
 Open access Journal Article DOI:10.1007/BF02592099

Numerical experiments with the LANCELOT package (release A) for large-scale
nonlinear optimization — Source link

Andrew R. Conn, Nicholas I. M. Gould, Ph. L. Toint

Institutions: IBM, Université de Namur

Published on: 30 Apr 1996 - Mathematical Programming (Springer-Verlag New York, Inc.)

Topics: Nonlinear programming

Related papers:

 Benchmarking optimization software with performance profiles

 Lancelot: A FORTRAN Package for Large-Scale Nonlinear Optimization (Release A)

 CUTE: constrained and unconstrained testing environment

 Nonlinear programming without a penalty function

 An Interior-Point Algorithm for Nonconvex Nonlinear Programming

Share this paper:

View more about this paper here: https://typeset.io/papers/numerical-experiments-with-the-lancelot-package-release-a-
15daca0dez

https://typeset.io/
https://www.doi.org/10.1007/BF02592099
https://typeset.io/papers/numerical-experiments-with-the-lancelot-package-release-a-15daca0dez
https://typeset.io/authors/andrew-r-conn-1fiz9ae7h4
https://typeset.io/authors/nicholas-i-m-gould-3o5r5pwfcl
https://typeset.io/authors/ph-l-toint-4dt8jb6k92
https://typeset.io/institutions/ibm-3vfvs9ir
https://typeset.io/institutions/universite-de-namur-29yen2k6
https://typeset.io/journals/mathematical-programming-27iihk2z
https://typeset.io/topics/nonlinear-programming-3ckkp9wl
https://typeset.io/papers/benchmarking-optimization-software-with-performance-profiles-3mg0scyjfe
https://typeset.io/papers/lancelot-a-fortran-package-for-large-scale-nonlinear-1e6cz628cj
https://typeset.io/papers/cute-constrained-and-unconstrained-testing-environment-2n15j8sx22
https://typeset.io/papers/nonlinear-programming-without-a-penalty-function-4adqtysn7o
https://typeset.io/papers/an-interior-point-algorithm-for-nonconvex-nonlinear-1q2dax85jl
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/numerical-experiments-with-the-lancelot-package-release-a-15daca0dez
https://twitter.com/intent/tweet?text=Numerical%20experiments%20with%20the%20LANCELOT%20package%20(release%20A)%20for%20large-scale%20nonlinear%20optimization&url=https://typeset.io/papers/numerical-experiments-with-the-lancelot-package-release-a-15daca0dez
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/numerical-experiments-with-the-lancelot-package-release-a-15daca0dez
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/numerical-experiments-with-the-lancelot-package-release-a-15daca0dez
https://typeset.io/papers/numerical-experiments-with-the-lancelot-package-release-a-15daca0dez

00
)

)
j

...D ~ Science and Engineering Research Council
-D 0

~ ~ Rutherford Appleton Laboratocy

••
0 I

~ z
t 1 .,

0 01
0

,qj (I)

~ Chilton DIDCOT Oxon OXll OQX RAL-92-075 a: .

rO f

Numerical experiments with the

LANCELOT package (Release A) for

large-scale nonlinear optimization

A R Conn N Gould and Ph L Toint

November 1992

Science and Engineering Research Council
'The Science and Engineering Research Council does not
accept any responsibility for loss or damage arising from
the use of information contained in any of its reports or
in any communication about its tests or investigations"

Numerical experiments with

the LANCELOT package {Release A)
for large-scale nonlinear optimization

by A. R. Conn\ Nick Gould2
, and Ph. L. Toint3

October 12, 1992

Abstract. In this paper, we describe the algorithmic options of Release A of LANCELOT,

a new Fortran package for large-scale nonlinear optimization. We then present the results

of intensive numerical tests and discuss the relative merits of the options. The experiments

described involve both academic and applied problems. Conclusions are finally proposed,

both specific to LANCELOT and of more general scope.

1 Mathematical Sciences Department,

IBM T.J. Watson Research Center,

PO Box 218, Yorktown Heights, NY 10598, USA

2 Central Computing Department,

Rutherford Appleton Laboratory,

Chilton, Oxfordshire, OXll OQX, England

3 Department of Mathematics,

Facultes Universitaires ND de la Paix,

B-5000 Namur, Belgium

Keywords : Large-scale problems, nonlinear optimization, numerical algorithms.

Mathematics Subject Classifications : 65K05, 90C30

0 This research was supported in part by the Advanced Research Projects Agency of the Department of

Defense and was monitored by the Air Force Office of Scientific Research under Contract No F49620-91-C-

0079. The United States Government is authorized to reproduce and distribute reprints for governmental

purposes notwithstanding any copyright notation hereon.

1 Introduction

Research in large-scale optimization ha.s been, in recent years, a. major subject of interest within

the mathematical programming communjty, as is clear from the programs of the main conferences

and symposia on optimization techniques during this period. One such project, LANCELOT, was

initiated by the authors of this paper [12] and has resulted in both theoretical contributions

and software for large nonlinear optimization problems. A detailed description of the algorithms

developed and implemented in LANCELOT, the resulting new Fortran package, is presented in

[17). The purpose of the present paper is to report on the numerical experiments obtained with

this software on a sizeable collection of test problems, and to draw some first conclusions on the

respective merits of the algorithmic options available in the package. A comparison of LANCELOT

and MINOS [48) will be reported on separately [4).

The paper is organized as follows. Section 2 briefly presents the main features and structure

of LANCELOT. Section 3 contains a general description of SBMIN, the kernel algorithm for the

software that handles simple bounds. AUGLG, the component that handles the extension to

general constraints, is then presented in Section 4. Section 5 discusses the various algorithmic

options that are available within the package. Section 6 presents the testing framework and the

strategy used to analyze the results. These results are then discussed in more detail in Section 7,

where the efficiency and robustness of various algorithmic options is compared. Finally, some

conclusions and perspectives are drawn in Section 8.

2 General features and structure of the LANCELOT package

2.1 Package presentation

The purpose of the LANCE LOT package is to solve the general nonlinear programming problem

min f(x)
xelin

(2.1)

1

subject to the constraints

c(x) = 0, (2.2)

and to the simple bounds

(2.3)

where f, and c are assumed to be smooth functions from Rn into R and from Rn into Rm

respectively. The package is specially intended for problems where n and/or m are large. Indeed

it exploits the (group) partially separable structure (see [12]) of most large-scale optimization

problems. The algorithms are designed to provide convergence of the generated iterates to local

minimizers from all starting points.

There is no loss in assuming that all the general constraints are equations, as inequality

constraints may easily be transformed to equations by the addition of extra slack or surplus

variables (see, for example, [31, Section 5.6]). Indeed, LANCELOT automatically transforms

inequality constraints to equations. This technique is extensively used in simplex-like methods

for large-scale linear and nonlinear programs.

General features include facilities to compute numerical derivatives, an analytical derivative

checker and an automated restart. The software also uses a full reverse communication interface

for greater flexibility and adaptability.

The package is written in standard ANSI Fortran77. It has already been parted to CRAY

supercomputers, Digital VAX minis and RISC workstations, IBM VM/CMS and RISC6000 and

SUN workstations. A fully automated installation procedure is supported for all these ma

chines/systems. Single and double precision versions are available. The program's dimensions

are also adaptable to fit within machines with different memory sizes.

Full information on the package is available in [17]. Interested pa.rties should contact one of

the authors.

2.2 The algorithmic structure of the package

Because the purpose of the paper is to discuss the relative merits of several algorithmic options

within the package, it is necessary to provide first a general description of the numerical methods

used . The structure of the LANCELOT algorithms is summarized in Figure 1.

The package (whose algorithmic components appear in the rounded box) reads the problem

as a set of data and Fortran subroutines (for computing function and derivatives values, as well

as other problem related tasks). The way in which these subroutines and the associated datafile

are produced is not the subject of this paper. It suffices to say that they can be written directly

by the user, or obtained as the result of the automated interpretation of the problem expressed

in a more friendly Standard Input Format. These techniques are described in detail in [17] and

will not be discussed further.

We will rather concentrate on the algorithms used by LANCELOT to solve the problem, once

properly specified. As suggested by the picture, LANCELOT either uses an augmented Lagrangian

approach if constraints of the type (2.2) are present, or directly attempts to solve problems whose

only constrajnts are simple bounds, (2.3).

2

Users and problems

·----- --------- ---- -- --- -- -------[---·

Standard Input Format (SIF) interpreter I
1

LANCELOT interface

AUGLG I

S8MIN I
fl fl

Direct I Iterative linear solvers I
linear H

solvers 9 Precondi tioners
1

Figure 1: Structure of the LANCELOT packa.ge

The augmented La.grangian algorithm AUGLG is described in Section 4. Its convergence the

ory has been analyzed in [13] and [18]. This theory guarantees that, under standard assumptions,

the sequence of iterates calculated by the algorithm converges to a local minimizer of the prob

lem. This augmented La.grangia.n method proceeds by solving a. sequence of suitably defined

nonlinea.r optimization problems with simple bound constraints. We will call these iterations of

the augmented Lagrangian algorithm major £terations.

If the considered problem only possesses simple bound constraints , then a specialized algo

rithm, S 8 M IN, can be applied. This algorithm is of trust region type and is presented in Section 3.

Its strong convergence properties have been ana.lyzed in [10] and [57]. At the heart of S8MIN,

quadratic problems with bound constraints (BQP) are solved repeatedly. In fact, one such BQP

is approximately solved a.t every S 8 M IN iteration. We call these minor iterations.

The process of (approximately) solving the BQP involves the (approximate) solution of a linear

system of equations . This can be achieved by applying either direct or iterative linear solvers.

The latter typically requires preconditioning, which in turn might call specialized versions of the

direct solvers, as is shown in the figure above. The iterative technique used with the package is

preconditioned conjugate gradients. Iterations at this level are simply called cg-iterations. Note

that some form of preconditioning might require a very problem specific technique; hence the

3

possibility to return to the user level for such a calculation.

The three nested itera.tion levels (major iterations at the augmented Lagrangian level, minor

iterations at the SBMIN level, and cg-iterations at the BQP level) are illustrated in Figure 2,

where the dashed boxes indicate iteration levels that need not be present for all problems and all

choices of algorithmic options.

AUGLG: major iterations

SBMIN: minor iterations
~-------- -- ------ - --------- -- ------ ·

! BQP: cg-iterations
I

'

Figure 2: The nested iterations levels within LANCELOT

Because the bulk of the computationa.l work is in the two inner iterations, we will concentrate

on these levels in what follows.

3 A general description of SBMIN

SBMIN is a. method for solving the bound-constrained minimization problem

mnunuze f(x) (3.1)

subject to the simple bound constraints

l; :::; Xi:::; u;, 1 :::; i:::; n. (3.2)

Here, f is assumed to be twice-continuously differentiable and any of the bounds in (3.2) may be

infinite. We will denote the vector of first partial derivatives, \1 xf(x), by g(x) and the Hessian

matrix, Vxxf(x), will be denoted by H(x). We shall refer to the set of points which satisfy (3.2)

as the feasible box and any point lying in the feasible box is said to be feasible.

SBMIN is a.n iterative method. At the end of the k-th iteration, an estimate of the solution,

x(k), satisfying the simple bounds (3.2), is given. The purpose of the (k + 1)-st iteration is to

find a feasible iterate x!k+l) which is a significant improvement on x(k).

In the (k + 1)-st iteration, we build a quadratic model of our (possibly) nonlinear objective

function, f(x). This model takes the form

4

where B(k) is a symmetric approximation to the Hessian matrix H(x(kl). We also define a scalar

.6. (k), the trust-region radius, which defines the trust region,

llx - .'l:(k) 11 ::::; .6. (k), (3.4)

within which we trust that the values of m(kl(x) and f(x) will generally agree sufficiently. An

appropriate range of values for the trust-region radius is accumulated as the minimization pro

ceeds.

as:

The (k + 1)-st iteration proceeds in a number of stages. These may be summarized, in order,

1. Test for convergence (see Section 3.1).

2. Find an approximation to the generalized Cauchy point of the quadratic model, within the

intersection of the feasible box and the trust region (see Section 3.2).

3. Obtain a new point which further reduces the quadratic model within the intersection of

the feasible box and the trust region (see Section 3.3).

4. Test whether there is a general agreement between the values of the model and true objective

function at the new point. If so, accept the new point as the next iterate. Otherwise, retain

the existing iterate as the next iterate. In either case, a.djust the trust region radius as

appropriate (see Section 3.4).

Clearly, this is a very sketchy description - indeed, some of the terminology has not even been

defined - and we need to elaborate further.

3.1 The test for convergence

The first-order necessary conditions for a feasible point x* to solve the problem (3.1)-(3.2) require

that the projected gradient at x* be zero. The p-rojected gra.dient of f(x) into the feasible box

(3.2) is defined to be

x- P(x- g(x),l,u),

where the projection operator, P(x, l, u) is defined componentwise by

if Xi < li

if Xi > Ui

otherwise.

(3.5)

(3.6)

Notice that, in the unconstrained case where all the bounds (3.2) are infinite, this is merely the

well-known condition that the gradient must vanish at a minimizer.

