£>. It is neglected for the present low Mach number applications. 

The large-scale equations of motion are then: 

inpui + — {-^— + P8ik ~ aik + Tik) = ° dt dxk 

d__      d 
dt      uxk + -d^k(Uki~e + f)-<TikUi~h^ (7 - l)PrRe dxk 

9=        7 
T + —- 

Iqk) 

(17) 

(18) 

(19) 

2.2      Turbulence Models 

The large-scale momentum and energy equations are closed by modeling the subgrid- 

scale Reynolds stress tensor Tij and heat flux vector qk- Comparisons will be presented 

in Chapter 4 between closures obtained from dynamic modeling and the Smagorinsky 

model with a damping function and a fixed coefficient. Each approach is described 

in the remainder of this Section. 

In the first approach, subgrid-scale terms are evaluated with the local least-squares 

version of dynamic turbulence models (Moin et al. 1991, Lilly 1992), in which model 

coefficients are only functions of time and azimuthal and radial directions. These 

models use large-scale information extracted from the computed fields via a test- 

filtering operation. In the following derivations, a test-filtered function / is denoted 

by the symbol /. In this work, the test-filter is chosen as a tophat filter in physical 
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space, and is applied in all spatial directions. The trapezoidal rule is used to evaluate 

the resulting volume integrals numerically. The characteristic scales of the grid and 

test-filtering operations are denoted by A and A respectively. 

2.2.1      Subgrid-Scale Reynolds Stresses 

A subgrid-scale stress tensor 2y at the test-filter scale A is defined by analogy with 

the subgrid-scale Reynolds stress r,j as 

Tu = puiUj - 
pU{ pUj (20) 

The subgrid-scale stress tensors at both grid and test-filter levels are modeled using 

a trace-free Smagorinsky formulation: 

Tij-
8-fTkk = -2C{x,y,t)-ptf\S\S*ii 

Tij - fTkk = -2C(x,y,t)7> A2|S|S£ 

where Su is the trace-free rate of strain tensor, 

c.. 

(21) 

(22) 

(23) 

and | S | is the norm of Sif 

\S\ = fans* (24) 

C(x,t) is a model coefficient to be determined. Ty and fy can be related through the 

Germano identity to the Leonard stress tensor Lij'. 

(pUj pUj\      puj puj _ T.   _ 

\       P       J P 
(25) 

where Lij is computable from the resolved large-scale field.   The model coefficient 

C(x, y, t) is determined by substituting (21) and (22) into (25). The resulting relation 

Lij = 2C(x, j/, t)A2 Mij (26) 
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where 
Ä\2^^= 

wö=?w-f(|) \s\sh (27) 

is solved for C by contracting both sides with the tensor Mij, which is equivalent to 

a least-squares minimization procedure (Lilly 1992). Denoting the spatial average in 

the spanwise direction by <  > , CA2 is given by: 

C^y^  =2<MijMji> 
(28) 

For reasons of numerical stability, negative values of the model coefficient C are 

discarded by an ad hoc clipping operation, which results in a modified coefficient C*\ 

C*(x,y,t)A2 = ±(\CA*\ + CA2) (29) 

The only adjustable constant in the model is the ratio of the test to grid-filter 

widths A/A. In all calculations, this ratio is chosen to be 2 (Germano et ai., 1991). 

The turbulent eddy viscosity is found from (21) as: 

fxt = CA2? \S\. (30) 

2.2.2      Subgrid-Scale Energy 

In compressible flow, the isotropic part of the subgrid-scale Reynolds stress tensor 

Tkk = q2 cannot be combined with the thermodynamic pressure. Following Moin et 

ai. (1991), q2 is modeled using the relation: 

q* = 2CI(x,y,t)pA2\S\2. (31) 

Contracting (25) and substituting (31) and a similar expression for Tkk leads to an 

expression for 

(£^) - ^J^- = 2C/(^A2jfj2 - A2p|fj2). (32) 

23 



Averaging this expression in the spanwise direction and substituting in (31) gives the 

subgrid-scale energy q2: 

<,puiPUjj     Wim > 

<rt£)2\s\ -P\S\
2
> 

(33) 

The expressions (29) and (33) define the subgrid-scale Reynolds stress tensor rtJ-, 

closing the filtered momentum equations. 

2.2.3      Subgrid-Scale Heat Flux 

A model for subgrid-scale heat flux qk is needed to close the energy equation. An 

eddy-diffusivity model is used, which introduces a turbulent Prandtl number Prt to 

be determined dynamically: 

qk = -p- 
_vt   dT 

-P- 
C*(x,y,t)A2\S\dT 

(34) 
PrtÖxk        r Prt dxk' 

Writing the heat flux at the test-filter level as Hk using the same eddy-diffusivity 

model: ^ ^^   ^ 
S-STTT Z^*A2|CI AT 

(35) Ä    fp^k       ^C*A2\S\ dT 
Hk=puk-^r=-p-p7rdx-k' 

the difference Hk — qk is computable from the large-scale field: 

„      —     ppuk     P puk 
Hk- qk = — s— -       n^ 

p p rrt 

C*A2 //A\2 _.,. dT     ~^ dT 

({fX-tfiS)    <36> 
Following Moin et al. (1991), the expression for the turbulent Prandtl number is found 

by contracting the equation above with dT/dxk and averaging in the homogeneous 

spanwise direction: 

Prt = C*(x,y,t)A* 
<(ms\E§:-p\s\ ™ dT *r dT 

[dxk
dXk > 

<-   \PPUk 

*    P 

p puk ] dT   ^ 
(37) 
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This expression closes the large-scale energy equation. The filtered equations 

and associated subgrid-scale models have been presented in physical space. The 

corresponding discrete equations to be solved numerically are formulated in compu- 

tational space. The transformation between the physical and computational spaces 

is presented in Section 2.3. 

2.2.4      Fixed-Coefficient Smagorinsky Model 

In simulations which use a fixed-coefficient Smagorinsky model, the subgrid-scale 

energy q2 (equation 31) is neglected (i.e. r^ = 0) and the turbulent Prandtl number 

is set to 1. The residual stress is: 

m = -2C.P A2 I S* I S!j. 

The eddy viscosity pt is related to the length scale / of the model by: 

(38) 

"X-2_ pt = CsA'p | S* |= l2p \S*\. (39) 

The length scale, chosen to match that used by Piomelli, Ferziger k Moin (1987), is 

given in generalized coordinates by: 

/ = C.yjl - e-i'-W^iJAt&ri&z)1'3 (40) 

with Cs = 0.065 and A+ = 25. The Jacobian J of the two-dimensional coordinate 

transformation from (x,y) to (^,7/)-space is defined in (42), r = r(^rj) denotes the 

radial distance from the wall, £ is the wall normal direction. Wall coordinates are 

defined using the mean skin-friction coefficient Cf to provide a velocity scale: 

(t ~ 1)+ = « - iWooRe (41) 

The Mach number appears in this relation since the Reynolds number is defined with 

the freestream sound speed as a velocity scale. 
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2.3      Transformation to Generalized Coordinates 

The governing equations in physical space (x,y,z,t) are transformed to their ho- 

mologues in computational space (£,»/, z, t) via a two-dimensional time-independent 

mapping. In the cylinder simulations, £,rj and z correspond to generalized radial, 

azimuthal and spanwise directions respectively. Letting J represent the Jacobian of 

this coordinate transformation 

J = HVn - xvVii (42) 

derivatives in physical and computational spaces are related by the expression 

fa/a*Ui/y("   if8«). (43) 
\d/dy)    ' l-x,  *j) \a/di) 

The computational space is a cube with equispaced point distributions in all direc- 

tions. The mesh spacing in the transformed £ and r] directions are set to A£ = A77 = 1 

for convenience, while the spacing in the spanwise direction is determined by the span- 

wise box and mesh sizes. Denoting as Q the conservative-variable vector 

Q = 

(qi\ (P\ 
92 ~jm 

93 = J pv 

94 pw 

Xqs) { e / 

(44) 

the large-scale equations can be formally written as 

9A,   dp      dp      dp (45) 

where F^ represents the total flux along the £ direction. Detailed expressions for the 

fluxes appearing in (45) are given in Appendix A. 
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2.4      Spatial Discretization 

2.4.1    Flux-Splitting and Non-Conservative Viscous-Flux For- 

mulation 

The governing equations in generalized coordinates (45) were presented in terms of 

the total fluxes F{, Fv and Fz along each direction. Each of these fluxes can be written 

as the sum of convective, viscous and heat flux components. In a generic direction x, 

these are given by F£, F£ and F% respectively: 

FX = F; + F: + Fü (46) 

Before differencing these three fluxes numerically, it is necessary to rewrite each into 

different forms as follows. 

The inviscid 'Euler' flux FJ is decomposed into signals propagating in opposite 

directions along all axes of the computational grid using flux-vector splitting (Steger 

k Warming 1981). The flux is diagonalized as 

Fl = PXAXP^Q (47) 

where Ax represents the diagonal eigenvalue matrix. The total convective flux is then 

written as 

Fl = F? + ft" = PsAtP^Q + PzKP^Q (48) 

where 

Aj = |(A, ± |A,|). (49) 

Viscous and heat fluxes are decomposed into three components each, F^, F„x 

and Fzx, which contain terms involving only primitive variable derivatives along the 

£, T) and z directions respectively. Thus in each flux vector FXlX2, the first index 

(xi) indicates that the vector contains derivatives of primitive variables along the x\ 

direction only, while the second index (x2) indicates the direction of the flux. For the 
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two-dimensional coordinate mapping described in the previous section, the viscous 

and heat fluxes are: 

F« = 4 + i% + F£;    *? = *« + ** 

Fv = F? + Fv + Fv :    Fh = Ft + F TJ7J 

1? p." 4. pv _L E™ •    Ph = F 
22 

(50) 

(51) 

(52) 

For numerical stability reasons, the second derivative operators acting on the primitive 

variables must be expressed separately from first derivative operators. Second deriva- 

tives appear in the governing equations through the viscous and heat fluxes, which 

are functions of Q and its spatial derivatives: F^ = F^(Q,Q^), Fm = Fr,v(Q,Qv) 

and Fzz - FZZ(Q, Qz). Each of these fluxes can be written as 

*     _  ^ dQ 
FXX(Q,QX) = Axx-j— (53) 

where Axx = dFxx/dQx.  The flux Fxx and is operated on in (45) by the operator 

d/dx, leading to 
d2Q     dAxxdQ 

dx   ~   xx dx*       dx   dx' 

This chain-rule expansion yields non-conservative viscous flux terms. 

Combining these transformations in the expressions for the convective, viscous 

and heat fluxes, the governing equations (45) become: 

upwind inviscid fluxes downwind inviscid fluxes 
■» 

In 4- ^-Fe+ + -Fe+ + -Fe+ + -Ff + -Fe~ + -Fe~ ^Q+d^i   +d/v   +dg*.   +d{*t   +drj
rr,   +d/, 

dt 

+|(^ + n + %) + (*U + 4)^ + ^ + 4/Q 

W
d7?2     V""" 

d2Q .   0,,,   ,   ,fc^ (55) 
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Each flux and matrix appearing in (55) is described in Appendix A. Numerical 

discretization of this equation requires the use of two distinct spatial differencing 

schemes to be applied to the upwind and downwind convective fluxes, as well as first 

and second derivative schemes for the various components of the viscous terms. 

2.4.2      Convective and Viscous Differencing Schemes 

In the present work, convective derivatives are evaluated with two high-order accu- 

rate, one-point upwind-biased schemes in two different simulations. The fifth-order 

accurate scheme (Rai &; Moin 1991) is given on a uniform mesh at grid location a;,- by 

*/|_     -,      .-,. ,      .-,..-,. -,.     .--.,, (56) 

(57) 

dx+ 

dx~ 

1 1 11 1 A6d6/ 
= -3Q/,-3 + -Ji-2 - fi-i + 3/,- + 2^+1 - 2ßfi+2 + gQ^i 

1 11 1 1 A6 d6/ 

,• = 2Ö/,_2 ~ 2*"1 " 3fi + fi+1 " 4fi+2 + 3Öfi+3 " 6Öä^ 

where A represents the mesh spacing. The seventh-order accurate scheme is 

d+f 
dx+ 140 ^~4 ~ 15 ^"3 + 10 ^"2 ~ ^"1 + 4^' 

t 5Jt+l        1QJt+2 1-  105J»+3        280 dxs (58) 

d-f 
dx~ _105/*-3+10/i-2~5/,'-1_4•/,' 

4-f * f-    +1 f l   f    + A8 d&f (59) 

The first and second derivatives appearing in the viscous terms are evaluated using 

central, sixth-order accurate schemes: 

dx 

,07 
dx2 

1 3 3 A7 d7f 
= ^o"(/'+3 - fi-a) + 2ö(/i-2 - fi+2) + -^(fi+i - fi-i) ~ Y^Q-QJ .       (60) 

1 3 3 49        A8 d8/ 
= go(/.-3+ü+3)-2ö(/,-2+fi+2)+2(/.-1+/.+i)-Ysfi~md^i (61) 

Since the schemes applied to the convective terms are biased one point upwind, in- 

troducing sixth-order accurate first derivatives does not increase the global stencil 

size. 
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2.4.3      Modified Wave-Numbers 

Applying the corrective upwind schemes to a function f(k)e%kx, letting 0 = fcA, and 

denoting the modified wave-number of the scheme by 0 = fcA, the fifth and seventh- 

order accurate schemes yield 0 respectively given by: 

ö = ^8m3ö-^8in2ö + |sinö-i(~cos3ö + -cos2ö---costf.+ -J (62) 

0   = 

+ 

1 8 2 8 
 sin40 + —sin30- - sin 20 + - sin 0 
140     105     5     5 

/  1       2      1     2 
;(—_cos40 + —cos30 - -cos20 + 7cos0 
V 140 35 -D (63) 

Real and imaginary parts of these modified wave-numbers are displayed in figures 

(1) and (2) respectively. The imaginary parts of the wave-numbers arises because 

of the upwind biasing. Their presence introduces a damping in an otherwise purely 

oscillatory system. This is clearly illustrated by considering the one-dimensional 

wave equation du/dt + du/dx = 0. A Fourier mode of u can be written as f(t)elkx, 

where f(t) = f{0)e~ikt. Substituting for k the modified wave-number of the scheme 

k = kr + iki introduces in the response of /(*) the term eM. For the fifth-order 

scheme, since k, is negative at wave numbers larger than 0.35TT/A (figure 2), where 

the differencing scheme starts being inaccurate, this exponential term damps the 

response at frequencies which are too high to be accurately differentiated by the 

scheme on a given mesh. The real part of 0 is compared in figure (1) with the 

modified wave-numbers of the fourth-order central scheme: 

/; = 77^(/;-2-8/;-i + 8/;+i-/^) 12A 

which is 
1 

0= -(8sin0-sin20), 
6 

(64) 

(65) 

as well as with the modified wave-number of the fourth-order accurate Pade scheme 

(66) 
3 A4d4f 

/j+1+/j-1+4/j = Ä(/i+x -/;-i)+ 30^1 
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given by 

9 = 
3sin0 

(67) 
2 + cos 9 

The fourth-order Pade and fifth-order upwind schemes have nearly identical modified 

wave-numbers up to A; ~ 0.457r/A. At higher wave-numbers the error in the Pade 

scheme is consistently smaller than that in the upwind scheme. The Pade scheme has 

a purely real modified wave number, indicating that the scheme does not generate 

numerical dissipation on a uniform grid. 

The modified wave-number for the second derivative scheme (61) applied to vis- 

cous fluxes 
. i Q 49 
P = —!-cos30 + ^cos20-3cos0 + — (68) 

45 10 lo 

is shown in figure (3) compared with the modified wave-number of a second-order ac- 

curate central difference scheme, for which P = 2(1 -cos 9). The second-order scheme 

is accurate for wave-numbers below approximately 0.3TT/A, whereas the sixth-order 

scheme is close to the exact solution for wave-numbers up to 0.67r/A. Wave-numbers 

higher than these limiting values are under-damped in the respective schemes, but 

the sixth-order method provides 50% more dissipation than the second-order one at 

the highest wave-number of k = 7r/A. 

Near the wall and outer boundaries, spatial differencing schemes must be modified 

with a corresponding reduction in order of accuracy. At these boundaries, convective 

and viscous derivatives are second-order accurate. Details of the schemes used in 

these regions are provided in Appendix (A). 

2.5      Time Integration 

The governing equations are marched forward in time using a variable time-step, fully 

implicit scheme defined at time-level n + 1 by: 

ÖQn+1      ct + ß* 
Qn+1 + :Qn + 

a 
;Q 

n-l (69) 
dt     ~   aß  ~*       ' a(a-ßy    ' ß{ß - a) 

where a = Atn+1 is the time step at time level n + 1, and ß = Ar+1 + A*n.  For 

constant time-steps this scheme is second-order accurate.  In the turbulent cylinder 
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calculations presented in Chapter 4 and Appendix F, time steps were denned by 

constant Courant numbers. The mean variation in At from step to step was ap- 

proximately 0.01% for a typical simulation. The time derivative dQn+1/dt appearing 

in (69) is given by the governing equations (55). Equation (69) represents a sys- 

tem of coupled non-linear equations. It is solved at each time step with a modified 

Newton-Raphson iteration technique (Rai k Moin 1993). An iterative approach was 

chosen because the direct construction and inversion of the implicit systems defined 

by (69) present several difficulties. The fifth-order upwind spatial differencing scheme 

leads to block hepta-diagonal implicit matrices, which are expensive to generate and 

invert. In three dimensions, the size of the implicit systems requires the use of a 

factored approach. However a direct factored scheme involves two additional difficul- 

ties which can restrict the time-step size. The viscous fluxes which involve spatial 

cross-derivatives (e.g. d2Qld(dr}) must be evaluated explicitly (Beam k Warming 

1978), generating a time error of order dependent on the type of explicit scheme, and 

the factoring error, of order At2, cannot be eliminated. 

An iterative technique can circumvent these difficulties. The iterative scheme is 

based on expressing the solution vector field Qn+1 at time-level tn+1 as the zero of 

the function 
(70) d*r /[<3»+i] = -Q^1 + ClQ

n + ciQ"-1 + c3g-tQ
n+1 

which is a statement equivalent to (69). The coefficients cx through c3 represent the 

corresponding combinations of a and ß in (69). The root of / is sought using a 

classical Newton approach: 

- (-^f[Q])\Qp+1 - Qp)= flQpl 

where p is the iteration index. The Jacobian on the left-hand side is obtained from 

(70) as 

^\Q-CSQ] = I-CMI,Q)- (72) 

(71) 

oQ d4lQ-«fß = '-^& 
The full iterative scheme is written by substituting (72) and (70) into (71), leading 

to: 

/-c3^(|g)]P(gp+1-^) = ^,p (73) 
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where the right-hand side vector is 

fr* = _QV + ClQn + C2gn-1 + Q, (74) 

The time derivative of Q in this relation is given by (55). Upon convergence of the 

iterations, Qp+1 = Qp = Qn+1, and the left-hand side of (73) is zero regardless of any 

approximation made in evaluating the Jacobian terms d(dQ/dt)/dQ. The implicit 

system (73) is inverted by factoring the equations. The factoring error is also driven 

to zero upon convergence of the iterations. Schematically, the three resulting factored 

systems are written as: 

(/ + c3Mv)
pQ* = Rn<p (75) 

(/ + c3Mz)
pQ" = Q* (76) 

(I + c3Mt)pAQp+1 = Q** (77) 

where M„, Mz and M$ represent linearized Jacobians in the 77, z and £ directions 

respectively. The crux of the method lies in approximating these Jacobians so that 

they are inexpensive to compute, define easily invertible matrices, and lead to stable 

iterations. The construction of the Jacobians in this work follows the discussions of 

Rai Sz Moin (1991) and Pulliam & Chaussee (1981). At each iteration, viscous stresses 

are treated implicitly in the wall-normal direction £, but are neglected in the periodic 

azimuthal (ij) and spanwise (z) directions. The iterative scheme finally becomes: 

( 
/ + c3A^ + c3A^)Q* = P->ir.> 

(/ + c3Atyz + <*A;£) V = K'PvQ 

(78) 

(79) 

I   +   c3 

8F!+ 8+       dFf- d~ 
+ c3 dQ  of3 8Q dt + dQ) öQ oc, oy u$       UQ \ oy      014 > 

The eigenvector matrices Pv and Pz, obtained from the diagonalization of the az- 

imuthal and spanwise Euler fluxes, are described in Appendix A. On the left-hand 
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side of these systems, convective derivatives are approximated with upwind first-order 

accurate schemes, while central second-order accurate schemes are applied for viscous 

derivatives. This results in tridiagonal scalar systems in the periodic directions and 

a block-tridiagonal system in the wall-normal direction, which are inverted directly. 

In all laminar and turbulent computations in this report, the number of iterations 

per time-step is set to three, which is shown to be sufficient to reduce the residual norm 

(|Än,p|) by a factor of 102 to 104 at each time step (Appendix D, Section D.3.3 and 

Appendix F, Section F.3.2). Validation tests in the laminar vortex-shedding regime 

of the flow over a circular cylinder (Chapter 3) provide some indication that this level 

of convergence is sufficient to ensure that the residual error does not noticeably affect 

the accuracy of the computed solution. 

Applied to the model equation 

du      . 
(81) 

the time advancement scheme (69) is stable for a given time-step At provided the 

inequality 
|2±vTT2ÄÄ^P 

11 |3-2AA*|2      - V    ; 

holds. The relation above also defines the stability criterion for the model equation 

du       du _ 

dt       dx 
(83) 

applied to one Fourier component f(k)e%kx of u, provided the coefficient A is set to 

the complex expression 

c   / 1 
A = 

Ax 
f^-sin3Ö-^-sin2ö+|sinö-i(--^-cos3ö-|--cos2ö--cosö+-))  (84) 
\30 10 2 ov 5 i o / 

where the term between parentheses represents the modified wave number of the fifth- 

order accurate upwind convective scheme (62). The envelope (\rAxAt/c, XiAxAt/c) 

corresponding to |<r|2 = 1 is displayed in figure (4). The scheme is unconditionally 

stable for Ar < 0. 
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2.6     Boundary Conditions 

The boundary conditions needed for the simulation of the flow over a circular cylinder 

are wall and far-field boundary conditions applicable to the conservative variable 

increment AQ (see equation 80). Spanwise and azimuthal directions being periodic, 

the appropriate boundary conditions on the intermediate fields Q* (equation 78) and 

Q** (equation 79) are periodic conditions. Wall and far-field conditions are imposed 

implicitly for improved numerical stability, and are updated after each time-step to 

prevent drifting. Their precise formulation is presented in Appendix B. 

At the cylinder surface, no-slip boundary conditions are applied. The pressure 

derivative is evaluated from the normal-momentum equation, and the surface heat- 

flux is set to zero. 

Free surfaces are divided into potential and wake-region boundaries, each one of 

which admits a different set of boundary conditions. The conditions imposed in the 

potential region are based on locally one-dimensional Riemann invariants (Pulliam 

1986b) and neglect all viscous contributions. At the subsonic outflow, the value of 

the first Riemann invariant is imposed as that given by the potential flow around a 

circular cylinder. At the subsonic inflow, the required four boundary conditions on 

entropy, spanwise and tangential velocities, and a Riemann invariant, are similarly 

based on the potential flow solution. 

The edges of the wake layer at the domain boundary are determined using a 

Sgg boundary-layer criterion. Within the wake outflow region, primitive variables are 

extrapolated with a first-order accurate scheme. These boundary conditions are found 

to be stable, but are inaccurate and generate perturbation waves which propagate 

from the outer boundary toward the center of the computational domain. In all 

simulations, a long region of highly stretched mesh minimizes the influence of the 

boundary conditions on the region of interest. 
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2.7     Numerical Dissipation and Aliasing Control 

The upwind-biased scheme chosen to evaluate the derivative of the convective fluxes 

in the equations of motions introduces numerical dissipation in the computation. This 

dissipation can affect the accuracy of the computed solution in regions where it is of 

the same order as the sum of its molecular and subgrid-scale counterparts. On the 

other hand numerical dissipation is instrumental in stabilizing the numerical method, 

by dissipating the energy content of the high frequencies in the flow, and thereby 

acting as a built-in aliasing control (not removal) mechanism. 

