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Abstract. In this paper, we describe the algorithmic options of Release A of LANCELOT, 

a new Fortran package for large-scale nonlinear optimization. We then present the results 

of intensive numerical tests and discuss the relative merits of the options. The experiments 

described involve both academic and applied problems. Conclusions are finally proposed, 

both specific to LANCELOT and of more general scope. 
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1 Introduction 

Research in large-scale optimization ha.s been, in recent years, a. major subject of interest within 

the mathematical programming communjty, as is clear from the programs of the main conferences 

and symposia on optimization techniques during this period. One such project, LANCELOT, was 

initiated by the authors of this paper [12] and has resulted in both theoretical contributions 

and software for large nonlinear optimization problems. A detailed description of the algorithms 

developed and implemented in LANCELOT, the resulting new Fortran package, is presented in 

[17). The purpose of the present paper is to report on the numerical experiments obtained with 

this software on a sizeable collection of test problems, and to draw some first conclusions on the 

respective merits of the algorithmic options available in the package. A comparison of LANCELOT 

and MINOS [48) will be reported on separately [4). 

The paper is organized as follows. Section 2 briefly presents the main features and structure 

of LANCELOT. Section 3 contains a general description of SBMIN, the kernel algorithm for the 

software that handles simple bounds. AUGLG, the component that handles the extension to 

general constraints, is then presented in Section 4. Section 5 discusses the various algorithmic 

options that are available within the package. Section 6 presents the testing framework and the 

strategy used to analyze the results. These results are then discussed in more detail in Section 7, 

where the efficiency and robustness of various algorithmic options is compared. Finally, some 

conclusions and perspectives are drawn in Section 8. 

2 General features and structure of the LANCELOT package 

2.1 Package presentation 

The purpose of the LANCE LOT package is to solve the general nonlinear programming problem 

min f(x) 
xelin 

(2.1) 
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subject to the constraints 

c(x) = 0, (2.2) 

and to the simple bounds 

(2.3) 

where f, and c are assumed to be smooth functions from Rn into R and from Rn into Rm 

respectively. The package is specially intended for problems where n and/or m are large. Indeed 

it exploits the (group) partially separable structure (see [12]) of most large-scale optimization 

problems. The algorithms are designed to provide convergence of the generated iterates to local 

minimizers from all starting points. 

There is no loss in assuming that all the general constraints are equations, as inequality 

constraints may easily be transformed to equations by the addition of extra slack or surplus 

variables (see, for example, [31, Section 5.6]). Indeed, LANCELOT automatically transforms 

inequality constraints to equations. This technique is extensively used in simplex-like methods 

for large-scale linear and nonlinear programs. 

General features include facilities to compute numerical derivatives, an analytical derivative 

checker and an automated restart. The software also uses a full reverse communication interface 

for greater flexibility and adaptability. 

The package is written in standard ANSI Fortran77. It has already been parted to CRAY 

supercomputers, Digital VAX minis and RISC workstations, IBM VM/CMS and RISC6000 and 

SUN workstations. A fully automated installation procedure is supported for all these ma

chines/systems. Single and double precision versions are available. The program's dimensions 

are also adaptable to fit within machines with different memory sizes. 

Full information on the package is available in [17]. Interested pa.rties should contact one of 

the authors. 

2.2 The algorithmic structure of the package 

Because the purpose of the paper is to discuss the relative merits of several algorithmic options 

within the package, it is necessary to provide first a general description of the numerical methods 

used . The structure of the LANCELOT algorithms is summarized in Figure 1. 

The package (whose algorithmic components appear in the rounded box) reads the problem 

as a set of data and Fortran subroutines (for computing function and derivatives values, as well 

as other problem related tasks). The way in which these subroutines and the associated datafile 

are produced is not the subject of this paper. It suffices to say that they can be written directly 

by the user, or obtained as the result of the automated interpretation of the problem expressed 

in a more friendly Standard Input Format. These techniques are described in detail in [17] and 

will not be discussed further. 

We will rather concentrate on the algorithms used by LANCELOT to solve the problem, once 

properly specified. As suggested by the picture, LANCELOT either uses an augmented Lagrangian 

approach if constraints of the type (2.2) are present, or directly attempts to solve problems whose 

only constrajnts are simple bounds, (2.3). 
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Users and problems 

·----- --------- ---- -- --- -- -------[ -----------------------------------------· 

Standard Input Format (SIF) interpreter I 
1 

LANCELOT interface 

AUGLG I 

S8MIN I 
fl fl 

Direct I Iterative linear solvers I 
linear H 

solvers 9 Precondi tioners 
1 

Figure 1: Structure of the LANCELOT packa.ge 

The augmented La.grangian algorithm AUGLG is described in Section 4. Its convergence the

ory has been analyzed in [13] and [18]. This theory guarantees that, under standard assumptions, 

the sequence of iterates calculated by the algorithm converges to a local minimizer of the prob

lem. This augmented La.grangia.n method proceeds by solving a. sequence of suitably defined 

nonlinea.r optimization problems with simple bound constraints. We will call these iterations of 

the augmented Lagrangian algorithm major £terations. 

If the considered problem only possesses simple bound constraints , then a specialized algo

rithm, S 8 M IN, can be applied. This algorithm is of trust region type and is presented in Section 3. 

Its strong convergence properties have been ana.lyzed in [10] and [57]. At the heart of S8MIN, 

quadratic problems with bound constraints (BQP) are solved repeatedly. In fact, one such BQP 

is approximately solved a.t every S 8 M IN iteration. We call these minor iterations. 

The process of (approximately) solving the BQP involves the (approximate) solution of a linear 

system of equations . This can be achieved by applying either direct or iterative linear solvers. 

The latter typically requires preconditioning, which in turn might call specialized versions of the 

direct solvers, as is shown in the figure above. The iterative technique used with the package is 

preconditioned conjugate gradients. Iterations at this level are simply called cg-iterations. Note 

that some form of preconditioning might require a very problem specific technique; hence the 
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possibility to return to the user level for such a calculation. 

The three nested itera.tion levels (major iterations at the augmented Lagrangian level, minor 

iterations at the SBMIN level, and cg-iterations at the BQP level) are illustrated in Figure 2, 

where the dashed boxes indicate iteration levels that need not be present for all problems and all 

choices of algorithmic options. 

AUGLG: major iterations 

SBMIN: minor iterations 
~-------- -- ------ - --------- -- ------ · 

! BQP: cg-iterations 
I 

' 

Figure 2: The nested iterations levels within LANCELOT 

Because the bulk of the computationa.l work is in the two inner iterations, we will concentrate 

on these levels in what follows. 

3 A general description of SBMIN 

SBMIN is a. method for solving the bound-constrained minimization problem 

mnunuze f( x) (3.1) 

subject to the simple bound constraints 

l; :::; Xi:::; u;, 1 :::; i:::; n. (3.2) 

Here, f is assumed to be twice-continuously differentiable and any of the bounds in (3.2) may be 

infinite. We will denote the vector of first partial derivatives, \1 xf( x ), by g( x) and the Hessian 

matrix, Vxxf(x), will be denoted by H(x). We shall refer to the set of points which satisfy (3.2) 

as the feasible box and any point lying in the feasible box is said to be feasible. 

SBMIN is a.n iterative method. At the end of the k-th iteration, an estimate of the solution, 

x(k), satisfying the simple bounds (3.2), is given. The purpose of the (k + 1)-st iteration is to 

find a feasible iterate x!k+l) which is a significant improvement on x(k). 

In the ( k + 1 )-st iteration, we build a quadratic model of our (possibly) nonlinear objective 

function, f(x). This model takes the form 
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where B(k) is a symmetric approximation to the Hessian matrix H(x(kl). We also define a scalar 

.6. (k), the trust-region radius, which defines the trust region, 

llx - .'l:(k) 11 ::::; .6. (k), (3.4) 

within which we trust that the values of m(kl(x) and f(x) will generally agree sufficiently. An 

appropriate range of values for the trust-region radius is accumulated as the minimization pro

ceeds. 

as: 

The (k + 1)-st iteration proceeds in a number of stages. These may be summarized, in order, 

1. Test for convergence (see Section 3.1). 

2. Find an approximation to the generalized Cauchy point of the quadratic model, within the 

intersection of the feasible box and the trust region (see Section 3.2). 

3. Obtain a new point which further reduces the quadratic model within the intersection of 

the feasible box and the trust region (see Section 3.3). 

4. Test whether there is a general agreement between the values of the model and true objective 

function at the new point. If so, accept the new point as the next iterate. Otherwise, retain 

the existing iterate as the next iterate. In either case, a.djust the trust region radius as 

appropriate (see Section 3.4). 

Clearly, this is a very sketchy description - indeed, some of the terminology has not even been 

defined - and we need to elaborate further. 

3.1 The test for convergence 

The first-order necessary conditions for a feasible point x* to solve the problem (3.1)-(3.2) require 

that the projected gradient at x* be zero. The p-rojected gra.dient of f( x) into the feasible box 

(3.2) is defined to be 

x- P(x- g(x),l,u), 

where the projection operator, P(x, l, u) is defined componentwise by 

if Xi < li 

if Xi > Ui 

otherwise. 