One may then gauge the convergence of the method by the size of the projected gradient at

x(k). For instance, one might stop if the condition

(3.7)

.5

~olds for some appropriate small convergence tolerance Eg. Alternatively, following [22, p. 160],

one might consider the relative projected gradient with i-th component

ri(x) =(xi- P(x -g(x),l,u);)~ax(x;,x~ypical)
max(f(x), !typical)

(3.8)

for "typical" values xtypical and !typical (which may, of course, be sometimes difficult to choose).

In this case, it might be appropriate to stop if the condition

(3.9)

is satisfied for some appropriate small convergence tolerance Er.

In LANCELOT, the relative convergence test (3.9) is used when suitable scalings xtypical and

!typical are available (see Section 5.1). In all other cases, the test (3.7) is used.

3.2 The generalized Cauchy point

The approximate minimization of the quadratic model (3.3) within the intersection of the feasible

box and the trust region at the (k + 1)-st iteration is accomplished in two stages. In the first, we

obtain an approximation to the so called generalized Cauchy point. This point is important for

two reasons. Firstly, convergence of the algor.ithm to a point at which the projected gradient is

zero can be guaranteed provided the value of the quadratic model at the end of the iteration is no

larger than that at the generalized Cauchy point (see [10]). Secondly, the set of variables which

lie on their bounds at the generalized Cauchy point a.s the algorithm proceeds often provide an

excellent prediction of those which will ultimately be fixed at the solution to the problem. It is

thus important that an adequate approximation to such a point be identified.

Let D(k) be a positive definite diagonal scaling matrix and let

(3.10)

Now define the Cauchy arc, :r!kl(t), by

(3.11)

for all values of the parameter t ~ 0. Considering the arc as t increases from zero, the generalized

Cauchy point is defined to be x(te), where te is the first local minimizer of nPl(x(kl(t)), the

quadratic model along the arc, subject to the trust region constraint (3.4) being satisfied at

x(kl(t). An efficient algorithm for this calculation, when 11·11 is the infinity-norm (the LANCELOT

default), is given in [11].

It is not necessary that the generalized Cauchy point be calculated exactly. Indeed, a number

of authors have considered approximations which are sufficient to guarantee convergence (see

[6], [7], [8], [44], [57]). We also provide, as an option, the possibility to use the approximation

suggested by More in [44]. Let 1 > 0, 0 < (3 < 1 and 0 < a < 1. Then we choose the

approximation x(t;), where t; is of the form lf3m• and where 1ns is the smallest nonnegative

integer for which

(3.12)

6

and

(3.13)

We shall refer to such a point as an approximate generalized Cauchy point. Notice that the

generalized Cauchy point may not satisfy equation (3.12). Thus there is a possibility of different

behaviour for algorithms which use the true and approximate generalized Cauchy points.

3.3 Beyond the generalized Cauchy point

We have ensured that SBMIN will converge by determining a suitable approximation to the gen

eralized Cauchy point. We are now concerned that the algorithm should converge at a reasonable

rate. This is achieved by, if necessary, further reducing the quadratic model.

Those variables which lie on their bounds at the approximation to the generalized Cauchy

point are fixed. Attempts are then made to reduce the quadratic model by changing the values of

the remaining free variables. Let x(k,l) be the obtained approximation to the generalized Cauchy

point and let x(k,j), j = 2, :3, ... be distinct points such that:

• x(k,j) lies within the intersection of the feasible box and the trust region;

• those variables which lie on a. bound at :r(k,l) lie on the same bound at x(k,j);

• x(k,j+l) is constructed from x(k,j) by

1. determining a nonzero search direction p(k,j) for which

(3.14)

2. finding a steplength a(k,j) > 0 which minimizes m(kl(x(k,j) + ap(k,j)) within the inter

section of the feasible box and the trust region; and

3. setting

(3.15)

Notice that the one dimensional minimizer of m(kl(x(k,j) + ap(k,j)) within the intersection of the

feasible box and the trust region is easy to compute. Let the gradient of the model at x(k,j) be

(3.16)

Then the unconstrained line minimizer of the quadratic model is given by

(
k ") { -g(k,j)Tp(k,j) jp(k,j)T B(k)p(k,j) if p(k,j)T B(k)p(k,j) > 0,

"' ,J -
'-'O -

oo otherwise.
(3.17)

Furthermore, the maximum feasible step allowed by the bound (3.2) on the i-th variable is

if]J(k,j) < 0
! ,

if]J~k,j) > 0
! ,

(3.18)

otherwise,

7

for 1 ::; i ::; n. Finally, the trust region imposes a bound on the step, a~~j{ > 0, where

(3.19)

Therefore the required steplength is

min
,...,(k,j) ._._, . (3.20)

This process is stopped when the norm of the free gradient of the model at x(k,j) is sufficiently

small. The free gradient of the model is

(3.21)

where the operator

Q (
. l) . _ { Yi if l; < xi < u;,

y,x,,u,- .
0 otherwise.

(3.22)

Zeros components of the gradient correspond to variables which lie on their bounds. In LANCE

LOT, we stop when

(3.23)

which is known (see [41]) to guarantee that the convergence rate of the method is asymptotically

superlinear. Notice that the free gradient at the fin~.l point is measured against the components

of the gradient of the model at the original point which were free at the approximation to the

generalized Cauchy point.

There is much flexibility in obtaining a search direction which satisfies (3.14). We determine

such a direction by finding an approximation to the minimizer of the quadratic subproblem (3.3),

where certain of the variables are fixed on their bounds but the constraints on the remaining

variables are ignored. Specifically, let I(k,j) be a set of indices of the variables which are to be

fixed, let e; he the i-th column of the n by n identity matrix I and let J(k,j) be the matrix made

up of columns e;, i tf_ I(k,j). Now define

g(k,.i) = J(k,.i)T g(k,j) and [J(k,j) = J(k,j)T B(k,j) J(k,j). (3.24)

Then the quadratic model (3.3) at x(k,j) + p, considered as a function of the free variables

p = j(k,j)Tp is,

(3.25)

We may a.ttempt to minimize (3.25) using either a direct or iterative method.

In a direct minimization of (3.25), one factorizes the coefficient matrix lJ(k,j). If the factors

indicate that the matrix is positive definite, the Newton equations

(3.26)

8

may be solved and the required search direction p(k,j) = j(k,j)p(k,j) recovered. If, on the other

hand, the matrix is merely positive semi-definite, a direction of linear infinite descent (dolid)

or a weak solution to the Newton equations can be determined. Finally, if the matrix is truly

indefinite, a direction of negative curvatnre (done) may be obtained.

In an iterative minimization of (3.25), the index set I(k,j) may stay constant over a number

of iterations, while at each iteration the search direction may be calculated from the current

model gradient and Hessian f3(k,j) and previous search directions. The iterative method used in

LANCELOT is the method of conjugate gradients. The convergence of such a method may be

accelerated by preconditioning (see below) . In fact the boundary between a good preconditioned

iterative method and a direct method is quite blurred.

3.4 Accepting the new point and other bookkeeping

A point x(k,.i), which gives a sufficient reduction in the quadratic model, has thus been found.

Of course, we are really interested in reducing the true objective function J(x), not the model.

The success or failure of the iteration may be measured by computing

reduction in the objective function to tha.t predicted by the model

(k) - J(x!k)) - !(x(k,j))

p - m!kl(x(l.·))- m.(k)(x(k,j))'

the ratio of the actual

(3.27)

If this ratio is negative or small relative to one, the iteration is viewed as a failure. We call

such an iteration unsucces8jul. Conversely if the ratio is large, the model predicted a reasonable

decrease in the objective function and the iteration has been .successful (even though, if the ratio

is significantly larger than one, the model was not an accurate approximation to f).

Let 0 < {t < 1. \Ve choose to update x(k+l) as follows:

X' -
1k+l) { x(k,j) if p(k) > {t,

· - x!k) otherwise.
(3.28)

We note that, as ft > 0. this may prevent the algorithm from accepting the lowest point en

countered so far as the new iterate. One could circumvent this drawback by explicitly keeping

the overall lowest point found and retuming it as the required solution. However, this requires

additional storage and has not proved beneficial in our experience.

'Ne also need to update the trust-region radius. Again, if p is small or negative, the model

has not predicted the behaviour of the true objective function well, while if the ratio is close to

one, a good prediction has been obtained. In the former case, the region in which the quadratic

approximation is trusted must be reduced and the radius consequently decreased. In the latter

case, their may be reason to believe that the region in which we may trust our model is larger

than we previously thought and the radius is increased as a consequence.

Again let {t < ry < 1 and 0 < / 'o < 1 ::; 12 . We choose to update the trust region radius

according to the formula.

,6k)~(k)

~(k)

,.~k) ~(k)

9

if p(k) ~ {t,

if tt < p(k) < ry,

otherwise,

(3.29)

w_here 1ak) E (ro, 1) and ~~k) E [1, /2].

If the iterate has changed, we need to recompute the gradient at the new point. In this case

we also form a new second derivative approximation.

4 A general description of AUGLG

AUGLG is a method for solving the generally-constrained minimization problem,

minimize f(x) (4.1)

subject to the general (possibly nonlinear) constraints

Cj(X) = 0, 1:::; J:::; m,, (4.2)

and the simple bounds

l; :::; x; :::; u;, 1 :::; i :::; n . (4.3)

Here, f and the Cj are all assumed to be twice-continuously differentiable and any of the bounds

in (4.3) ma.y be infinite.

AUGLG makes repeated use of SBMIN. The objective function and general constraints are

combined into a composite function, the augmented Lagrangian function,

(4.4)

where the components A; of the vector A are known as Lagrange multiplier estimate.s, the entries

s;; of the diagonal matrix S are positive scaling factors, and p is known as the penalty parameter.

The constrained minimization problem (4.1)- (4.3) is now solved by finding approximate min

imizers of Cfl subject to the simple bounds (4.3), for a carefully constructed sequence of Lagrange

multiplier estimates, constraint scaling factors and penalty parameters.

The k +1-st major iteration of AUG LG is made up of three steps. At the start of the iteration,

Lagrange multiplier estimates, A (k), constraint scaling factors, S(k), and a penalty parameter J.l(k)

are given. The steps performed may be summarized, in order, as follows:

1. Test for convergence (see Section 4.1).

2. Use SBMIN to find an approximate minimizer, x(k+l), of the augmented Lagrangian function

ifl(x,A(k),S(kJ,Jl(k)) in the feasible box, (4.3) (see Section 4.2).

3. Update the Lagrange multiplier estimates, constraint scaling factors, penalty parameter

and convergence tolerances (see Section 4.3).

We now consider these steps in more detail.

10

4.1 C01·~vergence of the augmented Lagrangian method

The first-order necessary conditions for a feasible point x* to solve the problem (4.1)-(4.3) re

quire that there are Lagrange multipliers, A*, for which the projected gradient of the Lagrangian

function at x* and .A*, and the general constraints (4.2) at x*, vanish. The Lagrangian function

is the function
m

L(x,A) = f(x) + LAiCi(x). (4.5)
i=I

The projected gradient is given by (3.5) but now with the gradient of the Lagrangian function,

V xL(x, .A), replacing the gradient of f.
One may then assess the convergence of the augmented Lagrangian method by the size of the

projected gradient and constraints at x(k) and A (k). For instance, one might stop if the conditions

(4.6)

and

(4.7)

hold for some appropriate small convergence tolerances ft and Ec.

Alternatively, one might consider the values of the relative constraint functions, crelative(x),

where

c;·elative(X) = Ci(X) I c~ypical (4.8)

for "typical" values ctypical, and the relative projected gradient of the Lagrangian and stop when

both of these quantities are small in norm.

In LANCELOT, the relative convergence tests ((3.9) with g replaced by VxL(x,A) and (4.8))

are used when suitable constraint scalings are available (see Section .).1). In all other cases, the

tests (4.6) and (4.7) are used.

4.2 Minimizing the augmented Lagrangian function

The convergence of augmented Lagranglan methods is guaranteed, under very weak assumptions,

if the penalty parameter is gradually reduced to zero. This result is almost independent of the

values of the La.grange multiplier estimates (see [13, Lemma 4.3 and Theorem 4.4]). However,

it becomes more difficult to minimize (4.4) when 1-L(k) is small. Fortunately, a judicious choice

of the Lagrange multiplier estimates also ensures convergence for fixed lt provided x(k) is close

to x*. Thus p(k) is allowed to decrease until we are sure that we are in a neighbourhood of x*

whereupon 1-L(k) is left unchanged but the Lagrange multipliers are adjusted to ensure ultimate

convergence. We can gauge whether we are in such a neighbourhood by monitoring the expected

decrease in llc(x(k))ll·

At each iteration, we exit from SBMIN when the condition

(4.9)

11

is satisfied for some tolerance w(k). We then test whether

(4.10)

If (4.10) is satisfied, we leave the penalty parameter unchanged but update the Lagrange multiplier

estimates. Otherwise, we reduce the penalty parameter and do not update the Lagrange multiplier

estimates.

