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complex objects from noisy imagery. These models provide an elegant math-
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energy functionals that can be minimized with standard optimization tech-
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ing segmentation have not been fully exploited. Additionally, external forces
for improving convergence of quadratic snakes have similarly yet to be ex-
plored. In this paper, we propose a model that allows multiple quadratic snakes
to split, merge and disappear. Although the separate components of our ap-
proach have been introduced elsewhere Cohen (1991), Xu and Prince (1997),
Rochery et al. (2006), this paper is the first comprehensive empirical study
of their performance on real-world complex network extraction tasks. We an-
alyze the applicability of the model to road extraction from satellite images
that vary in complexity from simple networks to large networks with multi-
ple loops. We also analyze the effects of external forces enhanced by oriented
filtering, gradient vector flow fields, and Canny edge detection. In a series of
experiments, we found that the multiple cooperating quadratic snake model
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formance improvement when the proposed quadratic model is coupled with the
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1. Introduction

Extracting linear structures such as road, river, and blood vessel networks from images
is a challenging problem with many practical applications. Although accurate methods
exist for tracking (Geman and Jedynak 1996), it is very difficult to extract complete
networks in the presence of noise and distracting features. Existing approaches to fully
automatic road extraction include dynamic programming (Fischler et al. 1981, Barzohar
and Cooper 1996), Markov random fields (Regazzoni et al. 1995, Tupin et al. 1998), and
other techniques (see Auclair-Fortier et al. (2000) for a complete overview), but some of
the most successful approaches for road segmentations (Fua and Leclerc 1990, Rochery
et al. 2006), vessel segmentations (Tang and Acton 2004), and online video sequences
(Sawano and Okada 2004), so far have been based on active contours or snakes.

Classical active contour models (Kass et al. 1987, Cohen 1991, Cohen and Cohen 1993)
provide an elegant framework for optimal estimation in image processing; rather than
writing an algorithm to extract the object or region of interest, we simply consider an
energy functional a minimum of which is achieved at a good solution. Then, given a new
image, we use general optimization techniques to find a contour minimizing the energy
functional.

The main drawback of the classical parametric active contour model is its lack of topo-
logical flexibility. When there are several objects in an image that need to be captured,
we require manual initialization of multiple contours or active methods able to “break”
contours into multiple pieces (Samadani 1989, Durkovich et al. 1995, Ngoi and Jia 1999,
Choi et al. 2001, McInerney and Terzopoulos 2000, Giraldi et al. 2003). Even if we allow
contours to split and merge, we encounter the problem that individual snakes can inter-
sect themselves and each other, requiring geometric constraints to prevent intersections
(Ivins and Porrill 1995) or explicit detection and handling of intersections (Wong et al.
1998, Ngoi and Jia 1999, Ji and Yan 2002). This problem is especially troublesome when
nested snakes are initialized inside one another.

So far, level set methods (Sethian 1999) appear to be the most elegant approach to
the problems of active contour topological flexibility and self-intersection (Caselles et al.
1993, Malladi et al. 1995, Rochery et al. 2006). Level set methods, which represent a curve
implicitly as the zero level set of an evolving hypersurface, allow curves to automatically
break or merge. However, level set methods do not readily admit imposition of arbitrary
geometric constraints (McInerney and Terzopoulos 2000) or external forces, and they are
relatively susceptible to image noise (Xu et al. 2000), so methods to obtain the topological
flexibility of level set methods within the more mathematically flexible framework of
explicit contour representations are still under active research (Delingette and Montagnat
2000, Li et al. 2005).

Our network extraction approach is based on Xu and Prince’s gradient vector flow
(GVF, Xu and Prince 1997), Rochery’s quadratic active contours (Rochery et al. 2006),
and efficient algorithms for splitting, merging, and deleting contours presented in this
paper. The model can be easily modified to include other types of the gradient vector
flow models such as the generalized gradient vector flow (Xu and Prince 1998a), multi-
direction GVF (Tang 2009), etc. Our quadratic multiple snake model represents a compro-
mise between geometric snakes’ ability to split and merge easily and parametric snakes’
flexibility to incorporate arbitrary constraints. We use quadratic constraints (Rochery
et al. 2006) both to avoid self-intersections and loops and as a means to encourage cap-
ture of thin elongated objects such as roads, rivers, canal systems, pipes, and vascular
systems. Our split and merge algorithms employ straightforward conditions on the close-
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ness of non-adjacent contour points. In the model, separate snakes can repel each other
but are still capable of approaching an object from opposite sides. The split and merge
algorithms make it possible to extract highly complex networks of roads and other linear
structures. The model thus provides the topological adaptability of geometric models
without sacrificing the simplicity, efficiency, or flexibility of traditional parametric mod-
els.