(3.5) 

(3.6) 

Notice that, in the unconstrained case where all the bounds (3.2) are infinite, this is merely the 

well-known condition that the gradient must vanish at a minimizer. 

One may then gauge the convergence of the method by the size of the projected gradient at 

x(k). For instance, one might stop if the condition 

(3.7) 
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~olds for some appropriate small convergence tolerance Eg. Alternatively, following [22, p. 160], 

one might consider the relative projected gradient with i-th component 

ri(x) =(xi- P(x -g(x),l,u);)~ax(x;,x~ypical) 
max(f( x ), !typical) 

(3.8) 

for "typical" values xtypical and !typical (which may, of course, be sometimes difficult to choose). 

In this case, it might be appropriate to stop if the condition 

(3.9) 

is satisfied for some appropriate small convergence tolerance Er. 

In LANCELOT, the relative convergence test (3.9) is used when suitable scalings xtypical and 

!typical are available (see Section 5.1). In all other cases, the test (3.7) is used. 

3.2 The generalized Cauchy point 

The approximate minimization of the quadratic model (3.3) within the intersection of the feasible 

box and the trust region at the ( k + 1 )-st iteration is accomplished in two stages. In the first, we 

obtain an approximation to the so called generalized Cauchy point. This point is important for 

two reasons. Firstly, convergence of the algor.ithm to a point at which the projected gradient is 

zero can be guaranteed provided the value of the quadratic model at the end of the iteration is no 

larger than that at the generalized Cauchy point (see [10]). Secondly, the set of variables which 

lie on their bounds at the generalized Cauchy point a.s the algorithm proceeds often provide an 

excellent prediction of those which will ultimately be fixed at the solution to the problem. It is 

thus important that an adequate approximation to such a point be identified. 

Let D(k) be a positive definite diagonal scaling matrix and let 

(3.10) 

Now define the Cauchy arc, :r!kl(t), by 

(3.11) 

for all values of the parameter t ~ 0. Considering the arc as t increases from zero, the generalized 

Cauchy point is defined to be x(te), where te is the first local minimizer of nPl(x(kl(t)), the 

quadratic model along the arc, subject to the trust region constraint (3.4) being satisfied at 

x(kl(t). An efficient algorithm for this calculation, when 11·11 is the infinity-norm (the LANCELOT 

default), is given in [11]. 

It is not necessary that the generalized Cauchy point be calculated exactly. Indeed, a number 

of authors have considered approximations which are sufficient to guarantee convergence (see 

[6], [7], [8], [44], [57]). We also provide, as an option, the possibility to use the approximation 

suggested by More in [44]. Let 1 > 0, 0 < (3 < 1 and 0 < a < 1. Then we choose the 

approximation x(t;), where t; is of the form lf3m• and where 1ns is the smallest nonnegative 

integer for which 

(3.12) 
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and 

(3.13) 

We shall refer to such a point as an approximate generalized Cauchy point. Notice that the 

generalized Cauchy point may not satisfy equation (3.12). Thus there is a possibility of different 

behaviour for algorithms which use the true and approximate generalized Cauchy points. 

3.3 Beyond the generalized Cauchy point 

We have ensured that SBMIN will converge by determining a suitable approximation to the gen

eralized Cauchy point. We are now concerned that the algorithm should converge at a reasonable 

rate. This is achieved by, if necessary, further reducing the quadratic model. 

Those variables which lie on their bounds at the approximation to the generalized Cauchy 

point are fixed. Attempts are then made to reduce the quadratic model by changing the values of 

the remaining free variables. Let x(k,l) be the obtained approximation to the generalized Cauchy 

point and let x(k,j), j = 2, :3, ... be distinct points such that: 

• x(k,j) lies within the intersection of the feasible box and the trust region; 

• those variables which lie on a. bound at :r(k,l) lie on the same bound at x(k,j); 

• x(k,j+l) is constructed from x(k,j) by 

1. determining a nonzero search direction p(k,j) for which 

(3.14) 

2. finding a steplength a(k,j) > 0 which minimizes m(kl(x(k,j) + ap(k,j)) within the inter

section of the feasible box and the trust region; and 

3. setting 

(3.15) 

Notice that the one dimensional minimizer of m(kl(x(k,j) + ap(k,j)) within the intersection of the 

feasible box and the trust region is easy to compute. Let the gradient of the model at x(k,j) be 

(3.16) 

Then the unconstrained line minimizer of the quadratic model is given by 

(
k ") { -g(k,j)Tp(k,j) jp(k,j)T B(k)p(k,j) if p(k,j)T B(k)p(k,j) > 0, 

"' ,J -
'-'O -

oo otherwise. 
(3.17) 

Furthermore, the maximum feasible step allowed by the bound (3.2) on the i-th variable is 

if ]J(k,j) < 0 
! , 

if ]J~k,j) > 0 
! , 

(3.18) 

otherwise, 
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for 1 ::; i ::; n. Finally, the trust region imposes a bound on the step, a~~j{ > 0, where 

(3.19) 

Therefore the required steplength is 

min 
,...,(k,j) ._._, . (3.20) 

This process is stopped when the norm of the free gradient of the model at x(k,j) is sufficiently 

small. The free gradient of the model is 

(3.21) 

where the operator 

Q ( 
. l ) . _ { Yi if l; < xi < u;, 

y,x,,u,- . 
0 otherwise. 

(3.22) 

Zeros components of the gradient correspond to variables which lie on their bounds. In LANCE

LOT, we stop when 

(3.23) 

which is known (see [41]) to guarantee that the convergence rate of the method is asymptotically 

superlinear. Notice that the free gradient at the fin~.l point is measured against the components 

of the gradient of the model at the original point which were free at the approximation to the 

generalized Cauchy point. 

There is much flexibility in obtaining a search direction which satisfies (3.14). We determine 

such a direction by finding an approximation to the minimizer of the quadratic subproblem (3.3), 

where certain of the variables are fixed on their bounds but the constraints on the remaining 

variables are ignored. Specifically, let I(k,j) be a set of indices of the variables which are to be 

fixed, let e; he the i-th column of the n by n identity matrix I and let J(k,j) be the matrix made 

up of columns e;, i tf_ I(k,j). Now define 

g(k,.i) = J(k,.i)T g(k,j) and [J(k,j) = J(k,j)T B(k,j) J(k,j). (3.24) 

Then the quadratic model (3.3) at x(k,j) + p, considered as a function of the free variables 

p = j(k,j)Tp is, 

(3.25) 

We may a.ttempt to minimize (3.25) using either a direct or iterative method. 

In a direct minimization of (3.25), one factorizes the coefficient matrix lJ(k,j). If the factors 

indicate that the matrix is positive definite, the Newton equations 

(3.26) 
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may be solved and the required search direction p(k,j) = j(k,j)p(k,j) recovered. If, on the other 

hand, the matrix is merely positive semi-definite, a direction of linear infinite descent ( dolid) 

or a weak solution to the Newton equations can be determined. Finally, if the matrix is truly 

indefinite, a direction of negative curvatnre (done) may be obtained. 

In an iterative minimization of (3.25), the index set I(k,j) may stay constant over a number 

of iterations, while at each iteration the search direction may be calculated from the current 

model gradient and Hessian f3(k,j) and previous search directions. The iterative method used in 

LANCELOT is the method of conjugate gradients. The convergence of such a method may be 

accelerated by preconditioning (see below) . In fact the boundary between a good preconditioned 

iterative method and a direct method is quite blurred. 

3.4 Accepting the new point and other bookkeeping 

A point x(k,.i), which gives a sufficient reduction in the quadratic model, has thus been found. 

Of course, we are really interested in reducing the true objective function J(x), not the model. 

The success or failure of the iteration may be measured by computing 

reduction in the objective function to tha.t predicted by the model 

(k) - J( x!k)) - !( x(k,j)) 

p - m!kl(x(l.·))- m.(k)(x(k,j))' 

the ratio of the actual 

(3.27) 

If this ratio is negative or small relative to one, the iteration is viewed as a failure. We call 

such an iteration unsucces8jul. Conversely if the ratio is large, the model predicted a reasonable 

decrease in the objective function and the iteration has been .successful (even though, if the ratio 

is significantly larger than one, the model was not an accurate approximation to f). 

Let 0 < {t < 1. \Ve choose to update x(k+l) as follows: 

X' -
1k+l) { x(k,j) if p(k) > {t, 

· - x!k) otherwise. 
(3.28) 

We note that, as ft > 0. this may prevent the algorithm from accepting the lowest point en

countered so far as the new iterate. One could circumvent this drawback by explicitly keeping 

the overall lowest point found and retuming it as the required solution. However, this requires 

additional storage and has not proved beneficial in our experience. 

'Ne also need to update the trust-region radius. Again, if p is small or negative, the model 

has not predicted the behaviour of the true objective function well, while if the ratio is close to 

one, a good prediction has been obtained. In the former case, the region in which the quadratic 

approximation is trusted must be reduced and the radius consequently decreased. In the latter 

case, their may be reason to believe that the region in which we may trust our model is larger 

than we previously thought and the radius is increased as a consequence. 