4.3 Updates

It is straightforward to pick {t(k), A (k), w(k) and 1/k) to ensure convergence of the above scheme.

Moreover this can normally be done so as to guarantee that the penalty parameter remains

bounded away from zero (see [1:3, Theorem 5 .. 5]).

We start by selecting positive tolerances T = 0.1, a:"' = 1, f]w = 1, o:,7 = 0.1 and f]ry = 0.9.

Now, we set

11{0) = Jto

;...;{0) = ((O)r'"· w0 Jt (4.11)

7](0) ((O)r'l TJo p .

We also pick initial Lagrange multiplier estimates A (O) and scaling matrix 5'(0). In the absence of

a better choice, LANCELOT selects A(O) = 0 and S{O) =I.

The parameters are updated in different ways depending upon whether or not (4.10) is satis

fied. When (4.10) holds, the next vector of Lagrange multiplier estimates (often known as first

order multiplier estimates) is chosen as

(4.12)

The remaining parameters are given by

jt(k)

W(k) (P(k+l)) f3w (4.13)

1](k) (tt(k+1))(31).

When (4.10) does not hold, the penalty parameter is reduced. We set

ll(k+1) T{t(k)

w(k+l) Wo (tt(k+l)) aw (4.14)

/]{k+l) 170 (tt(k+l)) a 11
•

The Lagrange multiplier estimates are left unchanged so that A(k+l) = A(k).

Notice that, if (4.12) holds,

(4.15)

12

In this case, the overall convergence tests (4.6) and (4. 7) are satisfied at the start of iteration

k + 1 provided that w(k) ::; Et and 17(k) ::; fc.

Automatic choices of the initial penalty parameter in penalty function methods are notoriously

hard to justify. On the other hand, the choice is less critical if the constraints are well scaled. By

default, LANCELOT selects {to = 0.1; this may be overruled by the user. We also choose w0 = 1

and 1]o = 0.1258925 (thus 17(o) = 0.01).

5 Algorithmic options within LANCELOT

5.1 Constraint and variable scaling

In almost all that we have said up until now, there has been an implicit assumption that the

values of the problem variables are all typically the same size. Similarly, it has been assumed that

all the constraint functions are of similar magnitude. It may happen in practice that this is not

so. The convergence of the method may be adversely affected by poor scaling and it should be

avoided if a.t all possible. There are two alternatives. A user may manually resca.le the variables

and constraints so that the scaled quantities are of roughly the same size. Alternatively, the user

might rely on an automatic rescaling algorithm.

There has been a. fa.ir amount written 011 scaling (see, for example, [31, Section 8.7] and [22,

Section 7.1], a.nd there is some consensus that it is extremely difficult to design a general purpose

automatic scheme, especially for highly nonlinear problems. Notwithstanding, we still feel that

such a scheme should be provided as an option.

LANCE LOT allows the user to specify variable and constraint sca.lings as input parameters and

the sca.lings a.re then used implicitly by the algorithms. It is also possible to construct automatic

sca.lings independent of the minimization routines as follows.

Consider the vector valued function

v(x) =
Cm(x)

j(x)

(5.1)

Let F(x) denote the Ja.cobia.n matrix, Fij(x) = ov;(~)joxj. This matrix reflects the changes

in the elements of v which are likely for small identical changes in x. If we were to change to

variables x = Dxx and rescale vas v = Dvv, where Dx and Dv are positive definite and diagonal,

the Jacobian matrix oft' with respect to the variables x is

(5.2)

Ideally, we would like to choose the scalings so that the rows and columns of (5.2) are of roughly

equal norm for all x in the fea.<;ible box (3.2). However, this is in general impossible for nonlinear

functions and we must accept a compromise.

Let xtypical be a typical value of x within the feasible box. We now apply the matrix equilibra

tion algorithm of Curtis and Reid [20] to F(X typical) to derive suitable scaling matrices Dx and Dv

13

to equilibrate (5.2). The first m diagonals of Dv are rescaled by the constant 1/ max1<i<m(Dv)ii· . --
The resulting matrices Dx and the first m components of the rescaled Dv are now passed as

input parameters to the minimizer. The Curtis-Reid algorithm is implemented as MC19 in the

Harwell Subroutine Library. This automatic scaling procedure is available as an option within

LANCELOT and will be referred to as the "scaling" option.

5.2 Linear solvers

Most of the LANCELOT algorithmic options are related to the way in which an (approximate)

minimizer of (3.25) is computed. This is hardly surprising since one expects the burden of the

numerical calculation to be at this level.

5.2.1 Direct methods

Once the set I(k,j) determined, the nature of the quadratic model restricted to the subset of

free variables is characterized by the eigenvalue distribution (or inertia) of the matrix IJ(k,j). To

summarize:

• If all the eigenvalues of fJ(k,j) are strictly positive, the unique minimizer of (3.25) is given

as the solution to the Newton equations (3.26).

• If all the eigenvalues of IJ(k,j) are nonnegative, but some are zero, and g(k,j) lies in the range

of lJ(k,j), there are an infinite number of solutions to the Newton equations (3.26). Each

solution is a weak minimizer of the model.

• If all the eigenva.lues of lJ(k,j) are nonnegative, but some are zero, while g(k,j) does not lie in

the range of lJ(k,j), the quadratic model is unbounded from below. There is then a vector

p(k,j) for which g(k,j)Tp(k,j) < 0 and lJ(k,j)p(k,j) = 0. This vector is known as a di-rection of

linear infinite descent (dolid) since the model decreases as a linear function of a for steps

ap(k,j) as a increases.

• If lJ(k,j) has negative eigenvalues, the model is unbounded from below. There is a vector

p(k,j) for which g(k,j)Tp(k,j) ::; 0 and p(k,j)T J3(k,j)j)(k,j) < 0. This vector is known as a

direction of negative curvature (done). The model decreases as a quadratic function of a

for steps O']J(k,j) as a increases.

The use of a sparse multifrontal direct method to solve large-scale optimization problems

ha.s been advocated in [9]. Briefly, the matrix lJ(k,j) is factorized using the Harwell Subroutine

Library code MA27 [25], [26] as

j3(k,j) = fi(k,j) L(k,j) j)(k,j) L(k,j)Tfi(k,j)T, (5.3)

where fi(k,j) is a permutation matrix, Dk,j) is unit lower triangular and j)(k,j) is block diagonal

with 1 by 1 and 2 by 2 diagonal blocks. The inertia of J3(k,j) and j)(k,j) are identical.

A first option within LANCELOT, denoted by the "mltf'' symbol, uses the multifrontal factor

ization directly to find the Newton direction when lJ(k) is positive definite. It uses its computed

14

triangular f<:ctors to calculate a suitable direction j5(k,j) in the three other cases, as is detailed in

[9]. We allow only one cycle of improvement beyond the Cauchy point with this option, that is

j is limited to 1 in Section 3.3.

An alternative direct method which shares the key property that the Newton direction is

always chosen if iJ(k,j) is positive definite is based on the modified Cholesky methods of Schnabel

and Eskow ([52]). Here, we form a factorization

(5.4j

where Lfk,j) is unit lower triangular, [J(k,j) is positive definite and diagonal, and J!;(k,j) is positive

semi-definite, diagonal and nonzero only when iJ(k,j) is not (sufficiently) positive definite. It

is straightforward to modify :MA27 to achieve this factorization. Now, the modified Newton

equations,

(iJ(k,j) + J;(k,j))p(k,j) = -g(k,j) (5 .. 5)

are solved to obtain a suitable search direction. Notice. furthermore, that

ill (k,j) (j}(k.j)) < m(k) (.TU:.j)) + g(k.j)Tp(k,j) + ~J}(J;,j)T (B(k,j) + £(k,j))tj(k,j)

< i7l.(k,j)(p(k.l)). (5.6)

In contrast \vith the mltf option. more than one cycle of improvement beyond the Cauchy point

is a.llowed with this latter option. which will be denoted below by the symbol "semltf'.

We stress that an advantage of both these techniques is that B(k) will typically not be mod

ified as we approach the solution to the problem. Moreover, provided the trust-region radius is

sufficiently large that the Newton step (:3.2G) ma.y be ta.ken, we v.;ould also expect to take very

few inner-iterations (indeed, in the non degenerate case, one) before (3.2:3) is satisfied.

5.2.2 Iterative methods

There is sometimes a very fine distinction between iterative and direct methods. In fact, in finite

precision arithmetic. one is often advised to perform iterative refinement with direct methods to

obtain more accurate solutions. Iterative methods are in general more flexible in the sense that it

ma.y be impossible to use direct methods because of insufficient storage on a. user's machine, while

iterative methods can be adapted to use whatever space is available. However,this flexibility has

its drawbacks. In particular, the convergence of iterative methods on difficult problems can be

severely impaired unless considerable care is taken.

In LANCELOT, the iterative method of choice is the method of conjugate gradients (see,

for example, [31, Section 4.8.3], or [33, Sections 10.2 and 10.3]. Such a method attempts to

find a. stationary point of a. quadratic function, in our case (3.2.5), by generating a sequence of

(conjugate) search directions, J)(k,j). If iJ(k,j) is not positive definite, the conjugate gradients may

terminate with a. done or dolid.

The convergence of the conjugate gradient method may be enhanced by preconditioning the

coefficient matrix fJ(k,j). A preconditioner is a. symmetric, positive definite matrix p(k,j) which

15

is chosen to make the eigenvalues of the product P(k,j)-l fJ(k,j) cluster around as few distinct

values as possible. If fJ(k,j) were positive definite, the ideal preconditioner would be iJ(k,j) itself.

However, we have to bear in mind that at each step of the preconditioned conjugate gradient

method we have to solve linear equations of the form

P-(k,j) ::;:(k ,j) _ -r- (k ,j) - - ' (5.7)

for given vectors f(k,j) and required solutions .z(k,j). Thus there is normally a compromise be

tween using a good approximation of iJ(k ,J l, with the associated difficulties of finding and storing

its factorization, and a poor approximation, where many conjugate gradient iterations may be

required. Choosing a good preconditioner for a given problem is considered to be an art. Certain

classes of problems, in particular those associated with fluid flows, have been much analyzed and

reasonable preconditioners designed.

W'e have tried to supply a reasonable cross-section of widely used preconditioners. VVe rec

ognize that users may have a better idea of a. good preconditioner for their problem by allowing

them to solve (5.7) outside the package.

Diagonal Preconditioners. The choice P(k . .i) = I is. of course, a. possibility. This will be

referred to as the "noprc'' option. A simple but often useful preconditioner is provided by the

choice p(A:,j) = lJ(k,jJ, where lJ(k,j) is a. diagonal matrix whose i-th diagonal is

D-(k.,i) = tPax(B-(k . .i) c)
l- l _t_(~ U. ' C. I • (5.8)

for some suitable small number c \Ve set C:: to the cube root of the machine precision.

VVe note that diagonal preconditioners can be used to precondition both the steepest descent

direction in the Generalized Cauchy point calculation (D(k) = jj(k,j) in (3.10)) and within the

conjugate gradient iteration itself. We will denote by diagonal a. preconditioning stategy using this

technique. In this strateg~· , the trust region radius is furthermore scaled by the factor)1/D(k,j) 1/,

as suggested by the theory [10].

Band Preconditioners. flifany application areas give rise to problems whose Hessian matrices

are banded. A band matrix is a matrix B for which bij = 0 for all Ji- jj ::; mb. The smallest

integer mb for whir.h this is so is known as the semi-.bandwidth of the matrix. The significant

property as far as we are concerned is that, if B is positive definite, the Cholesky factors fit within

the band . Moreover, clever storage schemes have been constructed to make the factorization and

subsequent solutions extremely efficient (see, for example, [28, Chapter 4), and [24, Section 10.2]).

\Ve offer a. band preconditioner within LANCELOT. This works in two stages. The desired semi

bandwidth, mb, is assumed to have been specified. The band matrix Jo,{(k,j), with semi-bandwidth

m.b, is chosen so that

(5.9)

Then, we obtain a. modified Cholesky factorization of A1i~k,j), just a.s described in Section 5.2.1.

That is we form a factorization

(5.10)

16

where L(k,j) is unit lower triangular with semi-bandwidth ni-b, f;(k,j) is positive definite and

diagonal, and J!;(k,j) is positive semi-definite, diagonal and nonzero only when J.,{(k,j) is not

(sufficiently) positive definite.

When fJ(k,j) is positive definite and mb is chosen large enough, f>(k,j) is an exact precondi

tioner, that is, the preconditioned conjugate gradient method will converge in a single iteration.

The effect of the preconditioner in other cases has not been forma.lly analyzed. However, one

would suspect that if the essential part of fJ(k,j) is contained within the band, the preconditioner

would be successful.

Band preconditioners are denoted below by "band(mb)".

Incomplete Factorization Preconditioners. In some applications, although it is possible

to store the matrix fJ(k,j). there is so much fill-in during the factorization (.5.3) that it proves

impossible to store the resulting factor L(k,.i). Such cases arise frequently if the underlying problem

has connections with two and, particularly, three dimensional partial differential equations.