In this paper, we provide the mathematical motivation for the model and perform
a series of numerical experiments to evaluate the effectiveness of the approach on real
satellite data. We manipulate three factors:

• Noise level: we prepare noised images by adding varying levels of Gaussian noise to
an original image containing a clear road network, and evaluate the tolerance of the
proposed approach against noise.

• Type of external force: we compare two types of the external force for contour
evolution: one using Xu and Prince’s Gradient Vector Flow (Xu and Prince 1997)
applied directly to the image gradient, and one using a GVF applied to the gradient of
a binary image resulting from oriented filtering combined with Canny edge detection.

• Model order: we contrast conventional linear snakes against quadratic snakes
(Rochery et al. 2006) that allow contour points with opposite normals to repel each
other unless they are aligned with opposite sides of the same ridge edge.

Although the separate components of our approach have been introduced elsewhere
(Cohen 1991, Xu and Prince 1997, Rochery et al. 2006), this paper is the first compre-
hensive empirical study of their performance on real-world complex network extraction
tasks. For each active contour model and road network extraction task, we perform a
detailed analysis of the model’s precision and convergence time. Our main finding is
that the multiple cooperating quadratic snake model allowing splitting and merging of
contours performs well on complex, noisy images with road networks of multiple scales.

2. Method

2.1. Quadratic snake model

This section provides a brief overview of the quadratic snake proposed by Rochery et al.
(2006). An active contour or snake is parametrically defined as

γ(p) =
[
x(p) y(p)

]T
, (1)

where p is the curvilinear abscissa of the contour and the vector
[
x(p) y(p)

]T
defines the

Cartesian coordinates of the point γ(p).
The energy functional is given by

Es(γ) = Eg(γ) + λEi(γ), (2)

where Eg(γ) is the geometric energy and Ei(γ) is the image energy of the contour γ. λ

is a free parameter determining the relative importance of the two terms.
To apply the method to road extraction, we define the geometric energy functional to
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Figure 1. Overview of the multiple quadratic snake system for road extraction.

be

Eg(γ) = L(γ) + αA(γ) −
β

2

∫∫
t(p) · t(p′) Ψ

(
‖γ(p) − γ(p′)‖

)
dp dp′, (3)

where L(γ) is the Euclidean length of γ, A(γ) is the area enclosed by γ, t(p) is the
unit-length tangent to γ at point p, and Ψ(z), given the distance z between two points
on the contour, is used to weight the interaction between those two points (see below).
α and β are constants weighting the relative importance of the terms. The functional
is a combination of two linear, Euclidean invariant terms: the area and the length. The
length term acts as a regularizer, whereas the area term controls the expansion of the
region. For positive β, Eg(γ) is minimized by contours with short length and parallel
tangents. If α is positive, contours with small enclosed area are favored; if it is negative,
contours with large enclosed area are favored.

The third quadratic (also Euclidean invariant) term is responsible for interactions be-
tween points on the snake. The interaction function Ψ(·) is a smooth function expressing
the radius of the region in which parallel tangents should be encouraged and anti-parallel
tangents should be discouraged:

Ψ(z) =





1 if z < d − ǫ,

0 if z > d + ǫ,
1
2

(
1 − z−d

ǫ
− 1

π
sinπ z−d

ǫ

)
otherwise.