In direct simulations of incompressible turbulent channel flow at Reynolds number 

180 based on wall shear-velocity and channel half-width, Rai & Moin (1991) observed 

that the numerical dissipation introduced by the upwind-biased scheme presented 

above (equation 56), was apparently large enough to control aliasing by dissipating 

the high frequency content of the solution fields. However a precise analysis of numer- 

ical dissipation was not provided. Further the ability of a scheme to control aliasing 

errors in an incompressible calculations may not extend to compressible calculations, 

the latter involving many more divisions and multiplications of the primitive variables 

than the former. It was observed from the vorticity fluctuations that small-scale mo- 

tions were damped in a coarse simulation which resolved the mean flow accurately. 

Energy spectra for this coarse simulation were not presented. Root mean square 

vorticity fluctuations agreed well with spectral calculation results in a fine-mesh sim- 

ulation. The one-dimensional streamwise energy spectra in that simulation showed 

that the energy at high frequencies was about two and a half decades below the val- 

ues obtained from spectral calculations. The spectral simulation used for comparison 

required (192 x 129 x 160) grid-points, while the upwind-biased finite-difference cal- 

culations used a (192 x 101 x 192)-point mesh. Thus although the study by Rai & 

Moin concluded that high-order upwind-biased finite-difference methods were good 

candidates for direct simulations of complex-geometry flows, the applicability of such 

methods to large-eddy simulations was not investigated. 

In a large-eddy simulation the prime objective is to accurately resolve low-order 

statistics on a coarse mesh. The use of an upwind-biased scheme constrains the grid to 
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be fine enough that the large scales are not affected by numerical dissipation. Further 

in such a simulation, a turbulence model will impact the computed large scales only 

if the magnitude of the numerical dissipation is sufficiently small compared to that 

of the molecular dissipation. 

In the simulations at Reynolds number 3,900 the numerical dissipation gener- 

ated by the fifth-order upwind-biased scheme was found to significantly damp the 

one-dimensional frequency spectra between five and ten diameters downstream of the 

cylinder. The level of numerical dissipation present in the computed solution over- 

whelmed the turbulence model, which did not have an impact on the mean velocities 

and Reynolds shear stresses in that region. The simulation with the seventh-order 

accurate upwind-biased scheme demonstrated that reducing numerical dissipation led 

to more energetic small scales in the near-wake. These results are further discussed 

in chapters 4 and 5. 

2.8      Triple Flow Decomposition 

The flow in the cylinder near-wake is characterized by a periodic vortex shedding 

motion, which at sub-critical Reynolds numbers contributes between a half and a 

third of the total Reynolds stresses (Cantwell & Coles 1983, Matsumura & Antonia 

1993). To differentiate between the random and periodic components of the Reynolds 

stresses, a flow variable can be decomposed into a global mean component s, a periodic 

component s, and a random motion s' (Reynolds & Hussain 1972, Hussain 1983, 

1986). The total variable is given by 

s(x, y, z, t) = s{x, y) + s(x, y, t) + s'(x, y, z, t) (85) 

A precise definition of the periodic and random components is as follows. The 

spanwise-averaged lift coefficient as a function of time Cx(tf) oscillates quasi-periodically 

around zero due to vortex shedding. Each period of oscillation is divided into Nv = 16 

segments. The first segment is chosen to coincide with a zero lift coefficient. Over a 

time interval 0 < t < T which includes Nj vortex shedding periods, the instants cor- 

responding to a particular segment k are denoted by £*, for n = 1,2, • • •, NT- Given 
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the spanwise average < s(x,y,t) > of s(x,y,z,t), the spanwise-average at constant 

phase k, also called a phase-average, is computed by averaging values of < s(x, y, t) > 

corresponding to identical phases in the time series: 

NT 

<s(x,y)>k=^~Yl <s(x,y,tk
n)>     k = l,---,Np. lyT n=i 

(86) 

The periodic response at constant phase s* is obtained from the Np averages at 

constant phase by subtracting the spanwise- and time-averaged component s(x,y): 

s(x,y)k =< s(x,y) >k s(x,y) (87) 

Once the periodic component is known at each phase, the random fluctuation s' can 

be found from (85). By construction, the time-averaged periodic component s(x,y), 

as well as the time- and spanwise-averaged random fluctuations s'(x, y) are zero. The 

triple decomposition leads to the definition of Reynolds stresses which represent the 

distinct contributions of the random and periodic motions, denoted as it-u^ and «ir- 

respectively, and related by the equation: 

u \Uj = U{Uj — Ui Uj — UiUj. (88) 
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Figure 1: Real part of the inviscid modified wave number 
: Exact;   : Fifth order upwind; : Seventh order upwind 
 : 4th order Pade; • • • : 4th order central 

<5r 
-0.2 

-0.4 

Figure 2: Imaginary part of the inviscid modified wave number 
— : Fifth order upwind biased; : Seventh order upwind biased 
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Figure 3: Modified wave number of the viscous second derivative scheme 
  : Exact; : Sixth order central; • • • : Second order central 
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Figure 4: Time scheme stability diagram: the region within the ellipsoid is unstable. 
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Chapter 3 

Validation of the Numerical 

Method 

3.1      Introduction 

At Reynolds numbers below 90, the flow over a circular cylinder is two-dimensional 

(Bloor 1964, Williamson 1989, 1991a). Its mean properties in the near-wake and 

on the cylinder surface have been extensively documented numerically and experi- 

mentally. In Section 3.2, the accuracy of the numerical method is examined in the 

computation of the steady near-wake region at Reynolds number 20. The compu- 

tational domain radius required to minimize the effect of boundary conditions on 

near-wake quantities is found by observation of the pressure distribution in the wake 

to be 300Rc, where Rc is the cylinder radius. Pressure and drag coefficients at the 

cylinder surface, as well as the near-wake velocity distribution are found to compare 

well with experimental and other computational results. 

At Reynolds numbers between 40 and 150, two-dimensional vortex shedding oc- 

curs according to a well defined Strouhal-Reynolds number relation (equation 1). 

Section 3.3 presents the results of two-dimensional simulations at Reynolds numbers 

of 80 and 100. The computed Strouhal frequencies are in good agreement with the 

measurements of Williamson. 

The computation of the linear stability of a periodic channel flow at Reynolds 
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number 7,500, based on channel half-width and centerline velocity, provides a three- 

dimensional test of the numerical method. Because the corresponding perturbation 

equations do not admit three-dimensional growing modes, the perturbation is chosen 

as the slowest decaying Orr-Sommerfeld mode. The error in the perturbation-energy 

growth-rate, computed with a time step of O.Q2h/Uoo, is less than 1% of its exact 

value on a mesh containing (129 x 32 x 32) points in the cross-channel, streamwise 

and spanwise directions respectively. The parameters h and Uoo above refer to the 

channel half-width and the steady-state streamwise velocity at the channel centerline. 

The validations described in this chapter were performed with the fifth-order accurate, 

upwind-biased scheme. 

3.2      Steady Cylinder Flow 

At a Reynolds number of 20, a steady recirculation bubble is attached to the cylinder 

surface. The salient features of this flow are the bubble length, its velocity distri- 

bution, the drag coefficient, the pressure and vorticity distributions on the cylinder 

surface and the angle of separation of the boundary layer. This Reynolds number is 

chosen because its properties are well documented. It has been investigated experi- 

mentally by Tritton (1959), Coutanceau & Bouard (1977), Thorn (1933) and Taneda 

(1956), semi-analytically by Imai (1951) and Nieuwstadt Sz Keller (1973), and nu- 

merically by Dennis &; Chang (1970), Nieuwstadt & Keller (1973), Takami & Keller 

(1969) and Fornberg (1980) amongst others. 

The grid-converged results presented below were obtained on a computational 

domain of radius 300i?c, with a mesh containing (256 x 300) points in the radial and 

azimuthal directions respectively (Appendix D). Azimuthal points are equispaced, 

while the radial grid-spacing increases geometrically with a stretching factor of 1.03. 

Table (3) summarizes the values of the principal flow features of the near wake. At 

Reynolds number 20, the computed drag coefficient (1.99) is within 3% of Tritton's 

experimental value of 2.05. The velocity in the recirculating region is very small 

and difficult to measure experimentally.   Coutanceau & Bouard (1977) measured 
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Simulation Experiment Asymptotic 

Drag Coefficient 1.99 2.05 2.05 

Bubble Length 0.93 D 0.93 D 0.93 D 

Separation Angle 43.8 Deg. 41.6 Deg. 45.8 Deg. 

Minimum Velocity in Bubble -0.031£/oo -0.0401/oc -OMOUoo 

Position of Velocity Minimum 0.42 D 0.36 D 0.43 D 

Table 3: Steady-flow topology at Reynolds number 20 

a minimum velocity in the bubble of -0.040C/oo, located 0.36D downstream of the 

cylinder surface. The computed values for these parameters are — 0.031£/oo and 0A2D 

respectively. They are within 3% of the asymptotic solution of Nieuwstadt k Keller 

(1973), which predicts a minimum velocity of -0.030£/oo at 0.43 D. 

The separation angle of the boundary-layer and the wall vorticity (figure 6) com- 

pare well with other computational and experimental results. In the separated flow 

region, the wall vorticity magnitude is smaller than Fornberg's prediction (1980), but 

in good agreement with the results of Dennis &; Chang and Nieuwstadt & Keller. 

The wall pressure coefficient (figure 5), agrees well with the results of these three 

computational groups. 

Outside the recirculation zone, within 2.5 diameters downstream of the cylinder, 

experimental and asymptotic stream wise velocities coincide (figure 7), and differ from 

the computation by less than one percent. From 5 to 20 diameters downstream 

(figure 8), the computed streamwise velocity agrees well with Imai's analytical results 

(1951), as well as with Nishioka & Sato's simulations (1974), but not with the results 
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of Takami & Keller (1969). 

3.3 Laminar Vortex Shedding 

Two-dimensional simulations in the regular vortex-shedding Reynolds number range 

establish the temporal accuracy of the numerical method. These simulations, at 

Reynolds numbers 80 and 100, further test the robustness of the far-field boundary 

conditions in unsteady flow. Details of the grid construction and mesh refinement 

studies at each Reynolds number are provided in Appendix D. 

The computed Strouhal numbers are 0.152 and 0.164 at Reynolds numbers 80 

and 100 respectively (figure 9). These agree well with the experimental data of 

Williamson (1989), given by equation (1) as 0.153 and 0.164 at the same Reynolds 

numbers. The lift coefficient time histories at both Reynolds numbers (figures 93 and 

97, Appendix D) demonstrate that the flow is energetic only at the Strouhal frequency 

in the near wake. Don (1989) suggested that numerical boundary conditions could 

generate spurious modulating frequencies in the lift response. The absence of such 

modes in the present simulations indicates that inaccuracies at the outer domain 

boundaries do not unduly affect the solution in the near wake. 

3.4 Linear Stability of a Forced Channel Flow 

The mathematical formulation of the linear stability of a periodic channel is presented 

in Appendix E. The salient feature of this problem is the forcing introduced to drive 

the flow along the channel. This external forcing is necessary because a constant 

pressure gradient, corresponding to a linear pressure distribution along the channel, 

is not a solution to the compressible boundary-value problem, and cannot be used as 

a momentum source. In the forced compressible channel formulation, the pressure is 

constant while the external forcing acts as a source of momentum in the streamwise 

direction. 

Appendix E presents the analytical steady-state channel solution, as well as the 

44 



Mesh size Time step Decay rate Error in decay rate 

65 x 16 x 16 1.00 x 10"2 -3.19 x 10"3 -27.5% 

129 x 16 x 16 0.97 x 10-2 -4.92 x 10"3 -11.8% 

129 x 32 x 32 1.94 x 10"2 -4.45 x 10"3 1.0% 

Table 4: Linear stability: computed energy-decay rates 

derivation of the appropriate small-disturbance equations. The Mach number in this 

stability analysis is set to M^ = 0.1. The Reynolds number is Re = 7,500, chosen 

to match that in the work of Malik, Zang &; Hussaini (1985). 

In three dimensions, the slowest decaying Orr-Sommerfeld mode is chosen as the 

perturbation of the steady-state solution. The eigenvalue of this mode (equation 207) 

is c = cr + ici = 0.02962395 - i0.00220154, corresponding to a perturbation-energy 

decay-rate of 2c, = 4.40 x 10~3. 

Three simulations are performed on a computational box of size (2h x 2nh x 

2-KK) where h is the channel half-width. The three meshes contain (65 x 16 x 16), 

(129 x 16 x 16) and (129 x 32 x 32) points in the vertical, streamwise and spanwise 

directions respectively. Both periodic directions have equispaced point distributions, 

while a hyperbolic tangent with a stretching factor a = 4.5 (equation 215) is used 

across the channel. The initial perturbation field is scaled so that the amplitude of the 

maximum vertical velocity across the channel is 10"4£/oo, where Uoo is the steady-state 

channel-centerline streamwise velocity. 

The equations are marched forward in time with the second-order accurate implicit 

scheme described in Chapter 2, using a velocity-based Courant number of 0.025 for 

the (65 x 16 x 16) and (129 x 16 x 16) cases, and of 0.1 for the calculation with 

the finest mesh. All simulations are run for 2T0, where T0 = 21.21/i/f/co is the time 
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necessary for the perturbation wave to propagate through the streamwise length of the 

computational box. The computed perturbation energy decay-rates and associated 

time-steps on each grid are displayed in table (4). On the finest mesh, the decay rate 

is predicted within 1% of its exact value. In their incompressible two-dimensional 

computation of a growing perturbation, Malik et al. used a Fourier method with 

4 collocation points in the streamwise direction, and a second-order finite difference 

scheme on a Chebyshev mesh in the vertical direction. With 64 and 128 points across 

the channel, the errors in perturbation energy magnitude after two periods (t = 2T0) 

were 20% and 4.7% respectively. 
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Figure 5: Re=20; Wall pressure coefficient 
  : Present results; • : Dennis & Chang (1970) 

x : Fornberg (1980); A : Nieuwstadt & Keller (1973) 

G 

Figure 6: Re=20; Wall vorticity 
  : Present results; • : Dennis & Chang (1970) 

x : Fornberg (1980); A : Nieuwstadt & Keller (1973) 
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S3 

Figure 7: Re=20; Rear axis streamwise velocity 
Present results; • : Coutanceau & Bouard (1977); A : Nieuwstadt & Keller (1973) 

Figure 8: Re=20; Rear axis streamwise velocity in the near wake 
  : Present results; • : Imai (1951);  x : Takami k Keller (1969) 

o : Nishioka k Sato (1974); A : Nieuwstadt & Keller (1973) 
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Figure 9: Shedding frequency versus Reynolds number 
• : Present results; • • • : Williamson (1989) 
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Chapter 4 

Subgrid-Scale Model Performance 

4.1      Physical and Numerical Parameters 

In this chapter, results from three large-eddy simulations of the wake behind a circular 

cylinder at a Reynolds number of 3,900, based on cylinder diameter and free-stream 

velocity, are examined. The three simulations are based on the fifth-order accurate, 

upwind-biased scheme for the convective fluxes. They use respectively no subgrid- 

scale model, the fixed-coefficient Smagorinsky model and the dynamic model. In 

the reversed flow region, mean velocities, as well as mean turbulent and periodic 

Reynolds stresses are compared to experimental data obtained using a Particle Image 

Velocimetry technique (Lourenco k Shih 1993). Downstream from the recirculation 

zone, within the first 10 diameters of the wake, mean velocities and total Reynolds 

stresses available from a hot-wire experiment (Ong & Wallace 1994) are used for 

comparison. Both experiments were conducted at Re ~ 3,900. 

The grid selected for the simulations is described in section C.3.4 of Appendix C. 

The mean velocities and total Reynolds shear stress obtained on this mesh using 

the dynamic subgrid-scale model are grid independent in the first ten diameters of 

the wake (Appendix F). The time-step used in all simulations, At = 0.004ilc/J7oo, 

corresponds to a free-stream velocity based Courant number of about 0.3. Statistics 

were compiled over approximately 6 vortex shedding cycles, or about 60RC/Uoo time 

units. 
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The remainder of this chapter consists of five main sections. Section 4.2 examines 

the issue of experimental uncertainty in the P.I.V. and hot-wire measurements. The 

impact of three-dimensionality on the computed flow field is examined in section 4.3, 

where in addition results of two- and three-dimensional simulations without subgrid- 

scale eddy viscosity models are compared. Differences between the three-dimensional 

simulations are discussed in section 4.4. 

4.2      Experimental Parameters 

4.2.1      P.I.V. Experimental Uncertainty 

The Particle Image Velocimetry experimental set-up is described in detail by Lourenco 

& Krothapalli (1988). In this experiment, the cylinder has a diameter of 1.905 cen- 

timeters and is 39 centimeters long. The free-stream velocity is 20.67 cm/s, and the 

Reynolds number based on diameter and free-stream velocity is 3,900. 

The cylinder is impulsively accelerated to a constant velocity in a towing tank 

facility. The flow in the wake is seeded with tracer particles, and a plane in the wake 

is illuminated with a pulsed laser beam. Photographs of the pattern projected by the 

tracers are taken at a frequency of 6Hz, from which velocity information is extracted. 

The data in the recirculation bubble downstream of the cylinder is obtained from 93 

instantaneous velocity-field images spanning 29 vortex shedding cycles. These data 

form the basis for the comparisons between simulations and experiments within the 

first 3 diameters of the wake. 

The experimental mean velocity and Reynolds stress fields provided to us did 

not display the expected symmetries and anti-symmetries about the wake center- 

line. Experimental profiles displayed in this chapter have been symmetrized in a 

post-processing operation. Denoting mean streamwise and vertical velocities by ü 

and v respectively, and symmetrized fields by the subscript V, the post-processing 

operations were: 

«.(£, V) = 2        *^'n' ~ 2 
(89) 
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u'u'a(Z,Tl) = 

v'v's(t,T}) = 

u'v'a(£,ri) = 

u'u'(t,ri) + u'u'(t,-ri) 
2 

ÜV(£, rj) + v'v'jZ, -rj) 

«'»'(& v) - u'v'(ti -v) 

(90) 

(91) 

(92) 

The representative symmetry error A/ in a symmetrized quantity /s(£, TJ) is chosen 

as the maximum error at each location £ normalized by the maximum of / at f: 

maXql/8(£,?7)-/(£,??)| 

max, |/(£, i?) | 
A/(£) = (93) 

Symmetry errors in Reynolds stresses, streamwise and vertical velocities are displayed 

in figures (10) and (11). Errors in the vertical mean velocity v are comparable to v 

itself over the entire domain of measurement. Past 1 cylinder diameter downstream, 

symmetry errors in the streamwise velocity stand at approximately 5% of the max- 

imum local velocity. Global Reynolds shear stresses have a 20% error for x/D < 2. 

At radial locations between 2.5D and 4D, the error is around 30%. 

4.2.2      Hot-Wire Experimental Parameters 

The experiments were conducted in the windtunnel of the Turbulence Laboratory, at 

the University of Maryland. The test-section of the windtunnel has a rectangular exit 

cross-section of 1.2 x 0.7 meters. The freestream velocity was 4.2 meters per second, 

with a turbulent intensity of 0.7%. The Reynolds number was 3,900. A circular 

cylinder of 1.43 centimeters in diameter was mounted across the test-section at the 

tunnel half-height location, approximately 7.3 meters from the end of the contraction. 

The hot-wire probes were operated in constant-temperature mode with an over- 

heat ratio of 1.35, with a 12-Channel A.A. Lab Systems Hot-wire Anemometer Sys- 

tem. The tunnel velocity was monitored using a pitot-static probe connected to a 

Barocel Electronic Manometer. 

Experimental uncertainties, provided by Ong & Wallace, were 0.02 £/<» on mean 

velocities, 0.03 £/£, on Reynolds stresses. Symmetry errors, derived by post-processing 
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the experimental data according to equations 89 through 92, were negligible compared 

to these experimental uncertainties. 

4.3       Impact  of Three-Dimensionality on Mean 

Flow Characteristics 

The impact on mean flow quantities of three-dimensionality is examined by comparing 

the results of two- and three-dimensional simulations which use no subgrid-scale eddy 

viscosity model. Both calculations were performed on the same grid in the plane of 

mean motion. 

At the cylinder surface, the two-dimensional simulation yields drag and rms lift 

coefficients of 1.42 and 1.74 respectively. These are substantially higher than the 

experimental values of 0.98 and 0.1 ± 0.05 (Norberg 1987). The computed three- 

dimensional mean drag and rms lift coefficients are 0.96 and 0.07, which are within 

experimental uncertainty. The skin-friction obtained from the two-dimensional sim- 

ulation (1.33 x 10~2), is about 50% higher than in the three-dimensional calculation 

(0.87 x 10-2). These differences in magnitude can be directly observed from the 

time history of the lift and drag coefficients, displayed in figures 12 and 13. The 

time-averaged lift coefficient in the two- and three-dimensional calculations is of the 

order of 10~3. These results are in accordance with the conclusions of other re- 

searchers (Braza et &l 1986, 1990; Tamura et ai. 1990). The irregularity of the 

vortex shedding at subcritical Reynolds number, illustrated by the modulation of the 

lift coefficient in the three-dimensional calculation (figure 12), is not as pronounced 

in the two-dimensional simulation. The qualitative behavior of the lift response at 

Reynolds number 3,900 is similar to that observed by Schewe (1986, figure 4.a, page 

38) at Reynolds number 2.64 x 105, shortly before the Reynolds number at which the 

drag crisis occurs. Although the vortex shedding irregularity in the three-dimensional 

flow was not investigated in the present study, some factors which cannot be at its 

origin in the numerical simulations include: free-stream turbulence in the oncoming 

flow, the effect of spanwise end plates and their orientations, the influence of size or 
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geometry in a wind-tunnel, and an interaction between the vortex shedding process 

and the flow in the wake past ten diameters downstream. 

The most outstanding feature of the two-dimensional simulation however is the 

absence of an attached recirculation region behind the cylinder (figure 14). The 

mean centerline streamwise velocity is positive at all stations downstream in the 

two-dimensional calculation (figure 15). The wall vorticity distribution (figure 16), 

indicates that separation bubbles at the cylinder surface, located symmetrically above 

and below the wake centerline at (108.1° < |0| < 124.6°), are present in both two and 

three dimensions. Additionally a separation bubble is attached to the downstream 

face of the cylinder in three-dimensional flow. Originating at 0 = 85.3° on the cylinder 

surface, its closure point lies at the wake centerline at L/D = 1.56. In the two- 

dimensional simulation the pressure drop behind the cylinder is about twice as large 

as in the three-dimensional case (figure 17). The tangential velocities in the cylinder- 

surface boundary layer are correspondingly greater in two dimensions (figure 18). 

These differences between two- and three-dimensional simulation results indicate 

that three-dimensional structures strongly influence the near-wake at Reynolds num- 

ber 3,900. These structures consist of pairs of counter-rotating streamwise vortices 

(Hayakawa & Hussain 1989, Bays-Muchmore & Ahmed 1993, Mansy & ai. 1994). 