It is sometimes possible to construct good preconditioners for such problems by either rejecting

all fill-in during the factorization or by tolerating a modest amount. Such incomplete factorization

preconditioners are very popular with researchers in partial differential equations and it is possible

to get off-the-shelf software to form them. ~We include the example 1v1A31, due to Munksgaard

[47], from the Hanvell Subroutine Library in LANCELOT. \'Ve denote this option by "munksg''.

Full-Matrix Preconditioners. Finally. a~. we alluded to in Section .5.2.2. if space permits and

fJ(k,j) is positive definite. one can a.lwa.vs use a complete factorization of fJ(k,j) as a preconditioner.

However, if fJ(k,j) is not positive definite it is possible to use one of the modifications suggested

in Section .5.2.1 to determine a. preconditioner. In fact, we allow the modification (.5.4).

\Ve consider two possible ways to obtain the perturbation matrix J!;(k,j) in (.5 .. 5). The first is,

as above, the modified factorization algorithm proposed by Schnabel and Eskow in [.52]. We will

use "seprc'' to denote this strategy.

The second is another modification of f..lA.21 advocated by GilL Iviurray, Ponceh~on and Saun

ders in [30]. Here, ratl1er than modifying t.he factorization as it is being formed, the factorization

(.5.:3) is computed and then modified. Specifically, the block diagonal matrix !J(k,j) in (.5.3) is

changed to [J(k,j) + J!;(k . .iJ. This modified ma-trix is block diagonal positive definite. This ensure

that

fi(k..i) L(k,j)([J(k.j) + J!;(k,j))i)k,j)Tfi(k,j)T (.5.11)

is also positive definit.P. Once again, the matrix is not modified when fJ(k,j) is positive definite.

The resulting algorithmic option is denoted below by "gmpsprc".

It is worthwhile noting the parallel between seprc and semltf. They both use the direct

modified factorization of fJ(k,j) to compute Newton's direction in the subspace of free variables.

They differ in we decided to stop this process in seprc as soon as the only bounds encountered

are trust region bounds, while the minimization may be pursued, in semltf, along the trust region

boundaries.

17

The variants gmpsprc and mltf are also related, because they both use the MA27 multifrontal

factorization. The gmpsprc then modifies it if necessary and uses the resulting factors to precon

dition a conjugate gradient minimizer, while mltf directly exploits the factors to compute a single

step to reduce the quadratic model.

Expanding Band Preconditioners. One further possibility is to use an expanding band

preconditioner. Consider the band matrix f.f(k,j) given by (5.9), where the semi-bandwidth rnb

satisfies the inequalities 0 :=; 1nbmin :=; 1nb :=; 111bmax :=; n. Here rnbmax is some upper bound on

the allowable bandwidth chosen so that a sparse factorization of Ji([(k,j) is practicable. The lower

bound rnbmin is selected so that the band matrix with exactly that semi-bandwidth provides a

useful preconditioner. (Of course, both of these bounds are difficult, if not impossible, to pick

a priori and OJH' might just choose 1nbmin = 0 and rnbmax = n.) The idea is now to select

the semi-bandwidth mbk) at each iteration to reflect the speed and accuracy which one >vants

from the preconditioned conjugate gradient method. In particular , if low accuracy is required,

a preconditioner with a small semi-bandwidth (such as a diagonal preconditioner) is often very

effective. But if high a.ccuracy is desired, it ma.y be better to pick a preconditioner which is a

better a.pproximation to lJ(k,j).

Having obta.ined the preconditioner, we obtain a modified Cholesky factorization of 111)1k,j),

ju8t as described in Section .).2.1. However, unlike the band preconclitioners described above, the

matrix and its factorization are stored as a genera.l sparse, rather than band, ma.trix.

'vVe use the following very simple rule to select the semi-bandwidth. Pick

{

n if llx(kl - P(x(k) - g(x(k)), I, u) 11 :=; 10-2 ,

mlk) = n/2 if 10-2 .< llx(k)- P(xlk)- g(x(k)), l, ulll :=; 10-1
,

nj.S otherw1se.

(5.12)

vVe realize that further sophistica.tion may he desirable but have found that this simple scheme

is effective in practice. This preconditioning option will be denoted by "expband".

5.3 Derivative approximations

Further algorithmic options in LANCELOT are related to the various ways in which derivatives or

their approximations a.re computed. However, the structure of these derivatives crucially depends

on the structure of the nonlinear functions themselves. In order to derive an efficient algorithm

for large-scale calculations, we first need to know a way to handle the structure typically inherent

in functions of many variables.

5.3.1 Group partial separability

A function f(x) is said to be group partially separable if:

1. the function ca.n be expressed in the form

ng

J(x) = Lg;(cxi(x)); (5.13)

i=l

18

2. each ~f the group functions g;(a) is a twice continuously differentiable function of the single

variable a;

3. the function

is known as the i-th group;

a;(x) = L w;,jfJ(x(jl) +aT x- b;

jEJ;

4. each of the index sets .:li is a subset of {1, ... , ne};

(5.14)

5. each of the nonlinear element functions fJ is a twice continuously differentiable function of

a subset xlil of the variables x. Each function is assumed to have a large invariant subspace.

Usually, this is manifested by xli] comprising a small fraction of the variables x;

6. the gradient a; of each of the linear element functions aT x - b; is, in general, sparse; and

7. the Wi,j are known as element weights.

This structure is extremely general. Indeed, any function with a continuous, sparse Hessian

matrix may be written in this form (see [34]). A more thorough introduction to group partial

separability is given in [12]. LANCELOT assumes that the objective function f(x) is of this form.

When equality constraints are present, they are handled via the augmented Lagrangian and thus

become part of the objective function for the subproblem given to SBMIN. Each such constraint

then gives rise to the group function a 2 /21t, which imposes the restriction that each equality

constraint only has a single group.

5.3.2 Derivatives and their approximations

One of the main advantages of the group partial separable structure is that it considerably

simplifies the calcu)ation of derivatives of f(x). If we consider (5.13) and (5.14), we see that we

merely need to supply derivatives of the nonlinear element and group functions. LANCELOT then

assembles the required gradient and, possibly, Hessian matrix of f from this information.

5.3.3 Derivatives of .f(x)

The gradient of (5.13) is given by

ng

'lxf(x) = LgHa;(x))'lxa;(x),
i=l

where the gradient of the i-th group is

'lxa;(x) = L w;,j'lxfj(X[j]) +a;.
jEJ;

Similarly, the Hessian matrix of the same function is given by

n 9 n 9

'lxxf(x) = Lg:'(ai(x))'lxa;(x)('lxa;(x)f + Lgi(a;(x))'lxxa;(x),

i=l i=l

19

(5.15)

(5.16)

(5.17)

where the Hessian matrix of the i-th group is

Y'xxa;(x) = L W;_JY'xxfj(X[jJ).

jE:J,

(5.18)

Notice that the Hessian matrix is the sum of two different types of terms. The first is a sum

of rank-one terms only involving first derivatives of the nonlinear element functions. The second

involves second derivatives of the nonlinear elements.

We shall assume that the first and second derivatives of the group functions are available.

This is frequently the case in practice.

The quadratic model (3.3) uses the gradient off and an approximation to its Hessian matrix.

In LANCELOT, we have two options.

• We can calculate the true first and second derivatives of each nonlinear element and group

function and use the exact Hessian B(k) = V' xxf(x(kl).

• We ca.n cakula.te the true first and second derivatives of each group function, calculate the

first derivatives of the nonlinea.r elements but use approximations, BJj](k), to their second

derivatives. Vve then use the approximation

n 9 n 9

B(k) = L9:'(ai(x(k)))Vxai(X(k))(Y'xa;(x(k))f + LY:(a;(x(k)))B}kl,

i=l

where B!kl satisfies

B1k) = L w;,jB[j](k)

jE.J;

for some suitable matrices B[j](k). see Section .5.3.5.

i=l

(5.19)

(5.20)

We strongly recommend the use of exact second derivatives whenever they are available.

LANCELOT fully exploits this information. In our experience, exact second derivatives are often

available, either by direct calculation or by using automatic differentiation tools. Using exact

second derivatives is therefore the default option in the package.

5.3.4 Derivatives of the group and nonlinear.element functions

In order to describe the other options for derivative approximation, we need to detail the structure

of these further.

The derivatives of fJ need only be found with respect to the ~ariables x[j], the remaining

derivatives being zero. There are frequently, moreover, two further savings to be made. Firstly,

although the variables used by an individual /j may differ, the structure of many of the nonlinear

elements may be the same. For instance, h(x[1l) might be :~: 1 x 2 and h(x[2l) might be x3 x4 ;

both functions are of the generic type e(v1 , v2) = v1v2 • If we need the derivatives of these two

nonlinear elements, all we have to compute are the derivatives of the generic function e(v1, v2)

and to associate the variables x1 and x2 and x3 and x4 with v1 and v2 , respectively (A more

realistic example is described in [12]). In general, we associate each nonlinear element function

20

fJ, 1 ~ j ~ ne with a generic type of nonlinear function from the set {em(vlml)}, 1 ~ m ~ me,

via a. suitable mapping m(j). We then only need to know the derivatives of the different types of

nonlinear element functions and remember which variables xlil are associated with the relevant

elemental variables vlml. Secondly, computing the derivatives of a given type of nonlinear element

function may be further simplified. For example, suppose that a noulinear element is of type

e(v1, v2, v3) = ((v1 + v2)(v2 - v3))2
. Although e is a function of three elemental variables, it only

really depends on two internal variables u1 = v1 + v2 and u2 = v2- v3; in this case, e(v1, v2, v3) =
e(u1. 1t2) = (1t1 u 2)

2
• The nonlinea.r information is still conveyed in e. The derivatives with respect

to the variables v may be calculated by computing the derivatives with respect to the variables

u and then using the chain rule of partial differentiation to recover the required ones.

In general, we might obtain intema.J variables 1t[m] from the elemental variables vfm] by the

linear range transformation

(5.21)

The transformation is only useful if the transformation matrix Ht[m] has fewer rows than columns.

Note that the transformation is far from unique and, in many cases, there is no useful transfor

mation (in which case the trivial transformation, with ltV[m] = I, suffices). The gradient and

Hessian ma.trix of a nonlinear element type ern(vfm]) = em(ufml), with respect to the elemental

variables, may be calculated from those with respect to the interna.J variables as

(5.22)

and

(5.23)

Thus, in order to calculate these derivatives. we have merely to calculate the derivatives with

respect to the internal variables and record the range transformations made. The remaining part

of the calculation is automated within LANCELOT.

5.3.5 Approximating the derivatives of nonlinear element functions

We are now in position to describe these LANCELOT options more precisely.

iNe see in (5.22) that the nonlinear information in the first derivatives of the nonlinear element

function em(vfm]) = em(v.lm]) is conveyed by the vector V 1,em(ufm]). If we seek an approximation

gfj](k) to V,_.fj(X[J](k)) in (5.16), we should first determine the type of nonlinear element j, m=
m(j) say. Now we approximate V uem(xfj](k)) by a suitable vector _q[j](k) and form

g[j](k) = w[rn]T g[j](k). (5.24)

The approximations _gLi](J.,) would normally be formed by finite differences. As the dimension of

ufm] is assumed to be small (/j has a large invariant subspace), this is realistic even for large

problems.

A finite difference approximation to the i-th component of the required gradient is calculated

by forward differences
ern(X(j](k) + 8iei)- em(xfj](k))

8i

21

(5.25)

~ntil the projected gradient of the objective function is small when a switch is made to central

differences
em(X[j](k) + c5iei)- em(xfj](k)- c5iei)

2c5i.
(5.26)

In (5.25) and (5.26), c5i is a suitable small positive number. Further details of such procedures

are given in [22] and [31]. This option will be denoted by "fdg".

Turning to second derivatives, we see in (5.23) that the nonlinear information in the second

derivatives ofthe nonlinear element function em(ufml) is contained in the matrix \7 uuem(ufml). As

before, if we seek an approximation B[j](k) to \7 xxfJ(xfj](k)) in (5.20), we should first determine

the type of nonlinear element j, m= m(j) say. Now we approximate its Hessian \7uuem(x[j](k))

by a suitable matrix ..Bfj](k) and form

(5.27)

The approximations ..BU](k) may be formed by secant updating formulae, using information from

previous iterations. As the dimension of ufm] is assumed to be small (fj has a large invariant

subs pace), this option is realistic even for large problems. This technique is known as partitioned

updating [35].

A secant approximation is any matrix chosen to satisfy the secant equation

..Bfj](k) _s[j](k) = yfj](k)' (5.28)

where

(5.29)

and

(5.30)

The matrix is normally chosen to be symmetric. Sometimes, positive definiteness is also imposed,

although there is little justification for this in our circumstances since there is no a priori reason

for the second derivatives of the element functions to be positive definite.

LANCELOT presently uses the same type of derivative approximation for all elements. The

Powell-symmetric-Broyden (PSB), symmetric-rank-one (SR1), the Broyden-Fletcher-Goldfarb

Shanno (BFGS) and Davidon-Fletcher-Powell (DFP) updates are provided. These choices are

referred to a.s the "psb", "srl", "bfgs" and "dfp" options respectively. See [22], [27] and [31] for

further details on these updating formulae.