(4)

In application to road extraction, d is the expected road width and ǫ expresses the
expected variability in road width. During snake evolution, weighting by Ψ(z) in equation
(3) discourages two points with anti-parallel tangents (the opposite sides of a putative
road) from coming closer than distance d from each other.
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The image energy functional Ei(γ) is defined as

Ei(γ) =

∫
n(p) · ∇I(γ(p)) dp

−

∫∫
t(p) · t(p′) ∇I(γ(p)) · ∇I(γ(p′)) Ψ(‖γ(p) − γ(p′)‖) dp dp′,

(5)

where I : Ω → [0, 255] is an image and ∇I(γ(p)) is the gradient of I evaluated at γ(p).
The first (linear) term favors anti-parallel normal and gradient vectors, encouraging

counterclockwise snakes to shrink around or clockwise snakes to expand to enclose dark
regions surrounded by light roads.1 The second (quadratic) term favors nearby point
pairs with two different configurations, one with parallel tangents and parallel gradients
and the other with anti-parallel tangents and anti-parallel gradients.

To find a curve γ minimizing Es(γ), one obtains the Euler equations using the calculus
of variations. Introducing the gradient descent method and ignoring flow in the direction
tangent to γ, one obtains

n(p) ·
∂γ

∂t
= − κ(p) − α − λ∇2I(γ(p))

+ β

∫
r
(
γ(p),γ(p′)

)
· n(p′) Ψ′

(
‖γ(p) − γ(p′)‖

)
dp′

+ 2λ

∫
r
(
γ(p),γ(p′)

)
· n(p′) (∇I(γ(p)) · ∇I(γ(p′))) Ψ′

(
‖γ(p) − γ(p′)‖

)
dp′

+ 2λ

∫
∇I(γ(p′)) ·

(
∇∇I(γ(p))n(p′)

)
Ψ(‖γ(p) − γ(p′)‖) dp′.

(6)

In the equation, κ(p) is the curvature of γ at γ(p) and ∇2I(γ(p)) is the Laplacian of I

evaluated at γ(p).

r
(
γ(p),γ(p′)

)
=

γ(p) − γ(p′)

‖γ(p) − γ(p′)‖

is the unit vector pointing from point γ(p) towards γ(p′). ∇∇I(γ(p)) is the 2×2 Hessian
of I evaluated at γ(p). α, β, and λ are free parameters that need to be determined
experimentally. d and ǫ are specified a priori according to the desired road width.

2.2. GVF external force

The term αA(γ) in equation (3) leads to the constant term −α in equation (6). This term
provides a force similar to the “balloon force” introduced by Cohen and Cohen (1993).
It increases the capture region around objects, but its effect is uniform throughout the
image. This makes it difficult to specify a value for α that is appropriate in all regions
of the image.

1For dark roads on a light background, we simply negate the terms involving the image. In the rest of the paper,
we assume light roads on a dark background.
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Xu and Prince (Xu and Prince 1997, 1998b) have proposed to use, rather than a global
balloon force, a smooth, diffuse gradient field as a local external force with the traditional
linear snake. They find that this technique, gradient vector flow (GVF), improves the
traditional snake’s convergence to a minimum energy configuration.

We propose the use of GVF with quadratic road extraction snakes (see Figure1).

2.2.1. GVF

The GVF is a vector field V (x, y) =
[
u(x, y) v(x, y)

]T
minimizing the energy functional

E(V ) =

∫

Ω
µ

(∥∥∥∥
∂V

∂x

∥∥∥∥
2

+

∥∥∥∥
∂V

∂y

∥∥∥∥
2
)

+ ‖∇Ĩ‖2‖V −∇Ĩ‖2 dx dy, (7)

where Ĩ is a preprocessed version of image I, typically an edge image of some kind. The
first term inside the integral encourages a smooth vector field whereas the second term
encourages fidelity to ∇Ĩ. µ is a free parameter controlling the relative importance of
the two terms. Minimizing functional (7) leads to the Euler equation given by

µ∇2V − (V −∇Ĩ)‖∇Ĩ‖2 = 0. (8)

Equation (8) is then solved numerically by iterations. Furthermore, replacing µ in (8) by

two weighting functions depending on ∇Ĩ to control the relative importance of the two
terms ∇2V and (V − ∇Ĩ)‖∇Ĩ‖2 leads to the so–called generalized version of the GVF
(Xu and Prince 1998a).