Instantaneous surfaces of constant vorticity norm in the near-wake (figure 19) show 

that these structures observed experimentally are present in the three-dimensional 

simulation. The cylinder stands at the bottom of the figure, the flow evolving ver- 

tically along the page. The detached shear layers are visible at the top and bottom 

edges of the cylinder. The TD spanwise extent of the computational domain contains 

three pairs of counter-rotating streamwise vortices. This is consistent with the obser- 

vation of Bays-Muchmore & Ahmed that there is about one pair of counter-rotating 

streamwise vortices per cylinder diameter in this range of the Reynolds number. In 

the present simulation, these vortices are present between the two primary spanwise 

rollers in the first five diameters of the wake. In the second half of the domain (5 < x/ 

D < 10), streamwise structures appear to be shorter and more diffused than in the 

first half. This point is further examined in chapter 5. 
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4.4     Simulations With and Without Subgrid-Scale 

Models 

This section discusses the mean flow and Reynolds stresses predicted by three sim- 

ulations. One simulation uses no subgrid-scale eddy viscosity model, a second one 

is performed with the standard fixed-coefficient Smagorinsky model (chapter 2), the 

third one with the least-squares version of the dynamic model. Two distinct regions 

of the flow-field are examined successively: the vortex formation region (x/D < 4), 

which includes the cylinder surface, recirculation bubble and recovery zone, and the 

near wake from 4 to 10 diameters downstream. 

In the following, the expression 'total Reynolds stress' refers to the sum of the 

periodic («,• üj), turbulent « uj), and subgrid-scale (rtJ) components of the Reynolds 

stresses. 

4.4.1      Cylinder Surface 

The main features of the mean flow at the cylinder surface, which include the skin- 

friction, back-pressure and drag coefficients, the Strouhal number and the flow sepa- 

ration angles, are summarized in table 5. 

The drag coefficient CD and the back-pressure coefficient Cpb are functions of 

the Reynolds number (Roshko k Fiszdon 1969, Cardell 1993): In the neighborhood 

of Re = 3,900, the drag coefficient increases, while the back-pressure coefficient 

decreases with increasing Reynolds number. At Reynolds number 3,900, their values 

are respectively 0.98 ± 0.05, and -0.90 ± 0.05. 

The mean drag and back-pressure coefficients are determined by the mean veloc- 

ities, viscous and Reynolds stresses in the wake: letting overbars indicate time and 

spanwise averaging, the mean large-scale streamwise momentum equation 

— (pü2 + pü*+p-än+Tu) + ^nöüü + £ÜV-ä12 + Ti2J =0       (94) 

integrated on the rear flow axis (y = 0) from the cylinder surface (x/D = 0.5) to 
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infinity leads to 

'pJL + Poo - F*/D=o.5 + Yy fjj * v + ~p W - VVL + rl2)dx = 0        (95) 
dy 

Dividing this expression by Pooü^/2 yields the back pressure coefficient as 

  Q       too         _ _ 
CPb = 2 + 2— /   (pü + p u'v' - <ju + r12)dx 

oy Jo.s 
(96) 

where all quantities are referenced to the freestream values p^, u^ and the cylinder 

diameter. A momentum balance analysis around the cylinder relates at each stream- 

wise position (x) the drag coefficient and momentum thickness (0m) to turbulent 

intensities, pressure coefficient, viscous and subgrid-scale stresses: 

r+oo  r+oo      r+oo /-foo  r+oo       r+oo 
Cpdy - 2 /     ~p u'Wy + 2 /     (äu - r„)<9y 

-co J—oo J—oo 
(97) 

Note that at Reynolds number 3,900, the far-wake momentum-thickness Reynolds 

number UoJIm/v is approximately 1,911, since 

lim em(x) ~ \cD ~ 0.49 
X-+CO 2 

(98) 

Since they are directly related to spatially integrated mean quantities in the wake 

region, CD and Cpb are some of the most aggregate quantities of the flow. As such, 

they are relatively insensitive the subgrid-scale turbulence model used in the large- 

eddy simulations. The three simulations predict these coefficients within experimental 

uncertainty. Similarly, the computed surface separation angles and the skin-friction 

coefficient are not significantly different in the three separate calculations. A small 

difference is however observed in the predictions of the Strouhal number, which are 

5% and 3% below the experimental value of 0.215 in the dynamic and fixed-coefficient 

model simulations respectively. 

Overall, the observation of wall statistics reveals insufficient distinctions between 

the three calculations to establish a performance hierarchy. We turn in the following 

section to a more detailed examination of the computed mean wake statistics for this 

purpose. 
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4.4.2      Vortex Formation Region 

Recirculation Zone 

The analysis of differences between the three simulations indicates that overall, the 

dynamic model gives the most accurate prediction of the mean flow in the recirculation 

region. The length and streamwise velocity distribution in the mean separation bub- 

ble are close to experimental observations when computed with the dynamic model 

(table 5). In the calculations without model or with the fixed-coefficient model, the 

bubble length is over-predicted by 17% and 29% respectively. The prediction with 

the dynamic model (L/D = 1.36) is within two percent of the experimental value. 

The mean streamwise and vertical velocities within the recirculation bubble are 

displayed in figures 20 and 21. The experimental uncertainty of around 50% (fig- 

ure 10) on the bubble mean vertical velocities makes comparisons between the ver- 

tical velocities predicted by different simulations difficult. The streamwise velocity 

profiles across the wake however indicate that the dynamic model simulation offers 

more accurate predictions than simulations with no model or with the fixed-coefficient 

Smagorinsky model. The longer recirculation zone in the latter two induces a down- 

stream shift of the entire streamwise velocity distribution on the rear centerline (fig- 

ure 15) compared to the distribution obtained with the dynamic model. This shift is 

apparent in the profiles shown in figure 20 at stations x/D = 1.54 and 2, where the 

wake is wider and the velocity deficit is larger in the fixed-coefficient Smagorinsky 

model simulation than in the computation without model. 

The Reynolds stresses at x/D = 1.54 (figure 22) illustrate the differences between 

the three simulations in the recirculation zone. The dynamic model simulation repro- 

duces the streamwise stress accurately over the entire width of the wake layer. With- 

out subgrid-scale model, the peaks of the streamwise intensities are underpredicted 

by 18%. In the fixed coefficient Smagorinsky calculation, the streamwise intensity is 

damped in the wake-layer center (-0.5 < y/D < 0.5): its peaks lay 43% below their 

expected value. A similar pattern appears in the vertical intensity and Reynolds shear 

stress. At the wake center, the experimental vertical intensity is 0.35 ± 0.04 £/£,. The 

dynamic model prediction (0.29 £/£,) is close to the lower experimental bound, while 
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the simulations without model (0.19 (/£,) and with the fixed-coefficient Smagorinsky 

model (0.10 £/£,) underestimate the vertical intensity. Near the center of the wake, for 

-0.3 < y/D < 0.3, the calculation with the fixed-coefficient Smagorinsky model gives 

a Reynolds shear stress of the wrong sign. All simulations predict that at x/D = 1.54, 

the periodic Reynolds shear stress has the sign opposite of the turbulent shear stress 

near the wake center. The fixed coefficient Smagorinsky model result displays a large 

region with periodic Reynolds shear stress of reversed sign (figure 23), where the 

maximum amplitude of the stress (0.029 U^) is more than twice that obtained with 

the dynamic model (0.013 £/£,). 

Recovery Region 

In the recovery region, between the bubble closure point and x/D = 4, where the 

flow accelerates despite the adverse pressure gradient it faces (figure 15), the Reynolds 

stress prediction ability of the three simulations is qualitatively identical to that in 

the recirculation bubble. The periodic Reynolds stresses at x/D = 2.5, displayed 

in figure 24, are underpredicted by simulations without model and with the fixed- 

coefficient Smagorinsky model. The dynamic model calculation predicts all Reynolds 

stresses within the experimental uncertainty. 

Spanwise intensities are not available experimentally, but the predictions of the 

three simulations are not significantly different in the recirculation region except near 

the wake center (figure 22). The observable differences in the total fluctuating kinetic 

energy (figure 25) in that region are thus largely due to the streamwise and vertical 

Reynolds stresses. The dynamic model calculation predicts total fluctuating kinetic 

energy levels up to about 30% and 90% higher than those obtained without model 

and with the fixed-coefficient Smagorinsky model respectively. 
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4.4.3      Near-Wake Region 

Mean Velocities and Total Reynolds Stresses 

In the near-wake, between 4 and 10 D downstream, the significant differences between 

the three simulations in the predicted mean velocities disappear almost entirely (fig- 

ures 26 and 27). Vertical velocity profiles in figure 27 are displayed at x/D = 3 and 

x/D = 4, the only two locations provided by Ong & Wallace where the magnitude 

of v/Uoo is substantially larger than the experimental uncertainty of 0.02t/oo- The 

streamwise velocity at x/D = 4, which is the end of the recovery region, is more 

accurately predicted by the dynamic model. Aside from this residual effect from the 

recirculation zone, streamwise and vertical velocities are within experimental uncer- 

tainty at all downstream stations. 

At the streamwise locations x/D > 4, the experimental uncertainty on the total 

Reynolds stresses is approximately 0.03£/£,. The three simulations yield streamwise 

intensities and Reynolds shear stresses within the experimental uncertainty. The 

vertical intensity is significantly underpredicted by the fixed-coefficient Smagorinsky 

model calculation at x/D = 4, 7 and 10 (figures 28 through 31). These figures further 

indicate that the differences between the Reynolds stresses in the three simulations 

diminish with downstream distance. 

Time and spanwise averaged total Reynolds stress contours in the near-wake are 

displayed in figure 32. The Reynolds stress distributions at Re = 3,900 are qualita- 

tively similar to those at Reynolds number 1.4 x 105 (Cantwell k Coles 1983). In both 

cases in particular, the maximum mean streamwise and vertical intensities occur near 

the mean bubble closure point, away from and on the wake centerline respectively. 

At Re = 3,900, the maximum mean streamwise intensity (0.18*7^) is 19% lower than 

at Re = 1.4 x 105. This difference is 10% in the case of the maximum mean vertical 

intensity, which stands at 0.39t/^ at Re = 3,900. The distribution of the Reynolds 

shear stress inside the recirculation bubble cannot be compared at both Reynolds 

numbers because it was not provided by Cantwell & Coles. However the maximum 

value of the shear stress (0.13C/£) at Re = 1.4 x 105 appears to be only 4% higher 

than that computed at Re = 3,900. 
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Model Coefficients and Eddy Viscosities 

The time-averaged dynamic model coefficient C(x,y) (equation 28) scaled on the 

squared Smagorinsky constant (C^ = 0.0652), is displayed in figures 33 and 34. The 

ratio of the fixed Smagorinsky coefficient Ca to its dynamic counterpart yC(x, y) is 

about 2 at x/D = 1, 2.5 at x/D = 5 and 3 at x/D = 10. The dynamic model coeffi- 

cient within the turbulent core of the wake-layer thus generates a value of yC(x, y) 

varying between 0.13 and 0.2 in the first 10 diameters of the wake. 

Mean eddy viscosities obtained from the fixed-coefficient and dynamic model cal- 

culations are displayed in figure 35 scaled on their respective maximum values. At 

Reynolds number 3,900, the free shear layers are laminar (Cardell 1993). It is thus 

expected that the eddy viscosity in the shear layers should be substantially less than 

further downstream in the wake, a behavior reproduced by the dynamic model, but 

not by the fixed-coefficient model (figures 35, 36). Another difference in the eddy 

viscosities is their vertical support: it is bounded by the wake edge at all downstream 

stations in the dynamic model simulation, but not in the fixed-coefficient Smagorinsky 

model case. 

Ten diameters downstream of the cylinder, the dynamic eddy viscosity is about 

ten times larger than the eddy viscosity generated by the fixed-coefficient model. 

The resulting total viscosities (v + vt) are different by a factor of two in the dynamic 

and fixed-coefficient model simulations, and a factor of three in the calculations with 

the dynamic model and without model. Despite these differences, low-order statis- 

tics appear independent of the presence or absence of a subgrid-scale model at that 

location. 

Periodic and Random Reynolds Stresses 

The convergence of the results from all three simulations toward the experimental 

data in the near-wake occurs despite the decrease with downstream distance of the 

60 



contribution of the periodic motion to the total Reynolds stresses (figure 37), mea- 

sured at each downstream location by the ratio (Matsumura k Antonia, 1993): 

/+oo    /   r+oo         _   
|«i fij| dy / /      \u'i u'j + Tij + üi üj\ dy 

-oo /    J— oo 
(99) 

The periodic component of the motion, a spanwise-averaged quantity, is two-dimensional: 

the periodic spanwise intensities are nearly zero at all locations inside the wake. At x/ 

D = 4, the periodic contributions to the streamwise, vertical and shear stresses reach 

28%, 60% and 26% respectively. Seven diameters downstream, they stand at 19%, 

58% and 26%. Ten diameters downstream, the streamwise and vertical periodic com- 

ponents continue to diminish, with contributions at 13% and 46% respectively, while 

the periodic Reynolds shear stress maintains an approximately constant contribution 

level of 27%: within the first 10 diameters of the wake. 

That the simulations with and without subgrid-scale model predict similarly ac- 

curate Reynolds stresses at x/D = 10 is thus not linked to the dominance of periodic 

stresses over random stresses. It is rather a consequence of the small magnitude of 

the subgrid-scale Reynolds shear stress T12 relative to the resolvable shear stress u'v' 

in the wake, an effect discussed below. 

Subgrid-Scale Shear Stresses 

Profiles of the subgrid-scale shear stress magnitude normalized on the resolved Reynolds 

shear stress, |ri2|/|«' V'\, at downstream stations x/D = 3, 5 and 10, are shown in fig- 

ure 38 with the vertical direction y scaled on the wake half-width (H). They indicate 

that the relative magnitude of the subgrid-scale shear stress within the turbulent core 

of the wake increases with downstream distance. This behavior is expected because 

of the coarsening of the mesh (see Appendix C) and of the conversion of large-scale 

energy associated with the organized, periodic motion into turbulent kinetic energy 

as the flow evolves downstream. 

The magnitude of the subgrid-scale shear stress relative to its resolvable counter- 

part is small however, even at x/D = 10.   The overall magnitude of subgrid-scale 
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stresses scaled on resolvable stresses, measured as 

|r,;l dy    /     K «51 Qy 
-00 /    J—oo 

(100) 

is displayed in figure 39. The subgrid-scale shear stress norm achieves a maximum of 

5% of the resolvable shear stress at x/D ~ 1.2. From 4 to 10 diameters downstream, 

the same norm ranges between 1% and 2%. 

These results confirm the earlier observation that the impact of the subgrid-scale 

model on the mean flow is small in the computed near-wake. It thus appears that the 

mean flow is principally governed by the largest scale motions of the flow, which are 

accurately resolved on the grid in the simulations. This conjecture is examined in the 

following two sections. The first section investigates the nature of the small-scales 

present in the near-wake at Re = 3,900. The second section compares experimental 

and computed one-dimensional energy spectra, and examines the impact of numerical 

dissipation on the computed fields. 

Small-Scale Turbulence at Re = 3,900 

Fifty diameters downstream of the cylinder in the center of the wake, Uberoi & Frey- 

muth (1969) find an inertial range at Reynolds number 4,320 spanning about half 

a wave-number decade. An inertial range over one wave-number decade develops at 

that location for Reynolds numbers greater than approximately 15,000. In direct nu- 

merical simulations of a small-deficit, time-developing wake at a momentum-thickness 

Reynolds number of 2,000, which is comparable to that of the present simulations, 

Moser & Rogers (1994) find a short inertial range, spanning about half a wave-number 

decade: Contours of instantaneous spanwise vorticity visually confirm the presence 

of small-scale turbulence in their simulations. 

Experimental velocity spectra at Reynolds number 3,900 provided by Ong & 

Wallace (1994) indicate that a fc_5/3 tangency at x/D = 10 occurs over a range 

of similar size to that of Moser k Rogers (figures 40, 41). In the Ezt{kx) spectra 

however, the vortex shedding frequency, which represents a large-scale motion, lies at 

the edge of the fc"5/3 range at locations between five and ten diameters downstream. 
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Furthermore, the high wave-number end of the fc~5/3 range lays at approximately 

five times the Strouhal frequency (figure 41), a number lower than the transition 

frequency in the separated free shear layers at Re = 3,900, which stands at six times 

the vortex shedding frequency (see Bloor 1964, Norberg 1987, Wei k Smith 1986). 

At Reynolds number Re = 5,000, visualizations of the free shear layers around 

the cylinder suggest that secondary vortices, formed in these layers and entrained into 

the wake at about two diameters downstream, are highly organized at that location 

(Ahmed et al. 1992). At Re = 1,770 the instantaneous flow pattern between 30 and 

70 diameters downstream (Van Dyke 1982, p. 101), appears dominated by motions 

scaling on the cylinder diameter. This is in contrast with the flow at Reynolds number 

1.1 x 105 (Van Dyke 1982, p.130), in which small-scales are clearly present in the near- 

wake region. 

Based on the evidence above, it is unclear whether small-scale turbulence, such 

as that observable de visu in the simulation of Moser & Rogers, is present within the 

first ten diameters of the wake at Re = 3,900. The following section further examines 

this issue by presenting pictures of the computed instantaneous vorticity in the wake, 

which have no experimental equivalents, as well as one-dimensional energy spectra. 

One-Dimensional Energy Spectra and Numerical Dissipation 

Power spectra as a function of frequency presented in this chapter were calculated with 

the technique used by Choi & Moin (1990). The time series of a velocity component 

g(x, y, z, t) is defined at Nz = 48 spanwise points on the interval 0 < t < T. The series 

at each spanwise location is considered as a statistically independent realization. The 

power spectrum of the function g is then calculated as the average of the spectra of 

these 48 realizations. Each velocity record of N points in time at a given spanwise 

location is divided into m time intervals of length Tm = 2T/(m + 1) with a 50% 

overlap, each containing M = 2N/(m + 1) points. The frequency corresponding to 

the vortex shedding motion is ust — 2wf where / is the dimensional Strouhal number 

[St = fD/Uoo). The maximum resolvable frequency is wmax = Mir/Tm, while the 

frequency resolution is given by Au; = 2n/Tm. 
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The power spectra presented in this section were obtained from the simulations 

using the dynamic subgrid-scale model and with no model. The data was collected 

at 88 points over a time interval TU^/D = 30, which was divided into m = 7 

overlapping segments of length TmU^/D = 7.5 containing 22 points each. The power 

spectra were thus ensemble-averaged over 7 x 48 = 336 velocity-trace sets. The 

maximum resolvable frequency was 7.3 ust, with a resolution of 0.67 ust- 

In the present simulations, the grid is fine enough to resolve most of the energy 

in the near-wake (see vertical lines in figures 40, 41). Small-scale motions present in 

the flow are thus expected to be apparent in the simulation data. 

Figures 42 and 43 respectively show the instantaneous vertical vorticity on the 

symmetry plane y = 0 for 5 < x/D < 10, 0 < z < Lz, and the streamwise vorticity 

at r/D = 10 in the simulation using the dynamic model. These contours reveal that 

only large-scale features, which scale on the cylinder diameter, are present in the 

simulation. 

The absence of small scales in the large-eddy simulations is confirmed by the 

computed one-dimensional frequency spectra En(u) shown in figure 44 compared to 

the experimental results of Ong & Wallace at stations x/D = 5, 7 and x/D = 10. 

The spectra obtained from the simulations with no subgrid-scale model and with the 

dynamic model are compared in figure 45 to confirm that the high-frequency damping 

observed in the large-eddy simulation is not attributable to the filtering operation. 

The computed spectra discussed below are those obtained from the dynamic model 

simulation. 

The computed streamwise spectra agree well with the experiment for frequencies 

lower than approximately 2.5 uSt at x/D = 5. At higher frequencies, the computed 

energy levels fall rapidly below their experimental values. At locations further down- 

stream, the maximum well-resolved frequency decreases as the grid coarsens in the 

streamwise and azimuthal directions. Using Taylor's hypothesis, the maximum re- 

solvable frequency on the grid is 10.5 ust at five diameters downstream. At that 

location, about three-quarters of the resolvable frequency range are thus affected by 

numerical dissipation. 
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The evolutions of the computed spanwise wave-number spectra with downstream 

distance are displayed in figure 46. These spectra are not available experimentally. 

The energy content at high wave-numbers increases between x/D = 0.7 and x/D = 1 

in the three spectra. Past the bubble closure point however, the energy at a given 

wave-number decreases monotonically with downstream distance in all spanwise spec- 

tra. 

That the influence of the subgrid-scale model on low-order statistics in the near- 

wake is small is thus attributable to the inability of the numerical simulation to 

accurately represent frequencies which should be resolvable on the grid. The observed 

resolved frequency range, which includes only a quarter of the frequencies sustainable 

on the mesh, makes the dynamic subgrid-scale model operate at scales which contain 

negligible amounts of energy. 

These results indicate that the fifth-order accurate upwind scheme used to eval- 

uate the convective derivatives generates enough numerical dissipation to affect the 

turbulence in regions where the mesh is fine enough to resolve the mean flow velocity 

and Reynolds stresses. Thus although this scheme appeared to be a good candidate 

for direct simulations (Rai k Moin 1991), its usefulness for large-eddy simulations is 

limited by the fact that the mesh size must be sufficiently fine everywhere in the flow 

for numerical dissipation to be negligible compared to its molecular counterpart. The 

consequent grid-size may be significantly dictated by that requirement, as the case of 

the cylinder near-wake presented above indicates. The adequacy of upwind-biased dif- 

ferentiation schemes to large-eddy simulations being in question, the following chapter 

examines whether the impact of numerical dissipation on the computed solution can 

be controlled by choosing higher-order accurate, one-point upwind schemes for such 

calculations 

4.4.4      Simulation Comparison Summary 

Significant differences in the mean velocity and total Reynolds stresses between the 

simulations without model, with a fixed-coefficient Smagorinsky model and with a 

dynamic model exist in the vortex formation zone. This zone consists of the first four 
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diameters of the wake, which includes the cylinder surface, the recirculation bubble 

and the recovery region. The dynamic model calculation predicts more accurate 

mean velocities and Reynolds stresses than the calculation without model. The fixed- 

coefficient Smagorinsky model simulation is the least accurate one. 

The dynamic model gives rise to an eddy viscosity distribution which is in better 

agreement with our expectations based on the flow physics than the fixed-coefficient 

model. The maximum mean eddy viscosity computed with the dynamic model occurs 

in the wake region near the mean bubble closure location. On the contrary, the fixed- 

coefficient Smagorinsky model generates the highest level of eddy viscosity in the 

separated free shear layers, which are laminar at Reynolds number 3,900. 