Again let {t < ry < 1 and 0 < / 'o < 1 ::; 12 . We choose to update the trust region radius 

according to the formula. 

,6k)~(k) 

~(k) 

,.~k) ~(k) 

9 

if p(k) ~ {t, 

if tt < p(k) < ry, 

otherwise, 

(3.29) 



w_here 1ak) E (ro, 1) and ~~k) E [1, /2]. 

If the iterate has changed, we need to recompute the gradient at the new point. In this case 

we also form a new second derivative approximation. 

4 A general description of AUGLG 

AUGLG is a method for solving the generally-constrained minimization problem, 

minimize f( x) ( 4.1) 

subject to the general (possibly nonlinear) constraints 

Cj(X) = 0, 1:::; J:::; m,, ( 4.2) 

and the simple bounds 

l; :::; x; :::; u;, 1 :::; i :::; n . ( 4.3) 

Here, f and the Cj are all assumed to be twice-continuously differentiable and any of the bounds 

in ( 4.3) ma.y be infinite. 

AUGLG makes repeated use of SBMIN. The objective function and general constraints are 

combined into a composite function, the augmented Lagrangian function, 

( 4.4) 

where the components A; of the vector A are known as Lagrange multiplier estimate.s, the entries 

s;; of the diagonal matrix S are positive scaling factors, and p is known as the penalty parameter. 

The constrained minimization problem ( 4.1 )- ( 4.3) is now solved by finding approximate min

imizers of Cfl subject to the simple bounds ( 4.3), for a carefully constructed sequence of Lagrange 

multiplier estimates, constraint scaling factors and penalty parameters. 

The k +1-st major iteration of AUG LG is made up of three steps. At the start of the iteration, 

Lagrange multiplier estimates, A (k), constraint scaling factors, S(k), and a penalty parameter J.l(k) 

are given. The steps performed may be summarized, in order, as follows: 

1. Test for convergence (see Section 4.1). 

2. Use SBMIN to find an approximate minimizer, x(k+l), of the augmented Lagrangian function 

ifl(x,A(k),S(kJ,Jl(k)) in the feasible box, (4.3) (see Section 4.2). 

3. Update the Lagrange multiplier estimates, constraint scaling factors, penalty parameter 

and convergence tolerances (see Section 4.3). 

We now consider these steps in more detail. 
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4.1 C01·~vergence of the augmented Lagrangian method 

The first-order necessary conditions for a feasible point x* to solve the problem (4.1)-(4.3) re

quire that there are Lagrange multipliers, A*, for which the projected gradient of the Lagrangian 

function at x* and .A*, and the general constraints ( 4.2) at x*, vanish. The Lagrangian function 

is the function 
m 

L(x,A) = f(x) + LAiCi(x). (4.5) 
i=I 

The projected gradient is given by (3.5) but now with the gradient of the Lagrangian function, 

V xL(x, .A), replacing the gradient of f. 
One may then assess the convergence of the augmented Lagrangian method by the size of the 

projected gradient and constraints at x(k) and A (k). For instance, one might stop if the conditions 

(4.6) 

and 

( 4.7) 

hold for some appropriate small convergence tolerances ft and Ec. 

Alternatively, one might consider the values of the relative constraint functions, crelative( x ), 

where 

c;·elative( X) = Ci( X) I c~ypical ( 4.8) 

for "typical" values ctypical, and the relative projected gradient of the Lagrangian and stop when 

both of these quantities are small in norm. 

In LANCELOT, the relative convergence tests ((3.9) with g replaced by VxL(x,A) and (4.8)) 

are used when suitable constraint scalings are available (see Section .).1 ). In all other cases, the 

tests (4.6) and (4.7) are used. 

4.2 Minimizing the augmented Lagrangian function 

The convergence of augmented Lagranglan methods is guaranteed, under very weak assumptions, 

if the penalty parameter is gradually reduced to zero. This result is almost independent of the 

values of the La.grange multiplier estimates (see [13, Lemma 4.3 and Theorem 4.4]). However, 

it becomes more difficult to minimize (4.4) when 1-L(k) is small. Fortunately, a judicious choice 

of the Lagrange multiplier estimates also ensures convergence for fixed lt provided x(k) is close 

to x*. Thus p(k) is allowed to decrease until we are sure that we are in a neighbourhood of x* 

whereupon 1-L(k) is left unchanged but the Lagrange multipliers are adjusted to ensure ultimate 

convergence. We can gauge whether we are in such a neighbourhood by monitoring the expected 

decrease in llc(x(k))ll· 

At each iteration, we exit from SBMIN when the condition 

( 4.9) 
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is satisfied for some tolerance w(k). We then test whether 

( 4.10) 

If ( 4.10) is satisfied, we leave the penalty parameter unchanged but update the Lagrange multiplier 

estimates. Otherwise, we reduce the penalty parameter and do not update the Lagrange multiplier 

estimates. 

4.3 Updates 

It is straightforward to pick {t(k), A (k), w(k) and 1/k) to ensure convergence of the above scheme. 

Moreover this can normally be done so as to guarantee that the penalty parameter remains 

bounded away from zero (see [1:3, Theorem 5 .. 5]). 

We start by selecting positive tolerances T = 0.1, a:"' = 1, f]w = 1, o:,7 = 0.1 and f]ry = 0.9. 

Now, we set 

11{0) = Jto 

;...;{0) = ( (O)r'"· w0 Jt ( 4.11) 

7](0) ( (O)r'l TJo p . 

We also pick initial Lagrange multiplier estimates A (O) and scaling matrix 5'(0). In the absence of 

a better choice, LANCELOT selects A(O) = 0 and S{O) =I. 

The parameters are updated in different ways depending upon whether or not (4.10) is satis

fied. When (4.10) holds, the next vector of Lagrange multiplier estimates (often known as first 

order multiplier estimates) is chosen as 

(4.12) 

The remaining parameters are given by 

jt(k ) 

W(k) (P(k+l)) f3w ( 4.13) 

1](k) (tt(k+1))(31). 

When (4.10) does not hold, the penalty parameter is reduced. We set 

ll(k+1) T{t(k) 

w(k+l) Wo (tt(k+l)) aw (4.14) 

/]{k+l) 170 (tt(k+l)) a 11 
• 

The Lagrange multiplier estimates are left unchanged so that A(k+l) = A(k). 

Notice that, if (4.12) holds, 

(4.15) 
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In this case, the overall convergence tests ( 4.6) and ( 4. 7) are satisfied at the start of iteration 

k + 1 provided that w(k) ::; Et and 17(k) ::; fc. 

Automatic choices of the initial penalty parameter in penalty function methods are notoriously 

hard to justify. On the other hand, the choice is less critical if the constraints are well scaled. By 

default, LANCELOT selects {to = 0.1; this may be overruled by the user. We also choose w0 = 1 

and 1]o = 0.1258925 (thus 17(o) = 0.01). 

5 Algorithmic options within LANCELOT 

5.1 Constraint and variable scaling 

In almost all that we have said up until now, there has been an implicit assumption that the 

values of the problem variables are all typically the same size. Similarly, it has been assumed that 

all the constraint functions are of similar magnitude. It may happen in practice that this is not 

so. The convergence of the method may be adversely affected by poor scaling and it should be 

avoided if a.t all possible. There are two alternatives. A user may manually resca.le the variables 

and constraints so that the scaled quantities are of roughly the same size. Alternatively, the user 

might rely on an automatic rescaling algorithm. 

There has been a. fa.ir amount written 011 scaling (see, for example, [31, Section 8.7] and [22, 

Section 7.1], a.nd there is some consensus that it is extremely difficult to design a general purpose 

automatic scheme, especially for highly nonlinear problems. Notwithstanding, we still feel that 

such a scheme should be provided as an option. 

LANCE LOT allows the user to specify variable and constraint sca.lings as input parameters and 

the sca.lings a.re then used implicitly by the algorithms. It is also possible to construct automatic 

sca.lings independent of the minimization routines as follows. 

Consider the vector valued function 

v(x) = 
Cm(x) 

j(x) 

(5.1) 

Let F(x) denote the Ja.cobia.n matrix, Fij(x) = ov;(~)joxj. This matrix reflects the changes 

in the elements of v which are likely for small identical changes in x. If we were to change to 

variables x = Dxx and rescale vas v = Dvv, where Dx and Dv are positive definite and diagonal, 

the Jacobian matrix oft' with respect to the variables x is 

(5.2) 

Ideally, we would like to choose the scalings so that the rows and columns of ( 5.2) are of roughly 

equal norm for all x in the fea.<;ible box (3.2). However, this is in general impossible for nonlinear 

functions and we must accept a compromise. 

Let xtypical be a typical value of x within the feasible box. We now apply the matrix equilibra

tion algorithm of Curtis and Reid [20] to F( X typical) to derive suitable scaling matrices Dx and Dv 
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to equilibrate (5.2). The first m diagonals of Dv are rescaled by the constant 1/ max1<i<m(Dv)ii· . --
The resulting matrices Dx and the first m components of the rescaled Dv are now passed as 

input parameters to the minimizer. The Curtis-Reid algorithm is implemented as MC19 in the 

Harwell Subroutine Library. This automatic scaling procedure is available as an option within 

LANCELOT and will be referred to as the "scaling" option. 