We obtain Ĩ using oriented filtering and Canny edge detection combined with elongated
Laplacian of Gaussian filters that emphasize road-like structures, deemphasize non-road-
like structures, and, to a certain extent, fill in short gaps where a road has low contrast
with the background. The resulting binary Canny image only includes information about
road-like edges that have survived sharpening by the oriented filters. The GVF field on
top of the sharpened edge image points toward the road-like edges from a long distance,
and, during snake evolution, it pushes the snake in an appropriate direction. This speeds
evolution and makes it easier to find suitable parameters to obtain fast convergence.

2.2.2. Oriented filtering

Using oriented filters for contour detection, contour completion, and restoration of
edges corrupted by noise is a recurring idea in image processing and computer vision
(see, e.g., Knutsson et al. (1983), Perona and Malik (1990), Freeman and Adelson (1991),
Steger (1998), Konishi et al. (2003)). The oriented filters most frequently used are 2D
Gabor filters (Daugman 1985) and directional Laplacian of Gaussian (LoG) filters. Gabor
filters are thought to be good models of the response of simple cells in primary visual
cortex (Jones and Palmer 1987). When paired symmetric (even) and antisymmetric (odd)
oriented filter responses are combined by summing their squares, they are thought to be
good models of the response of complex cells in primary visual cortex (Heitger et al.
1992). Perona and Malik (1990) advocate these paired “energy filters” for their ability
to detect not only step edges but also ridge edges at specific scales.

The ability of Gabor filters and LoG filters to detect ridge edges makes them ideal for
identifying roads in satellite imagery. Our oriented filtering method is the same as that
of Rochery et al. (Rochery et al. 2006). We use the linear response of elongated LoG
filters tuned to detect roads at 8 orientations then (for bright roads with dark surround)
take the minimum response over the 8 orientations. An example is shown in figure 2.
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(a) (b) (c)

Figure 2. Oriented filtering procedure for enhancing road contrast. (a) Original image. (b)
Laplacian–of–Gaussian filters at 8 orientions, with horizontal standard deviation 1.0 and ver-
tical standard deviation 3.0. (c) Pixelwise convolution minimum over all 8 orientations.

Our convolution and minimum response selection procedure responds well to long
straight edges having the effect of emphasizing road-like gradients, deemphasizing non-
road-like gradients, and, to a certain extent, filling in short gaps where a road has low
contrast with the background.

2.2.3. Obtaining the GVF field

After oriented filtering, we obtain the Canny edge image Ĩ from the edge-enhanced
image obtained from oriented filtering. This is the input to the GVF relaxation procedure
(Xu and Prince 1997). We precalculate V before snake evolution begins, then, similar
to Xu and Prince, during evolution, for each point γ(p), we add the force λGV F n(p) ·
V (γ(p)) directly to the update equation (6). λGV F is a weight trading off the importance
of the GVF force against the other forces in equation (6).

Clearly, this encourages the snake to snap to the road edge contours, where ideally
‖V (γ(p))‖ = 0.

Our experimental results show that this approach, combining the advantages of the
GVF’s extended capture range and the quadratic snake’s flexibility, improves the snake’s
convergence to configurations that accurately segment road-like structures.

2.3. Family of quadratic snakes

A single quadratic snake is unable to extract enclosed regions and multiple disconnected
networks in an image. We address this limitation by introducing a family of cooperating
snakes that are able to split, merge, and disappear as necessary.

In our formulation, due to the curvature term κ(p) and the area constant α in equation
(6), specifying the points on γ in a counterclockwise direction creates a shrinking snake
and specifying the points on γ in a clockwise direction creates a growing snake.

An enclosed region (loop or a grid cell) can be extracted effectively by initializing two
snakes, one shrinking snake covering the whole road network and another growing snake
inside the enclosed region.

2.3.1. Splitting a snake

We split a snake into two snakes whenever two of its arms are squeezed too close
together, i.e., when the distance between two snake points is less than dsplit and those
two points are at least k snake points from each other in both directions of traversal
around the contour (see Figure3(a) for an example). dsplit should be less than 2η, where
η is the maximum step size.
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2.3.2. Merging two snakes

The merging algorithm selects points having high curvature and merges two snakes
when 1) two selected points are closer than a prescribed minimal merging distance dmerge,
2) the traversal direction (clockwise or counterclockwise) of the two snakes is the same,
and 3) the tangents at the two high curvature points are nearly antiparallel. Figure 3(b)
shows an example of two snakes merging each other. High curvature points are those
with κγ(p) > 0.6κmax

γ
, where κmax

γ
is the maximum curvature for any point on γ. When

these conditions are satisfied, the two snakes are combined into a single snake by deleting
the high curvature points and merging at the holes.