Downstream of the formation region, between four and ten diameters downstream, 

there are no significant differences in the mean velocities, total streamwise, spanwise 

or shear Reynolds stresses obtained in the three simulations. Differences reside prin- 

cipally in the predictions of vertical intensities, which are more accurate with the dy- 

namic model than without model or with the fixed-coefficient model. However these 

differences between the three simulations diminish with downstream distance. The 

fifth-order accurate, upwind-biased differencing scheme used for the convective terms 

appears to generate enough numerical dissipation to overwhelm the contribution of 

subgrid-scale eddy-viscosity models in coarse-mesh regions of the flow. The following 

chapter examines the impact of numerical dissipation on the computed flow-fields. 
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Simulation Re = 3,900 
Experiment 2-D 

no model 
3-D 

no model 
Fixed 

coefficient 
Dynamic 

model 

St 
Strouhal number 

0.263 0.216 0.209 0.203 0.215 ± 0.005 
(Cardell 1993) 

Cpb 

Back pressure 
-2.16 -0.89 -0.81 -0.95 -0.90 ± 0.05 

(Norberg 1987) 

CD 

Total drag 
1.74 0.96 0.92 1.00 0.98 ± 0.05 

(Norberg 1987) 

Cf x 100 
Skin-friction 

1.33 0.87 0.86 0.91 

0i 
Separation 

±108.1 ±85.3 ±84.8 ±85.8 ±85 ±2 
(Son et al. 1969) 

&2 

Separation 
±124.6 ±109.7 ±110.5 ±110.6 

ö3 
Separation 

±154.1 ±146.2 ±158.3 

L/D 
Bubble length 

No 

separation 

bubble 

1.56 1.74 1.36 1.33 ± 0.2 
(Cardell 1993) 

in bubble 
-0.33 -0.33 -0.32 -0.24 ±0.1 

(Lourenco 1993) 

rmiJD 
«min location 

1.00 1.10 0.88 0.72 ±0.1 
(Lourenco 1993) 

Table 5: Cylinder surface and bubble region result summary 
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Figure 12: Lift coefficient at Re = 3,900; (a): 2D; (b): 3D 
  : Total lift; ■ • • : Viscous lift 
(Note the vertical scale difference) 
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Figure 13: Drag coefficient at Re = 3,900; (a): 2D; (b): 3D 
  : Total drag; • • • : Skin - friction 
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Figure 14: Re 3,900; Mean streamlines in two- and three-dimensional calculations 
(a): 3D no model; (b): 2D no model 
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Figure 15: Re = 3,900; Centerline streamwise velocity and pressure coefficient 
  : Dynamic model;    : No model; • • • : Fixed coefficient model 
 : 2D no model;  x : Lourenco k Shih; A : Ong k Wallace 
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Figure 16: Re = 3,900; Wall vorticity 
Dynamic model; : No model; • • • : Fixed coefficient model 

 : 2D no model 

Figure 17: Re = 3,900; Wall pressure coefficient 
: Dynamic model; : No model; • • • : Fixed coefficient model 

— : 2D no model;  x : Experiment (Re = 3,000; Norbergl9S7) 
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Figure 18: Re = 3,900; Tangential velocity in the cylinder surface boundary layer 
(a): 0 = 90°; (6) : 0 = 120°; (c) :  0 = 150° 

  : Dynamic model; : No model; • • • : Fixed coefficient model 
 : 2D no model 
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Figure 19: Re = 3,900; Instantaneous constant vorticity contours in the wake 
\HJD/ud\ = 3; Simulation without model 
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Figure 20: Re = 3,900; Streamwise velocity at x/D = 1.06 (a); 1.54 (b); 2.02 (c) 
  : Dynamic model;    : No model; • • • : Fixed coefficient model 

A : Lourenco & Shih 
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Figure 21: Re = 3,900; Vertical velocity at x/D = 1.54 
Dynamic model;    : No model; • • • : Fixed coefficient model 

A : Lourenco & Shih 
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Figure 22: Re = 3,900; Total Reynolds stresses at x/D = 1.54 
(a): Streamwise; (b): Vertical; (c): Spanwise; (d): Shear 

- : Dynamic model; : No model; • • • : Fixed coefficient model 
A : Lourenco & Shih 
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Figure 23: Re = 3,900; Periodic Reynolds stresses at x/D = 1.54 
— : Dynamic model; : No model; • • • : Fixed coefficient model 

A : Lourenco & Shih 
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Figure 24: i?e = 3,900; Periodic Reynolds stresses at x/D = 2.5 
— : Dynamic model; : No model; • • • : Fixed coefficient model 

A : Lourenco & Shih 
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Figure 25: Re = 3,900; Total kinetic energy (u'fc w'fc + üfc uk + Tkk)/2Ul, 
(a): x/D = 0.8; (b): x/D = 0.9; (c): x/Z> = 1.0; (d): x/D = 2.0 
  : Dynamic model;    : No model; • • • : Fixed coefficient model 
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Figure 26: Äe = 3,900; Streamwise velocity at x/D = 4 (a); 7 (b); 10 (c) 
  : Dynamic model;    : No model; • • • : Fixed coefficient model 

A : Ong & Wallace 
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Figure 27: -Re = 3,900; Vertical velocity at x/D = 3 (a); 4 (b) 
- : Dynamic model;    : No model; • • • : Fixed coefficient model 

A : Ong & Wallace 
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Figure 28: 

(c) 

Re = 3,900; Total streamwise Reynolds stresses at x/D = 4 (a); 7 (b); 10 

- : Dynamic model; : No model; • • • : Fixed coefficient model 
A : Ong k Wallace 
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Figure 29: Re = 3,900; Total vertical Reynolds stresses at x/D = 4 (a); 7 (b); 10 (c) 
  : Dynamic model; : No model; • • • : Fixed coefficient model 

A : Ong k Wallace 
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Figure 30: 

(c) 

Re = 3,900; Total spanwise Reynolds stresses at x/D = 4 (a); 7 (b); 10 

: Dynamic model; : No model; • • • : Fixed coefficient model 
A : Ong & Wallace 
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Figure 31: Re = 3,900; Total Reynolds shear stresses at x/D = 4 (a); 7 (b); 10 (c) 
  : Dynamic model; : No model; • • • : Fixed coefficient model 

A : Ong & Wallace 
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Figure 32: Re = 3,900; Time and spanwise averaged total Reynolds stresses in the 
first ten diameters of the wake 

(a): Streamwise stress, contours from 0 to 0.18, increments 0.0075 
(b): Vertical stress, contours from 0 to 0.4, increments 0.02 

(c): Shear stress, contours from -0.12 to 0.12, increments 0.01 
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Figure 33:  Re = 3,900; Dynamic model coefficient C(x,y) scaled on the squared 
Smagorinsky constant C* at x/D = 0.5 
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Figure 34:   Re = 3,900; Dynamic model coefficient C(x,y) scaled on the squared 
Smagorinsky constant C2

a 

  : x/D = 1; :x/D = 3; •••:x/D = 5 
 : x/D = 7; : x/D = 10 
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Figure 35: Re = 3,900; Normalized time and spanwise-averaged eddy viscosity vtj 
max(Ft) in the first ten diameters of the wake 

(a): Dynamic model; (b): Fixed coefficient model 
Contours from 0 to 1; increments 0.05 
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Figure 36: Re = 3,900; Time and spanwise-averaged eddy viscosity profiles 
(a): Dynamic model; (b): Fixed coefficient model 
  : x/D = 1;    :x/D = 2; • • • : x/D = 4 
 : ar/D = 7; : x/D = 10 
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Figure 37: Re = 3,900; Total and periodic Reynolds stress components 
(a): Streamwise; (b): Vertical; (c): Spanwise; (d): Shear 

Dynamic model;  : total;    : periodic 
In each figure: x/D = 4 (top); 7 (center); 10 (bottom) 
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Figure 38: 
stress 

Re = 3,900; Percentage of subgrid-scale to resolvable Reynolds shear 

—-   : x/D = 3; •-■:x/D = 5;   : x/D = 10 
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Figure 39: Re = 3,900; Percentage of vertically integrated subgrid-scale to resolvable 
Reynolds stresses 

 : Streamwise; • • • : Vertical; : Spanwise;   : Shear 
Dynamic model simulation; Re = 3,900 
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Figure 40:  Re = 3,900; Experimental velocity power spectra En at y = 0 (Ong 
& Wallace, 1994); • • • : x/D = 5;     : x/D = 7; : x/D = 10;     : 
fc-s/3. grid cutoff at x/D = 10 

Figure 41:   Re = 3,900; Experimental velocity power spectra £22 at y = 0 (Ong 
k Wallace, 1994); • • • : x/D = 5;     : x/D = 7; : x/D = 10;     : 
jfe-5/3. grid cutoff at x/D = 10 
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Figure 42: Re = 3,900; Instantaneous vertical vorticity at y = 0, 5 < x/D < 10, 0 < 
z < Lz. Dynamic model simulation. 

Contours from —5 to 6 by 0.3 
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Figure 43:  Re = 3,900; Instantaneous streamwise vorticity at r/D = 10,  -5 < y/ 
D < 5, 0 < z < Lz. Dynamic model simulation. 

Contours from —5 to 3 by 0.3 
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Figure 44: 
(c): x/D ■■ 

Re = 3,900; One-dimensional spectra En at (a): x/D = 5; (b) : x/D = 7; 
= 10 
 : Dynamic model;   : Ong & Wallace 
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Figure 45:   Re = 3,900; One-dimensional spectra En from LES and DNS at (a): 
x/D = 5; (b) : x/D = 7; (c): x/D = 10 

 : Dynamic model; • • • : No model; 
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Figure 46: Re = 3,900; One-dimensional spectra En, E22 and E33 at y = 0 from the 
dynamic model simulation 
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Chapter 5 

Numerical Dissipation Impact on 

the Solution 

5.1      Motivation and Objective 

The results outlined in the previous chapter indicated that the numerical dissipa- 

tion generated by the fifth-order accurate, one-point upwind biased scheme applied 

to the convective fluxes had a nefarious impact on the calculations. This scheme is 

referred to below as scheme A. In the near-wake region between four and ten diam- 

eters downstream of the cylinder, frequency spectra of the velocity indicated that 

a substantial range of frequencies resolvable on the grid were damped. This range 

widened with increasing downstream distance. As a direct consequence, the subgrid- 

scale eddy-viscosity models were probably overwhelmed by numerical dissipation in 

the near-wake. 

To assess the impact of numerical dissipation on the computed solution, the results 

obtained with the fifth-order accurate, upwind-biased scheme must be compared with 

those generated using a scheme with less inherent numerical dissipation. The objective 

of this chapter is to establish such a comparison. 

Rai & Moin (1991) used a sixth-order accurate central scheme for the convective 
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fluxes in an incompressible turbulent channel flow simulation. The solution was de- 

aliased in Fourier space, an approach not well suited for finite-difference methods in 

complex geometry. Further, incompressible Navier-Stokes solvers involve no divisions 

and fewer multiplications of primitive variables than compressible solvers. The sever- 

ity of the aliasing problem may thus be different for incompressible and compressible 

numerical solutions. 

A differencing scheme for convective fluxes which has been successfully applied in 

compressible simulations (Blaisdell et al. 1990, Lee et al. 1992) is a central scheme 

in which derivatives of the convective fluxes are computed as 

—pui{kxu   +   k2v + k3w) = -—pui(kiu + k2v + faw) 

1 
+    r 

d l d 
pui—{kxu + k2v + k3w) + -{fau + k2v + k3w)—pUi  (101) 

where fa, k2 and k3 are geometric coefficients given in table 7 of appendix A. This 

formulation conserves total kinetic energy in the inviscid limit (Feiereisen et al. 1981), 

and has been demonstrated to control aliasing errors in the calculations of decaying 

homogenous turbulence (Blaisdell et al. 1990). Applied to the flow over a circular 

cylinder with a fourth-order accurate scheme, this method was found to be unstable 

with both the trapezoidal and the second-order backward time-integration schemes. It 

was discontinued in favor of a strategy to systematically reduce the level of numerical 

dissipation generated by upwind-biased schemes. This is achieved by comparing the 

velocity power spectra obtained from simulations with increasing order of accuracy 

which use one-point upwind-biased differencing schemes for the convective fluxes. 

This chapter presents the results of such a computation, which uses a seventh- 

order accurate, upwind-biased scheme for the convective fluxes. This is referred to as 

scheme B below. The precise differencing stencil is given by equations 58 and 59 in 

chapter 2. 

96 



5.2      A Numerical Example 

The solution to the one-dimensional wave equation provides some guidance on the 

improvements which may be expected with scheme B. The governing equation 

^ + ^ = 0   0<x<i,   <>0 
at     ox 

with the associated boundary and initial conditions 

u(x, 0) = exp(-a(x - x0)2)    u(0, t) = exp(-a(x0 + t)2) 

(102) 

(103) 

are advanced in time using the second-order accurate implicit scheme used in cylinder 

simulations. The domain length is chosen as L = 126, and the spatial discretization 

is uniform, with 221 points in a first case (1) and 442 points in a second case (2). 

The examples below are computed with the parameters x0 = 3 and a = 4, which 

translate into a Gaussian of half-width 1.07 spanned by four and eight computational 

points in cases (1) and (2) respectively. This numerical experiment can be thought 

of as describing the effect of upwinding on a coarsely resolved structure traveling on 

a large-eddy simulation mesh. The solutions using schemes A and B are compared at 

the time when the traveling Gaussian is centered at x = 20. The exact solution is a 

Gaussian of unit amplitude, unaltered in shape from its initial condition. Figures 47 

and 48 display the profiles of the computed solutions at t = 17. Scheme B yields an 

18% improvement over scheme A in the amplitude of the solution with four points per 

structure (Gaussian). With a doubling of the resolution, the improvement afforded by 

the seventh order scheme diminishes to 13%. Simulations with both schemes signifi- 

cantly damp the traveling Gaussian at both resolutions. Both solutions also exhibit 

the effect of numerical diffusion by widening the width of the traveling structure. 

This one-dimensional example suggests that coarse to moderately resolved struc- 

tures traveling in the cylinder wake are significantly damped by the numerical dissi- 

pation generated by upwinding, although the application of scheme B should result 

in a small but measurable improvement in the resolution of these structures. This 

conjecture is investigated below. 
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5.3      Cylinder Computations 

The flow at Reynolds number 3,900 was computed on the same (144 x 136 x 48)-point 

mesh which was used in the fifth-order accurate simulations presented in the previous 

chapter. The simulation was performed with the dynamic subgrid-scale eddy-viscosity 

model. 

5.3.1      Instantaneous Wake Vorticity 

This section provides a qualitative discussion of the differences observed in the vortic- 

ity fields obtained with schemes A and B. In all figures, the vorticity has been scaled 

on the local mean centerline streamwise velocity deficit. 

The vertical vorticity contours at r/D - 5, displayed in figure 49, exhibits 

smaller vortices and sharper vorticity gradients obtained with the higher-order upwind 

scheme. Ten diameters downstream (figure 50), similar properties are discernable in 

the streamwise vorticity. In the calculation with scheme A, constant streamwise vor- 

ticity contours display larger structures than with the seventh-order scheme. 

The breakup of spanwise vortical structures described above is visible in the span- 

wise vorticity contours on the rear plane of symmetry (y = 0), in the region 5 < x/ 

D < 10 (figure 51). The simulation with scheme A displays a quasi-regular pattern 

of primary rollers spanning the entire homogeneous direction. With scheme B, these 

regular rollers have been altered by smaller structures. 

Finally, figures 52 and 53 display the instantaneous streamwise and vertical vor- 

ticities respectively, in a vertical plane at z = 0, between five and ten diameters 

downstream. Both figures exhibit the same features that were noted in the discus- 

sion above: the simulation with scheme B shows smaller and more numerous vortical 

structures in the wake, separated by regions of sharper vorticity gradients. 

Differences in the three-dimensional structures of the respective wakes are fur- 

ther illustrated by the instantaneous constant vorticity contours (\üJD/ud\ = 1, 3, 6) 

shown in figures 54 through 56 respectively, where uj. is the mean centerline velocity 
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deficit. The first figure offers a qualitatively similar view of both simulations. Stream- 

wise structures of roughly equal size appear to connect the spanwise rollers. However 

at the higher levels of vorticity, the streamwise ribs are thinner in the higher-order 

accurate simulation. In the near-wake (5 < x/D < 10), streamwise structures appear 

as slender, coherent ribs extending from one spanwise vortex-core to the next with 

scheme B. On the contrary, in the same interval, structures computed with scheme 

A are shorter ribs which diffuse with downstream distance. This difference is most 

pronounced for \uD/ud\ = 6, the corresponding ribs having completely disappeared 

from the near-wake in the calculation with scheme A. This indicates that the ribs 

have gained in strength with the higher-order accurate scheme and lowered level of 

numerical dissipation. These structures are instrumental in ejecting low-speed fluid 

from the wake-layer and entraining irrotational fluid toward the turbulent core of the 

wake. Their increased strength thus corresponds to a more intense mixing process in 

the wake layer. 

Instantaneous contours of the spanwise vorticity and vertical velocity computed 

with the seventh-order accurate scheme in the first ten diameters of the wake are 

displayed in figures 57 and 58 respectively. The first two Karmann vortices behind 

the cylinder form a pattern similar to that observed at laminar regimes. Past five 

diameters downstream, the breakup of the spanwise rollers into smaller structures is 

visible. In the free shear layer separating from the bottom side of the cylinder, the 

vertical velocity contours outline the presence of secondary vortices. 

5.3.2      Velocity Power Spectra 

The observations made in the previous section on the presence of sharper features and 

smaller-scale structures in the seventh-order accurate simulation are quantified in this 

section through a comparison the velocity power spectra obtained with schemes A 

and B. 

At locations x/D = 5, 7 and x/D = 10, the spectra obtained from scheme B 

(figure 59), although substantially damped by numerical dissipation, display energy 

levels at resolvable frequencies increased by up to about eight tenths of a decade 
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relative to the results with scheme A. Five diameters downstream the spectra obtained 

from the seventh-order accurate calculation are damped at frequencies lower than 

that of the start of the fc~5/3 range displayed in the experiment. As the flow evolves 

downstream on a coarsening mesh, larger scales of motion are expectedly further 

damped. To accurately resolve these spectra at x/D = 5 past the start of the inertial 

range on the present grid would thus require at least a ninth-order accurate, one- 

point upwind scheme, which may encounter other numerical difficulties associated 

with Runge phenomenon. 

Although spanwise wave-number spectra are not available experimentally, fig- 

ure 60 shows that the gains in energy at high wave-numbers realized with scheme 

A are more substantial than in the streamwise frequency spectra. At x/D = 7 for 

instance, the energy level increased by up to two decades at wave-numbers between 

ten and fifteen. 

5.3.3      Dynamic Subgrid-Scale Model Contribution 

The magnitudes of the subgrid-scale intensities and shear stress relative to their re- 

solvable counterparts are shown as a percentage ratio in figure 61 over the region 

0.5 < x/D < 10. In the near-wake region, the streamwise intensity ratios appear 

to be the same to within statistical fluctuations, whereas it is higher for scheme B 

beyond x/D ~ 7. In the same zone, the vertical intensity ratio is relatively constant 

with both schemes. The shear stress ratio peaks at about 3.5% in the simulation 

with scheme B, which is 100% higher than the peak obtained with scheme A in the 

near-wake region. At locations 5 < x/D < 10, the magnitude of the subgrid-scale 

shear stress relative to the resolvable shear stress is larger when computed with the 

scheme generating the least numerical dissipation. 

At all stations downstream of the cylinder, the magnitude of the mean eddy- 

viscosity (figure 62) is larger with scheme B. A maximum gain of approximately 30% 

in vt occurs at x/D = 5, at the downstream edge of the vortex formation zone. In the 

near wake, differences in vt between the two differencing schemes decrease, so that at 

x/D = 10 both schemes yield comparable distributions of eddy viscosity. 
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5.3.4      Cylinder Surface and Near-Wake Mean Flow 

The statistics of the flow at the cylinder surface are summarized in table 6. The 

Strouhal number is within experimental error with scheme B (St = 0.217), whereas it 

layed about 5% below Cardell's value of 0.215 in the calculation with scheme A. The 

back-pressure and drag coefficients are within experimental error with both schemes, 

although using scheme B improves their prediction. The wall vorticity and pressure 

distributions predicted by both methods (figures 63, 64) differ slightly on the wake- 

facing side of the cylinder, where scheme B yields a slightly more accurate prediction 

for the back-pressure coefficient (Cpb = —0.90) than scheme A. 

In the vortex-formation region, the centerline velocity is lower and the pressure 

coefficient larger with the higher-order scheme (table 6, figure 65). As a consequence, 

the recirculation bubble is longer than that obtained with scheme A. In this region, the 

turbulent kinetic energy is consistently higher with scheme B: the energy present in the 

separated free shear layers is several times larger than with scheme A, indicating that 

numerical dissipation has been significant (figure 66). At x/D = 1, the calculation 

with scheme A predicts a higher turbulent kinetic energy in the bubble core than 

in the shear layers. With scheme B, the shear layers at that location are clearly 

delineated and contain about 50% more energy than the bubble per se. 

In the near-wake region, the streamwise velocity, scaled on the mean centerline 

velocity deficit and wake half-width, is better represented by method B across most 

of the wake layer (figure 67). Scheme A overpredicted the growth-rate of the wake 

layer. The improvement in the growth-rate prediction with scheme B is evident in the 

streamwise and vertical intensities (figures 68, 69) which peak at values closer to the 

experimental results. The Reynolds shear stresses similarly show a marked improve- 

ment with scheme B (figure 70). Ten diameters downstream, the shear stress profile 

predicted with scheme B is in good agreement with the experimental measurements. 
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5.4      Comparison Summary 

The preceding results indicate that the reduction of numerical dissipation levels be- 

tween the fifth- and seventh-order accurate schemes has a significant impact on the 

computed solution. The effect of switching from scheme A to B led to sharper res- 

olution of the transitioning separated free shear layers, the increased energy levels 

at high frequencies and wave-numbers, as well as the thinning and strengthening of 

the rib vortices connecting spanwise rollers. Improvements in the solution computed 

with the higher-order scheme are equally apparent in the low-order wake statistics. 

Despite these ameliorations, the streamwise one-dimensional frequency spectra indi- 

cate that a substantial portion of the resolvable frequency range is damped even with 

scheme B. Resolving frequencies up to the inertial range past the vortex formation 

zone appears to require either a higher-order accurate scheme or finer resolution of 

the first five diameters of the wake. 
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Figure 47: Traveling Gaussian, 4 points per structure 
 : Initial condition (t = 0) 

7th order scheme at t — 17;  : 5th order scheme at t = 17 

1.00 

x 

Figure 48: Traveling Gaussian, 8 points per structure 
 : Initial condition (t = 0) 

 :7th order scheme at t — 17;  : 5t/l order scheme at t = 17 
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Figure 49: Re = 3,900; Instantaneous vertical vorticity at r/D = 5 
Contours from —8 to 6 by 0.4 

(a): 1th order accurate scheme; (b): hih order accurate scheme 
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Figure 50: Re = 3,900; Instantaneous streamwise vorticity at r/D = 10 
Contours from —4 to 4 by 0.2 

(a): 1th order accurate scheme; (b): 5th order accurate scheme 
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Figure 51: Re = 3,900; Instantaneous spanwise vorticity at 5 < x/D < 10; y = 0 
Contours from —6 to 6 by 0.3 

(a): 1th order accurate scheme; (b): 5th order accurate scheme 
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Figure 52: Re = 3,900; Instantaneous streamwise vorticity at 5 < r/D < 10; z = 0 
(a): 1th order accurate scheme; (b): 5th order accurate scheme 

Contours from —6 to 9 by 0.4 
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Figure 53: Re = 3,900; Instantaneous vertical vorticity at 5 < r/D < 10; z = 0 
(a): 7th order accurate scheme; (b): 5th order accurate scheme 

Contours from —3 to 4 by 0.2 
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Figure 54: Re = 3,900; Instantaneous constant vorticity contours \uD/ud\ = 
left: 7th order-accurate simulation; right: 5th order-accurate simulation 
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Figure 55: Re = 3,900; Instantaneous constant vorticity contours \öD/ud\ = 3 
left: 7th order-accurate simulation; right: 5th order-accurate simulation 
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Figure 56: Re = 3,900; Instantaneous constant vorticity contours \uD/ud\ = 6 
left: 1th order-accurate simulation; right: 5th order-accurate simulation 
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Figure 57:   Re = 3,900; Instantaneous spanwise vorticity contours in the first 10 
diameters of the vertical plane z = 0 (seventh-order scheme) 

Figure 58: Re = 3,900; Instantaneous vertical velocity contours in the first 10 diam- 
eters of the vertical plane z = 0 (seventh-order scheme) 
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Figure 59: Re = 3,900; One-dimensional frequency spectra En{ui) at (a): x/D = 5; 
(b) : x/D = 7; (c): x/D = 10 

• • • : 7i,lorder scheme; : 5t/lorder scheme;   : Ong & Wallace 
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Figure 60:  Re = 3,900; One-dimensional wave-number spectra En(h) at (a):  x/ 
D = 5; (b) : x/D = 7; (c): x/D = 10 

 : 7t,lorder scheme;   : 5thorder scheme 
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Figure 61: Re = 3,900; Subgrid-scale Reynolds stress as percentage of the resolvable 
stress 

Streamwise intensity (a); Vertical intensity (b); Shear stress (c) 
 : T'^order scheme;   : 5thorder scheme 
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Figure 62: Re = 3,900; Mean eddy viscosity profiles 
(a): x/D = 1; (b) : x/D = 3; (c): x/D = 4 
(d): x/D = 5; (e) : x/D = 7; (f): x/D = 10 
    : 7t/lorder scheme;   : 5thorder scheme 
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Dynamic model simulation Re = 3,900 
Experiment 5"1 order scheme 7th order scheme 

St 

Strouhal number 

0.203 0.217 0.215 ± 0.005 
(Cardell 1993) 

cPb 
Back pressure 

-0.95 -0.90 -0.90 ± 0.05 
(Norberg 1987) 

CD 

Total drag 

1.00 0.96 0.98 ± 0.05 
(Norberg 1987) 

Cf x 100 
Skin-friction 

0.91 0.88 

Separation 
±85.8 ±85.0 ±85 ±2 

(Son et al. 1969) 

02 
Separation 

±110.6 ±113.2 

Separation 

±158.3 ±153.0 

L/D 

Bubble length 

1.36 1.50 1.33 ±0.2 
(Cardell 1993) 

umin/t/oo 
in bubble 

-0.32 -0.30 -0.24 ±0.1 
(Lourenco 1993) 

rinin/D 

Wmin location 

0.88 1.07 0.72 ±0.1 
(Lourenco 1993) 

Table 6: Cylinder surface and bubble region comparisons 
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Figure 63: Re = 3,900; Wall vorticity 
- : ö'^order scheme;    : 7t/lorder scheme 

8 a. 