5.2 Linear solvers 

Most of the LANCELOT algorithmic options are related to the way in which an (approximate) 

minimizer of (3.25) is computed. This is hardly surprising since one expects the burden of the 

numerical calculation to be at this level. 

5.2.1 Direct methods 

Once the set I(k,j) determined, the nature of the quadratic model restricted to the subset of 

free variables is characterized by the eigenvalue distribution (or inertia) of the matrix IJ(k,j). To 

summarize: 

• If all the eigenvalues of fJ(k,j) are strictly positive, the unique minimizer of (3.25) is given 

as the solution to the Newton equations (3.26). 

• If all the eigenvalues of IJ(k,j) are nonnegative, but some are zero, and g(k,j) lies in the range 

of lJ(k,j), there are an infinite number of solutions to the Newton equations (3.26). Each 

solution is a weak minimizer of the model. 

• If all the eigenva.lues of lJ(k,j) are nonnegative, but some are zero, while g(k,j) does not lie in 

the range of lJ(k,j), the quadratic model is unbounded from below. There is then a vector 

p(k,j) for which g(k,j)Tp(k,j) < 0 and lJ(k,j)p(k,j) = 0. This vector is known as a di-rection of 

linear infinite descent (dolid) since the model decreases as a linear function of a for steps 

ap(k,j) as a increases. 

• If lJ(k,j) has negative eigenvalues, the model is unbounded from below. There is a vector 

p(k,j) for which g(k,j)Tp(k,j) ::; 0 and p(k,j)T J3(k,j)j)(k,j) < 0. This vector is known as a 

direction of negative curvature (done). The model decreases as a quadratic function of a 

for steps O']J(k,j) as a increases. 

The use of a sparse multifrontal direct method to solve large-scale optimization problems 

ha.s been advocated in [9]. Briefly, the matrix lJ(k,j) is factorized using the Harwell Subroutine 

Library code MA27 [25], [26] as 

j3(k,j) = fi(k,j) L(k,j) j)(k,j) L(k,j)Tfi(k,j)T, (5.3) 

where fi(k,j) is a permutation matrix, Dk,j) is unit lower triangular and j)(k,j) is block diagonal 

with 1 by 1 and 2 by 2 diagonal blocks. The inertia of J3(k,j) and j)(k,j) are identical. 

A first option within LANCELOT, denoted by the "mltf'' symbol, uses the multifrontal factor

ization directly to find the Newton direction when lJ(k) is positive definite. It uses its computed 

14 



triangular f<:ctors to calculate a suitable direction j5(k,j) in the three other cases, as is detailed in 

[9]. We allow only one cycle of improvement beyond the Cauchy point with this option, that is 

j is limited to 1 in Section 3.3. 

An alternative direct method which shares the key property that the Newton direction is 

always chosen if iJ(k,j) is positive definite is based on the modified Cholesky methods of Schnabel 

and Eskow ([52]). Here, we form a factorization 

(5.4j 

where Lfk,j) is unit lower triangular, [J(k,j) is positive definite and diagonal, and J!;(k,j) is positive 

semi-definite, diagonal and nonzero only when iJ(k,j) is not (sufficiently) positive definite. It 

is straightforward to modify :MA27 to achieve this factorization. Now, the modified Newton 

equations, 

(iJ(k,j) + J;(k,j))p(k,j) = -g(k,j) (5 .. 5) 

are solved to obtain a suitable search direction. Notice. furthermore, that 

ill (k,j) ( j}( k.j)) < m(k) ( .TU:.j) ) + g(k.j)Tp( k,j) + ~J}(J;,j)T ( B(k,j) + £(k,j) )tj(k,j) 

< i7l.(k,j)(p(k.l) ). (5.6) 

In contrast \vith the mltf option. more than one cycle of improvement beyond the Cauchy point 

is a.llowed with this latter option. which will be denoted below by the symbol "semltf'. 

We stress that an advantage of both these techniques is that B(k) will typically not be mod

ified as we approach the solution to the problem. Moreover, provided the trust-region radius is 

sufficiently large that the Newton step ( :3.2G) ma.y be ta.ken, we v.;ould also expect to take very 

few inner-iterations (indeed, in the non degenerate case, one) before ( 3.2:3) is satisfied. 

5.2.2 Iterative methods 

There is sometimes a very fine distinction between iterative and direct methods. In fact, in finite 

precision arithmetic. one is often advised to perform iterative refinement with direct methods to 

obtain more accurate solutions. Iterative methods are in general more flexible in the sense that it 

ma.y be impossible to use direct methods because of insufficient storage on a. user's machine, while 

iterative methods can be adapted to use whatever space is available. However,this flexibility has 

its drawbacks. In particular, the convergence of iterative methods on difficult problems can be 

severely impaired unless considerable care is taken. 

In LANCELOT, the iterative method of choice is the method of conjugate gradients (see, 

for example, [31, Section 4.8.3], or [33, Sections 10.2 and 10.3]. Such a method attempts to 

find a. stationary point of a. quadratic function, in our case (3.2.5 ), by generating a sequence of 

(conjugate) search directions, J)( k,j). If iJ(k,j) is not positive definite, the conjugate gradients may 

terminate with a. done or dolid. 

The convergence of the conjugate gradient method may be enhanced by preconditioning the 

coefficient matrix fJ(k,j). A preconditioner is a. symmetric, positive definite matrix p(k,j) which 
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is chosen to make the eigenvalues of the product P(k,j)-l fJ(k,j) cluster around as few distinct 

values as possible. If fJ(k,j) were positive definite, the ideal preconditioner would be iJ(k,j) itself. 

However, we have to bear in mind that at each step of the preconditioned conjugate gradient 

method we have to solve linear equations of the form 

P-(k,j) ::;:(k ,j) _ -r- (k ,j) - - ' (5.7) 

for given vectors f(k,j) and required solutions .z(k,j). Thus there is normally a compromise be

tween using a good approximation of iJ(k ,J l, with the associated difficulties of finding and storing 

its factorization, and a poor approximation, where many conjugate gradient iterations may be 

required. Choosing a good preconditioner for a given problem is considered to be an art. Certain 

classes of problems, in particular those associated with fluid flows, have been much analyzed and 

reasonable preconditioners designed. 

W'e have tried to supply a reasonable cross-section of widely used preconditioners. VVe rec

ognize that users may have a better idea of a. good preconditioner for their problem by allowing 

them to solve ( 5.7) outside the package. 

Diagonal Preconditioners. The choice P(k . .i) = I is. of course, a. possibility. This will be 

referred to as the "noprc'' option. A simple but often useful preconditioner is provided by the 

choice p(A:,j) = lJ(k,jJ, where lJ(k,j ) is a. diagonal matrix whose i-th diagonal is 

D-(k.,i ) = tPax( B-(k . .i ) c) 
l- l _t_( ~ U. ' C. I • (5.8) 

for some suitable small number c \Ve set C:: to the cube root of the machine precision. 

VVe note that diagonal preconditioners can be used to precondition both the steepest descent 

direction in the Generalized Cauchy point calculation (D(k) = jj(k,j ) in (3.10)) and within the 

conjugate gradient iteration itself. We will denote by diagonal a. preconditioning stategy using this 

technique. In this strateg~· , the trust region radius is furthermore scaled by the factor )1/D(k,j) 1/, 

as suggested by the theory [10]. 

Band Preconditioners. flifany application areas give rise to problems whose Hessian matrices 

are banded. A band matrix is a matrix B for which bij = 0 for all Ji- jj ::; mb. The smallest 

integer mb for whir.h this is so is known as the semi-.bandwidth of the matrix. The significant 

property as far as we are concerned is that, if B is positive definite, the Cholesky factors fit within 

the band . Moreover, clever storage schemes have been constructed to make the factorization and 

subsequent solutions extremely efficient (see, for example, [28, Chapter 4), and [24, Section 10.2]). 

\Ve offer a. band preconditioner within LANCELOT. This works in two stages. The desired semi

bandwidth, mb, is assumed to have been specified. The band matrix Jo,{(k,j), with semi-bandwidth 

m.b, is chosen so that 

(5.9) 

Then, we obtain a. modified Cholesky factorization of A1i~k,j), just a.s described in Section 5.2.1. 

That is we form a factorization 

(5.10) 
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where L(k,j) is unit lower triangular with semi-bandwidth ni-b, f;(k,j) is positive definite and 

diagonal, and J!;(k,j) is positive semi-definite, diagonal and nonzero only when J.,{(k,j) is not 

(sufficiently) positive definite. 

When fJ(k,j) is positive definite and mb is chosen large enough, f>(k,j) is an exact precondi

tioner, that is, the preconditioned conjugate gradient method will converge in a single iteration. 

The effect of the preconditioner in other cases has not been forma.lly analyzed. However, one 

would suspect that if the essential part of fJ(k,j) is contained within the band, the preconditioner 

would be successful. 