Limiting the merge decision to high curvature points ensures that merging only occurs
if two snakes have semi-circular tips of their arms facing each other. It might seem
that merging at low curvature points should also be permitted. However, as already
explained, snakes normally repel each other due to the quadratic term in the internal
energy (equation (3)). Consequently, low curvature segments can approach each other
when high-gradient features allow the external energy to overcome the geometric energy.
When this occurs for low curvature segments, the two snakes are most likely positioned
on different sides of a road and merging should not be allowed. There are several other
(rare) cases when snakes face each other at low curvature parts. However they should
not be merged in those cases either.

Considering only the high curvature points also saves computational costs. In particu-
lar, the merging procedure requires computation of the angle between tangents only for
the selected points. The number of those points usually does not exceed 10% of the total
number of points.

The conditions that the traversal direction of two snakes should be the same and that
the tangents at the two high curvature points should be antiparallel reflect the fact that
in our system, nested snakes form a tree structure. We initialize all the snakes at the first
level with the same direction of traversal. The second level has the opposite direction of
traversal and so on. When two snakes from the same level merge, we assign the resulting
snake the same direction. Snakes from two consecutive levels do not merge. Growing and
shrinking behavior is controlled by the area constant (α) and the weight on the geometric
energy (β).

2.3.3. Deleting a snake

A snake γ is deleted if it has perimeter less than Ldelete. Figure 3(c) shows an example
of a snake being deleted.

2.4. Experimental design

We present four experiments aimed at evaluating the cooperating snake model for road
extraction. In Experiment 1, we evaluate the robustness of the model against noise. Be-
ginning with an image containing a clear road network, we progressively add Gaussian
noise. The initialization is a single contour along the boundary of each image. In Experi-
ment 2, we evaluate the model on an image containing a road network with many loops,
intersections, and distracting structures, shown in Figure 6. This image requires multiple
initial contours and user initialization to successfully segment the road network while
ignoring the background region surrounded by the road loop. Furthermore, extraction of
this road network requires a model capable of splitting at artifacts created by the noise.
In Experiment 3, we evaluate the model on an image containing a road network with
widely varying widths. Although varying the parameter ǫ accommodates modest width
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(a) (b)

(c)

Figure 3. Cooperating snakes. (a) A shrinking snake splits into two snakes and finally captures
two distant objects. (b) Two merging snakes. (c) Two shrinking snakes one of which has been
deleted after reaching a minimally allowed length.

variations, we need a consistent approach for roads with significantly different scales.
Therefore, to extract the entire road network, we independently optimize parameter sets
for large-width roads and small-width roads, then we perform extractions using the two
different sets of parameters, and then we finally combine the extracted large-width roads
and small-width roads. The initialization is the image boundary in the large-width case,
and multiple contours along the outlines of roads in the small-width case. Finally, in
Experiment 4, we evaluate the spacial scalability of the model on an image containing
a large-scale complex road network. We show an initialization with multiple snakes in
Figure 11 (b). The images were obtained using Google Earth software.

We manipulate three factors:

• Noise level. We add four levels of Gaussian noise (25 dB, 20 dB, 15 dB, and 10 dB)
to the original image (see Figure 4 and 5).

• GVF type. In the first condition, PlainGVF, the GVF is calculated from the result of
oriented filtering on image I directly. In the second condition, CannyGVF, the GVF is
the result of oriented filtering and Canny edge extraction as described in section 2.2.

• Model order. In the first condition, Linear, we use the simple linear snake model
obtained by eliminating the quadratic terms from equations (3) and (5). In the second
condition, Quadratic, the full interactions in equations (3) and (5) are included.

In Experiment 1, we only manipulate the noise level and use the quadratic snakes with
the Canny-based GVF. In Experiments 2, 3, and 4, we only manipulate the GVF type
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Table 1. Parameters in Experiment 1.