I 

0.5- 

Figure 64: Re = 3,900; Wall pressure coefficient 
  : ö'^order scheme; : 1thorder scheme 

x : Experiment {Re = 3,000;Norbergl987) 
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Figure 65: Re — 3,900; Centerline streamwise velocity and pressure coefficient 
  : ö^order scheme; : 1thorder scheme 

x : Lourenco k Shih; A : Ong & Wallace 
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Figure 66: Re - 3,900; Formation zone total kinetic energy (u'k u'k + ük ük + Tkk)/2u 
(a): x/D = 0.8; (b): x/D = 0.9; (c): x/D = 1.0; (d): x/D = 3.0 
  : ö'^order scheme;    : 7thorder scheme 
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Figure 67: Re = 3,900; Streamwise velocity at x/D = 5 (a); 7 (b); 10 (c) 
  : ö'^order scheme; : 1thorder scheme 

A : Ong & Wallace 
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Chapter 6 

Conclusions 

Three large-eddy simulations of the flow around a circular cylinder at Reynolds num- 

ber 3,900 were performed using the dynamic subgrid-scale model, a fixed-coefficient 

Smagorinsky model and no subgrid-scale model. The numerical method in these 

three simulations was based on a fifth-order accurate, upwind-biased finite-difference 

scheme for the convective terms, a sixth-order accurate central scheme for viscous 

terms, and a fully implicit, second-order accurate time integration technique. Two 

simulations using the dynamic subgrid-scale model on identical grids were further 

compared; one was based on the fifth-order accurate scheme described above, while 

the other one used a seventh-order accurate upwind-biased scheme for the convec- 

tive derivatives. In this study we investigated the importance of three-dimensionality 

for the computed solution, the performance of the subgrid-scale turbulence models 

within the first ten diameters of the wake, and the impact of numerical dissipation 

generated by high-order accurate, upwind-biased numerical schemes. A summary of 

our findings is presented below. 

Three-Dimensionality of the Near-Wake at Reynolds number 3,900 

The near-wake appears to be strongly three-dimensional. In a two-dimensional 

simulation, the irregularity of the vortex shedding present in the three-dimensional 

solution and observed experimentally was greatly reduced. The three-dimensional 

near-wake contains counter-rotating streamwise vortices, the effect of which cannot 
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be reproduced in two dimensions: the mean two-dimensional velocity field does not 

reproduce the main recirculation region behind the cylinder which is present in the 

computed three-dimensional and in the experimental mean fields. 

Performance of the Subgrid-Scale Turbulence Models 

In three-dimensional calculations, mean wall statistics such as drag and pres- 

sure coefficients, wall shear stress and separation angles computed with the three 

subgrid-scale models were not significantly different from one another. In the vortex 

formation region, which includes first four diameters of the wake, the calculation with 

the dynamic model predicted more accurate mean velocities and Reynolds stresses 

than those without model or with the fixed-coefficient Smagorinsky model. Past the 

vortex formation region, differences between the solutions computed from the three 

simulations diminished with downstream distance, due to the numerical dissipation 

generated by the one-point upwinding in that region. 

The dynamic model predicted a mean eddy viscosity distribution in better qualita- 

tive agreement with the physics of the flow relative to the fixed-coefficient Smagorin- 

sky model: the maximum of the distribution occured in the turbulent near-wake, in 

the vicinity of the separated bubble closure point. With the fixed-coefficient model, 

the largest mean eddy viscosity was generated in the separated free shear layers, which 

are laminar at Reynolds number 3,900. 

Impact of Numerical Dissipation on the Computed Solution 

The seventh-order accurate, upwind-biased scheme generated less numerical dissi- 

pation in the wake than the fifth-order accurate scheme. As a result, a comparison of 

the simulations using both schemes revealed that the magnitude of the subgrid-scale 

shear stresses in the wake increased by a factor of about 70%, and that the energy 

content of the velocity fluctuations was larger at higher frequencies than with the fifth- 

order accurate scheme. Instantaneous contours of the vorticity in the wake provided 

further evidence as to the presence of smaller-scale structures when using the seventh- 

order accurate scheme. Low-order statistics in the near-wake showed improvement 

with the higher-order scheme, although streamwise one-dimensional frequency spec- 

tra were damped by numerical dissipation over a significant portion of the resolvable 
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frequencies. 

The fifth-order accurate, upwind biased scheme had shown potential for direct 

numerical simulations of flows in complex geometries (Rai k Moin 1991). Because 

of the numerical dissipation generated by the scheme on coarse meshes however, this 

method was found to be unsuitable for the large-eddy simulation of the wake behind 

a circular cylinder. In the near-wake region, where the mesh was coarse but yet fine 

enough to predict the mean velocity and Reynolds shear stresses within experimental 

uncertainty, numerical dissipation annihilated all contributions from the subgrid-scale 

eddy-viscosity models. 

These observations suggest that the adequacy of numerical methods for large- 

eddy simulations cannot be extrapolated from conclusions drawn from direct numer- 

ical simulations. The pros and cons of numerical schemes to be used for large-eddy 

simulations should be investigated using large-eddy simulations. 

Recommendations for Future Research 

Within the context of large-eddy simulation, the comparative advantages of upwind- 

biased, highly accurate methods versus central schemes need to be assessed.   The 

former control aliasing via numerical dissipation, while the latter can be formulated 

as energy conserving schemes. The performances of these methods on coarse, highly 

stretched grids such as those used in the present report need to be compared. 

Using an appropriate numerical scheme, it is presumed that the large-eddy simu- 

lation of the flow around a circular cylinder at Reynolds number 1.4 x 105 (Cantwell & 

Coles 1983) would reveal substantial performance gaps between different subgrid-scale 

models in the near-wake, because of the presence of small-scales in that region. 
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Appendix A 

Differencing Schemes and 

Generalized Fluxes 

A.l      Differencing Schemes Near Boundaries 

The differencing operators applied to convective and viscous fluxes were presented in 

Chapter 2 (equations 56 through 61) for periodic directions and wall-normal directions 

away from boundaries. Since the number of grid points available to differencing 

stencils is limited by the presence of domain boundaries in the generalized radial 

direction £, the order of accuracy of the corresponding differencing schemes decreases 

near the cylinder surface and far-field boundaries. The mesh spacing in computational 

space is set to A£ = 1. Along the £ direction, grid points are ordered from 1 to N, 

the first point being located at the cylinder surface by convention. The following two 

Sections list the ^-derivative operators applied to the convective and viscous terms 

near domain boundaries. 

A. 1.1      Convective Derivatives 

The upwind and downwind derivative operators are denoted by '4-' and '—' super- 

scripts. The upwind scheme near boundaries is: 
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dF+ 

dt 
.£,1 + |* .£,, + ,<*) ^ = 2^3 - Fi)+m*) 

dF+ 

dt 3=<kF*-{F>+kF>+kF<+^ 
dF+ 

dt „_> = kFN-> ~ iF-2+kF
™

+tFN+"(A3) 

dF+ 

dt N = <kF»-*-lFN-*+iKFN+»{A2) 

A second-order accurate central scheme is used at boundaries. Note that both upwind 

and downwind fluxes at boundaries are evaluated using identical central schemes, 

which is equivalent to not splitting the convective fluxes there. The downwind scheme 

is : 

dF- 

dt ->KsWAl). dit = -k^-k^-k^^ 
dF- 

dt „_2 = -^-3 - 2ä
F
-

2+iFN- - <kF»+^ 
dF- 

ot N-l       *■& 

dF- 

dt N = kF»-*-lF^ + iKF»+»iA2) 

A. 1.2      Viscous and Heat Flux Derivatives 

Discretization of the viscous and heat fluxes requires first and second derivative op- 

erators. Second-order accuracy is retained at the boundaries in the corresponding 

numerical operators. First derivative schemes applied to viscous and heat flux terms 

are given as follows: 

OF 

dt -i^-2k^A2)' f 2 = ^K(FS-F1)+HA
2
) 

8F 

dt a = ±(K-F.n±{F4-Ft)W) 
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dF 

dt N 2 
= ikiFN-4" FN)

 
+ TK^"-1" FN

~
3)

 
+ HA4) 

d£ 
N_r±(FN-FN-,) + *Mt    f N=^-l^+iK?»+»w 

The second derivative schemes are: 

32F 
d? 

d2F 
= ±(2fi - 5F2 + 4F3 - F4) + tf (A2),     de = i(Fx - 2F2 + F3) + tf(A2) 

2        A 

d2F 
a? 

d2F 

ee 
i 

JV-2 12A 

d2F 

^(Fi + F5) + ±(F2 + F4)-±F3 + m<) 

(F^_4 + F„) + 5^(^-3 + *V-i) - £rFN„2 + tf(A4) 
3A 2A 

d(2 

1 

d2F 
a^2 

= j-(FN,2 - 2FN.l + FN) + 0(A') 

1 
= i-(-^-3 + 4^-2 " $FN-1 + 2i?") + #(A ) 

A.2      Inviscid Fluxes and Flux-Vector Splitting 

The fluxes F^, Fv and Fz in directions £, ?/ and z respectively are each the sum 

of inviscid, viscous and heat fluxes, Fe, Fv and Fh respectively (see Chapter 2). 

The remainder of this Appendix details the expression for each component in terms 

of primitive variables. The notation in this section is identical to that of Beam & 

Warming (1978). 

Inviscid fluxes in generalized coordinates are given by 

/     pu     \ (     pv     \ 

Ft = ft 
pu2 + p 

puv 

puw 

\u(e + p)/ 

- xr 

puv 

pu2 + p 

pvw 

\v(e + p)) 

(104) 
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K = -Vi 

I     pu 

pu2 + p 

puv 

puw 

\u(e + p)/ 

I 

+ X£ 

pv 

puv 

pu2 + p 

pvw 

\v(e + p)J 

(105) 

Fe
z=J 

pw 

puw 

pvw 

\ 

(106) 

pw2 +p 

\w(e + p)/ 

The split convective fluxes in all three directions can be written as one expression 

by introducing geometric coefficients k\, k2 and Ar3. The general form of a split 

convective flux is 

F± = -?- 
27 

2(7 - l)Af + A± + \$ \ 

2(7 - l)Af u + \%(u + eh) + Xf{u - ch) 

2(7 - l)Af v + \f(v + c%2) + Xf(v - ck2) 

^2(7 - l)Af w + \$(w + ck3) + Xf(w - ck3) 

\ %(u + ch)2 + (v + ck2)
2 + (w + c%3)

2) + xJ 

(107) 

where 

x\ 
±\„2 (3 - 7)(A* + \$)c 

2(7 - 1) 
+ 2/9(7 - I)*?h(k2w - k3v) 

+ (7 - l)Xf(u2 + v2 + w2) + ^-((u - ck,)2 + (v- ck2)
2 + (w- ch)2) 

and where the superscript ± refers to the construction of the split eigenvalues A, dis- 

cussed below. The total convective flux vector is the sum of its upwind and downwind 

components: 

F<f = Ff+^e-, F; = F*+F;-, F: = F:
+
+Fe

z~. (108) 

The geometric parameters ki are displayed in table 7 for each spatial direction, and 

ki is defined by: 

Ja = 
ki 

y/kJ+W+kJ 
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Direction h k2 h 
* Vr, iCjJ 0 

V -vt Xt 0 
z 0 0 j 

Table 7: Geometric coefficients 

Direction Ax A4 A5 

* y„u - Xr,V Ai + cjx* + 1/2 Ai - cyx^ + yl 

V —y^u + x^v Ai + cy/xl + y\ Ai ~ c^/x| + y\ 
z Jw Ai + Je Ai — Je 

Table 8: Generalized eigenvalues 

The split eigenvalues A,- in each direction are: 

\t = ^ ± |A,| 
(110) 

where the convective eigenvalues A; are given in table 8. The split eigenvalues \ 

defined in (110) do not have continuous derivatives in Ai at sonic and stagnation 

points (Van Leer 1982, Coirier k Van Leer 1991). This singularity leads to numerical 

oscillations near these points in the pressure and velocity fields, a problem which 

is circumvented by fitting A,- with a parabola in the vicinity of Ai =0. Let Si be 

the threshold value of |A,| below which the split eigenvalue A,- is approximated by a 

parabola. The parabola is constructed in the (A/", A,) plane to be tangent to points 

(—Si,0) and (Si,Si), and in the (A,~,A,) plane to be tangent to points (—Si,— Si) and 

(#i,0). The modified split eigenvalues are then given by: 

A> = A,- A,- > Si 

^ = 77 + lAi + \6i -*«<Ai<*i 4öi     2        4 

At = 0 A, < -Si 

(111) 

(112) 

(113) 
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and 

A,r=0 A< > Si 

A?      1 1 
Ar = -ih. + iA      *«,-   -6i<Ai<6i 

' 4<5;     2 4 

A," = A,      A,- < -St 

In a single formula, these expressions reduce to: 

Xf = ^±N |A.| > 6i1   \f = 1A.- ± \(f + Si) JA.-I < Si. 

(114) 

(115) 

(116) 

(117) 

In practice, we choose the threshold Si to be the largest magnitude of two eigen- 

values A,- of opposite signs, which are neighbors along a grid line. Figure (71) dis- 

plays the modified eigenvalues A* in the vicinity of a singular point where A = 0. 

The corner formed by the solid lines corresponds to the singularity generated by 

flux-splitting. The eigenvalue magnitudes are referenced to the threshold 6, so that 

parabolic smoothing is applied in the range -1 < \A\/S < 1. A quartic smoothing 

function was also tested, and produced no visible differences in two-dimensional test 

calculations of the flow over a circular cylinder. 

A.3     Iterative Time-Scheme Convective Jacobians 

The factored iterative equations in the periodic azimuthal and spanwise directions 

(78 and 79) involve the diagonalized form of the convective flux: 

F? = PiAfP-1Q. (118) 

The three matrices the iterative scheme involves are P"1, (Pz 
1 P„) and P2, which are 

given by Pulliam & Chaussee (1981) as: 

/ -yd1 - (7 - l)$2c-2) + x^wp-1 -ydn ~ IK"2 

xd1 - (7 - l)$2c-2) + y^wp-1 xdl ~ l)uc~2 

P~l{ViV - X(.u) xtp~l 

0((7 - 1)$2V> - c0) ß(-ytc-(i-l)uip) 

\         ß((i-l)&ip + cO) -ß(-yzc-(j-l)uip) 
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and 

-3^(7 - l)vc 2 

^(7 - \)vc~2 

ß{ViC - (7 - 1)W>) 

-ß(y*c - (7 - i)WO 

/ 

where 

P-1 P =- 

-HP x - vzh - l)wc 2   Vi(i ~ 1)c 2 \ 
-ViP~l + ^(7 - l)wc~2    —ar€(7 - l)c-2 

0 0 

-/fy(7"l)«> W7-1) 

/30(7-l)u; W7-I)    y 

0 0 %     x^/v/2   -x€/y/2\ 

0 0 -x€    y^/v/2    -z/^/x/2 

-ye *« ° 
-xe/V2    -yi/y/2      0 

V a*/>/5     y«/\/2      0 

0 

V-/2 

V>/2 

0 

0/2 y 

p, = 

/O 

0 

/> 

0 

0 

-/> 

0 

0 

u 

v 

w 

a 

au 

av 

a(w + c) 

a 

au 

av 

a(w — c) 

\ 

\pv    -pu    $2    a(^2 + ^ + cw)    a($2 + ^-cw)/ 

a = 
s/2c 

;   e = \(u2 + v2 + w2) ;   ^ = V^F + vi 

6 = -y^u + X{V ;   ß = 
y/2pc' 

(119) 

(120) 

(121) 

A.4      Generalized Viscous and Heat Fluxes 

Viscous and heat fluxes F%'h along the x direction are decomposed into the contri- 

butions of derivatives of the primitive variables along each spatial direction, denoted 

as F^, Fvx and Fzx. This decomposition is presented in equations (50) through (52). 

Expressions for each of these fluxes are given below. In each vector, the symbol £ 

represents the dot-product of the velocity with the three momentum components. 

This Section completes the description of the fluxes which appear in the governing 

equations of motion (55). The linearized viscous flux Jacobians in the left-hand side 
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of the factored equation corresponding to the wall-normal direction (80) are obtained 

from the viscous fluxes presented below by straight-forward differentiation. Viscous 

and heat fluxes are functions of the conservative variable vector Q and its spatial 

derivatives. In particular, Fxx = FXX(Q,QX). The Jacobian of this flux, appearing in 

the left-hand side of (80) is computed at time level n + 1 from the Taylor expansion: 

ri+l A/U$".<fc»)*(^)"Afr    .KgQ + aoJ     x (122) 

The remainder of this Appendix lists the expressions for the viscous and heat fluxes 

along each coordinate direction. 

Viscous fluxes along the £ direction: 

/ o                \ 

(ixl + vl)n - IxnVrPi (123) 

\ s             / 
/ o                       \ 

*« = 
1 

JRe 

FVni = 
1 

JRe 

-HVriVi + xnxl)un + ixnVi ~ lVnxi)v 

-(txvxi + Vr,vdvv + (Vnxt ~ lxnVdu 

-(x^Xn + yrtV^Wr, 

I 

/ 

1 
F* - "Re 

Viscous fluxes along the r\ direction: 

/ 

\ 

-lVnwz 

QXJJWZ 

\ ) 

Fl 
1 

JRe 

0 \ 

{.iVnVi + xvxt)ut + (Vvxi - \xvVdvi 

(frr^ + ynydvi + (xvVi - lvnxi)ui 

~{Hxn + ynVi)wi 

E / 

(124) 

(125) 

(126) 
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fpv   _ 

JRe 

I o \ 

(M + xDuv - 3xtVtvn 

(H + v?K - lx<ytuv 

E \ 

Viscous fluxes along the z direction: 

/ 0 \ 

^ Re 

\y(.Wz 

-y(Uz + X{VZ 

£ / 

**'-    Re 
-xvwi 

Uxvv< - y»ut) 
\ 

Fv — — —— 
'      "*        Re 

0 \ 

l(yiuv - XfVn) 

I 

Fv = -— 
Re 

(   0   \ 

Uz 

Vz 

Heat fluxes along the ( direction: 

Ft\ = 
7 dT 

«-    d - l)PrReJix2" + y*] d£ 

iO = 
dT 

*=(7-l)PrReJ{x^ + y^ 

/0\ 

0 

0 

0 

/o\ 
0 

0 

0 

M/ 
Heat fluxes along the rj direction: 

(127) 

(128) 

(129) 

(130) 

(131) 
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7 , ^T 

F£ = 

dT 
*5» " " (7 _ i)prReJ^ + $ <fy 

0 

0 

0 

Vl/ 

/o\ 
0 

0 

0 

\1/ 

Heat flux along the z direction: 

Fi = 
1J        dT 

(7 - \)PrRe dz 

/0\ 

0 

0 

0 

\1/ 

(132) 

(133) 

(134) 

137 



-1.5 

Figure 71: Eigenvalue smoothing near singular points 
____   ;A+/£; ■■■:\-/6 
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Appendix B 

Far-Field and Wall Boundary 

Conditions 

B.l      Introduction 

This Appendix details the conditions imposed explicitly and implicitly on the conser- 

vative variables at the wall and far-field boundaries. The generalized coordinates 

(£, T],z) correspond to the radial, azimuthal and spanwise directions respectively. 

Lines along the £ direction extend from the cylinder surface to the outer bound- 

ary of the computational domain (figure 84, Appendix F), and are normal to the 

cylinder boundary surface by construction. Wall and far-field boundary conditions 

are required at the £ boundaries. The azimuthal (rj) and spanwise (z) directions are 

periodic, and the factored systems in these directions (equations 78 and 79) are solved 

with periodic boundary conditions. 

B.2      Far-Field Boundary 

Far-field surfaces are partitioned into potential and wake sub-regions, different sets 

of boundary conditions being appropriate for each. In potential regions, boundary 

conditions are based on Riemann invariants (Pulliam 1986b), while at wake bound- 

aries the primitive variables are extrapolated with a first-order accurate scheme from 
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their values inside the computational domain. The locally-one-dimensional Riemann 

invariants R\ and R2 are defined as 

Ri = Vn- 
2c 

R2 = Vn + 
2c 

(135) 
7-1 7-1 

where c is the local sound speed and Vn the velocity normal to the boundary surface. 

Let Vt denote the velocity tangential to the surface. According to our axis convention, 

in which the i\ direction corresponds to the azimuthal direction and is positive as in 

the trigonometric convention, the normal and tangential components of the velocity 

are given by : 
_ Vnu ~ xvv      v = 

xvu + Vnv (136) 

B.2.1      Potential Region : Explicit Formulation 

In the following derivations, mesh points along the £ axis have indices 1 through N, 

where & and (N lie respectively at the cylinder surface and outer boundary of the 

computational domain. 