Band preconditioners are denoted below by "band( mb )". 

Incomplete Factorization Preconditioners. In some applications, although it is possible 

to store the matrix fJ(k,j). there is so much fill-in during the factorization (.5.3) that it proves 

impossible to store the resulting factor L(k,.i). Such cases arise frequently if the underlying problem 

has connections with two and, particularly, three dimensional partial differential equations. 

It is sometimes possible to construct good preconditioners for such problems by either rejecting 

all fill-in during the factorization or by tolerating a modest amount. Such incomplete factorization 

preconditioners are very popular with researchers in partial differential equations and it is possible 

to get off-the-shelf software to form them. ~We include the example 1v1A31, due to Munksgaard 

[47], from the Hanvell Subroutine Library in LANCELOT. \'Ve denote this option by "munksg''. 

Full-Matrix Preconditioners. Finally. a~. we alluded to in Section .5.2.2. if space permits and 

fJ(k,j) is positive definite. one can a.lwa.vs use a complete factorization of fJ(k,j) as a preconditioner. 

However, if fJ(k,j) is not positive definite it is possible to use one of the modifications suggested 

in Section .5.2.1 to determine a. preconditioner. In fact, we allow the modification (.5.4). 

\Ve consider two possible ways to obtain the perturbation matrix J!;(k,j) in ( .5 .. 5 ). The first is, 

as above, the modified factorization algorithm proposed by Schnabel and Eskow in [.52]. We will 

use "seprc'' to denote this strategy. 

The second is another modification of f..lA.21 advocated by GilL Iviurray, Ponceh~on and Saun

ders in [30]. Here, ratl1er than modifying t.he factorization as it is being formed, the factorization 

(.5.:3) is computed and then modified. Specifically, the block diagonal matrix !J(k,j) in (.5.3) is 

changed to [J(k,j) + J!;(k . .iJ. This modified ma-trix is block diagonal positive definite. This ensure 

that 

fi(k..i) L(k,j)( [J(k.j) + J!;(k,j) )i)k,j)Tfi(k,j)T (.5.11) 

is also positive definit.P. Once again, the matrix is not modified when fJ(k,j) is positive definite. 

The resulting algorithmic option is denoted below by "gmpsprc". 

It is worthwhile noting the parallel between seprc and semltf. They both use the direct 

modified factorization of fJ(k,j) to compute Newton's direction in the subspace of free variables. 

They differ in we decided to stop this process in seprc as soon as the only bounds encountered 

are trust region bounds, while the minimization may be pursued, in semltf, along the trust region 

boundaries. 
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The variants gmpsprc and mltf are also related, because they both use the MA27 multifrontal 

factorization. The gmpsprc then modifies it if necessary and uses the resulting factors to precon

dition a conjugate gradient minimizer, while mltf directly exploits the factors to compute a single 

step to reduce the quadratic model. 

Expanding Band Preconditioners. One further possibility is to use an expanding band 

preconditioner. Consider the band matrix f.f(k,j) given by (5.9), where the semi-bandwidth rnb 

satisfies the inequalities 0 :=; 1nbmin :=; 1nb :=; 111bmax :=; n. Here rnbmax is some upper bound on 

the allowable bandwidth chosen so that a sparse factorization of Ji([(k,j) is practicable. The lower 

bound rnbmin is selected so that the band matrix with exactly that semi-bandwidth provides a 

useful preconditioner. (Of course, both of these bounds are difficult, if not impossible, to pick 

a priori and OJH' might just choose 1nbmin = 0 and rnbmax = n.) The idea is now to select 

the semi-bandwidth mbk) at each iteration to reflect the speed and accuracy which one >vants 

from the preconditioned conjugate gradient method. In particular , if low accuracy is required, 

a preconditioner with a small semi-bandwidth (such as a diagonal preconditioner) is often very 

effective. But if high a.ccuracy is desired, it ma.y be better to pick a preconditioner which is a 

better a.pproximation to lJ(k,j). 

Having obta.ined the preconditioner, we obtain a modified Cholesky factorization of 111)1k,j), 

ju8t as described in Section .).2.1. However, unlike the band preconclitioners described above, the 

matrix and its factorization are stored as a genera.l sparse, rather than band, ma.trix. 

'vVe use the following very simple rule to select the semi-bandwidth. Pick 

{ 

n if llx(kl - P( x(k) - g( x(k) ), I, u) 11 :=; 10-2 , 

mlk) = n/2 if 10-2 .< llx(k)- P(xlk)- g(x(k)), l, ulll :=; 10-1
, 

nj.S otherw1se. 

(5.12) 

vVe realize that further sophistica.tion may he desirable but have found that this simple scheme 

is effective in practice. This preconditioning option will be denoted by "expband". 

5.3 Derivative approximations 

Further algorithmic options in LANCELOT are related to the various ways in which derivatives or 

their approximations a.re computed. However, the structure of these derivatives crucially depends 

on the structure of the nonlinear functions themselves. In order to derive an efficient algorithm 

for large-scale calculations, we first need to know a way to handle the structure typically inherent 

in functions of many variables. 

5.3.1 Group partial separability 

A function f( x) is said to be group partially separable if: 

1. the function ca.n be expressed in the form 

ng 

J(x) = Lg;(cxi(x)); (5.13) 

i=l 
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2. each ~f the group functions g;( a) is a twice continuously differentiable function of the single 

variable a; 

3. the function 

is known as the i-th group; 

a;(x) = L w;,jfJ(x(jl) +aT x- b; 

jEJ; 

4. each of the index sets .:li is a subset of {1, ... , ne}; 

(5.14) 

5. each of the nonlinear element functions fJ is a twice continuously differentiable function of 

a subset xlil of the variables x. Each function is assumed to have a large invariant subspace. 

Usually, this is manifested by xli] comprising a small fraction of the variables x; 

6. the gradient a; of each of the linear element functions aT x - b; is, in general, sparse; and 

7. the Wi,j are known as element weights. 

This structure is extremely general. Indeed, any function with a continuous, sparse Hessian 

matrix may be written in this form (see [34]). A more thorough introduction to group partial 

separability is given in [12]. LANCELOT assumes that the objective function f(x) is of this form. 

When equality constraints are present, they are handled via the augmented Lagrangian and thus 

become part of the objective function for the subproblem given to SBMIN. Each such constraint 

then gives rise to the group function a 2 /21t, which imposes the restriction that each equality 

constraint only has a single group. 

5.3.2 Derivatives and their approximations 

One of the main advantages of the group partial separable structure is that it considerably 

simplifies the calcu)ation of derivatives of f(x). If we consider (5.13) and (5.14), we see that we 

merely need to supply derivatives of the nonlinear element and group functions. LANCELOT then 

assembles the required gradient and, possibly, Hessian matrix of f from this information. 

5.3.3 Derivatives of .f(x) 

The gradient of (5.13) is given by 

ng 

'lxf(x) = LgHa;(x))'lxa;(x), 
i=l 

where the gradient of the i-th group is 

'lxa;(x) = L w;,j'lxfj(X[j]) +a;. 
jEJ; 

Similarly, the Hessian matrix of the same function is given by 

n 9 n 9 

'lxxf(x) = Lg:'(ai(x))'lxa;(x)('lxa;(x)f + Lgi(a;(x))'lxxa;(x), 

i=l i=l 
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where the Hessian matrix of the i-th group is 

Y'xxa;(x) = L W;_JY'xxfj(X[jJ). 

jE:J, 

(5.18) 

Notice that the Hessian matrix is the sum of two different types of terms. The first is a sum 

of rank-one terms only involving first derivatives of the nonlinear element functions. The second 

involves second derivatives of the nonlinear elements. 

We shall assume that the first and second derivatives of the group functions are available. 

This is frequently the case in practice. 

The quadratic model (3.3) uses the gradient off and an approximation to its Hessian matrix. 

In LANCELOT, we have two options. 

• We can calculate the true first and second derivatives of each nonlinear element and group 

function and use the exact Hessian B(k) = V' xxf(x(kl). 

• We ca.n cakula.te the true first and second derivatives of each group function, calculate the 

first derivatives of the nonlinea.r elements but use approximations, BJj](k), to their second 

derivatives. Vve then use the approximation 

n 9 n 9 

B(k) = L9:'(ai(x(k)))Vxai(X(k))(Y'xa;(x(k))f + LY:(a;(x(k)))B}kl, 

i=l 

where B!kl satisfies 

B1k) = L w;,jB[j](k) 

jE.J; 

for some suitable matrices B[j](k). see Section .5.3.5. 

i=l 

(5.19) 

(5.20) 

We strongly recommend the use of exact second derivatives whenever they are available. 

LANCELOT fully exploits this information. In our experience, exact second derivatives are often 

available, either by direct calculation or by using automatic differentiation tools. Using exact 

second derivatives is therefore the default option in the package. 

5.3.4 Derivatives of the group and nonlinear.element functions 

In order to describe the other options for derivative approximation, we need to detail the structure 

of these further. 