Condition σx σy α β λ λGV F d ǫ

Non-noised 2.9 5.4 0.4 0.3 3.0 0.2 2.8 0.75
SNR 25 dB 2.9 5.4 0.4 0.3 3.0 0.2 2.8 0.75
SNR 20 dB 2.9 6.4 0.6 0.3 3.0 0.2 2.8 0.75
SNR 15 dB 3.3 6.6 0.6 0.3 3.0 0.2 2.8 0.75
SNR 10 dB 2.9 6.3 0.4 0.3 3.0 0.2 2.8 0.75

and model order. With 2 levels for each of 2 factors, we have 4 possible manipulations
for each of these experiments.

For each manipulation, we hand-tune the free parameters to achieve the best possible
results. In oriented filtering, we adjust σx and σy, the standard deviations of the elongated
Gaussian, until we obtain clear road pixels. Generally, setting σx to the approximate
road width and σy to 1.5–10 times larger than σx yields reasonable filtering results.
Parameters α, β, λ, λGV F , d, and ǫ are related to the snake evolution model. Larger α

facilitates avoidance of noisy spots with high intensity; however, care should be taken
not to overwhelm the contribution of the GVF weighted by λGV F . We adjust β to be
large enough to prevent self-intersections in case of quadratic snakes, or set it to zero
otherwise. λ should be larger for linear snakes than for quadratic snakes. This forces the
linear snake to snap to road edges. Finally, we adjust the road width d and its permissible
deviation ǫ until we achieve the best agreement with the ground truth for the test data.

We terminate contour evolution whenever the energy Es(γ) fails to decrease for some
number of iterations. We measure not only the number of iterations but also the actual
computation time. This is because the computational complexities of quadratic snakes
and linear snakes is essentially different; O(N · log N) for quadratic snakes, and O(N)
for linear snakes, where N is the total number of active contour points. Note that we
have achieved the O(N · log N) performance for quadratic snakes by optimizing the
neighborhood search of contour points.

To evaluate the results, we create ground truth images manually, and we use them to
calculate the precision (the proportion of detected pixels that are road pixels according
to the ground truth), the recall (the proportion of road pixels that are detected), and F1

(the harmonic mean of the precision and the recall) for each solution. Along with these
pixel-based measures, we introduce the Hausdorff distance, averaged over all contour
points, to measure the geometric similarity between the ground truth and extracted
road networks.

3. Results

3.1. Extraction of road networks from noisy images

In Experiment 1, we demonstrate the robustness of the proposed quadratic method with
Canny-based GVF against a practical range of noise. We observe from Table 2 that the
proposed model performs well up to the 15 dB noise level. Note, even in the extreme
case of 10 dB noise, the snake succeeds in extracting the gross structure of the original
road network, shown in Figure 5(d3).
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(a) (b) (c)

(d) (e) (f)

Figure 4. Experiment 1 results for non-noised original image. (a) Non-noised original image,
149x122. (b) Oriented-filtered image. (c) Canny-edges. (d) Canny-based GVF. (e) Road extrac-
tion. (f) Ground truth.

Table 2. Extraction results of Experiment 1.

Condition Iterations Time (s) Precision Recall F1

Averaged
Hausdorff
distance

Graph
structure
preserved

Non-noised 500 15.3 0.90 0.88 0.89 0.68 Yes
SNR 25 dB 500 14.1 0.92 0.87 0.89 0.69 Yes
SNR 20 dB 700 17.4 0.90 0.83 0.87 0.83 Yes
SNR 15 dB 600 19.9 0.88 0.87 0.87 0.86 Yes
SNR 10 dB 600 11.6 0.93 0.70 0.80 1.66 No
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(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

(d1) (d2) (d3)

Figure 5. Experiment 1 results for noised images. (a1–a3) SNR = 25 dB. (b1–b3) SNR = 20 dB.
(c1–c3) SNR = 15 dB. (d1–d3) SNR = 10 dB. Indices 1,2, and 3 represent an original image, an
oriented-filtered image, and extracted road networks, respectively.
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3.2. Extraction of road networks with loops

The results of Experiment 2 are shown in Figure 7 and Table 4. The results demonstrate
the clear superiority of the quadratic model over the linear model. See Table 4. The
quadratic interaction model performs much better than the linear model in every case,
indicating the importance of the quadratic geometric energy term. The quadratic model
is also much better at preserving the road network graph structure. This comes at the
cost of a factor of 6 slowdown in runtime performance.
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(a) (b)

(c) (d)

Figure 6. Experiment 2. (a) Original image, 250x171. (b) Oriented-filtered image. (c) Canny-
based GVF. (d) Plain GVF.