Inflow boundary conditions are chosen as: 

— =( —)     ,    W = Woo,     Vt = Vtoo,     Ri = Rloo,     R2 = R2N-1 
O-1 VWoo P1 V/9'/oo 

and those at outflow as 

— =( —) ,    W = tUjV-l,     Vt — VtN-\,    i?i = Äloo,    Ä2 
pi     \pnjN-\ 

R ■2N-1- 

(137) 

(138) 

Using the definition of the conservative variable Q (equation 44, Chapter 2), these 

relations correspond to conditions on Q at the boundaries given at inflow by: 

'7-1 
qx = J -{R2N-1 ~ Rloo) 

2 
7-1 

q2 = (xnVtoo + öJ/»?(-ßioo + R2N-1) j 

93 =      /      *       - ( yr,Vtoo ~ -X^Rxoo + R2N-1) ) 

(139) 

(140) 

(141) 
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94=0 

95 = 
ft7 

7(7 - l)^"1 + ql + ql + q\ 
2ft 

while at the outflow: 

qi=jfis^iiziftn,^ - R^y-1 

V7PAT-1      4 / 

92 =     /  /      „(^^W-l + 7;yv(Rloo + RiN-l)) 

-*(r) \ft/7V-l 

95 = 

94 

qiPN-1 + ql + ql + q\ 

(142) 

(143) 

(144) 

(145) 

(146) 

(147) 

(148) 
(7 - 1) J-^-i  ' 2ft 

Conditions at infinity are found from the potential flow around a fixed circular cylin- 

der: 

«oo = Mx> 
/       cos 20 \ 
i1-—>      «00 = - M, 

sin 20 
OO n (149) 

B.2.2     Potential Region : Implicit Formulation 

The time scheme being written in delta-form (see equation 80), implicit boundary 

conditions are not applied to the conservative variables, but to their incremental 

change over one time-step Aq, = Aqf+1 = g"4"1 - <?". Conservative variables at far- 

field boundaries are functions of the invariant i?2, the pressure p and the tangential 

velocity VJ, as described in the previous Section, so that their increments depend on 

Ai?25 Ap and AVt. By definition these increments are: 

Afi2 =   (- — \   7-1 

+ ( 

+ i(92 + 93
2 + 942)- 2cq 

_ 792 \ Aft 

qiy/xl + y*)  9i 

+ 793     T        \A93 

^ + ^ ^   ^ Vx2+t/2   '    Cft/    ft 
*ft _  / « 
9i        V/sjj 

^Aft + ^-Aft 
Cgf Cft 
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= (7^11 (i+itiA„ - * A» - ^A,3 - ^A,4+A9S) 
J      \       2q{ qi qi q\ J 

&yt  ( (x^2 + 3/^3) Aft + z„Aft + y^Afla). 
tofä + VV   qi ' 

Substituting these into the explicit boundary conditions (139 through 148) leads to 

implicit conditions on the increments A«?,-.  The resulting implicit inflow boundary 

conditions are: 3_ 

Aft = |(^i(Ä2N-, - Ä.oo))     AÄ2AM (150) 

A* = ~M^X,V'°'+ 5s,(ß,~ + **-,))+ vfTWAÄM-'     (151) 

Ato=Ä^"" ?'(*-+^-O - ^*»-'   (152) 

Aft = 0 

„7-1 

V(7-1)J^-1 2^2        / ?! ft ft 

while at the outflow boundary implicit conditions are given by: 

2q1 
Aft = $1 

Aft   =     / 2      a(
ai^JV-i + 2y^Rl°° + R*N-I)J&<1I 

+   / f    , f^AVijv,! + ry,AÄ2jv-i) 

y/xl + y^ z J 

^2 + y2 V 2 / 

A /^ A i gl A/     \ ft(ft)jV-l A,_  N Aft = ( - J      Aft + 7-r AC^jjv-! - -7-ö\ A(qi)N-i 
\qi/N-i (QI)N-I \QI)N-I 

(153) 

(154) 

"-M-AÄ2 + (i?2 - Äloo)(£CAft - -g-jAp)l (155) 
_7pjT VJ7p 7./^     /Jiv-i 

(156) 

(157) 

(158) 
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9i 9i 9i 

+ 77 t /\       ^PN-x ~ nu^Zij      A^N-I   (159) 
</7"ViV-i(7 - 1) ^ H7 - 1)PN-I

J
N-I 

2=x 

where the parameters $1 and $5 are defined by 

and 

#s 
7?7   W-l ?2 + 4 + 94 

■
8"^-VJr-i(7"l) 29?        • 

B.2.3     Wake Region : Explicit Formulation 

The edge of the wake layer at the outflow boundary is defined by a boundary-layer 

criterion 

u < 0.99 ue (160) 

Physically realistic boundary conditions within the wake region should consist of 4 

constraints on the conservative variables and take the viscous stress into account 

(Poinsot k Lele 1989, 1992). In the present simulations, outflow conditions are sim- 

plified, and the region of interest in the computation is shielded from the errors 

generated by inaccuracies at the boundaries by a long region in which the mesh is 

highly stretched, allowing numerical dissipation to damp all scales of motion. At the 

wake boundary, all primitive variables p,u,v,w,p are extrapolated, and the explicit 

conditions are 

U = UN-i,    V = VN-i,    W = WN-U    p = PN-i,    p = pN-1- 

B.2.4     Wake Region : Implicit Formulation 

(161) 

The implicit boundary conditions corresponding to a first-order extrapolation of the 

primitive variables are: 

JN.iAqi = JA(qi)N-i (162) 
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A?2 = Aft (— 1       + T-T—-A(92)iv-i - -7-^2 A(ft)jv-i 
\qi/N-i     {qi)N-i \<1I)N-I 

\qi/N-i     {qi)N-i K9I)N-I 

Ap = Ap;v_i 

(163) 

(164) 

(165) 

(166) 

B.3      Solid Walls 

B.3.1      Explicit Formulation 

At solid surfaces, no-slip conditions are imposed, q2 = q3 = q4 = 0. The surface 

is constrained to be adiabatic (d(q6/qi)/d( = 0), and the wall pressure derivative 

is found from the normal momentum equation. The normal momentum equation 

is found by projecting the £ and rj momentum equations onto the normal direction 

vector at the surface 
1 _,        _, 

-.(y„i - x„j), (167) 
1 

n = 
jvl + *3 

where i and j are the direction vectors in the x and y directions respectively. The 

grid is normal to the cylinder surface by construction, so that an equation governing 

the wall pressure gradient dp/d( = d(q5/J)/d£ is necessary. Since the time scheme 

is in factored form, the equation defining this pressure gradient should only involve 

derivatives in the ( direction. The appropriate momentum equation is obtained by 

manipulation of both the normal and tangential momentum equations, and reduces 

to: 

dp &' u d2v du dv d2u 
aitt + a2W + azdJ2 + a4d(+ ö5ä? + a*dtfv 

+ a7 
d2v 

= 0 (168) 

with the coefficients: 

oi = *J + »J,     °2 
4 y„ 
3JRe 

4 xr, (xl + y2
n),    o& = --=£(*; + !# 

ZJRe 
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"4     =     'Hi 

+ 

u* jÄV5* + ^)L-r'tak*'*)« 

a5   =   a;»i Ljk^+^l^i^ljk^^ 

Spatial derivatives of the pressure and temperature at the wall are evaluated with 

first-order accurate schemes. 

B.3.2      Implicit Formulation 

The no-slip conditions on the velocity field at the wall hold for all times, so that 

A92 = 0,    Aq3 = 0,    Aq4 = 0. (169) 

The implicit boundary condition on pressure at each sub-iteration neglects the change 

in viscous stresses between iterations; the implicit adiabatic wall condition is obtained 

directly from its explicit counterpart: 

4T=°- 4-=°- o( J o£ qx 
(170) 

The boundary condition on the pressure is updated after each time-step, so that 

neglecting the viscous stresses at each sub-iteration does not affect the accuracy of 

the solution. 

B.4      A Three-Dimensional Example 

Figures (72) through (76) display the five conservative variables at a given instant in 

time in a large-eddy simulation of the turbulent flow around a circular cylinder using 
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the dynamic subgrid-scale model. The Reynolds number is 3,900 based on cylinder 

diameter and free-stream velocity. The grid contains 144 x 136 x 48 points in the 

radial, azimuthal and spanwise directions respectively. 

The figures show the instantaneous fields in the entire domain (top picture on each 

page), with the outer boundary of the computational domain marked by a limiting 

circle, and in the vicinity of the cylinder surface (bottom picture). The solution near 

the inflow and outflow boundaries does not exhibit undesirable numerical oscillation 

in any of the conservative variables. From the contours of the streamwise and vertical 

velocities, the numerical dissipation in the far wake of the large scales of motion is 

clearly evident. 
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Figure 72: Re = 3,900; Instantaneous density (p) 
144 x 136 x 48 Dynamic model simulation 

top : whole grid; bottom : cylinder vicinity 
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Figure 73: Re = 3,900; Instantaneous streamwise velocity (pu) 
144 x 136 x 48 Dynamic model simulation 

top : whole grid; bottom : cylinder vicinity 
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Figure 74: Re = 3,900; Instantaneous vertical velocity (pv) 
144 x 136 x 48 Dynamic model simulation 

top : whole grid; bottom : cylinder vicinity 
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Figure 75: Re = 3,900; Instantaneous spanwise velocity (pw) 
144 x 136 x 48 Dynamic model simulation 

top : whole grid; bottom : cylinder vicinity 
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Figure 76: Re = 3,900; Instantaneous total energy (e) 
144 x 136 x 48 Dynamic model simulation 

top : whole grid; bottom : cylinder vicinity 
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Appendix C 

Cylinder Grid Generation 

Technique 

C.l      Introduction 

In all simulations, the computational domain is an annulus of outer radius RDRC and 

spanwise length LZRC, where Rc is the cylinder radius, spanned by (N^ x Nn x Nz) 

points in the radial, azimuthal and spanwise directions respectively. All grids share 

the following properties: they are constrained to be symmetric in the upper and 

lower half (£,?;) planes; generalized radial grid-lines (r] = constant, z = constant) are 

normal to the cylinder surface by construction; three-dimensional grids are generated 

by aligning Nz identical two-dimensional meshes in the spanwise direction; spanwise 

points are equispaced; azimuthal points are distributed in the (£, ?/)-plane on circles 

of constant radius (£ = constant). 

Given these characteristics, the grid is fully described by the location of each of 

these circles, i.e. the distribution of radial points r(£), and the layout of azimuthal 

points along each circle 0(r)). This Appendix describes these distributions, which 

differ for laminar and turbulent simulations. The following two sections treat these 

regimes separately. Figure (77) displays the nomenclature used throughout this report 

to represent the features of the near-wake flow structure. The locations of the laminar 

surface boundary layer, separated shear layers, recirculation and potential zones are 
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illustrated using contours of instantaneous streamwise velocity extracted from the 

(116 x 136 x 48) mesh simulation at Reynolds number 3,900 presented in Appendix F. 

C.2      Grids for Laminar Simulations at Reynolds 

Numbers 20,80 and 100 

C.2.1      Radial Point Distribution 

All laminar simulations use an identical family of grids, described in this Section. In 

the radial direction, the mapping from physical to computational space is: 

r^) = a-(l+a)e^3r (171) 

where a is a constant equal to 1 + (RD - 1)/(1 - s?*'1). The coefficient sr represents 

the stretching factor of the grid. Points in computational space are equispaced and 

given by: 

6 = t-l     .' = 1,...,^ (172) 

The mapping r(£) can equivalently be written as: 

KO = I + (RD- VT
1
^- (173) 

1 - Sr 

Substituting the expression for &, it follows that ri+i-n = Ar,+i = (l+aftl-sjs*-1. 

The discrete grid stretching is thus defined by the geometric series Ar,-+i = srArt 

when sr is constant. Note that the Jacobian of the mapping r(£) is a smooth function: 

?L-   1
~

R
D silns (174) 

The stretching factor sr is fixed at a value of 1.03 in the steady flow computations 

at Re = 20. In laminar vortex shedding simulations, the coefficient sr is itself a 

geometrically increasing function of downstream radial distance: 

sr(i) = sx + (82 -sr)1' *£ i = l,...,^. (175) 
l-v 
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This formulation allows for slow stretching near the cylinder boundary characterized 

by $1. The stretching continuously increases in the wake and reaches a value of s2 

near the outflow boundary. Values for Si and s2 are given in tables 9, 10 and 11. 

C.2.2     Azimuthal Point Distribution 

Azimuthal points in the steady simulations are equispaced: 

(176) 

with 

Vj=J-1     j = !,.■■, Nv. (177) 

In the shedding cases, grid points are selectively distributed in two separate zones 

representing the potential region and the wake layer. The grid boundary, or envelope, 

of the wake layer in the plane of mean motion (x, y) is defined analytically by a line 

extending from the cylinder surface to the domain outer boundary, parametrized 

as (x(t),y(t)) where t is a positive continuous parameter. This line is normal to 

the cylinder surface at position (cos0o,sin0o), 
an(^ reaches the outer boundary at 

(RD cos 0i, RD sin öi), where RD is the computational domain radius, 0O and 0\ are 

free parameters. The wake-layer half width at each radial position is y(t). Within 

the wake layer, a given number Nnwake of azimuthal points are equispaced. 

Expressions for x(t) and y(t) are derived by considering a particle traveling in 

space and subjected to an acceleration. At time t = 0, its position and velocity 

are (cos0o,sin0o) and (U0, UQ tan 90) respectively. The location of this particle as a 

function of time is: 

J x(t) = (RD cos 0! - cos 0o + U0)t
2 - U0t + cos $o 

1 y(t) - (RD sin #i - sin 0o + U0 tan 0o)t
2 - U0 tan(0o)f + sin 90 

Although this envelope could be used to define the wake layer, its growth downstream 

of the cylinder (y(t)) is only proportional to t2. However, a desirable property of 

the grid is rapid stretching in all spatial directions, which enhances the numerical 

dissipation of the energetic scales of motion, downstream of the part of the wake which 
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is resolved in the computation. The downstream radial distance up to which the wake 

is resolved is denoted by i?wake in the following. The width of the wake envelope can 

be made to grow exponentially fast provided the t2 term appearing in the expression 

for y(t) is replaced by (ebt - 1 - bt)/(eb - 1 - b) where b is a free parameter which, 

together with U0, controls the width and growth-rate of the envelope. The resulting 

expression for y(t) is 

y(t) = (RD sin0\ - sin0O + U0 tan 0O)- 
„it l-bt 

eb-l-b 
-Uota,n(0o)t + sm0o.       (179) 

The grid generation parameters used at Reynolds numbers 80 and 100 are dis- 

played in tables (9) and (10). In simulations at Reynolds number 80, the envelope 

equations (178) were used exclusively. This is the reason for which no values of the 

parameter b are indicated in table (9). The exponential growth of the wake envelope 

is a feature used in the simulations at Reynolds number 100. 

Figure (78) displays the wake envelope in a grid constructed with parameters 

UQ — —2, b = 10, 0o = 85 and 0\ = 20. The same envelope in the near-wake region 

is shown in figure (79). The wake width grows as the square root of radial distance 

in the vicinity of the cylinder, and exponentially fast in the downstream wake. 

C.3      Grids for Turbulent Simulations 

C.3.1      Azimuthal Point Distribution 

The construction of computational grids for the turbulent simulations presented in 

Chapter 4 and Appendix F is based on the 'wake envelope' described in the previous 

section. The grid is equispaced within the envelope. The one exception to this 

approach is the (174 x 128 x 48) mesh described below. In that grid, the azimuthal 

resolution was increased by 50% in the separated shear layer regions (40° < \0\ < 80°). 
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C.3.2     Radial Point Distribution 

In the radial direction, points are distributed according to (171), in which sr is a 

function of radial distance, defined separately in three regions. Matching at the 

region interfaces ensures that the mapping from physical to computational space has 

smooth Jacobians. These three regions are defined by 5 parameters: fixed stretching 

ratios at the cylinder surface and outer computational domain boundary, (si) and (s2) 

respectively, a prescribed maximum grid spacing (Awake) which cannot be exceeded 

within (ßwake) radii downstream, and the grid-spacing at the cylinder surface (Arwau). 

In the first zone, the grid spacing Ar grows geometrically from its wall value 

Arwau to a level close to its wake value Awake at a rate imposed by the stretching 

si. The grid then becomes equispaced in the second zone, for r < -ftwake- In the 

outflow, or third zone, the grid spacing increases geometrically from Awake, with a 

stretching ratio which increases with radial distance from 1 to s2. The radius of the 

computational domain is determined by the total number of radial points available. 

The radial increment distribution Ar(r) is displayed in figure (80) for the mesh 

containing 116 radial points with the corresponding stretching ratio distribution: 

Ar,+1 
sr(r;) = 

Ar,- 
: = !,•••,ty-1 (180) 

in the near-wake. The grid spacing is ArwaU = 0.005/?c at the wall and first in- 

creases geometrically with a stretching factor si = 1.1. In the resolved wake region 

extending to Rwake = 10RC, the increment Ar is close to the prescribed maximum 

value of Awake = 0.25RC at locations past 2 cylinder diameters downstream. Beyond 

the resolved region, at distances r > -Rwake, the grid stretches geometrically with a 

stretching factor increasing from si = 1 to a maximum of s2 = 1.22. In this example, 

the unresolved outflow region, extending from 5 diameters downstream to the outer 

boundary at r = 198.62fic, contains 26% of the total number of grid points. 

C.3.3      Grid Configuration Summary 

This section describes the geometric layout of each mesh used for turbulent simu- 

lations.   The relationship between grid characteristics and physical flow features is 
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examined in the subsequent Section. 

The wake envelope and near-wake parameters denning the grids used in turbulent 

simulations are listed in tables (11) and (12). 

The mesh refinement study presented in Appendix F involves grids containing 

(88 x 90 x 32), (88 x 90 x 48), (116 x 136 x 48) and (174 x 128 x 48) points in 

the radial, azimuthal and spanwise directions respectively. The spanwise box size is 

Lz = 2-KRC in all cases. The corresponding grid configurations in the near wake are 

displayed in figures (81) through (83). The exponential growth of the wake envelope is 

illustrated in the case of the (116 x 136 x 48) mesh, shown for the entire computational 

(£,77) plane in figure (84). 

The (116 x 136 x 48) mesh features a 50% uniform increase in azimuthal resolution 

and a 100% increase in the radial resolution of the cylinder boundary layer and 

resolved near-wake over the (88 x 90 x 48) mesh. The mean boundary-layer velocity 

distribution on the upstream side of the cylinder is found to be identical for both 

simulations on meshes with 90 and 136 azimuthal points, as discussed in Appendix F. 

The finest (174 x 128 x 48) mesh is thus constructed with the same azimuthal point 

distribution in the potential region, outside the 'wake envelope', as that used on the 

(88 x 90 x 48) point mesh, while the azimuthal resolution is increased by 50% in the 

separated shear-layer regions. In the cylinder boundary-layer and the downstream 

recirculation region, the radial resolution is increased by 100%. The resolved wake 

region is extended by 40% to 7 diameters downstream, and its radial resolution is 

50 percent finer than on the (116 x 136 x 48) mesh. Since the spatial differencing 

scheme is globally fifth-order accurate, mesh refinements by 50% and 100% in a spatial 

direction represent decreases of the corresponding leading truncation error by factors 

of 7.6 and 32 respectively. 

Section F.4.1 of Appendix F discusses a test carried out to evaluate the impact 

which stretching the grid radially in the resolved wake region has on the mean veloc- 

ities and eddy viscosity. The (106 x 136 x 48) grid used for this test is identical to 

the (116 x 136 x 48) mesh described above, except that between 1 and 5 diameters 

downstream of the cylinder, the grid stretches geometrically with a factor of 1.02 in 

the radial direction.   Radial increment distributions Ar(r) for the unstretched and 
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stretched test-meshes are presented in figure (85) with the corresponding stretching 

ratio distributions sr(r). 

The final grid selected for large-eddy simulations contains (144 x 136 x 48) radial, 

azimuthal and spanwise points. This grid in the (£,»7) plane is displayed in figure 

(86). 

C.3.4     Physical Flow Features and Grid Selection 

The features of all grids used in turbulence simulations are governed by four principal 

length scales: the cylinder boundary-layer thickness, the free shear-layer thickness, 

the size of the vortices shed from the cylinder and the downstream growth of the 

wake layer. 

The boundary-layer thickness on the upstream side of the cylinder is measured by 

the thickness of the vorticity layer 8W. On a radial line (6 = constant), Su is defined 

as the distance from the wall at which the vorticity magnitude, denoted by £lz, equals 

1% of its maximum value: 

üz(r = <U = 0.01   max  ft,(r). 
1<T<RD 

(181) 

Because the surface boundary-layer separations and the downstream wake have a 

substantial impact on the pressure distribution on the cylinder surface, simplified 

momentum integral techniques cannot provide accurate estimates of the vorticity 

thickness distribution. Approximate values of 8W are thus obtained from the most 

accurate simulation, performed on the (174 x 136 x 48) mesh. Although the wake 

turbulence is not fully resolved in that simulation, the mean velocity distribution on 

the upstream face of the cylinder is found to be grid independent. Table (13) lists 

the vorticity thickness, as well as the number of radial points in each grid within 

the vorticity layer, at several azimuthal positions. The angle 6 in that table has its 

origin at the downstream mean stagnation point (x = Rc,y = 0) and is positive in 

the anti-clockwise direction. The final grid selected (144 x 136 x 48) has 30 radial 

points in the boundary layer at the top of the cylinder (6 — 90°), and about 14 points 

across the layer at the forward stagnation point. 
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Cardell (1993) experimentally documented the width of the free shear layers at 

Reynolds numbers 4,800 and 9,500. The mean width 8a and vertical position ya of 

the shear layers are roughly identical close to the cylinder at both Reynolds numbers. 

At (x = 0.5D,ys ~ 0.6D), S3 ~ 0.15D. At x ~ 2D and Re = 4,800, the boundaries 

of the shear layers emerging from the top and bottom halves of the cylinder meet 

at the wake center and 6, n 0.8J9. At Re = 9,500 the shear-layer edges meet at 

x ~ 1.6D, and the local 63 is also about 0.8D. These data lead us to expect that at 

Re = 3,900, the shear layers grow from about 6S ~ 0.15D at (x = 0.5D,ys ~ 0.6D) 

to 6, ~ 0.8D near the bubble closure point. Interpolating Cardell's data, the closure 

point lay at x/D = 1.83 ± 0.2 at Re = 3,900. Table (14) lists the number of vertical 

grid points across the shear layers at x/D = 0.5 and x/D = 2. The (144 x 136 x 48) 

mesh contains 9 and 16 points across the shear layers at these respective locations. 

The number of grid points per cylinder diameter in all three directions in the wake 

is listed in table (15). In the (£, 77) plane of mean motion, the numbers shown represent 

grid-point densities at the radial limit of the resolved wake region (r = i?wake)- The 

azimuthal resolution at that location is the coarsest within the resolved region, since 

the wake-grid grows with the wake layer. 

At Reynolds number 3,900, the Kolmogorov length scale (lK) at locations x/ 

D = 5, 7 and 10 are displayed in table 16. The grid spacing in Kolmogorov units ten 

diameters downstream for the final grid selected is 27.2, 8.7 and 6.5 in the streamwise, 

vertical and spanwise directions respectively. 

The wake-grid, discussed in Section C.2.2, grows downstream with the square-root 

of radial distance. The adequacy of the chosen wake-envelope growth was confirmed 

by visual inspection of the flow field. Figure (87) displays the instantaneous spanwise- 

averaged streamwise, vertical and spanwise intensity contours, obtained from the 

(174 x 128 x 48) simulation. These contours are superposed onto the (£,7?) grid and 

the wake envelope is clearly seen to encompass the volume of active turbulence. 
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Laminar boundary 
layer 

Separated shear layer 

Recirculation bubble 

Figure 77: Diagram of near-wake structure 
Snapshot of streamwise velocity contours at a given instant in time 

from 116 x 136 x 48 simulation at Re = 3,900. 
Top half of (£, rj) grid is shown with skipped grid-lines in radial and azimuthal directions. 
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Grid Mesh size (r, 0) 8\ «2 U0 0o 0i ■'''/wake Arwau/i?c 

1 65x65 

1.03 1.03 0 90 90 

32 

1.5930 

2 129 x 65 0.2087 

3 200 x 65 0.0251 

4 256 x 65 0.0048 

5 320 x 65 

0.00072 6 320 x 97 1.1 48 

7 320 x 127 1.03 64 

8 320 x 122 1.1 -20 75 6 94 

Table 9: Grid construction parameters at Re= 80 
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Grid Mesh size (r, 6) Sl s2 U0 b 0o Ox ^wake ArwaU/i?c 

1 129 x 81 

1.03 1.1 -5 10 85 

7 

40 

0.2078 2 129 x 121 80 

3 129 x 141 

30 100 4 200 x 141 0.0250 

5 256 x 141 0.0048 

6 300 x 171 130 0.0013 

Table 10: Grid construction parameters at Re= 100 
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51 
Si 

200 

Figure 78: Wake envelope configuration 

r/Rc 

Figure 79: Near-wake envelope 
Construction parameters: C/0 = — 2, b = 10, OQ = 85, Q\ = 20 

163 



21 
< 

t-H 

+ 

< 

0 0—i 1 1 1 1 1 1 1 1 r 

'   2     4  6  8  10 12 14 16 18 20 
r/Rc 

1.20 

1 (X)-
1
—i T 1 1 "f 1 1 1 1 r 

2  4  6  8  10 12 14 16 18 20 
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Figure 80: Near-wake radial spacing (a) and stretching ratio (b) distributions for the 
116 x 136 planar mesh 
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Grid Mesh size (r, 0) Uo b 0o 0i Sl 52 RD/RC 

Purpose Number 

Grid 
refinement 

study 

1,2 88x90 -2 10 85 20 1.1 1.22 139.06 

3 116 x 136 -2 10 85 20 1.1 1.22 198.62 

4 174 x 128 1.5 10 100 20 1.05 1.20 65.27 

Test impact 
of radial grid 

stretching in wake 
106 x 136 -2 10 85 20 1.1 1.22 176.07 

Final grid selected 144 x 136 -2 10 85 20 1.1 1.22 127.41 

Table 11: Grid parameters for wake envelope construction 
(Turbulent simulations) 
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Mesh size (r, 0, z) N Arwau/i2c "wake/"c ^wake/ He 

88 x 90 x 32 
and 

88 x 90 x 48 
50 0.01 10 0.5 

106 x 136 x 48 
and 

116 x 136 x 48 
75 0.005 10 0.25 

174 x 128 x 48 90 0.0025 14 0.17 

144 x 136 x 48 75 0.0025 21 0.25 

Table 12: Parameters defining the resolved wake region 
(Turbulent simulations) 
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Figure 81:   88 x 90 x 32 and  88 x 90 x 48 meshes within 1SD of the cylinder 
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Figure 82:   116 x 136 x 48 mesh within 13D of the cylinder 
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Figure 83:   174 x 128 x 48 planar grid within 13D of the cylinder 
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Figure 84: 116 x 136 mesh on the entire domain 
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51 

1-1 + 

< 

2 '   4     6     8      10    12    14    16    18   20 
r/Rc 

Figure 85: Near-wake radial spacing (top) and stretching ratio (bottom) distributions 
for stretched and unstretched meshes in the wake 
  : No stretching (116 x 136 x 48); : stretched (106 x 136 x 48) 

171 



Figure 86:   144 x 136 x 48 grid on the entire domain 
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Angle 
9 (deg.) 