The derivatives of fJ need only be found with respect to the ~ariables x[j], the remaining 

derivatives being zero. There are frequently, moreover, two further savings to be made. Firstly, 

although the variables used by an individual /j may differ, the structure of many of the nonlinear 

elements may be the same. For instance, h(x[1l) might be :~: 1 x 2 and h(x[2l) might be x3 x4 ; 

both functions are of the generic type e(v1 , v2 ) = v1v2 • If we need the derivatives of these two 

nonlinear elements, all we have to compute are the derivatives of the generic function e( v1, v2) 

and to associate the variables x1 and x2 and x3 and x4 with v1 and v2 , respectively (A more 

realistic example is described in [12]). In general, we associate each nonlinear element function 
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fJ, 1 ~ j ~ ne with a generic type of nonlinear function from the set {em( vlml)}, 1 ~ m ~ me, 

via a. suitable mapping m(j). We then only need to know the derivatives of the different types of 

nonlinear element functions and remember which variables xlil are associated with the relevant 

elemental variables vlml. Secondly, computing the derivatives of a given type of nonlinear element 

function may be further simplified. For example, suppose that a noulinear element is of type 

e( v1, v2, v3) = ( ( v1 + v2)( v2 - v3) )2
. Although e is a function of three elemental variables, it only 

really depends on two internal variables u1 = v1 + v2 and u2 = v2- v3; in this case, e( v1, v2, v3) = 
e( u1. 1t2 ) = ( 1t1 u 2 )

2
• The nonlinea.r information is still conveyed in e. The derivatives with respect 

to the variables v may be calculated by computing the derivatives with respect to the variables 

u and then using the chain rule of partial differentiation to recover the required ones. 

In general, we might obtain intema.J variables 1t[m] from the elemental variables vfm] by the 

linear range transformation 

(5.21) 

The transformation is only useful if the transformation matrix Ht[m] has fewer rows than columns. 

Note that the transformation is far from unique and, in many cases, there is no useful transfor

mation (in which case the trivial transformation, with ltV[m] = I, suffices). The gradient and 

Hessian ma.trix of a nonlinear element type ern(vfm]) = em(ufml), with respect to the elemental 

variables, may be calculated from those with respect to the interna.J variables as 

(5.22) 

and 

(5.23) 

Thus, in order to calculate these derivatives. we have merely to calculate the derivatives with 

respect to the internal variables and record the range transformations made. The remaining part 

of the calculation is automated within LANCELOT. 

5.3.5 Approximating the derivatives of nonlinear element functions 

We are now in position to describe these LANCELOT options more precisely. 

iNe see in (5.22) that the nonlinear information in the first derivatives of the nonlinear element 

function em(vfm]) = em(v.lm]) is conveyed by the vector V 1,em( ufm] ). If we seek an approximation 

gfj](k) to V,_.fj(X[J](k)) in (5.16), we should first determine the type of nonlinear element j, m= 
m(j) say. Now we approximate V uem(xfj](k)) by a suitable vector _q[j](k) and form 

g[j](k) = w[rn]T g[j](k). (5.24) 

The approximations _gLi](J.,) would normally be formed by finite differences. As the dimension of 

ufm] is assumed to be small (/j has a large invariant subspace), this is realistic even for large 

problems. 

A finite difference approximation to the i-th component of the required gradient is calculated 

by forward differences 
ern(X(j](k) + 8iei)- em(xfj](k)) 

8i 
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~ntil the projected gradient of the objective function is small when a switch is made to central 

differences 
em(X[j](k) + c5iei)- em(xfj](k)- c5iei) 

2c5i. 
(5.26) 

In (5.25) and (5.26), c5i is a suitable small positive number. Further details of such procedures 

are given in [22] and [31]. This option will be denoted by "fdg". 

Turning to second derivatives, we see in (5.23) that the nonlinear information in the second 

derivatives ofthe nonlinear element function em( ufml) is contained in the matrix \7 uuem( ufml). As 

before, if we seek an approximation B[j](k) to \7 xxfJ(xfj](k)) in (5.20), we should first determine 

the type of nonlinear element j, m= m(j) say. Now we approximate its Hessian \7uuem(x[j](k)) 

by a suitable matrix ..Bfj](k) and form 

(5.27) 

The approximations ..BU](k) may be formed by secant updating formulae, using information from 

previous iterations. As the dimension of ufm] is assumed to be small (fj has a large invariant 

subs pace), this option is realistic even for large problems. This technique is known as partitioned 

updating [35]. 

A secant approximation is any matrix chosen to satisfy the secant equation 

..Bfj](k) _s[j](k) = yfj](k)' (5.28) 

where 

(5.29) 

and 

(5.30) 

The matrix is normally chosen to be symmetric. Sometimes, positive definiteness is also imposed, 

although there is little justification for this in our circumstances since there is no a priori reason 

for the second derivatives of the element functions to be positive definite. 

LANCELOT presently uses the same type of derivative approximation for all elements. The 

Powell-symmetric-Broyden (PSB ), symmetric-rank-one (SR1 ), the Broyden-Fletcher-Goldfarb

Shanno (BFGS) and Davidon-Fletcher-Powell (DFP) updates are provided. These choices are 

referred to a.s the "psb", "srl", "bfgs" and "dfp" options respectively. See [22], [27] and [31] for 

further details on these updating formulae. 

5.4 Other options within SBMIN 

We finally briefly described three further options related to the algorithms used within S BM IN. 

5.4.1 Approximate Cauchy point calculation 

In Section 3.2, we distinguished between two types of Cauchy point calculations. The first is to 

compute the first local minimum of the quadratic model along the Ca.uchy arc (3.11 ). This is the 

default choice. The second is to compute an approximate Cauchy point, an option that we will 

denote by "appGCP". 
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5.4.2 Choice of the trust region norm 

The next algorithmic option that we will consider is that of the choice of the norm 11 · 11· This 

choice determines the actual shape of the trust region, because of (3.4) and (3.13). The default 

option is to choose 11 · 11 to be the infinity norm, but the choice of the Euclidean £2-norm is also 

allowed. Note that in this latter case the boundary of the region defined as the intersection of 

the trust region (3.4) and the bound constraints ( 3.2) has a more complex shape than when the 

infinity norm is used. This prevents one from using the technique of [11] for determining the 

Generalized Cauchy point on the boundary of this more complex region. When the £2-norm is 

selected, LANCELOT therefore stops the search for the GCP as soon as the trust region boundary 

is encountered along the Cauchy arc. 'vVe will denote this latter option by "12norm". 

5.4.3 Accurate solution of the BQP 

Finally, the last option allows the user to specify that the minimization of the objective function 

model has to be accurate within the intersection of the feasible region for the bound constraints 

and the trust region. In Section :3.:3, we gave a. general framework for obtaining a new iterate that 

is "better'' than the generalized Cauchy point. At each stage, an approximation to the minimizer 

of the model is sought while some of the variables are held fixed at bounds. This set of fixed 

variables, I(k,j), always includes those which were fixed at the approximation to the generalized 

Cauchy point. In S BM IN, we also include by default all variables \vhich encounter bounds at 

x(k,j), for j > 0 up until the test ( :3.2:3) is satisfied. Then, optionally, we may free all variables 

except those which were fixed at the approximation to the generalized Cauchy point and perform 

one or more further cycles. This optional process, denoted by "accBQ P", is terminated when 

releasing variables does not improve the model value. This is detected when (3.2:3) and 

(5.31) 

are satisfied. At the start of each cycle, we also compute a. ne'v generalized Ca.uchy point for the 

model fixing the variables which \vere on a. bound at the original Cauchy point. This recursive 

use of SBMIN is guaranteed to satisfy (:3.23) if a. sufficient number of cycles are performed. 

6 The numerical tests: framework and procedure 

6.1 The test problems 

The numerical tests with LANCELOT that we are about to describe were conducted using the 

Constrained and Unconstrajned Test Examples (CUTE) collection of nonlinear test problems (see 

[3]) . This collection contains a. large number of nonlinear optimization problems of various sizes 

and difficulty, representing both "academic" and "real world" applications. As the title of the 

collection implies, constrained and unconstrained examples are included. For our tests, we have 

used the first 624 instances of unconstrained (or bound constrained) problems and the first 319 

instances of constrained problems. In the CUTE collection, these are numbered Ul to U624 
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and Cl to C324 respectively1
. These 943 instances are derived from 398 different problems, the 

additional examples being determined by varying the dimension. It is of course undesirable to 

describe all these examples in the present paper. It will suffice to say that our test set covers, 

amongst others, 

• the "Argonne test set" [45], the Testpack report [5], the Hock and Schittkowski collection 

[38], the Dembo network problems (see [21]), the MonVforaldo quadratic problems [46], 

the Taint-Tuyttens network model problems [59], 

• most problems from the PSPMIN collection [56] 2
, 

• problems inspired by the orthogona.l regression report by Gulliksson [36], 

• some problems from the Iviinpack-2 test problem collection3 [1], [2] and from the second 

Schittkowski collection [SO], 

• a number of original problems from various application areas. 

We present some of the problems characteristics in Figures :3 and 4 and in Table 1. 

• Figure 3 shows the distribution of the problems' dim,ensions. 