5.4 Other options within SBMIN

We finally briefly described three further options related to the algorithms used within S BM IN.

5.4.1 Approximate Cauchy point calculation

In Section 3.2, we distinguished between two types of Cauchy point calculations. The first is to

compute the first local minimum of the quadratic model along the Ca.uchy arc (3.11). This is the

default choice. The second is to compute an approximate Cauchy point, an option that we will

denote by "appGCP".

22

5.4.2 Choice of the trust region norm

The next algorithmic option that we will consider is that of the choice of the norm 11 · 11· This

choice determines the actual shape of the trust region, because of (3.4) and (3.13). The default

option is to choose 11 · 11 to be the infinity norm, but the choice of the Euclidean £2-norm is also

allowed. Note that in this latter case the boundary of the region defined as the intersection of

the trust region (3.4) and the bound constraints (3.2) has a more complex shape than when the

infinity norm is used. This prevents one from using the technique of [11] for determining the

Generalized Cauchy point on the boundary of this more complex region. When the £2-norm is

selected, LANCELOT therefore stops the search for the GCP as soon as the trust region boundary

is encountered along the Cauchy arc. 'vVe will denote this latter option by "12norm".

5.4.3 Accurate solution of the BQP

Finally, the last option allows the user to specify that the minimization of the objective function

model has to be accurate within the intersection of the feasible region for the bound constraints

and the trust region. In Section :3.:3, we gave a. general framework for obtaining a new iterate that

is "better'' than the generalized Cauchy point. At each stage, an approximation to the minimizer

of the model is sought while some of the variables are held fixed at bounds. This set of fixed

variables, I(k,j), always includes those which were fixed at the approximation to the generalized

Cauchy point. In S BM IN, we also include by default all variables \vhich encounter bounds at

x(k,j), for j > 0 up until the test (:3.2:3) is satisfied. Then, optionally, we may free all variables

except those which were fixed at the approximation to the generalized Cauchy point and perform

one or more further cycles. This optional process, denoted by "accBQ P", is terminated when

releasing variables does not improve the model value. This is detected when (3.2:3) and

(5.31)

are satisfied. At the start of each cycle, we also compute a. ne'v generalized Ca.uchy point for the

model fixing the variables which \vere on a. bound at the original Cauchy point. This recursive

use of SBMIN is guaranteed to satisfy (:3.23) if a. sufficient number of cycles are performed.

6 The numerical tests: framework and procedure

6.1 The test problems

The numerical tests with LANCELOT that we are about to describe were conducted using the

Constrained and Unconstrajned Test Examples (CUTE) collection of nonlinear test problems (see

[3]) . This collection contains a. large number of nonlinear optimization problems of various sizes

and difficulty, representing both "academic" and "real world" applications. As the title of the

collection implies, constrained and unconstrained examples are included. For our tests, we have

used the first 624 instances of unconstrained (or bound constrained) problems and the first 319

instances of constrained problems. In the CUTE collection, these are numbered Ul to U624

23

and Cl to C324 respectively1
. These 943 instances are derived from 398 different problems, the

additional examples being determined by varying the dimension. It is of course undesirable to

describe all these examples in the present paper. It will suffice to say that our test set covers,

amongst others,

• the "Argonne test set" [45], the Testpack report [5], the Hock and Schittkowski collection

[38], the Dembo network problems (see [21]), the MonVforaldo quadratic problems [46],

the Taint-Tuyttens network model problems [59],

• most problems from the PSPMIN collection [56] 2
,

• problems inspired by the orthogona.l regression report by Gulliksson [36],

• some problems from the Iviinpack-2 test problem collection3 [1], [2] and from the second

Schittkowski collection [SO],

• a number of original problems from various application areas.

We present some of the problems characteristics in Figures :3 and 4 and in Table 1.

• Figure 3 shows the distribution of the problems' dim,ensions.

• Figure 4 illustrates the distribution of the ratio 1njn, where m, is the total number of

general equality and inequality constraints. The higher this ratio, the "more constrained"

the problem. Only constrained problems (m. > 0) are considered in this statistic.

• Table 1 reports the number of our tes t problems \Vith characteristics falling into five different

classes. The characteristics considered are

- the relative non.lineal'ity of the objective function, that is the ratio

def number of nonlinear groups in the objective
Vobj = b f · th b · · ' num er o groups m c o JeCtJve

(6.1)

\vhere the groups are defined in (5.14) and where a group is declared nonlinear if it

contains a.t least one nontrivia.l nonlinear element function with a nonzero weight;

the relative nonline:nrity of the constraints, i.e.

dcf number of nonlinear constraints
Vcons = .

number of constra.mts

where the bounds have been excluded from the denominator;

the proportion nb/n of variables subject to bound constrctints;

the propm·tion of eqtwlity constraints, that is of the ra.tio

clef number of equality constraints
I=

m

(6.2)

(6.3)

1 1t was supposed a priori that Cl7, C18 aud C19 would excede our limitation ou execution time, while C261

and C262 were excluded because of their non-differentiable behaviour.
2 Some trivial problems were skipped and also problems for which different local minima were known.
3 The problems that we could reconstruct. from the data given in the report.

24

(5000, 1 0000] (6.4%
(1 000,5000] (9

(500,1000] (10

(1 00,500] (11

VJ

E
Q)

~
c.
0

~
E
:::1
s:::::

(50,100] (11 .

Figure 3: Distribution of problems dimension

0.4-0.6 0.8-1.0 .0-1

[0,50] (48.7%)

0.6-0.8 1.0-5.0 >10.0

relative number of constraints

Figure .1; Distribution of the relative number of constraints m/n

[0. -1]
; 0 (i. tl 2 3]

(5•5 (~, ~] (~, 1]

Vobj 104 8 31 16 784

V cons 139 .5 20 8 192

nb/n 573 25 38 14 293

I 99 5 7 13 240

Table 1: Further problems characteristics

25

We note the following points.

• The majority of the problems are not very large. However, the classes of larger problems

a.re far from empty, and we note the presence of examples with more than 15000 variables.

• Most large problems tend to have a somewhat regular structure. As a result, most groups

in these problems tend to be structurally similar. This is noticeable in the distribution of

relative nonlinea.rity of objective function and constraints, where either most or very few,

if any, groups are nonlinear. The same phenomenon is also observed for the proportion of

bounded variables which tends to be either very low or close to one.

• There are very few problems involving considerably more general constraints than variables.

Many of the problems arise as nonlinear systems of equations, while a fair proportion have

approximately half as many constraints as variables. We nevertheless note the presence of

problems where the number of constraints is substantially greater than n.

Amongst the ~)43 tests problems, we also selected a. subset of 45 large scale cases. These

problems and their characteristics are presented in Table 2. In this Table, "nbr" stands for

the number of the problem in the CUTE collection, nfr the number of free variables, nfx the

number of fixed variables, nbd the number of variables with bound constraints. The total number

of optimization variables is therefore nf,· + nbd· The symbol nto denotes the number of linear

groups within the objectiYe function, while nno is that of nonlinea.r groups. The number of linear

equality constraints is nte while that of nonlinear ones is nne· Finally, nli is the number of linear

inequality constraints and nni that of nonlinear ones. The Table also provides a note indicating

the relevant application domah1 or some feature of interest and a reference for the previously

published problems.

It will be interesting to compare the performance of the package on the complete set of

problems and on the selected subset of larger instances. Indeed this will allow refinement of our

algorithmic conclusions for the large scale cases, where exploitation of problem's structure is of

course crucial.

26

Name nbr "tr " t x "bd "lo nno "le nne nlt n ni Note Ref.

ART IF U20 5000 2 0 0 5000 0 0 0 0 turnin g point [39]

BIGBANK C2 0 308 1922 0 I 1112 0 0 0 ec onometric model [21]

BQPGAUSS U46 0 0 2003 0 I I 0 0 0 quadra.t ic ~ ubproblem

BRA TU 3D U61 3375 1538 0 0 0 0 3375 0 0 B ra\u PDE problem [1]

BRIDGEND C168 1423 0 1311 1 0 1304 1423 0 0 gas di.st ributi on

BRIT GAS C3 0 0 450 0 1 0 360 0 0 ga.s dist ributio n

BROYDN3D U73 10000 0 0 0 10000 0 0 0 0 Broy den t rid ia.gonal [45]

BROYDNBD UB4 5000 0 0 0 0 0 5000 0 0 [45]

CBRATU2D TJBB 882 176 0 0 0 0 882 0 0 complex Bratu problem [1]

CHEMRCTB TJ116 0 0 1000 0 0 2 998 0 0 chemistry [1]

CLPLATEC U138 4970 71 0 1 19600 0 0 0 0 clamped plate problem [49]

CORKSCRW C299 247 9 200 0 50 300 0 0 50 optimal control

DALLASL C4 0 0 906 0 1 667 0 0 0 water distribution [21]

DIXMAANE Ul72 3000 0 0 0 4 0 0 0 0 Dixon and :Maa.ny problem [23]

ENGVALI U232 5000 0 0 4999 4999 0 0 0 0 Engvall'~ problem [56]

FREUROTH U245 5000 0 0 0 9098 0 0 0 0 Freudenstein and Roth problem [56]

GRIDNETB C33 13284 0 0 0 1 6724 0 0 0 network optimization [58]

HAGER4 C293 10000 1 0 0 10000 5000 0 0 0 optimal conttol [37]

HYDROELL C175 0 2 lOOi 0 l 0 0 1008 0 energy [29]

JNLBRNGA U30i 0 496 15129 1 307.52 0 0 0 0 engineenng [46]

LCH C267 600 0 0 0 1 0 1 0 0 quantum phy.,ics

LINVERSE TJ624 999 0 1000 0 2997 0 0 0 0 matrix variational problem

LM!l'SURF TJ322 900 124 0 0 961 0 0 0 0 minimum surface [56]

MANNE C17i 0 l 1094 0 1 0 0 36!. 365 econometry [48]

MINPERM Cl90 0 0 111~· 1 0 20 1013 0 0 permanent theory [43)

MSQRTA U346 1024 0 0 0 1024 0 0 0 0 matriX" problem [42]

NLMSURF TJ361 900 124 0 0 961 0 0 0 0 minimum surface [56]

NONDIA U379 10000 0 0 0 10000 0 0 0 0 [53]

NONSCOMP U386 0 0 10000 1 9999 0 0 0 0 [40]

OBSTCLAL U407 0 496 15129 0 15129 0 0 0 0 obstacle problem [1]

ORTHREGD C224 10003 0 0 0 10000 0 5000 0 0 orthogonal regression [36]

PENALTY! U451 1000 0 0 1000 1 0 0 0 0 [32]

POWELLSG U484 10000 0 0 0 10000 0 0 0 0 extended Powel singular [56]

READING2 C322 lOO 2 201 1 0 200 0 0 0 tjde modelling

SEMICON2 U509 0 2 1000 0 0 0 1000 0 0 physic:) [1]

SINQUAD U516 10000 0 0 0 10000 0 0 0 0 sine.s and quadratics

SPMSQRT U524 10000 0 0 0 16664 0 0 0 0 m<1.trix problem [42]

STEENBRA C236 0 0 432 0 I 108 0 0 0 traffic equilibrium (54]

SVANBERG C258 0 0 1000 0 1000 0 0 0 1000 engineering [55]

TOINTGSS U559 10000 0 0 0 9998 0 0 0 0 Gau:;sian problem [56]

TORSION4 U587 0 484 14400 1 29282 0 0 0 0 engineering [l]

TQUARTIC U539 10000 0 0 0 10000 0 0 0 0 arrowhead qua.rtic

TRIDIA U548 10000 0 0 10000 0 0 0 0 0 tridiagona.l quadratic [53]

VAREIGVL U610 5000 0 0 0 5000 0 0 0 0 numerical analysis [1]

WOODS U616 10000 0 0 10000 5000 0 0 0 0 exLended Wood~ [56]

Table 2: The test problem subset

27

6.2 The testing procedure

Before detailing the testing procedure, we reca.ll the default algorithmic choice for LANCELOT:

• no variable/ constraint scaling,

• a conjugate gradient linear solver is used with a banded preconditioner of semi-bandwidth

.5 (band(5)),

• analytical second derivatives are used, as well as analytical gradients,

• an exact Ca.uchy point calculation is used,

• the fo:.-llOrm is used for defining the trust region.

For our tests we also set the maximum number of iterations to 1000, the maximum cpu-time

to 18000 seconds. the initial trust region radius to 1.0 and disabled all printing. The accuracy

requirements were set to the LANCELOT defaults, that is fl = fc = 10-s. We also turned the

derivative checker on but chose to ignore its warning messages. This last choice is to reflect what

would be a reasonable strategy for a cautious user. Of course, all derivatives were checked before

the actual tests. For the sake of completeness, the default LANCELOT specification file is given

in Figure 5.