Vorticity thickness 
Su x 100/Äc 

Grid size (r, 6) 
88x90 (116,106) x 136 174 x 128 k 144 x 136 

90 16.0 11 16 30 

110 9.0 8 12 22 

130 6.1 6 9 17 

150 5.3 5 8 16 

170 4.6 5 7 14 

Table 13: Radial grid points in surface boundary layer 

Location 
x/D 

Layer thickness 
Ss/D 

Grid size (r, 6) 
88x90 (116,106,144) x 136 174 x 128 

0.5 0.15 5 9 13 

2.0 0.8 10 16 21 

Table 14: Vertical grid points across free shear layers 

Grid size 
(r,0,z) 

Grid-point density at r = i?wake 
radial azimuthal span wise 

88 x 90 x 32 4 7 10 
88 x 90 x 48 4 7 15 

116 x 136 x 48 8 12 15 
174 x 128 x 48 12 16 15 
106 x 136 x 48 6 12 15 
144 x 136 x 48 4 12 15 

Table 15: Grid-point density in the near wake 

x/D 103 x lK/D As//* At///* Az/lK 

5 8.81 20.4 6.4 7.4 

7 9.11 24.1 7.8 7.2 

10 10.1 27.2 8.7 6.5 

Table 16: Grid spacing, in Kolmogorov units, in the final grid selected 
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Figure 87: Instantaneous spanwise-averaged intensities at Re = 3,900 
Illustration of the wake envelope adequacy using the (174 x 128 x 48) simulation data 

top: Streamwise; center: Vertical; bottom: Spanwise 
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Appendix D 

Laminar Cylinder Flow 

Validations 

D.l    Definitions 

This section defines aerodynamic coefficients and numerical parameters of relevance 

in cylinder simulations. The pressure and viscous components of the drag coefficient 

are denoted by CDP and CDV respectively, and those of the lift coefficient as CLP and 

dv. The total, spanwise-averaged lift and drag coefficients are the sum of these two 

contributions: 

CL=X.   moor   =CLp + CLv,    CD=X     "ralr   =CDp + CDv       (182) 
\PooUl2RcLz \PooUl2RcLz 

with 

c^ =-ihr,!*'I* vAn"mz 

1 tLt    r2ir /A \ 
Gu = -B-TTT-r /    /   UKcos e + vtsin 0)sin ° + tt*° cos 6 dodz ReMLLz Jo    Jo    \ 6 / 

cD = 
I fLz   y2ir 

"       MIL, 

rbz    tin 

I        /      P 
Jo    Jo 

cos 6 d9dz 
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CDV — ReMl 

I rLz   [2ir (± \ 
  /     /    [ „(uf cos0 + v$sin0)cos9 - QZo sin0 1 d0dz 
ihLz h   h   \3 / 

where QZo = y„v^ + xvu^ is the vorticity at the wall and Lz is the spanwise box size. 

The Mach number M<x> appears in these definitions because the reference velocity was 

chosen as the sound speed c^ (Chapter 2). 

The Courant numbers used in this report are based on free-stream velocity (CFL(Uoo)) 

or sound speed (CFL^)) and are defined as: 

CFL(coo) = max 
(x,y,z) L    Ax 

|«| + c      \v\ + c      \w\ + C 
H 1 r 

Ay 
At (183) 

CFLiUoo) = max 
Ax     Ay     Az. 

At (184) 

where the 'max' operator extracts the maximum value of its argument in the entire 

computational domain. 

D.2      Steady Flow at Re = 20 

At Reynolds number 20, the flow around a circular cylinder is steady, and a pair of 

vortices is attached to the downstream side of the cylinder. This Section presents 

a study of the impact of domain size on the steady solution. It is shown that a 

small computational domain does not affect the velocity field in the vicinity of the 

cylinder, but that the pressure in the wake region is sensitive to the position of the 

outflow computational boundary. An appropriate domain radius for which the near- 

wake pressure and velocity are not affected by the boundary conditions is found to 

be about 300 cylinder radii. The steady solution on that domain is compared to 

experimental results in Chapter 3. 

D.2.1    Effect of Computational Domain Size 

The computational domain is a circle of radius RD- In all simulations, the radial grid 

distribution stretches geometrically from the cylinder surface to the outer boundary 

with a stretching factor fixed at 1.03, while azimuthal grid points are equispaced. 
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Asymptotically far downstream of the cylinder the velocity defect on the wake 

centerline decreases as 

u ~ (185) 

The effect of the body is thus felt at large distances downstream, so that extending 

the computational domain to distances where the influence of the cylinder is negligi- 

ble is not practical. Since one cannot impose exact outflow boundary conditions in 

the wake region, the mismatch between flow physics and numerical constraints cre- 

ates spurious pressure waves. However the mesh stretching near the outer boundary 

increases numerical dissipation, dampening these perturbations. The influence of the 

boundary conditions on the near wake is demonstrated on three different domains 

of size RD = 60 Rc, 120i?c and 300i?c. The solutions are grid independent on each 

domain studied. For instance on the larger domain, simulations are performed with 

mesh sizes containing (129 x 104), (200 x 200) and (256 x 300) points in the radial and 

azimuthal directions respectively, to establish the grid-independence of the solution. 

Figures (88) through (90) display several flow quantities computed on the different 

domains. The pressure coefficient and vorticity distribution at the wall (figures 88 and 

89), which together determine the total drag on the cylinder, differ on the upstream 

side of the cylinder by a pointwise maximum of 2% on the 120i?c and 300i?c domains. 

Downstream of the separation point (0 > 0.757r), on the portion of the cylinder 

wall facing the wake, both wall pressure coefficient and vorticity are independent of 

computational domain size. 

The streamwise velocity on the rear flow symmetry axis (figure 90), is influenced 

by the domain size in a region extending from approximatly 10 diameters downstream 

to the outer domain boundary. In the near wake however, the velocity distributions 

obtained on the three domains are identical. The pressure coefficient on the rear flow 

axis, shown in the same figure, is the quantity most sensitive to domain size. On 

the smaller domain, the pressure overshoots and increases above its stagnation value. 

As the domain size increases, the overshoot diminishes and has disappeared on the 

larger domain. Based on these results, the domain chosen for all steady and unsteady 

laminar computations is a circle of radius RD = 300i?c. 
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D.3     Laminar Vortex Shedding at Re = 80,100 

Two-dimensional computations at Reynolds numbers 80 and 100 are performed to 

establish the temporal accuracy of the numerical method. These simulations further 

test the far-field boundary condition performance in unsteady flow by examining 

whether the only energetic frequency is the primary wake frequency. Inaccuracies in 

outflow boundary conditions can generate modulating frequencies in the flow response 

(Don 1989). 

Appendix C describes the family of grids on which all cylinder computations 

are performed. Simulation results at Reynolds numbers 80 and 100 are presented 

in Sections D.3.1 and D.3.2 respectively. It is shown that the Strouhal frequency 

converges, with grid refinement, to the experimental results of Williamson (1991) for 

two-dimensional vortex shedding. The performance of the iterative solver is evaluated 

in Section D.3.3 using the case of laminar vortex shedding at Reynolds number 100. 

The iterative scheme is shown to have good convergence properties in this case. 

D.3.1      Vortex Shedding at Reynolds Number 80 

Table (9) in Appendix C describes the grids used in the simulations at Reynolds 

number 80. Radial and azimuthal directions are refined separately in this study, 

while the computational domain radius is set to 300i?c. Radial grid refinements are 

performed on 5 successive meshes. On these, the radial wall spacing decreases from 

1.59i2c to 7.2 x 10_4i?c, the stretching factors «i and s2 are equal and fixed at 1.03, 

and the 65 total azimuthal points are equispaced. The angles defining both end points 

of the wake envelop are equal and set at 90 degrees, resulting in standard polar mesh 

configurations. 

Azimuthal refinements of the wake envelop region are done on 3 additional grids, 

which contain respectively 48, 64 and 94 points across the wake layer. The last grid 

features a wake envelop similar to that presented in figure (78). It further uses a 

variable radial grid stretching ranging between 1.03 at the cylinder surface and 1.1 

at the outer domain boundary. 
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Grid Number CFL (C/oo) CFL y UooAt/Rc St 
1 

1 

13 0.254 0. 
2 6 0.118 0.137 
3 12 0.060 0.148 
4 39 0.037 0.149 
5 225 0.033 0.150 
6 178 0.026 0.152 
7 154 0.022 

0.152 0.5 72 0.010 
8 1 154 0.022 

Table 17: Computed Strouhal number at Re= 80 

CFL numbers and time-steps used on each grid are listed in table (17). The time 

step in each simulation was chosen to correspond to a velocity-based CFL number 

of 1. A time-step refinement performed on grid 7 compares solutions computed with 

CFL numbers of 1 and 0.5. It is worthwhile to note that in these two-dimensional sim- 

ulations, the implicit time-marching scheme is stable and accurate for CFL numbers 

as high as 225. 

On the coarsest mesh (65 x 65), no vortex shedding can be sustained (St = 0). As 

the grid-density increases at the cylinder surface, the Strouhal number reaches a value 

of 0.152. Figure 94 displays the evolution of the Strouhal number with grid refinement. 

It indicates that the value St = 0.152 is closely grid-independent. This result is 

in agreement with the experimental frequency of 0.153 documented by Williamson 

(1991). 

On the densest mesh with (320 x 127) points, a reduction of the time-step by a 

factor of 2 does not affect the value of the computed Strouhal number. The simulation 

on the mesh (8) with the wake envelop shown in figure (78), accurately predicts 

the Strouhal frequency, demonstrating that selectively refining the wake layer, while 

maintaining the resolution in the potential region, does not affect the accuracy of the 

vortex shedding frequency at this Reynolds number. 

The least-squares curve-fit of the lift coefficient (CL) with a sine function is shown 
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Grid Number CFL {Uoo) CFL(Coo) UooM/Rc St 
1 

1 

5 0.0782 0.153 
2 6 0.0458 0.156 
3 6 0.0364 0.157 
4 5 0.0262 0.163 
5 21 0.0201 0.164 
6 61 0.0159 0.164 

Table 18: Computed Strouhal number at Re= 100 

in figure (93). The maximum pointwise error between CL and the fitted curve is 

on the order of 10"4 smaller than the lift amplitude, indicating that no energetic 

mode other than the primary vortex shedding one is present. Modulation of the lift 

coefficient response by frequencies lower than the Strouhal frequency is a numerical 

problem which can arise because of inaccuracies in far-field boundary conditions (Don 

1989). 

Lift and drag coefficient decompositions into viscous and pressure components are 

shown in figures (91) and (92). At this Reynolds number, the skin-friction contributes 

appreciably to the total lift, and accounts for about one-third of the total drag. 

D.3.2      Vortex Shedding at Reynolds Number 100 

The grids used at Reynolds number 100 are described in table (10) (Appendix C). 

All feature an azimuthal wake envelop as well as variable radial grid stretching. The 

cylinder surface and outer boundary stretching factors are fixed at «i = 1.03 and 

s2 = 1.1 respectively. Azimuthal refinements of the wake envelop are performed 

on grids containing 40, 80, 100 and 130 points across the wake layer. The radial 

spacing at the cylinder surface varies on the 6 grids from 0.2078.ftc to 0.0013i?c. The 

computational domain radius is fixed in all cases at 300i?c. 

The CFL numbers on each grid are summarized in table (18). Velocity-based CFL 
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Re Si max CLP max CLV max CBV max CDV 

80 0.152 0.215 0.037 0.976 0.378 

100 0.164 0.297 0.045 1.021 0.344 

Table 19: Lift and drag maxima 

numbers, fixed at 1 in each simulation, define the associated time-steps and sound- 

speed-based CFL numbers. The evolution of the Strouhal number with grid refine- 

ment is displayed in figure (98). In the most accurate simulation, the Strouhal fre- 

quency stands at 0.164, in agreement with the experimental value of 0.164 (Williamson 

1991). Lift and drag coefficients are shown in figures (95) through (97). The contri- 

bution of the shear stress to both coefficients (table 19) is smaller at Reynolds number 

100 than at Reynolds number 80. The maximum lift due to viscosity is 13% of the 

total lift at Reynolds number 100, and 15% at Reynolds number 80. The maximum 

skin-friction accounts in these same cases for respectively 25% and 28% of the total 

drag. 

Figure (97) demonstrates, as in the case of Reynolds number 80, the fit of the lift 

coefficient response with a sinusoidal curve, and the absence of energetic low frequency 

modes. 

D.3.3     Iterative Solver Performance 

The performance of the iterative solver is tested in the computation of the Strouhal 

number at Reynolds number 100. The fourth grid described in table (10) is used to 

demonstrate the behavior of the residuals with two different time-steps. In both 

computations, the number of sub-iterations per time-step is set to 3. The two time- 

steps correspond to velocity-based Courant numbers of 1 and 0.5, or sound-speed 

Courant numbers of 5 and 2.5 respectively. A measure of convergence error in the 

solution at time-level n and sub-iteration p is the L\ norm of the residual error ||-Rn'p||i 
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(equation 73, Chapter 2), defined by: 

rLz    f2ir   fRi, 
\\Rn,P\\l=J    j   j     \Rn*\drd6dz , (186) 

The decrease in this residual error at a given time level, expressed by the ratio of 

residual norms at the first and last iterations ||i?l,1||i/||-Rn,3||i, is an indicator of the 

performance of the iterative solver. Time evolutions of this ratio are displayed in 

figures (99) and (100) for each CFL number. Convergence at each sub-iteration is 

better for smaller time-steps, the norm of the residuals dropping faster than linearly 

with decreasing time-step. At CFL number of 5, all residuals drop by a factor of 

about 1,000 in three iterations. At half the CFL number, the residuals drop by an 

additional factor of approximately 4. 

The iterative method with three sub-iterations per time-step is approximately 

three times faster than a direct inversion method. Because of the modifications made 

to simplify the linearizing Jacobians (Chapter 2), the standard proof of quadratic 

convergence for a Newton scheme does not hold. Empirically, this scheme is found to 

be robust. The accuracy of mean surface quantities, including Strouhal number, drag 

and lift coefficients, does not seem unduly affected by fixing the number of iterations 

at 3, incurring at each time-step a finite residual error. 
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Figure 88: Re=20; Wall pressure coefficient 

Figure 89: Re=20; Wall vorticity 
: RD/RC = 60; : RD/RC = 120; : RD/RC = 300 
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Figure 90: Re=20; Rear axis streamwise velocity and pressure coefficient 
  : RD/RC = 60; —-  : RD/Rc = 120; : RD/Rc = 300 
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Figure 91: Re=80; Lift coefficient 
Pressure lift; • • • : Viscous lift;   : Total lift 
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Figure 92: Re=80; Drag coefficient 
: Form drag; • • • : Skin friction;   : Total drag 
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Figure 93: Re=80; Strouhal frequency evaluation 
  : Computation; • : Best sinusoidal fit 
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Figure 94: Re=80; Strouhal frequency convergence 
• : 129 x 65; A : 200 x 65; o : 256 x 65 
x : 320 x 65; o : 320 x 97; + : 320 x 127 
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Figure 95: Re=100; Lift coefficient 
Pressure lift; • • • : Viscous lift; Total lift 
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Figure 96: Re=100; Drag coefficient 
Form drag; • • • : Skin friction;   : Total drag 
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Figure 97: Re=100; Strouhal frequency evaluation 
  : Computation; • : Best sinusoidal fit 
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Figure 98: Re=100; Strouhal frequency convergence; 
• : 129 x 81; A : 129 x 121; o : 129 x 141 
x : 200 x 141; o : 256 x 141; + : 300 x 171 
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Figure 99: Re=100; CFL=5; Sub-iteration convergence factor time history 
continuity (a) , streamwise momentum (b) 

vertical momentum (c), energy (d) 
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Figure 100: Re=100; CFL=2.5; Sub-iteration convergence factor time history 
continuity (a) , streamwise momentum (b) 

vertical momentum (c), energy (d) 
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Appendix E 

Linear Stability of a Forced 

Channel Flow 

E.l      Formulation of the Problem 

The accuracy of the numerical treatment of the convective acceleration is tested in 

a periodic channel using linear stability analysis. The work necessary to drive the 

fluid through the channel is provided by an external periodic force. The streamwise 

direction in the channel is denoted by y, and x is the cross-channel direction. 

In steady-state incompressible Poiseuille flow, the maximum streamwise velocity 

is denoted v = [/«>, and is related to the the pressure gradient across the channel by: 

dp 2 
dj = -v»u-> 

where h is the channel half-width and p the viscosity. The quantity 

1 dp        2 

(187) 

poo dy     pooh2 
pU0 (188) 

is a constant streamwise force per unit mass, and represents the source of momentum 

necessary for the flow to achieve the steady-state velocity v = Uoo on the channel 

centerline. 
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The thermodynamic pressure distribution obtained by integrating (188) is linear 

in y. It is thus not a solution to the boundary-value problem describing the com- 

pressible flow in a periodic channel. To circumvent this difficulty, an external forcing 

is introduced to drive the flow, in the form of a momentum and energy flux calibrated 

to match the magnitude of the force given in (188). The external force imposed in 

the streamwise momentum equation is a constant denoted by A. Corresponding to 

this momentum source, an energy source, equal in magnitude to the product of A 

and the streamwise velocity v, appears in the energy equation. The flux that must 

be imposed as an external source term in the Navier-Stokes equations written in 

conservative form is then 

r = A 

The constant A is defined by: 

A = 

/0\ 

0 

1 

0 

w 

2JM0 

Re 

(189) 

(190) 

where the reference velocity is the sound speed c^. The symbol J refers to the 

Jacobian of the transformation from physical to computational space (equation 42, 

Chapter 2). Upon introduction of the external forcing, the governing equations (equa- 

tion 45, Chapter 2) become: 

lö+—P* + —F +—F -f (191) 

The vector Q represents the conservative variables (equation 44, Chapter 2).   Its 

definition is restated here for clarity: 

Q = 

Mi\ 
' P \ 

92 pu 

93 = J pv 

94 pw 

\qj { e ) 

(192) 

192 



It is worth noting that although the external force A itself is known and constant, 

the external energy source involves the streamwise component of momentum (v). 

The time integration of the equations above thus involves both explicit and implicit 

contributions by the external forcing. The corresponding implicit Jacobian of the 

forcing term is described in the next Section. 

E.2      Numerical Implementation 

The modifications to the time-marching schemes arising because of the forcing f are 

derived by considering the time-marching scheme given by (73) in Chapter 2: 

AQn+1 - czftAQn+1 = (ex - \)Qn + c2Q
n~l + c3^Q» (193) 

where n represents the time level, A<3n+1 = Qn+1 -Qn, and the coefficients cx through 

c3 are functions of the time step. Adding the forcing flux f to the right-hand side of 

the Navier-Stokes equations results in equation (191), which substituted into (193) 

leads to: 

Q ^      d -       d -\n+1 

MF<+ djF" + d~zFz) 
implicit contribution 

A<r+1+c3A(- 

(Cl - 1)<3» + c2Q^ - C3(|F, + JU + §-/zy + cj™ (194) 

explicit contribution 

The implicit contribution Af of the forcing flux is a new term which must be expressed 

as a function of the solution vector AQ. It is linearized in time using a Taylor series 

expansion: 

Afn+1 =  (<!LYAQn+l + 0(At»+l)2 (195) 

where the flux Jacobian is obtained directly from the definition of T(Q) given in (189) 
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as: 

—-=; = A 
dQ 

/     0       0     0     0   0\ 

0       0     0     0   0 

0       0     0     0   0 (196) 

0       0     0     0   0 

\-qzlq\    0    I/qx    0    0/ 

This expression for the Jacobian of the forcing completes the definition of the 

additional terms appearing in the time-marching scheme. The non-linear system of 

equations is inverted using the iterative technique outlined in Chapter 2. 

E.3      Steady One-Dimensional Solution 

The governing steady-state one-dimensional compressible equations in physical space 

are obtained from (191) as: 

(197) ifi+h'-* 
with J = 1 and u(x) = w(x) = 0. In terms of the primitive variables, the equations 

reduce to: 

d_ 

ox 
V-ik(™* + 7^/Pr(7-l))/ 

/       (7-l)(e-/«;a/2)       \ 
—Vx/Re 

/0' 
(198) 

Channel walls are located at x = ±1, where the boundary conditions are: 

u = ü = w = 0,    T = TW = —. 
7 

(199) 

Substituting the definition of A (equation 190), the solution of this boundary-value 

problem is: 

v(x) = Moo(l - x2) (200) 

3 
p(x) PrM£(7-l)(l-z4) + 37ru 

e(s) = 
1 1 

+ Ö/™ 7(7 - 1)     2 

(201) 

(202) 
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In this solution, the pressure is constant, p = I/7, the streamwise velocity is formally 

identical to the incompressible Poiseuille solution, and the temperature is 

T(x) = -±- = Tw + ^A£(7 - 1)(1 - x% 
ip{x) 37 

(203) 

In the limiting case of zero Mach number, the density becomes constant and the 

solution is well behaved. The governing equations generate this solution because the 

molecular viscosity is assumed independent of temperature, and because the forcing 

(A) is per unit volume instead of per unit mass. 

E.4      Small-Disturbance Equations 

Substituting perturbed primitive variables into the conservative form of the Navier- 

Stokes equations (191) written in cartesian coordinates, and neglecting all products 

of perturbation fields, leads to the three-dimensional small-disturbance equations, 

d_ 

dt 

(   p'   \ 
pu' 

pv' + p'v 

pw' 

\      e'      ) 

+ 

( 

+ 
d_ 

dx 

pu 

P 

pvu 

0 

\u'(e + p)) 

I 

+ d_ 

dy 

\_d_ 
Redx 

pv' + p'v 

pvu' 

2pvv' + p'v2 + p' 

pvw' 

\v(e' + p') + v'(e + p)J 

\ I 
H -1« + <) 

v'x+«; 

\ vv'x + v'vx + vu'y ) 

l_d_ 

Redy 

d 

0 

pw 

0 

pvw' 

p' 

\w'(e + p)J 

\ 

vL + u' 

-|K + <) + H 
™'y + v'Z 

\ u'vx - \v(u'x + w'z) + ±vv'y ) 
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J_d_ 
Re dz 

( o 

Wy + V'z 

-IK + O + Iv' 
\       v(w'y + v'z) 

7 
(7 - l)RePr 

I 

0 

0 

0 

0 
\7"   4. 7"   4. T'  I 
N ■*■ xx   1   ■*■««    1   ■* zz I yy 

(°\ 
0 

= A 0 

0 

w) 
where the perturbation pressure and temperature are: 

/ / / /   2 p — e — pvv — -p v 

and 

At the solid wall, we impose 

/oV       7/)/ 

u' = «' = w' = 0,    2" = 0. 