• Figure 4 illustrates the distribution of the ratio 1njn, where m, is the total number of 

general equality and inequality constraints. The higher this ratio, the "more constrained" 

the problem. Only constrained problems (m. > 0) are considered in this statistic. 

• Table 1 reports the number of our tes t problems \Vith characteristics falling into five different 

classes. The characteristics considered are 

- the relative non.lineal'ity of the objective function, that is the ratio 

def number of nonlinear groups in the objective 
Vobj = b f · th b · · ' num er o groups m c o JeCtJve 

(6.1) 

\vhere the groups are defined in (5.14) and where a group is declared nonlinear if it 

contains a.t least one nontrivia.l nonlinear element function with a nonzero weight; 

the relative nonline:nrity of the constraints, i.e. 

dcf number of nonlinear constraints 
Vcons = . 

number of constra.mts 

where the bounds have been excluded from the denominator; 

the proportion nb/n of variables subject to bound constrctints; 

the propm·tion of eqtwlity constraints, that is of the ra.tio 

clef number of equality constraints 
I= 

m 

(6.2) 

(6.3) 

1 1t was supposed a priori that Cl7, C18 aud C19 would excede our limitation ou execution time, while C261 

and C262 were excluded because of their non-differentiable behaviour. 
2 Some trivial problems were skipped and also problems for which different local minima were known. 
3 The problems that we could reconstruct. from the data given in the report. 
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Vobj 104 8 31 16 784 

V cons 139 .5 20 8 192 

nb/n 573 25 38 14 293 

I 99 5 7 13 240 

Table 1: Further problems characteristics 
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We note the following points. 

• The majority of the problems are not very large. However, the classes of larger problems 

a.re far from empty, and we note the presence of examples with more than 15000 variables. 

• Most large problems tend to have a somewhat regular structure. As a result, most groups 

in these problems tend to be structurally similar. This is noticeable in the distribution of 

relative nonlinea.rity of objective function and constraints, where either most or very few, 

if any, groups are nonlinear. The same phenomenon is also observed for the proportion of 

bounded variables which tends to be either very low or close to one. 

• There are very few problems involving considerably more general constraints than variables. 

Many of the problems arise as nonlinear systems of equations, while a fair proportion have 

approximately half as many constraints as variables. We nevertheless note the presence of 

problems where the number of constraints is substantially greater than n. 

Amongst the ~)43 tests problems, we also selected a. subset of 45 large scale cases. These 

problems and their characteristics are presented in Table 2. In this Table, "nbr" stands for 

the number of the problem in the CUTE collection, nfr the number of free variables, nfx the 

number of fixed variables, nbd the number of variables with bound constraints. The total number 

of optimization variables is therefore nf,· + nbd· The symbol nto denotes the number of linear 

groups within the objectiYe function, while nno is that of nonlinea.r groups. The number of linear 

equality constraints is nte while that of nonlinear ones is nne· Finally, nli is the number of linear 

inequality constraints and nni that of nonlinear ones. The Table also provides a note indicating 

the relevant application domah1 or some feature of interest and a reference for the previously 

published problems. 

It will be interesting to compare the performance of the package on the complete set of 

problems and on the selected subset of larger instances. Indeed this will allow refinement of our 

algorithmic conclusions for the large scale cases, where exploitation of problem's structure is of 

course crucial. 
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Name nbr "tr " t x "bd "lo nno "le nne nlt n ni Note Ref. 

ART IF U20 5000 2 0 0 5000 0 0 0 0 turnin g point [39] 

BIGBANK C2 0 308 1922 0 I 1112 0 0 0 ec onometric model [21] 

BQPGAUSS U46 0 0 2003 0 I I 0 0 0 quadra.t ic ~ ubproblem 

BRA TU 3D U61 3375 1538 0 0 0 0 3375 0 0 B ra\u PDE problem [1] 

BRIDGEND C168 1423 0 1311 1 0 1304 1423 0 0 gas di.st ributi on 

BRIT GAS C3 0 0 450 0 1 0 360 0 0 ga.s dist ributio n 

BROYDN3D U73 10000 0 0 0 10000 0 0 0 0 Broy den t rid ia.gonal [45] 

BROYDNBD UB4 5000 0 0 0 0 0 5000 0 0 [45] 

CBRATU2D TJBB 882 176 0 0 0 0 882 0 0 complex Bratu problem [1] 

CHEMRCTB TJ116 0 0 1000 0 0 2 998 0 0 chemistry [1] 

CLPLATEC U138 4970 71 0 1 19600 0 0 0 0 clamped plate problem [49] 

CORKSCRW C299 247 9 200 0 50 300 0 0 50 optimal control 

DALLASL C4 0 0 906 0 1 667 0 0 0 water distribution [21] 

DIXMAANE Ul72 3000 0 0 0 4 0 0 0 0 Dixon and :Maa.ny problem [23] 

ENGVALI U232 5000 0 0 4999 4999 0 0 0 0 Engvall'~ problem [56] 

FREUROTH U245 5000 0 0 0 9098 0 0 0 0 Freudenstein and Roth problem [56] 

GRIDNETB C33 13284 0 0 0 1 6724 0 0 0 network optimization [58] 

HAGER4 C293 10000 1 0 0 10000 5000 0 0 0 optimal conttol [37] 

HYDROELL C175 0 2 lOOi 0 l 0 0 1008 0 energy [29] 

JNLBRNGA U30i 0 496 15129 1 307.52 0 0 0 0 engineenng [46] 

LCH C267 600 0 0 0 1 0 1 0 0 quantum phy.,ics 

LINVERSE TJ624 999 0 1000 0 2997 0 0 0 0 matrix variational problem 

LM!l'SURF TJ322 900 124 0 0 961 0 0 0 0 minimum surface [56] 

MANNE C17i 0 l 1094 0 1 0 0 36!. 365 econometry [48] 

MINPERM Cl90 0 0 111~· 1 0 20 1013 0 0 permanent theory [43) 

MSQRTA U346 1024 0 0 0 1024 0 0 0 0 matriX" problem [42] 

NLMSURF TJ361 900 124 0 0 961 0 0 0 0 minimum surface [56] 

NONDIA U379 10000 0 0 0 10000 0 0 0 0 [53] 

NONSCOMP U386 0 0 10000 1 9999 0 0 0 0 [40] 

OBSTCLAL U407 0 496 15129 0 15129 0 0 0 0 obstacle problem [1] 

ORTHREGD C224 10003 0 0 0 10000 0 5000 0 0 orthogonal regression [36] 

PENALTY! U451 1000 0 0 1000 1 0 0 0 0 [32] 

POWELLSG U484 10000 0 0 0 10000 0 0 0 0 extended Powel singular [56] 

READING2 C322 lOO 2 201 1 0 200 0 0 0 tjde modelling 

SEMICON2 U509 0 2 1000 0 0 0 1000 0 0 physic:) [1] 

SINQUAD U516 10000 0 0 0 10000 0 0 0 0 sine.s and quadratics 

SPMSQRT U524 10000 0 0 0 16664 0 0 0 0 m<1.trix problem [42] 

STEENBRA C236 0 0 432 0 I 108 0 0 0 traffic equilibrium (54] 

SVANBERG C258 0 0 1000 0 1000 0 0 0 1000 engineering [55] 

TOINTGSS U559 10000 0 0 0 9998 0 0 0 0 Gau:;sian problem [56] 

TORSION4 U587 0 484 14400 1 29282 0 0 0 0 engineering [l] 

TQUARTIC U539 10000 0 0 0 10000 0 0 0 0 arrowhead qua.rtic 

TRIDIA U548 10000 0 0 10000 0 0 0 0 0 tridiagona.l quadratic [53] 

VAREIGVL U610 5000 0 0 0 5000 0 0 0 0 numerical analysis [1] 

WOODS U616 10000 0 0 10000 5000 0 0 0 0 exLended Wood~ [56] 

Table 2: The test problem subset 

27 



6.2 The testing procedure 

Before detailing the testing procedure, we reca.ll the default algorithmic choice for LANCELOT: 

• no variable/ constraint scaling, 

• a conjugate gradient linear solver is used with a banded preconditioner of semi-bandwidth 

.5 (band(5)), 

• analytical second derivatives are used, as well as analytical gradients, 

• an exact Ca.uchy point calculation is used, 

• the fo:.-llOrm is used for defining the trust region. 

For our tests we also set the maximum number of iterations to 1000, the maximum cpu-time 

to 18000 seconds. the initial trust region radius to 1.0 and disabled all printing. The accuracy 

requirements were set to the LANCELOT defaults, that is fl = fc = 10-s. We also turned the 

derivative checker on but chose to ignore its warning messages. This last choice is to reflect what 

would be a reasonable strategy for a cautious user. Of course, all derivatives were checked before 

the actual tests. For the sake of completeness, the default LANCELOT specification file is given 

in Figure 5. 