BEGIN

check-derivatives

ignore-derivative-bugs

exact-second-derivatives-used

bandsolver-preconditioned-cg-solver-used 5

exact-cauchy-point-required

trust-region-radius 1.0D+O

maximum-number-of-iterations 1000

print-level -1

start-printing-at-iteration 0

stop-printing-at-iteration 1000

END

Figure 5: The LANCELOT default specification file

We next considered all the basic variants of this default choice, that is a choice of algorithmic

options that differs in just one instance from the default. The basic variants are

scaling: automatic variable/ constraint scaling is used, with scalings computed at the starting

point (see Section .5.1),

mltf: a multifrontal direct linear solver is used (see Section 5.2.1),

28

semltf: a modified multifrontal direct linear solver is used (see Section 5.2.1),

noprc: no preconditioner is used within the conjugate gradient solver, i.e. p(k,j)

(see Section 5.2.2),

I in (5.7)

diagonal: a diagonal preconditioner is used both for the Cauchy direction and the conjugate

gradient solver, together with a trust region scaling (see Section 5.2.2),

band(O): a diagonal preconditioner is used for the conjugate gradient solver (see Section 5.2.2),

band(l): a tridiagona.l preconditioner is used for the conjugate gradient solver (see Section 5.2.2),

band(lO): a 21-diagona.ls preconditioner is used for the conjugate gradient solver (see Sec

tion 5.2.2),

expband: an expanding band preconditioner is used for the conjugate gradient solver (see Sec

tion 5.2.2),

seprc: a full matrix preconditioner using the Schna.bel- Eskow modified factorization is used for

the conjugate gradient solver (see Section .5.2.2),

gmpsprc: a full matrix preconditioner using the Gill-lVIurray-Ponceleon-Saunders modified fac

torization is used for the conjugate gradient solver (see Section t5.2.2),

munksg: an incomplete factorization preconditioner is used for the conjugate gradient solver (see

Section 5.2.2),

bfgs: the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton formula is used to approximate sec

ond derivatives (see Section .5.3.5),

dfp: the Da.vidon-Fletcher-Powell quasi-Newton formula is used to approximate second deriva

tives (see Section 5.:3 . .5),

psb: the Powell-Symmetric-Broyden quasi-Newton formula is used to approximate second deriva

tives (see Sectiou .5.3 .. 5),

srl: the Symmetric Rank One quasi-Newton formula is used to. approximate second derivatives

(see Section 5.3 .. 5),

appGCP: an approximate Cauchy point calculation is used (see Sections 3.2 and .5.4.1),

12norm: the trust region is defined using the £2-norm, (see Section .5.4.2),

accBQP: an accurate solution to the BQP is sought (see Section .5.4.3).

To this list we added the fdg variant which uses finite difference approximation to gradients

and the Symmetric Rank One quasi-Newton formula for approximating second derivatives (see

Section 5.3.5). These variants and the default gives a list of 21 different algorithmic choices.

29

Note that the variants scaling, mltf, semltf, expband, seprc, gmpsprc and munksg depend on

code from the Harwell Subroutine Library. Their use is therefore only possible for users with a

suitable licence. As a consequence, they could not be selected as default for the package.

We then tested all ofthese 21 choices on the complete problem set, which amounted to running

21 x 943 = 19803 test cases. These tests were performed on two Digital DECstations 5000/200

with 48 M Bytes of memory, using the Ultrix f77 compiler (version 3.0-2) without optimization4
•

The cpu-times on both machines were checked for consistency.

7 The numerical tests: results and discussion

It is of course impossible to detail the complete set of results obtained on nearly twenty thousands

test cases. \Ve 'vill therefore present and discuss summaries and averages extracted from these

results. A teclmical report containing the complete results is however available [16].

7.1 Reliability

vVe first present results on the reliability and failures on the 21 algorithmic variants. Results are

given in Table 3. where the occurrences of the LANCELOT exit conditions are reported for all

21 variants in the case of the complete test set and the selected subset. The column headings

correspond to the following possible situations.

succ: The minimization wa.s successfully terminated.

infs: The package could not find a feasible point for the considered problem.

stall: The minimization could not progress further, the stepsize being smaller than relative

machine precision. Not all runs terminated in this way are unsuccessful from the user's

point of view, as it happens in several cases that the algorithm is "stalled" very near the

solution.

mem: The workspace requires for handling the considered problem is larger than three millions

double precision and/or three millions integer numbers.

iters: The run was terminated after 1000 iterations without convergence.

cpu: The run was terminated after 18000 cpu seconds without convergence.

error: An arithmetic error occurred in the subprograms evaluating the problem dependent

functions and/or derivatives. This typica.lly occurs when the iterates produced by the

algorithm "wander off" the part of the feasible region where the objective and constraints

are of manageable size.

From this table, we can draw the following conclusions.

4 An error in the Fortran opt.imizer of this version prevented its use with the package.

30

Complete set (943 problems) Selected subset (45 problems)

Variant succ stall infs m em iters cpu error succ stall infs m em iters cpu error

default 873 11 2 0 31 24 2 41 1 0 0 0 3 0

scaling 807 45 25 0 28 29 9 33 3 2 0 2 5 0

mltf 777 5 11 12 106 29 3 28 1 0 4 7 5 0

semltf 807 5 11 2 65 48 5 24 0 1 1 6 13 0

noprc 850 6 13 0 35 36 3 35 0 0 0 1 9 0

diagonal 744 1 16 0 153 23 6 31 0 1 0 7 6 0

band(O) 851 19 8 0 30 33 2 36 3 0 0 0 6 0

band(l) 859 18 4 0 34 25 3 39 0 0 0 0 6 0

band(lO) 871 10 8 0 27 25 2 41 1 0 0 0 3 0

expband 864 7 8 3 2.5 26 10 33 0 0 2 2 8 0

seprc 878 11 7 2 22 21 2 38 0 0 1 0 6 0

gmpsprc 860 10 7 9 26 21 10 35 1 0 2 1 4 2

munksg 851 7 13 2 28 39 3 34 0 1 1 1 8 0

bfgs 786 1.5 12 0 88 26 16 32 3 1 0 6 3 0

dfp 621 .57 1.5 0 203 40 7 23 7 1 0 10 4 0

psb 857 13 :3 0 37 28 .5 39 2 0 0 1 3 0

srl 871 13 .s 0 26 26 2 39 2 0 0 1 3 0

appGCP 841 23 10 0 29 29 11 37 1 1 0 0 .5 1

12norm 8.51 1.5 10 0 38 28 1 38 2 0 0 1 4 0

accBQP 863 11 4 0 16 48 1 36 0 0 0 0 9 0

fdg 784 19 11 0 88 28 13 32 2 0 0 7 4 0

Table 3: Successes and failures per variant

1. The reliability of the default algorithmic choice is good (92 . .5% on the complete problem

set), and is only marginally surpassed by that of the Schnabel-Eskow preconditioner used

in conjunction with conjugate gradients (93.1% on the complete set). The default variant

has the best reliability on the selected subset (together with band(lO)). We note that the

reliability is globally lower for the subset; this is expected because the subset contains some

of the most difficult problems.

The default choice of a semi-bandwidth of 5 also seems to maximize reliability amongst the

banded preconditioners, both for the complete problem set and the subset.

2. The SR1 update is the most reliable of the quasi-Newton methods tested, followed by the

PSB method and, at some distance, by the BFGS method. The DFP shows the worst

reliability. The perhaps surprisingly good performance of the PSB method could be partly

explained by the observation that, although some problems in the test set are very badly

scaled, this is not the case for the majority. This seems to be confirmed by the very

31

acceptable reliability score obtained by the conjugate gradient linear solver without any

preconditioning. On the other hand, this remark does not explain the relatively poor

performance of BFGS and DFP. The poorer performance of the BFGS and DFP updates is

also partly explained by the fact that these updates must be skipped whenever they would

result in a non positive definite element Hessian approximation.

The results on the problem subset confirm the above, where the unreliability of the DFP

method reaches a rather unacceptable level.

3. The robustness of the best partitioned quasi-Newton scheme (SRl) appears to be excel

lent compared with the use of exact second derivatives, even for large problems. This

approach therefore confirms its potential amongst quasi-Newton techniques for large-scale

applications, a.t least from the reliability point of view.

4. The scaling variant does not show a globally improved robustness compared with the default.

This illustrates the difficulty designing good automatic scaling procedures. It is however

worthwhile to note that the scaling variant did solve badly scaled problems where other

variants failed. Keeping such an option available therefore seems to be of some value, but

it should not be used as a default.

5. The reliability of the SRl and PSB methods are very comparable to that of the variants

using exact second derivatives. The partitioned quasi-Newton approximation therefore

seems quite effective when analytical Hessians are not available. This is also apparent in

the subset.

6. The reliability of the diagonal variant is quite poor, compared with the other choices using

exact second derivatives. In particular, it is significantly worse than that of the similar

band(O) variant. Again, this observation is supported by the subset results.

7. It is somewhat surprising that the gmpsprc variant has a significantly lower reliability than

the other full ma.trix preconditioner seprc on the complete test set. On the other hand the

reliability of both variants is equivalent on the problem subset.

For the complete set, the Gill-l'vlurray-Ponceleon-Saunders technique seems to generate

more arithmetic errors and to run out of memory more often than the Schnabel-Eskow

method.

On closer analysis, the occurrence of overflow with the Gill-Murray-Ponceleon-Saunders

modified factorization seems to be due to numerical difficulties for some singular or nearly

singular ma.trices. The observed problems are probably caused by the low value of the

, threshold under which eigenvalues are perturbed to ensure positive definiteness of the pre

conditioning ma.trix. According to [30], this threshold is set to the machine precision. A

posteriori experiments with the threshold raised to (machine precision)314 (as is used in

the Schnabel-Eskow modification) however indicates that the overflow problems can be

avoided. These observations are coherent with the conclusions of Schlick in [51], where she

32

observes that enforcing a small modification J!;(k,j) in (.5.5) might not be beneficial for fast

convergence.

The difference in memory requirements for the two methods is due to a possibly larger fill-in

in the Gill-Murra.y-Ponceleon-Saunders technique caused by changes in the pivoting order

to preserve stability. As the Schnabel-Eskow modified factorization maintains positive

definiteness of the matrix during the factorization, no such changes are necessary. This

observation is supported by the results for the direct analogs of these methods, namely

semltf (corresponding to seprc) and mltf (using MA27 as gmpsprc).

The slightly higher number of memory requirement failures for mltf compared with gmpsprc

is explained by the fact that the first strategy uses additional storage in order to retrieve

directions of negative curvature from the matrix factors when suitable (see [9] for further

details).

8. We also note the substantial gain in robustness obtained by using the full matrix factor

iza.tions as preconditioners. The variants seprc and gmpsprc are indeed significantly more

reliable than their direct counterparts semltf and mltf.

9. The accBQP variant, being more computationally intensive, runs out of time most often. If

we assume that some of the truncated computations would effectively terminate successfully,

given additional time, this variant probably ranks as the most reliable, but at the expense

of substantial additional effort.

10. The approximate calculation of the Generalized Cauchy point (the appGCP variant) ap

pears to decrease the reliability compared with the default choice of an exact computation,

although not dramatically. This is explained by the less conservative nature of this first

strategy which tends to allow larger steps. These steps might then lead the iterates along

different paths to the solution, sometimes across regions where the problem function eval

uations cause numerical overflow, as is show by the larger number of error returns for the

appGCP variant.

11. There does not seem to be a. real robustness advantage in using an incomplete factorization

preconditioner (munksg) over a banded one for the problems of our test set. One must how

ever notice that discretized continuous problems do not constitute a majority of the tested

cases. As incomplete factorizations have earned their good reputation on such problems,

one could probably expect a better performance of the munksg variant if the proportion of

discretized problems increased.

12. The use of the £2-norm in the trust region definition marginally deteriorates the robustness

of the minimization, as can be checked by comparing the results obtained by the default

and 12norm variants. This could well be due to the fact that more work is invested in the

Generalized Cauchy Point calculation for the default variant, as explained in Section 5.4.2.

33

13. Using finite difference approximations for the first derivatives of the problem's function

somewhat reduces the reliability of the package, but fdg still managed to solve 83% of the

problems, a quite acceptable score.

We conclude our reliability analysis by noting that 919 of the 943 problems were solved by at

least one variant, while 441 were solved by all of them. This indicates an excellent reliability of

the complete package (97 .5%) on our large test problem collection, but also the relative lack of

robustness for certain algorithmic variants. This last observation is strengthened by examining

the problem subset, where only 12 problems were successfully solved by all variants.

7.2 Number of minor iterations

We now start comparing the algorithmic variants for efficiency. To be fair, only two sets of runs

can be compared for each variants: the runs that successfully produce a well specified critical

points and the unsuccessful ones. We therefore remove from our comparison all runs for which

the variant under consideration converged to a. point whose associated optimal value does not

correspond (within 0.001%) to the best critical value found for the problem. In total, 434

problems from the complete set and 8 from the subset were successfully solved (according to this

criterion) by all methods. We shall confine our attention to these problems. Figure 6 indicates

how many problems per variant were discarded .