(204) 

(205) 

(206) 

These are the only physical boundary conditions required, since the normal momen- 

tum equation at the wall defines the normal gradient of pressure at the wall. The 

channel geometry is periodic in the streamwise (y) and spanwise (z) directions, and 

disturbances are decomposed in Fourier modes along these directions. Considering 

a generic Fourier mode, we seek solutions to the small-disturbance equations of the 

f0rm . A/ \ 

u' 

w 

(x,y,z,t) = 

u(x) 

v(x) 

w(x) 

ia(y+ßz-ct) (207) 

\ e' / V e(x) J 

Substitution into the small-disturbance equations yields an eigenvalue-eigenvector 

problem for c, 

L2|^-<£ + Liir* + L^ = c* (208) 
ox2 ox 
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where $ is the solution eigenvector 

* = 

A 

V 

w 

p 

The matrix L0 is proportional to the product of two matrices Mi and M2: 

2 

L0 = MiM2 ap 

where Mi and M2 are given by 

/ 0 
—v 

Mi= 0 

with 

and 

1 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

\ 

^(7-l)        0   pv{l--y)   0   p(7-l) 

\-i + T(l-1)    °    »U-7)     0    (7-1) y 

M2 = 

~2 
iapu+£(l+ß2) 0 

Hx 2iapt/ + £(f + j8a) 
0 2i£ u 3fie 

ictfrjv —iap2fv \ 

0 0 

^ ia(l + 7/w2)       -iajp2v2 

0 

0 

«»ft"7 + !fe 
iapv + g(l + §/?2) iaß 

iaß(e + p) + v*£     iiav(^ + pi) fa      ) 

A = ~ fit + "*(e + P) + "te (3 +     '     'aPV' 

(209) 

(210) 
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Matrices L\ and L2 are given by 

/   o 
l 

Li = - 

3pRe 

_£_ 
ZpRe 

a 

am 

ZpRe 

0 

-2-   -*-   0\ ZpRe      ap     u » 

0 

-2.'(7-i);fe 

0 

0 

0 

0 

0 0 

0 0 

0 0 

0    0/ 

(211) 

and 

2,2 = 
aife 

/ 4/3/9 

0 

0 

0 

V   0 

0 

l/p 

0 

0 

0 

0     0 

0     0 

l/p   0 

0 

0 

0 

0     0    7/Pr 

0     0   ~//pPr / 

(212) 

For given wave-numbers a and ß, the solution of this eigenvalue problem yields the 

eigenfunctions (u,v,w,p,f) and the complex frequency c. The perturbation energy 

is defined as 

E(t) = jL' JLv f {u'2 + v'2 + w'2)dxdydz. (213) 

Its evolution in time is exponential, 

E(t) = £(0)e2Clt (214) 

where c,- is the imaginary part of the eigenvalue c. The objective of the linear-stability 

simulations is to test the code accuracy in predicting the energy growth-rate (2c;). 

E.5      Three-Dimensional Eigenfunctions 

The oblique mode a = ß = 1 is selected for three-dimensional simulations. The 

equations do not admit growing modes in this case, and the slowest decaying Orr- 

Sommerfeld mode is chosen as the perturbation. The corresponding frequency is 

c = 0.02962395 - i0.00220154 at Reynolds number 7,500 and Mach number 0.1. 
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Scaling Factor Real Part Imaginary Part 

|^|max 0.08143 0.07145 

K'lmax 0.9964 0.5974 

Hmax 0.81796 0.7994 

I-»  |max 0.00274 0.00283 

]!■ |max 0.01504 0.01606 

Table 20: Scaling factors of 3-D eigenvalues 

The corresponding incompressible solution gives as the slowest decaying mode c = 

0.02963201 - zO.00219390, a difference in norm of 0.025%. 

The real and imaginary parts of the eigenfunctions are shown in figures (101) and 

(102). These functions are scaled on their respective maxima across the channel, 

which are listed in table (20). The results of the simulations performed are described 

in Chapter 2. In all simulations, the point distribution across the channel is given by 

a hyperbolic tangent with a stretching factor a: 

tanh(axj) 
x = 

6 = -1 + 2 

tanh(a) 

»-1 

N-l 
i = l,---,N 

(215) 

(216) 
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Figure 101: Real part of 3-D eigenfunctions 
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Figure 102: Imaginary part of 3-D eigenfunctions 
: v/v„ ■ w/wmax; : P/Pmax; : T/Ta 
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Figure 103: Numerical dissipation in steady channel flow solution 
Stretching factors:  : a = 2;    : a = 3; • • • : a = 4.5 
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Appendix F 

Numerical Aspects of LES 

F.l      Introduction 

Large-eddy simulations are based on the division of turbulent flows into large and 

small-scale motions. The energetics of the large scales are computed directly, whereas 

the effect of the small scales on the large scales is modeled. The performance of this 

division of labor between the filtered, large-scale equations and the subgrid-scale 

model hinges partially on the ability of the mesh, given a numerical method, to 

accurately resolve the dynamically important motion. This appendix summarizes the 

large-eddy grid-refinement study performed at a Reynolds number of 3,900 based on 

free-stream velocity and cylinder diameter. The objective is to select a grid on which 

comparisons between simulations using different subgrid-scale eddy-viscosity models 

can be established. All calculations presented in this appendix were performed with 

the fifth-order accurate, upwind-biased scheme for the convective derivatives. 

The subgrid-scale eddy viscosity, given by (30) in Chapter 2, is of the form vt = 

CA2~p |5*|, where C is a function of space depending on the Leonard stress tensor, 

density and rate of strain fields. The convergence properties of the subgrid-scale 

Reynolds stresses as the grid is refined have not been thoroughly investigated. The 

purpose of the present study is thus to examine the variations of the mean quantities 

in the wake and at the cylinder surface as grid resolution increases. Most velocity 

and resolvable Reynolds shear stress statistics near the wake centerline are found 
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to oscillate with grid refinement, indicating that the finer meshes capture the main 

statistical flow features. 

The following section discusses three-dimensional initial conditions. Grid and 

time-step refinement studies are presented in section F.3. The final mesh selected for 

large-eddy simulations is described in section F.4. 

F.2      Three-Dimensional Initial Conditions 

Three-dimensional calculations are initialized with planes of data obtained from pre- 

liminary two-dimensional simulations, each plane corresponding to the flow-field at a 

different phase of the vortex shedding cycle. The resulting initial fields numerically 

satisfy the continuity equation, and the three-dimensional motions are generated by 

a spanwise force imbalance. This technique is used to generate turbulent fields only 

once for each spanwise box-size. Simulations performed on computational domains 

having identical spanwise lengths but different grids are initialized with fields inter- 

polated from solutions computed on coarser meshes to minimize the perturbation of 

the large scales. 

In the present simulations, no external perturbations are imposed upstream of the 

cylinder. In the absence of external perturbations, the three-dimensionality of the flow 

was found to be numerically self-sustained for spanwise grid spacings smaller than 

Az = 0.4.RC, corresponding to 5 spanwise points per cylinder diameter. For coarser 

spanwise resolutions the flow reverts to a two-dimensional state after a transient of 1 

to 2 vortex shedding cycles. 
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Grid size (r, 9, z) UcoAt/Rc CFLiUoo) CFL(Coo) 
88 x 90 x 32 0.03 1.2 15 
88 x 90 x 48 0.01 0.4 5 

116 x 136 x 48 0.005 0.3 6 
174 x 128 x 48 0.005 0.7 13 

Table 21: Time integration parameters 

F.3      Spatial and Time Resolution Study 

F.3.1    Grid Sizes 

The selection of a box-size in the spanwise direction (z) is such that the two-point 

correlation function of velocity component «,• 

Ru(0,0,r) = Ui(z, y, z,t) Ui(x,y,z + r,t)--Jo  u\D(x,y, t)dt - ü?(x, y)     (217) 

is close to zero at the box center. The bar over a quantity in that expression de- 

notes an average over time and spanwise distance. The two-dimensional component 

of the velocity ui2D is by definition independent of the spanwise direction (chapter 2, 

section 2.8). This relation assumes that the random and two-dimensional compo- 

nents of the flow are uncorrelated (Cantwell k Coles 1983). Recent experiments 

have investigated the size and nature of the structures present in the intermediate- 

wake behind the cylinder. These large-scale three-dimensional structures are pairs of 

counter-rotating streamwise vortices (Hayakawa & Hussain 1989). Between Reynolds 

numbers 330 and 21,000, the mean spanwise spacing of these structures is constant 

at about one pair per diameter (Bays-Muchmore & Ahmed 1993). The correlation 

functions Ru(0,0,r) were however not documented in these experiments. 

The only location where experimental measurements are available to evaluate 

spanwise two-point correlations is three diameters downstream of the cylinder. Ong 

&; Wallace (1994) computed the spanwise two-point correlation of the hot-wire voltage 

E at that location at Reynolds number 3,900, using a single-wire probe. The effects 

of both streamwise and vertical velocities are thus included in these correlations. The 

measurements, taken on the wake centerline (y = 0), are shown in figure 104. They 
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represent the sum of the correlation function and the squared periodic component of 

the voltage fluctuation: 

J£*(0,0, r) = REE(0, 0, r) + i j* E2
2D(x, y, t)dt (218) 

The two-dimensional component of the voltage fluctuations is not available experi- 

mentally. To derive the most pessimistic estimate of the location at which the correla- 

tion REE is zero, we assume that the voltage function E(t) is defined uniquely by the 

streamwise velocity u(t), and that the periodic component is the net two-dimensional 

component of the flow. At x/D = 3, the experimental value of u^/i?*u(0,0,0) is 

about 0.1. The correlation function Ruu(0,0,r) at three diameters downstream is 

thus zero at approximately r/D = 1.5. In all the simulations documented in this 

report, the spanwise box-size is set to twice this distance, at Lz = irD. 

The layouts of the meshes used in this resolution study are discussed in section C.3 

of Appendix C. To establish that the final mesh selected resolves the main features of 

the flow, mean velocities and Reynolds shear stresses are presented below on 4 grids 

containing (88 x 90 x 32), (88 x 90 x 48), (116 x 136 x 48) and (174 x 128 x 48) points 

in the radial, azimuthal and spanwise directions respectively. 

F.3.2      Time Stepping and Iteration Residuals 

The time-steps and CFL numbers corresponding to each calculation are displayed in 

table (21). Statistics are compiled in each simulation over 60 to 65 time units based 

on cylinder radius and free-stream velocity, corresponding to approximately 6 vortex 

shedding cycles. The convergence of the iteration residuals, illustrated in the case 

of the (88 x 90 x 48) simulation, is shown in figure (105). This figure displays time 

histories of the residual errors in each governing equation, defined in section D.3 of 

Appendix D, over approximately half a vortex shedding cycle. The number of sub- 

iterations per time-step is fixed at 3. Residuals drop on the average by a factor of 103 

at each time-step, with extrema in all five equations of motion as low 20 and as high 

as 104. Although convergence histories at Reynolds number 3,900 are noisier than 

those at Reynolds number 100 (figures 99 and 100, Appendix D), the level of mean 

convergence is comparable in both cases. 
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F.3.3    Mean Convergence with Time of Integration 

The convergence of mean flow statistics with time of integration is examined in the 

case of the (116 x 136 x 48) simulation. Table (23) summarizes the evolution of the 

main near-wake features integrated over 6 vortex shedding cycles. Figures (106) and 

(107) display the wall pressure coefficient and shear stress, as well as velocity profiles 

inside and downstream of the recirculation bubble at different times of integration. 

Total drag, skin-friction, upstream separation angle and back-pressure are close to 

their final values after two shedding cycles. Other quantities, including secondary 

separation angles, bubble length, wall stress and wake velocities require up to 5 shed- 

ding cycles for convergence, corresponding to integrations over approximately 50 Rc/ 

Uoo time units. 

F.3.4     Effect of Refinement on Mean Wake Quantities 

Statistics obtained from each simulation are summarized in table (24) and figures 

(108) through (116). Table (24) lists mean quantities of interest at the cylinder 

surface and in the main recirculation bubble. These parameters are observed to 

either oscillate, or decrease, reach a minimum and increase, or undergo the reverse 

trend, as the grid is refined. In particular, the oscillatory behavior of the back- 

pressure coefficient and separation angles can be observed in figure (108), which 

displays pressure coefficient and vorticity around the cylinder circumference for each 

simulation. 

Three of the most important wall quantities are the back-pressure coefficient, the 

upstream separation location of the boundary layer and the total drag coefficient. 

These all lay within experimental error in the two most resolved simulations. The 

back-pressure coefficients are equal and stand at CPb = -0.94 in these simulations, 

while the upstream separation angle, equal to 0X = 86.2° in the most accurate case, 

differs by about 1% from is value on the 116 x 136 x 48 mesh. The experimental 

value of the drag coefficient is CD = 0.98 ± 0.05 at Reynolds number 3,900. The most 

accurate simulation predicts a drag coefficient of CD = 0.98. The Strouhal frequency 

however is underestimated on all meshes, and stands on the finest one at 0.20, 5% 
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below the experimental bound of 0.215 ± 0.003 (Cardell 1993). On the upstream face 

of the cylinder, the laminar boundary-layer velocity profiles ve(r) are shown in figure 

(109) at angles 0 = 90,120 and 150 degrees. Although the boundary-layer velocities 

are underestimated on the mesh with 32 spanwise points, they are well resolved in 

the 48-spanwise-point simulations. 

One of the most significant near-wake statistics is the length of the recirculation 

bubble downstream of the cylinder. It equals 1.18 ± 0.05D according to Lourenco's 

PIV experiment (1993), and 1.33 ± 0.2 based on Cardell's hot-wire investigation 

(1993). Its computed values, illustrated by bubble-velocity and pressure distribu- 

tions in figure (110), in the two most accurate simulations are 1.36Z? and IAAD, 

which is within Cardell's error range but higher than the PIV estimates. Mean ve- 

locity and Reynolds shear stress profiles across the wake are displayed in figures 

(111) through (116) at several locations downstream. Reynolds shear stress and ve- 

locity local extrema, oscillate as resolution increases. Streamwise velocities exhibit 

±5% oscillations of their maximum norms based on local centerline velocity deficit. 

Peak values of Reynolds shear stress vary in a 10% band in the (88 x 90 x 48) and 

(174 x 128 x 48)-simulations. 

F.4      Final Grid Selected 

These results indicate that on the (116 x 136 x 48)-point mesh, near-wake mean ve- 

locities and Reynolds stresses are resolved within uncertainty bounds of 5% and 10% 

respectively. This mesh is thus appropriate for turbulence simulations. However in 

two computations with and without the dynamic subgrid scale model, differences in 

mean velocities were small and confined to the first 2 diameters of the wake. To en- 

hance the impact of the subgrid scale model, the final mesh selected is similar to the 

(116 x 136 x 48) grid with three modifications: (1) the radial resolution at the cylinder 

surface is chosen to match that of the (174 x 128 x 48) mesh; (2) the resolved wake 

region is extended from 5 to 10 diameters downstream; (3) downstream of the bubble 

closure point, the mesh is stretched geometrically in the radial direction. The next 

section demonstrates that this stretching has a minimal effect on the mean velocity, 
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while the eddy viscosity increases locally by up to 40 percent. These three modifica- 

tions translate into a mesh containing (144 x 136 x 48) points in the radial, azimuthal 

and spanwise directions respectively. Its physical characteristics are documented in 

Appendix C. The grid layout is displayed in figure (86). 

F.4.1      Impact of Radial Grid Stretching Past the Bubble 

Closure 

In the resolved wake downstream of the recirculation bubble (L < r < Rw), meshes 

used in the refinement study above have a constant radial spacing, (figure 80). In 

the final grid selected described above, the mesh stretches radially downstream of the 

recirculation bubble in order to enhance the contribution of the turbulence model 

within the resolved wake region. The objective of this section is to demonstrate that 

this radial coarsening of the mesh increases the turbulent eddy viscosity relative to 

the molecular viscosity without unduly affecting the accuracy of the solution. 

The impact of radial grid stretching for r < Rw is demonstrated using the (116 x 

136 x 48) simulation described in tables (11) and (12) as a base case. Geometric 

stretching in the radial direction between 1 and 5 diameters downstream with a 

factor of 1.02 results in a (106 x 136 x 48)-point mesh. Stretched and uniform radial 

grid-spacing distributions are displayed in figure (85). Azimuthal and spanwise grid 

construction parameters are identical to those of the unstretched (116 x 136 x 48)- 

point mesh. On both grids, the initial condition is a fully developed field. Statistics 

are averaged over 11.4i?c/C/oo time units, corresponding to approximately 1 vortex 

shedding cycle. The time-step is 0.005i?c/£/«>, which translates into velocity and 

sound-speed based CFL numbers of 0.3 and 6 respectively. 

Table (22) lists mean quantities of interest at the cylinder surface computed on 

both grids. Total drag (CD = 0.98) and skin-friction (Cj = 0.90 x 10"2) are identical 

in both cases. Differences in back-pressure coefficient and upstream separation angles 

stand at 1% and 0.1% respectively. 

Mean eddy viscosity and velocities at various locations in the wake are displayed 

in figures (117) and (118).   The maximum difference in mean velocity occurs 3.5 

208 



Wake mesh Cfi cD Cj x 100 0i 

Unstretched -0.90 0.98 0.90 84.6 

Stretched -0.91 0.98 0.90 84.5 

Table 22: Aerodynamic coefficients on stretched and unstreched meshes 

diameters downstream, where the streamwise velocity difference is approximately 3% 

of the centerline velocity deficit. On the stretched mesh, the eddy viscosity peaks up 

to 40% higher than on the uniform wake grid, indicating that the radial stretching 

and coarsening of the grid have the targeted property of enhancing subgrid-scale 

dissipation while having little effect on the mean flow. 
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Figure 104: Experimental spanwise two-point correlations of hot-wire voltage 
x/D = 3; Ong k Wallace (1994) 
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T   % 

Uoot/Rc 

Figure 105: Sub-iteration convergence factor (||ÄB,1||i/||ÄB,3||i) time history 
(88 x 90 X 48) Simulation; Continuity (a); Streamwise Momentum (b) 

Vertical Momentum (c); Spanwise Momentum (d); Energy (e) 
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Shedding cycles 
1 2 3 4 5 6 

Sampling time Uoot/Rc 10.20 18.11 30.82 43.41 52.67 62.44 

Back pressure cPb -1.05 -0.93 -0.95 -0.94 -0.95 -0.94 

Total drag cD 1.12 1.02 1.02 1.02 1.02 1.01 

Skin friction Cf x 100 0.95 0.91 0.91 0.91 0.91 0.91 

Separations 

0i 88.6 85.0 84.8 84.9 84.9 84.8 

02 107.1 108.1 106.5 107.7 108.1 108.4 

03 141.2 150.7 148.3 148.6 153.7 154.1 

Bubble length L/D 1.05 1.23 1.55 1.37 1.35 1.36 

Table 23: Sampling error analysis; (116 x 136 x 48) simulation 
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Figure 106: Wall pressure and vorticity convergence 
Shedding cycles:   • : 1; : 2; • • • : 3; : 4; : 5; 
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Figure 107: Streamwise velocity convergence at x/D = 1.5 (a), x/D = 5.0 (b) 
Shedding cycles:   • : 1; : 2; • • • : 3; : 4; : 5;   : 6 
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Grid size (r, 0, z) 

88x90 
x32 

88x90 
x48 

116 x 136 
x48 

174 x 128 
x48 

Experiments 
(Re = 3,900) 

St 
Strouhal 

0.19 0.20 0.19 0.20 0.215 ±0.005 
(Ong 1994) 

cPb 
Back pressure 

-0.96 -0.99 -0.94 -0.94 -0.90 ± 0.05 
(Norberg 1987) 

CD 

Total drag 

1.03 1.07 1.01 0.98 0.98 ± 0.05 
(Norber 1987) 

Cf x 100 
Skin-friction 

0.86 0.87 0.91 0.90 

Separation 
87.8 87.3 84.8 86.2 85 ±2 

(Son 1969) 

02 
Separation 

107.5 105.2 108.4 112.2 

03 
Separation 

147.4 154.1 152.6 

L/D 
Bubble length 

1.55 1.47 1.36 1.44 1.18 ±0.05 
(Lourenco 1993) 

umin/^oo 

in bubble 
-0.33 -0.31 -0.31 -0.31 -0.24 ±0.1 

(Lourenco 1993) 

«min location 
0.99 0.90 0.84 0.91 0.72 ±0.1 

(Lourenco 1993) 

Table 24: Near-wake result summary 
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Figure 108: Wall pressure and vorticity 
 : 88 x 90 x 32; • • • : 88 x 90 x 48 

—   : 116 x 136 x 48;   : 174 x 128 x 48 
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Figure 109: Tangential velocity radial profiles at the cylinder surface 
 : 88 x 90 x 32; • • • : 88 x 90 x 48;    : 116 x 136 x 48 
  : 174 x 128 x 48 (a): 9 = 90°; (b): 0 = 120°; (c): 0 = 150° 
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Figure 110: Rear axis pressure coefficient and streamwise velocity 
 : 88 x 90 x 32; • • • : 88 x 90 x 48 

 : 116 x 136 x 48;   : 174 x 128 x 48 
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Figure 111: Streamwise velocity ü/tf«, at x/D = 0.58 (a), 1.06 (b), 1.54 (c), 2.02 (d) 
 : 88 x 90 x 32; • • • : 88 x 90 x 48; : 116 x 136 x 48 

  : 174 x 128 x 48 
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Figure 112: Streamwise velocity ü/tf«, at x/D = 2.50 (a), 3.06 (b), 3.54 (c), 4.50 (d) 
 : 88 x 90 x 32; • • • : 88 x 90 x 48;    : 116 x 136 x 48 

  : 174 x 128 x 48 
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Figure 113: Vertical velocity v/U^ at x/D = 0.58 (a), 1.06 (b), 1.54 (c), 2.02 (d) 
 : 88 x 90 x 32; • • • : 88 x 90 x 48; : 116 x 136 x 48 

  : 174 x 128 x 48 
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Figure 114: Vertical velocity v/U^ at x/D = 2.50 (a), 3.06 (b), 3.54 (c), 4.50 (d) 
 : 88 x 90 x 32; • • • : 88 x 90 x 48 
 : 116 x 136 x 48;   : 174 x 128 x 48 

222 



0.015- 

0.010 /ii        /■■ 

0.005 l* 1   **'V-vfi 

o.ooo- 

-0.005- (a) pfy 
-o.oio- V 

-0.015-1 
-2 -1 0 1 2 

o.io- 

h \ 
0.05- 

3 

J o.oo- 

(c) 

\ \        Ii 

-0.05- 

ji in- T ü 1  
-2 

3/AD y/£ 

Figure 115: Total Reynolds shear stress in the formation zone 
x/D = 0.58 (a), 1.06 (b), 1.54 (c), 2.02 (d) 

 : 88 x 90 x 32; • • • : 88 x 90 x 48;    : 116 x 136 x 48 
  : 174 x 128 x 48 
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Figure 116: Total Reynolds shear stress in the near-wake 
x/D = 2.50 (a), 3.06 (b), 3.54 (c), 4.50 (d) 

.._ : 88 x 90 x 32; • • • : 88 x 90 x 48; : 116 x 136 x 48 
  : 174 x 128 x 48 
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Figure 117: Eddy viscosity averaged over 1 shedding cycle 
  : No stretching; : Stretched mesh 

x/D = 3.5 (a), 5.5 (b) 
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Figure 118: Effect of grid stretching on streamwise and vertical velocities 
Lines: No stretching; Symbols : Stretched mesh 
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