(a) (b) (c)

(d) (e) (f)

Figure 7. Experiment 2. (a) Ground truth. (b) Snake initialization. (c) Extraction with condition
CannyGVF–Quadratic. (d) Extraction with condition CannyGVF–Linear. (e) Extraction with
condition PlainGVF–Quadratic. (f) Extraction with condition PlainGVF–Linear.
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Table 3. Parameters in Experiment 2.

Condition σx σy α β λ λGV F d ǫ

CannyGVF–Quadratic 1.4 11.2 0.14 0.48 6.4 0.4 1.8 0.70
CannyGVF–Linear 1.4 11.2 0.06 0 60.0 0.4 1.8 0.70
PlainGVF–Quadratic 1.4 11.2 0.14 0.48 6.4 0.4 1.8 0.70
PlainGVF–Linear 1.4 11.2 0.06 0 60.0 0.4 1.8 0.70

Table 4. Extraction results of Experiment 2.

Condition Iterations Time (s) Precision Recall F1

Averaged
Hausdorff
distance

Graph
structure
preserved

CannyGVF–Quadratic 760 93.8 0.87 0.60 0.71 1.48 Yes
CannyGVF–Linear 260 15.3 0.87 0.43 0.58 6.16 No
PlainGVF–Quadratic 620 78.1 0.88 0.58 0.70 1.64 Yes
PlainGVF–Linear 280 12.0 0.88 0.18 0.29 14.91 No
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3.3. Extraction of road networks with different widths

In Experiment 3, examining the results in Figure 9 and Table 6, we see that our approach
works well for all manipulations. The quadratic models has a clear advantage over the
linear models in correctly capturing thin roads. The bright spots left after oriented fil-
tering in Figure 8(b–c) can be ignored due to the split and delete topological operations.
Note that the accuracy of the large–width stage (Table 6) is evaluated against only the
large–width part of the network. However, the small–width stage detects the small– and
high–width roads leading (formally) to poor accuracy. For instance, the averaged Haus-
dorff distance in case of CannyGVF–Quadratic–Large is 0.69, whereas the accuracy of
CannyGVF–Quadratic–Small is 2.23. However, merging the two results produces good
accuracy. The Hausdorff error of CannyGVF–Quadratic–Combined is still 0.69.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 8. Experiment 3. (a) Original image, 200x148. (b) Oriented-filtered image for large width.
(c) Oriented-filtered image for small width. (d) Canny-based GVF for large width. (e) Plain GVF
for large width. (f) Canny-based GVF for small width. (g) Plain GVF for small width.

(a) (b) (c)

(d1) (d2) (d3) (d4)

(e1) (e2) (e3) (e4)

(f1) (f2) (f3) (f4)

Figure 9. Experiment 3. (a) Ground truth for large width. (b) Ground truth for small width. (c)
Ground truth for combined networks. (d1–d4) Extractions for large width. (e1–e4) Extractions
for small width. (f1–f4) Extractions for combined networks. Indices 1, 2, 3, and 4 represent condi-
tions CannyGVF–Quadratic, CannyGVF–Linear, PlainGVF–Quadratic, and PlainGVF–Linear,
respectively.



June 1, 2010 12:28 International Journal of Geographical Information Science
snake˙road˙extraction˙preprint

18

Table 5. Parameters in Experiment 3.