Figure 6: Number of runs to alternative critical points per variant

The figure reveals that convergence to an alternative critical point is obtained most often for

the diagonal variant, although not very significantly.

34

We now turn our attention to the number of minor iterations required by the variants to

find the solution. We recall that the problems objective function and constraints (if any) are

evaluated exactly once per such iteration. Hence the number of minor iterations is equal to the

numbers of functions evaluations.

Figure 7 shows the average number of iterations required for solution. Figure 8 presents an

overall view of the relative ranking of the variants based on the number of iterations. To construct

this figure, we considered all problems that were successfully solved by at least one variant. All

21 variants were ranked (where best means ranked number 1) for each of these 826 problems. We

then counted the number of times that a given variant had a given rank. We finally clustered

the obtained rankings in classes (ranks 1 to 3, 4 to 6, ...) which could be effectively displayed

in a bar chart . For instance, the darker area in the bar corresponding to the seprc variant

indicates that this variant is amongst the three best for 527 problems, an excellent performance.

The interpretation of the total height of the bar is slightly different from the reliability scores

presented in Table 3: successful runs producing a critical point with an optimal value different

from the best one found (see Figure 6) are not accounted for.

Figure 9 presents the corresponding rankings for the selected subset of tes t problems.

We now draw some conclusions from these figures.

1. We immediately note the good results obtained by the semltf variant for the complete

problem set. Although less reliable than its preconditioning counterpart seprc, it seems

to require fewer iterations to converge when it does so, but the difference is admittedly

marginal.

2. The full matrix preconditioner variants seprc and gmpsprc also show superior efficiency.

3. An excellent result is also observed for the accBQP variant. This is not a surprise. Indeed

this variant puts more work in an iteration and one therefore expects that less of these more

costly iterations are needed. This trend is however less marked on the larger problems of

the subset.

4. The default variant appears to be reasonably efficient in terms of minor iterations, although

not amongst the best. It is however remarkable that it is the variant whose behaviour is

least often amongst the worst ranking, as is shown by the size of the class corresponding to

the lowest rankings (in Figure 8). This last characteristic is displayed by the seprc variant

on the subset.

5. The diagonal variant again shows poor behaviour. We noted above that it is comparatively

unreliable, but it also seems to be quite inefficient even when it manages to converge to the

problem's'solution. The same comment applies, to a lesser ext~nt, to the dfp variant on the

complete set.

6. The 12norm variant has a relatively poor ranking. A possible reason for this behaviour is

the fact that minor iterations are stopped earlier (see Section 5.4.2) than for other variants.

35

sr1
fdg

Number of minor iterations

Figure 7: Average number of iterations for 434 problems solved by all variants

Figure 8: Ranking per iterations for 826 problems solved by at least one variant

36

!miD
16-21
m
~5
1D-12 -7-9 -4-e -1-3

Figure 9: Ranking per iterations for 40 problems of the subset solved by at least one variant

37

7.3 Number of cg-iterations

After the number of minor iterations, we now examine the total number of conjugate gradient

iterations per minor iteration required to solve the test problems by each variant using an iter

ative linear solver. What is really compared in this section is the overall effect of the various

preconditioners and, to some extent, the conditioning of the Hessian matrices generated by the

different variants.

Figure 10 shows the average number of cg-iterations per minor iteration and per problem

variable, the average being taken on the 441 problems in the complete set that were successfully

solved by all methods. This measure indicates how many cg-iterations were performed on average,

compared to the problem size. Since conjugate gradients are expected to terminate in at most

n cg-iterations on a system of size n, the reported measure are all between zero and one. We

note that the measure is approximate for two reasons. Firstly, the number of free variables at

any given iterations can be lower than the number of problem variables. Secondly, the conjugate

gradient iterations may have to be restarted when bounds are encountered. We however believe

the comparison amongst variants to be instructive. Figure 11 presents the same measure taken

on the 8 problems of the subset that were successfully solved by all variants.

1. As anticipated, the full-matrix preconditioners are the clear winners in terms of number of

cg-iterations. This behaviour is even more marked on the problem subset.

2. Another expected conclusion is that the quality of the preconditioner seems to increase

with the semibandwidth, when a band preconditioner is used. This is clearly apparent

when examining the results for the complete set for noprc, band(O), band(1), default (which

is equivalent to band(5)), band(10) and expband. For the larger problems of the subset, one

can however observe a superior behaviour of the small bandwith variants, but this might

be due to the structure of the 8 considered problems.

3. The diagonal preconditioning uses less cg-iterations per minor steps than noprc, as shown

by the figure, but this is partly caused by the very large number of these minor iterations,

where only a few cg steps are necessary. Indeed the absolute number of cg-iterations for

this variant exceeds that of noprc.

4. The incomplete factorization preconditioner munksg shows superior behaviour. Indeed its

performance is comparable to that of the full-matrix variants.

5. Solving the BQP accurately of course requires more cg-iterations, and we observe this effect

when comparing the default and accBQ P.

6. Why the variant appGCP requires more cg-iterations than the default is not clear. One

possible explanation would be that the average model reduction a.chieved at the GCP is

smaller when the approximate strategy is used to compute this point than with the exact

technique, subsequently requiring additional work for the model minimization in the next

stage.

38

7. The scaled variant scaling is somewhat less efficient than the default unsealed variant on

the complete problem set, which is again an indication that scaling should not be applied

blindly to every problem. Its performance is however improved on the larger problems of

the subset.

8. The quasi-Newton approximations to the second derivatives does not seem to generate

matrices that are, on average, worse conditioned than their analytic values, as is shown by

the comparable level for the default, bfgs, dfp, psb and srl variants. The fact that gradients

are estimated by differences in fdg does not seem to impact the conditioning of the Hessian

either, as can be seen by comparing this variant with srl.

9. The reported measures are typically smaller for the subset than for the complete problem

set. This is anticipated as conjugate gradient solvers often require a number of iterations

that is more dependent on conditioning and eigenvalue distribution than on system size.

Increasing size therefore produce lower measures if one assume that the larger problems

have an eigenva.lue structure tha.t is, on average, not worse than that of smaller ones.

0.3

Figure 10: Average number of cg-iterations per minor iteration for 434 problems solved by all

variants

39

accBQP

dfp

sr1
fdg

Figure 11: Average number of cg-iterations per minor iteration for 8 problems solved by all

variants

40

7.4 Computational effort

We next compare our 21 algorithmic variants on the basis of their requirements in cpu-time.

Figure 12 shows the average cpu- time (in seconds) required for solution, the average being

taken on the 434 problems in the complete set that were successfully solved by all methods.

Figure 13 presents a. overa.ll view of the relative ranking of the variants based on cpu-time. This

figure was constructed in the same way as Figure 8. Figure 14 presents the corresponding ranking

results for the selected subset of test problems.

Some interesting conclusions can be drawn from these figures.

1. The incomplete factorization preconditioner munksg appears to provide the best average

performance in terms of computational effort. However, its ranking relative to the other

variants is good but not amongst the best. This means that it is mostly efficient on some

of the harder or larger problems. This observation is reinforced by the detail of the results

obtained for this variant on the problems of the selected subset: markedly leading on average

but best on few problems.

2. The results obtained by the semltf variant are very interesting. Although its ranking com

pared with the other variant is amongst the best, its average performance is the poorest.

This is caused by the poor behaviour of the variant on a few large unconstrained problems

where the Hessian matrix is indefinite in the early iterations. In these cases, the strategy

to move along a direction of negative curvature, as in the iterative variants and in mltf,

seems more appropriate than repeatedly calculating a. modified Newton direction in smaller

and smaller subspaces (corresponding to faces of the trust region), each time recomputing a

suitably modified factorization. It should however be noted that, despite its strong effect on

average scores, this behaviour occurs rarely, as can be seen from the comparative ranking

of the variant.

3. The full matrix preconditioned variants seprc and gmpsprc appear to be quite efficient on

average. We note the good relative ranking of gmpsprc for the problem subset, where it

seems to be very efficient for some problems, while spending much effort in others. This

behaviour is not surprising because the efficiency of full matrix preconditioners (and direct

solvers) heavily depends on the amount of fill-in during the. factorization, a highly problem

dependent feature.

4. The global efficiency of mltf is only marginally worse than that of its iterative counterpart

gmpsprc. As was observed in [9], the behaviour of this direct method is best on convex

problems with relatively little fill-in.

5. Quite interestingly, the scaling variant does not seem to be handicapped by the additional

work required by computing and handling the variable and constraints "typical" values. It

is indeed quite comparable to the default option.

6. The relatively acceptable performance of the noprc variant seems to confirm the remark

tha.t most of the test problems are reasonably well scaled.

41

7. The behaviour of banded preconditioners with varying semi bandwidth is worth a comment.

We first note the good performance of the tridiagonal preconditioner (band(l)), both on the

complete problem set and on the subset. The band{lO) variant uses more cpu-time as the

advantage of improved preconditioning is offset by the higher price of the preconditioner,

an effect already noticeable with the satisfying results obtained with the default band(5)

variant. The good performance of the expanding band variant expband, compared with

band(lO), seems to be due to the general sparse storage scheme used, which is preferable to

the band storage for matrices with higher bandwidth.

8. The more costly iterations of accBQP clearly cause the relatively large average cpu-time of

this variant on the complete problem set. However, as the expense of cpu-time is mostly

confined to large problems, and as there are comparatively few such problems in the com

plete test set, the method ranks reasonably highly. This observation is strengthened by

the poor ranking of this variant for the large problems of the subset, where it never ranks

amongst the three best.

9. The appGCP variant is markedly less efficient than default on the complete test set, although

its relative ranking is better.

10. The diagonal variant pays in cpu-time the price for its many minor iterations, giving overall

rather poor performance, both on the complete problem set and on the subset.

11. Amongst the quasi-Newton variants, srl appears to be the most efficient, followed in order

by bfgs, dfp and psb.

12. The work involved in approximating the gradients by differences causes fdg to be slower

than srl on average, but not by a large margin. But this effect is enough to cause the

relative ranking of fdg to fall substantially behind that of srl.

42

sr1
fdg

Cpu-time
1

Figure 12: Average cpu-time for 441 problems solved by all variants

Figure 13: Ranking per cpu-time for 826 problems solved by at least one variant

43

Figure 14: Ranking per cpu-time for 40 problems ofthe subset solved by at least one variant

44

7.5 Additional comments

We did not discuss above the relative number of unsuccessful iterations for each variant. This

number is on average below one per problem for each variant, except for the dfp variant for

which an avera.ge of six such iterations per problem are observed. This again confirms the poor

performance of this last variant. It also seems to indicate that the trust region management used

in LANCE LOT is adequate for handling a large class of nonlinear problems.

Besides its algorithmic choices, LANCELOT allows the user to select a number of non algo

rithmic options, such as element and group derivative checking, level of printout and frequency

at which intermediate data is saved for a possible subsequent restart. None of these options has

a significant impact on the overall execution time of the package. The only observable increase

in cpu-time occurs when a very detailed printout is required at every iteration of a large scale

problem. As one would expect, this effect is slightly more marked for constrained cases, where

the details of the ma.jor iterations have to be printed as well.

We finally indicate some weak points of LANCELOT (Release A) that we have observed in

examining the detailed runs, but that cannot be inferred directly from the summaries presented

above.

1. vVhen the number of inequality constraints is large compared with the number of variables,

the package currently adds slack variables to transform all inequalities into equalities, which

results in a substantial increase in the effective problem size. Although convergence is

usually obtained, the computational effort can be relatively large compared with method

that use inequality constraints as such (see [1.5], for instance). The authors are well aware

of this aspect of their implementation, and have recently given in [14] a method to overcome

this difficulty.

2. No special provision is made in the present code for linear network constraints, or even for

linear constraints. Again , LANCELOT seems to be robust in that convergence is obtained

for problems with this kind of structure, but special purpose algorithms are often much

more efficient.

3. The ability of the generali zed Ca.uchy point to determine the correct active set is disap

pointing in practice. In many examples, the correct active set is actually found in the

conjugate gradient or direct matrix improvement beyond the GCP, at considerable cost.

Although the GCP asymptotically identifies the correct active set as predicted by the the

ory (see [10], for instance), this is often at the end of a long calculation. A stategy treating

the bounds through barrier functions (as proposed in [15]) would therefore appear to be a

useful alternative.

8 Conclusions

We first described the algorithms contained in Release A of the LANCELOT package for large

scale nonlinea.r optimization in detail. We also analyzed the user selectable variants at this level.

45

We finally presented and discussed the results of extensive numerical tests with these variants.

The main conclusions of these tests, as far as the package is concerned, are as follows.

1. The package is capable of solving a wide class of nonlinear optimization problems, including

many large-scale examples.

2. The package is especially efficient for unconstrained and bound constrained problems and for

generally constrained problems for which the number of constraints does not substantially

exceeds the problem dimension.

3. The default algorithmic choice in the package appears to be reliable and acceptably efficient.

4. Some algorithmic choices (£2 trust region, diagonal rescaling, and DFP quasi-Newton up

dating) seem of limited utility and could probably be removed from future releases of the

package.