Condition σx σy α β λ λGV F d ǫ

CannyGVF–Quadratic–Large 3.9 9.8 0.4 0.3 3.0 0.2 4.2 0.7
CannyGVF–Linear–Large 3.9 9.8 0.1 0 6.0 0.2 4.2 0.7
PlainGVF–Quadratic–Large 3.9 9.8 0.4 0.3 3.0 0.2 4.2 0.7
PlainGVF–Linear–Large 3.9 9.8 0.1 0 6.0 0.2 4.2 0.7
CannyGVF–Quadratic–Small 0.8 4.4 0.05 0.9 20.0 0.6 2.0 0.25
CannyGVF–Linear–Small 0.8 4.4 0.05 0 40.0 0.6 2.0 0.25
PlainGVF–Quadratic–Small 0.8 4.4 0.05 0.9 20.0 0.6 2.0 0.25
PlainGVF–Linear–Small 0.8 4.4 0.05 0 40.0 0.6 2.0 0.25
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3.4. Extraction of large-scale road networks

The results of Experiment 4 are shown in Figure 11 and Table 8. The extracted road
networks (Figure 11(c–f)) show the quadratic model’s ability to capturing the detailed
structure of a large-scale complex network. This can also be confirmed by comparing the
Hausdorff distances reported in Table 8. Along the GVF type dimension, the Canny-
based GVF provides more precise information on road edges than does the standard
GVF. The relatively low precision of the quadratic models reported in Table 8 is due to
the increased complexity of the road network and the snakes’ failures to penetrate high-
contrast image regions such as those containing buildings or small road loops. This large,
complex road network consists of approximately 120 road segments and 70 intersections.
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(a) (b)

(c) (d)

Figure 10. Experiment 4. (a) Original image, 277x322. (b) Oriented-filtered image. (c) Canny-
based GVF. (d) Plain GVF.

Table 7. Parameters in Experiment 4.

Condition σx σy α β λ λGV F d ǫ

CannyGVF–Quadratic 1.3 7.2 0.02 0.48 40.0 0.32 1.08 0.73
CannyGVF–Linear 1.3 7.2 0.01 0 80.0 0.32 1.08 0.73
PlainGVF–Quadratic 1.3 7.2 0.02 0.48 40.0 0.32 1.08 0.73
PlainGVF–Linear 1.3 7.2 0.01 0 80.0 0.32 1.08 0.73

Table 8. Extraction results of Experiment 4.

Condition Iterations Time (s) Precision Recall F1

Averaged
Hausdorff
distance

Graph
structure
preserved

CannyGVF–Quadratic 950 299 0.56 0.51 0.53 2.27 Yes
CannyGVF–Linear 1000 146 0.51 0.47 0.49 4.43 No
PlainGVF–Quadratic 750 228 0.59 0.47 0.52 2.97 Yes
PlainGVF–Linear 1500 132 0.52 0.23 0.32 12.94 No
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(a) (b) (c)

(d) (e) (f)

Figure 11. Experiment 4. (a) Ground truth. (b) Snake initialization. (c) Extraction with con-
dition CannyGVF–Quadratic. (d) Extraction with condition CannyGVF–Linear. (e) Extraction
with condition PlainGVF–Quadratic. (f) Extraction with condition PlainGVF–Linear.
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4. Conclusion

In this paper, we have formulated a model for multiple interacting quadratic active
contours and analyzed its performance in road network extraction on a test bed of satellite
images, characterized by varying network complexity. The experiments demonstrate a
clear advantage for multiple quadratic snakes, particularly in the case of complex road
networks with multiple loops. In Experiment 1, the quadratic model is able to tolerate
approximately 15 dB of noise. Over Experiments 2, 3, and 4, the accuracy of the quadratic
models in terms of Hausdorff distance is 50%–80% better than the accuracy of the linear
models. In terms of F1, the quadratic models are 10%–40% better than the linear models.
In Experiment 4, the linear snake’s performance is clearly unacceptable, whereas the
quadratic snakes perform quite well.

Our experiments also establish a performance improvement when the proposed
quadratic model is coupled with the Canny-based GVF technique under circumstances.
In Experiments 2, 3, and 4, the Canny-based GVF approach is 10%–25% better than
the plain GVF approach in terms of Hausdorff although the F1 measure itself does not
indicate any significant performance improvement of the Canny-based GVF relative to
the plain GVF.

Overall, in experiments 2, 3, and 4, we find that the quadratic snake model is capable
of preserving the geometric structure of the road network, whereas the linear snake
frequently fails to do so.

Given that our results approach the level of performance required by the GIS industry,
the proposed model may eventually make automated extraction of road networks from
satellite imagery practical. Future work will focus on computational optimization and
automatic initialization of contours.
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