5. Some other choices (automatic scaling, accurate solution of the inner BQP) should not be

used automatically, but may provide excellent behaviour on some harder problems.

Beyond the tests of the LANCELOT package, our tests also reveal the following points of more

general interest.

1. The difficulty of solving a problem is more often linked to its degree of nonlinearity than

to its size.

2. The use of direct factorization appears to be most robust when used as preconditioners for

a conjugate gradient linear solver.

3. The use of exact second derivatives is recommended whenever available. However, the parti

tioned Symmetric Rank One technique, as embedded in the package, gives very satisfactory

reliability and efficiency when this is not the case.
...

4. When analytical derivatives are not available, finite difference approximations to the gradi

ents coupled with SR1 quasi-Newton Hessian updating is a.n acceptably robust and efficient

technique, even for large problems .

. 5. The use of full factorizations appears to be efficient and reliable for the class of problems

analyzed in this paper. It is however expected that this technique would show stronger

limitations if even larger problems were considered. In contrast, banded preconditioners,

already satisfactory in the present study, would probably extend well to larger problems.

Of course, only continued experience with LANCELOT will really show its strengths and

weaknesses. The authors very much hope to be informed by the users of the package of the

(undoubtly many) aspects where improvements are possible. Progress is expected to come both

from the point of view of the implemented algorithms (see [15] and [19] for possible directions)

and from that of the implementation details themselves. At this stage, the results discussed above

certainly offer the hope that the software will prove useful in the increasingly important arena of

large-scale nonlinear optimization.

46

9 Acknowledgements

The authors are indebted to Michel Bierlaire and Didier Bmton, whose help was invaluable in

producing the graphics of this paper and in maintaining the workstation network during the 8

months of nearly uninterrupted computation required for obtaining the results presented here.

Thanks are also due to Ingrid Bongartz and Peihuang Chen for detecting and correcting mistakes

in our test problems. The authors are also grateful for the support provided for their travels

across the Atlantic by NATO grant 890867.

References

[1] B. M. Averick, R. G. Carter, and J. J. More. The Minpack-2 test problem collection (pre

liminary version). Technical Report ANL/MCS-TM-150, Argonne National Laboratory,

Argonne, USA, 1991.

[2] B. M. Averick and J. J. More. The Minpack-2 test problem collection. Technical Report

ANL/MCS-TM-1.57, Argonne National Laboratory, Argonne, USA, 1991.

[3] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: a collection of con

strained and unconstrained test examples for nonlinear programming. Technical Report (in

preparation), Department of Mathematics, FUNDP, Namur, Belgium, 1992.

[4] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. A numerical comparison be

tween the LANCELOT and MINOS packages for large-scale nonlinear optimization. Technical

Report (in preparation), Department of Mathematics, FUNDP, Na.mur, Belgium, 1992.

[5] A. G. Buckley. Test functions for unconstrained minimization. Technical Report CS-3,

Computing Science Division, Da.lhousie University, Dalhousie, Canada., 1989.

[6] J. V. Burke and J. J. More. On the identification of active constraints. SIAM Journal on

Numerical Analysis, 2.5(5):1197-1211, 1988.

[7] J. V. Burke, J. J. More, and G. Toraldo. Convergence properties of trust region methods for

linear and convex constraints. Mathematical Programming, Series A, 47(3):305-336, 1990.

[8] P. H. Calama.i and J. J. More. Projected gradient methods for linearly constrained problems.

Mathematical Programming, 39:93-116, 1987.

[9] A. R. Conn, N. I. M. Gould, M. Lescrenier, and Ph. L. Toint. Performance of a multi

frontal scheme for partially separable optimization. Technical Report 88/04, Department of

Mathematics, FUNDP, Namur, Belgium, 1988.

[10] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Global convergence of a class of trust region

algorithms for optimization with simple bounds. SIAM Journal on Numerical Analysis,

25:433-460, 1988. See also same journal 26:764-767, 1989.

47

[11] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Testing a class of methods for solving

minimization problems with simple bounds on the variables. Mathematics of Computation,

50:399-430, 1988.

[12] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. An introduction to the structure of large

scale nonlinear optimization problems and the LANCELOT project. In R. Glowinski and

A. Lichnewsky, editors, Computing Methods in Applied Sciences and Engineering, pages

42-51, Philadelphia, USA, 1990. SIAM.

[13] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. A globally convergent augmented Lagrangian

algorithm for optimization with general constraints and simple bounds. SIAM Journal on

Numerical Analysis, 28(2):.545-572, 1991.

[14] A. R. Conn, N. I. M. Gould, and Ph. L. Taint. Exploiting structure when using slack

variables. LANCELOT B working note 1, Department of Mathematics, FUNDP, Namur,

Belgium, 1992.

[15] A. R. Conn, N. I. M. Gould, and Ph. L. Taint. A globally convergent Lagrangian barrier

algorithm for optimization with general inequality constraints and simple bounds. Technical

Report 92/0i, Department of ldathematics, FUNDP, Namur, Belgium, 1992.

[16] A. R. Conn, N. I. M. Gould, and Ph. L. Taint. Intensive numerical tests with LANCELOT

(Release A): the complete results. Technical Report 92/15, Department of Mathematics,

FUNDP, Na.mur, Belgium, 1992.

[17] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: a Fortran package for large

scale nonlinear optimization (Release A). Number 17 in Springer Series in Computational

1vlathematics. Springer Verla.g, Heidelberg, Berlin, New York, 1992.

[18] A. R. Conn, N. I. M. Gould, and Ph. L. Taint. On the number of inner iterations per outer

iteration of a globally convergent algorithm for optimization with general nonlinear equality

constraints and simple bounds. In D.F Griffiths and G.A. Watson, editors, Proceedings of

the 14th Biennal Numerical Analysis Confer·ence Dundee 1991. Longmans, 1992.

[19] A. R. Conn, Nick Goulcl, and Ph. L. Taint. Convergence properties of minimization al

gorithms for convex constraints using a structured trust region. Technical Report 92/11,

Department of Mathematics, FUNDP, Namur, Belgium, 1992.

[20] A. R. Curtis and J. K. Reid. On the automatic scaling of matrices for Gaussian elimination.

Journal of the Institute of Mathematics and its Applications, 10:118-124, 1972.

[21] R. S. Dembo. A primal truncated-newton algorithm with application to large-scale nonlinear

network optimization. Technical Report 72, Yale School of Management, Yale University,

New Haven, USA, 1984.

[22] J. E. De1mis and R.. B. Schnabel. Nume·rical methods for unconstrained optimization and

nonlinear equations. Prentice-Hall, Englewood Cliffs, USA, 1983.

48

[23] L. C. W. Dixon and Z. Maany. A family of test problems with sparse Hessian for un

constrained optimization. Technical Report 206, Numerical Optimization Cent er, Hatfield

Polytechnic, Hatfield, UK, 1988.

[24] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct methods for sparse matrices. Clarendon

Press, Oxford, UK, 1986.

[25] I. S. Duff and J. K. Reid. MA27: A set of Fortran subroutines for solving sparse symmetric

sets of linear equations. Report R-10533, AERE Harwell Laboratory, Harwell, UK, 1982.

[26] I. S. Duff and J. K. Rei d. The multifrontal solution of indefinite sparse symmetric linear

equations. AGM Transactions on Mathematical Software, 9(3):302-325, 1983.

[27] R. Fletcher. Practical Methods of Optimization. J. Wiley and Sons, Chichester, second

edition, 1987.

[28] A. George and J. W.-H. Liu. Computer solution of large spm·se positive definite systems.

Prentice-Hall, Englewood Cliffs, USA, 1981.

[29] H. Gfrerer. Globally convergent decomposition methods for nonconvex optimization prob-·

lems. Computing, 32:199- 227, 1984.

[30] P. E. Gill, W. Murra.y, D. B. Ponceleon, and 11. A. Sa.unders. Preconditioners for indefinite

systems arising in optimization. SOL 90-8 Technical Report, Department of Operations

Research, Stanford University, California, USA, 1990.

[31] P. E. Gill, W. Murra.y, and M. H. Wright. Practical Optimization. Academic Press, London

and New York, 1981.

[32] P. E. Gill, vV.Murray, and R. A. Pitfield. The implementation of two revised quasi-newton

algorithms for unconstrained optimization. Technical Report NACll, National Physical

Laboratory, Tecldington, UK, 1972.

[33] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press,

Baltimore, second edition, 1989.

[34] A. Griewank and Ph. L. Taint. On the unconstained optimization of partially separable

functions. In M. J. D. Powell, editor, Nonlinear Optimization 1981, pages 301-312, London

and New York, 1982. Academic Press.

[35] A. Griewank and Ph. L. Toint. Partitioned variable metric updates for large structured

optimization problems. Nu.me1·ische Mathematik, 39:429-448, 1982.

[36] M. Gulliksson. Algorithms for Nonlinear Least Squares with Applications to Orthogonal

Regression. PhD thesis, Institute of Information Processing, University of Umea, S-901 87

Umea, Sweden, 1990.

49

[37] W. W. Hager. Multipliers methods for nonlinear optimal control. SIAM Journal on Numer

ical Analysis, 27(4):1061-1080, 1990.

[38] W. Hock and K. Schittkowski. Test Examples for Nonlinear Programming Codes. Springer

Verlag, Berlin, 1981. Lectures Notes in Economics and Mathematical Systems 187.

[39] K. M. !rani, M. P. Kamat, H. F. Walker, and L. T. Watson. Experiments with conjugate

gradient algorithms for homotopy curve tracking. SIAM Journal on Optimization, 1(2):222-

251, 1991.

[40] M. Lescrenier. Towards the use of supercomputers for large scale nonlinear partially separable

optimization. PhD thesis, Department of Mathematics, FUNDP, Namur, Belgium, 1989.

[41] M. Lescrenier. Convergence of trust region algorithms for optimization with bounds when

strict complementarity does not hold. SIAM Journal on Numerical Analysis, 28(2):476-495,

1991.

[42] D. C. Liu and J. Nocedal. Test results of two limited memory methods for large scale

optimization. Mathematical Progmmming, Series B, 45(1):.503- 528, 1989.

[43] H. Mine. Theory of permanents 1982-198.5. Linea·r Algebra and Applications, 21:109- 148,

1987.

[44] J. J. More. Trust regions and projected gradients. In M. Iri and K. Yajima, editors, System

Modelling and Optimization, volume 113, pages 1-13, Berlin, 1988. Springer Verlag. Lecture

Notes in Control and Information Sciences.

[45] J. J. More, B. S. Garbow, and K. E. Hillstrom. Testing unconstrained optimization software.

AGM Transactions on Mathematical Software, 7(1):17-41, 1981.

[46] J. J. More and G. Toraldo. Algorithms for bound constrained quadratic programming prob

lems. SIAM Journal on Optimization, 1(1):93-113, 1991.

[47] N. Munksgaard. Solving sparse symmetric systems of linear equations by preconditioned

conjugate gradients. AGM Transactions on Mathematical Software, 6:206- 219, 1980.

[48] B. A. Murtagh and 1vl. A. Saunders. MINOS 5.1 USER'S GUIDE. Technical Report SOL83-

20R, Department of Operations Research, Stanford University, Sta.nford, USA, 1987.

[49] J. Nocedal. Solving large noulinear systems of equations arising in mechanics. In J. P. Hen

nart, editor, Numerical Analysis: Proceedings, Cocoyoc, Mexico 81, Berlin, 1982. Springer

Verlag.

[50] K. Schittkowski. More Test Examples for Nonlinear Programming Codes. Springer Verlag,

Berlin, 1987. Lecture notes in economics and mathematical systems, volume 282.

[51] T. Schlick. Modified Cholesky factorizations for sparse preconditioners. SIAM Journal on

Scientific and Statistical Computing, (to appear), 1992.

50

[52] R. B. Schnabel and E. Eskow. A new modified Cholesky factorization. SIAM Journal on

Scientific and Statistical Computing, 11:1136-1158, 1991.

[53] D. F. Shanno. On variable metric methods for sparse Hessians. Mathematics of Computation,

34:499-514, 1980.

[54] P. A. Steenbrink. Optimization of transport networks. J. Wiley and Sons, London, 1974.

[55] K. Svanberg. Method of moving asymptots- a new method for structural optimization. Int.

J. Num. Meth. Eng., 24:359-373, 1987.

[56] Ph. L. Taint. Test problems for partially separable optimization and results for the routine

PSPMIN. Technical Report 83/4, Department of Mathematics, FUNDP, Na.mur, Belgium,

1983.

[57] Ph. L. Toint. Global convergence of a. class of trust region methods for nonconvex minimiza

tion in Hilbert space. IMA Journal of Numerical Analysis, 8:231-2.52, 1988.

[58] Ph. L. Toint and D. Tuyttens. On large scale nonlinear network optimization. Mathematical

Programming, Series B, 48(1):12.5-159, 1990.

[59] Ph. L. Toint and D. Tuyttens. LSNNO: a Fortran subroutine for solving large scale nonlinear

network optimization problems. ACkf Transactions on Mathematical Software, (to appear),

1992.

.51