BEGIN 

check-derivatives 

ignore-derivative-bugs 

exact-second-derivatives-used 

bandsolver-preconditioned-cg-solver-used 5 

exact-cauchy-point-required 

trust-region-radius 1.0D+O 

maximum-number-of-iterations 1000 

print-level -1 

start-printing-at-iteration 0 

stop-printing-at-iteration 1000 

END 

Figure 5: The LANCELOT default specification file 

We next considered all the basic variants of this default choice, that is a choice of algorithmic 

options that differs in just one instance from the default. The basic variants are 

scaling: automatic variable/ constraint scaling is used, with scalings computed at the starting 

point (see Section .5.1), 

mltf: a multifrontal direct linear solver is used (see Section 5.2.1), 
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semltf: a modified multifrontal direct linear solver is used (see Section 5.2.1), 

noprc: no preconditioner is used within the conjugate gradient solver, i.e. p(k,j) 

(see Section 5.2.2), 

I in (5.7) 

diagonal: a diagonal preconditioner is used both for the Cauchy direction and the conjugate 

gradient solver, together with a trust region scaling (see Section 5.2.2), 

band(O): a diagonal preconditioner is used for the conjugate gradient solver (see Section 5.2.2), 

band(l): a tridiagona.l preconditioner is used for the conjugate gradient solver (see Section 5.2.2), 

band(lO): a 21-diagona.ls preconditioner is used for the conjugate gradient solver (see Sec

tion 5.2.2), 

expband: an expanding band preconditioner is used for the conjugate gradient solver (see Sec

tion 5.2.2), 

seprc: a full matrix preconditioner using the Schna.bel- Eskow modified factorization is used for 

the conjugate gradient solver (see Section .5.2.2), 

gmpsprc: a full matrix preconditioner using the Gill-lVIurray-Ponceleon-Saunders modified fac

torization is used for the conjugate gradient solver (see Section t5.2.2), 

munksg: an incomplete factorization preconditioner is used for the conjugate gradient solver (see 

Section 5.2.2), 

bfgs: the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton formula is used to approximate sec

ond derivatives (see Section .5.3.5 ), 

dfp: the Da.vidon-Fletcher-Powell quasi-Newton formula is used to approximate second deriva

tives (see Section 5.:3 . .5), 

psb: the Powell-Symmetric-Broyden quasi-Newton formula is used to approximate second deriva

tives (see Sectiou .5.3 .. 5), 

srl: the Symmetric Rank One quasi-Newton formula is used to. approximate second derivatives 

(see Section 5.3 .. 5), 

appGCP: an approximate Cauchy point calculation is used (see Sections 3.2 and .5.4.1), 

12norm: the trust region is defined using the £2-norm, (see Section .5.4.2), 

accBQP: an accurate solution to the BQP is sought (see Section .5.4.3). 

To this list we added the fdg variant which uses finite difference approximation to gradients 

and the Symmetric Rank One quasi-Newton formula for approximating second derivatives (see 

Section 5.3.5). These variants and the default gives a list of 21 different algorithmic choices. 
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Note that the variants scaling, mltf, semltf, expband, seprc, gmpsprc and munksg depend on 

code from the Harwell Subroutine Library. Their use is therefore only possible for users with a 

suitable licence. As a consequence, they could not be selected as default for the package. 

We then tested all ofthese 21 choices on the complete problem set, which amounted to running 

21 x 943 = 19803 test cases. These tests were performed on two Digital DECstations 5000/200 

with 48 M Bytes of memory, using the Ultrix f77 compiler (version 3.0-2) without optimization4
• 

The cpu-times on both machines were checked for consistency. 

7 The numerical tests: results and discussion 

It is of course impossible to detail the complete set of results obtained on nearly twenty thousands 

test cases. \Ve 'vill therefore present and discuss summaries and averages extracted from these 

results. A teclmical report containing the complete results is however available [16]. 

7.1 Reliability 

vVe first present results on the reliability and failures on the 21 algorithmic variants. Results are 

given in Table 3. where the occurrences of the LANCELOT exit conditions are reported for all 

21 variants in the case of the complete test set and the selected subset. The column headings 

correspond to the following possible situations. 

succ: The minimization wa.s successfully terminated. 

infs: The package could not find a feasible point for the considered problem. 

stall: The minimization could not progress further, the stepsize being smaller than relative 

machine precision. Not all runs terminated in this way are unsuccessful from the user's 

point of view, as it happens in several cases that the algorithm is "stalled" very near the 

solution. 

mem: The workspace requires for handling the considered problem is larger than three millions 

double precision and/or three millions integer numbers. 

iters: The run was terminated after 1000 iterations without convergence. 

cpu: The run was terminated after 18000 cpu seconds without convergence. 

error: An arithmetic error occurred in the subprograms evaluating the problem dependent 

functions and/or derivatives. This typica.lly occurs when the iterates produced by the 

algorithm "wander off" the part of the feasible region where the objective and constraints 

are of manageable size. 

From this table, we can draw the following conclusions. 

4 An error in the Fortran opt.imizer of this version prevented its use with the package. 
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Complete set (943 problems) Selected subset ( 45 problems) 

Variant succ stall infs m em iters cpu error succ stall infs m em iters cpu error 

default 873 11 2 0 31 24 2 41 1 0 0 0 3 0 

scaling 807 45 25 0 28 29 9 33 3 2 0 2 5 0 

mltf 777 5 11 12 106 29 3 28 1 0 4 7 5 0 

semltf 807 5 11 2 65 48 5 24 0 1 1 6 13 0 

noprc 850 6 13 0 35 36 3 35 0 0 0 1 9 0 

diagonal 744 1 16 0 153 23 6 31 0 1 0 7 6 0 

band(O) 851 19 8 0 30 33 2 36 3 0 0 0 6 0 

band(l) 859 18 4 0 34 25 3 39 0 0 0 0 6 0 

band(lO) 871 10 8 0 27 25 2 41 1 0 0 0 3 0 

expband 864 7 8 3 2.5 26 10 33 0 0 2 2 8 0 

seprc 878 11 7 2 22 21 2 38 0 0 1 0 6 0 

gmpsprc 860 10 7 9 26 21 10 35 1 0 2 1 4 2 

munksg 851 7 13 2 28 39 3 34 0 1 1 1 8 0 

bfgs 786 1.5 12 0 88 26 16 32 3 1 0 6 3 0 

dfp 621 .57 1.5 0 203 40 7 23 7 1 0 10 4 0 

psb 857 13 :3 0 37 28 .5 39 2 0 0 1 3 0 

srl 871 13 .s 0 26 26 2 39 2 0 0 1 3 0 

appGCP 841 23 10 0 29 29 11 37 1 1 0 0 .5 1 

12norm 8.51 1.5 10 0 38 28 1 38 2 0 0 1 4 0 

accBQP 863 11 4 0 16 48 1 36 0 0 0 0 9 0 

fdg 784 19 11 0 88 28 13 32 2 0 0 7 4 0 

Table 3: Successes and failures per variant 

1. The reliability of the default algorithmic choice is good (92 . .5% on the complete problem 

set), and is only marginally surpassed by that of the Schnabel-Eskow preconditioner used 

in conjunction with conjugate gradients (93.1% on the complete set). The default variant 

has the best reliability on the selected subset (together with band(lO)). We note that the 

reliability is globally lower for the subset; this is expected because the subset contains some 

of the most difficult problems. 

The default choice of a semi-bandwidth of 5 also seems to maximize reliability amongst the 

banded preconditioners, both for the complete problem set and the subset. 

2. The SR1 update is the most reliable of the quasi-Newton methods tested, followed by the 

PSB method and, at some distance, by the BFGS method. The DFP shows the worst 

reliability. The perhaps surprisingly good performance of the PSB method could be partly 

explained by the observation that, although some problems in the test set are very badly 

scaled, this is not the case for the majority. This seems to be confirmed by the very 
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acceptable reliability score obtained by the conjugate gradient linear solver without any 

preconditioning. On the other hand, this remark does not explain the relatively poor 

performance of BFGS and DFP. The poorer performance of the BFGS and DFP updates is 

also partly explained by the fact that these updates must be skipped whenever they would 

result in a non positive definite element Hessian approximation. 

The results on the problem subset confirm the above, where the unreliability of the DFP 

method reaches a rather unacceptable level. 

3. The robustness of the best partitioned quasi-Newton scheme (SRl) appears to be excel

lent compared with the use of exact second derivatives, even for large problems. This 

approach therefore confirms its potential amongst quasi-Newton techniques for large-scale 

applications, a.t least from the reliability point of view. 

4. The scaling variant does not show a globally improved robustness compared with the default. 

This illustrates the difficulty designing good automatic scaling procedures. It is however 

worthwhile to note that the scaling variant did solve badly scaled problems where other 

variants failed. Keeping such an option available therefore seems to be of some value, but 

it should not be used as a default. 

5. The reliability of the SRl and PSB methods are very comparable to that of the variants 

using exact second derivatives. The partitioned quasi-Newton approximation therefore 

seems quite effective when analytical Hessians are not available. This is also apparent in 

the subset. 

6. The reliability of the diagonal variant is quite poor, compared with the other choices using 

exact second derivatives. In particular, it is significantly worse than that of the similar 

band(O) variant. Again, this observation is supported by the subset results. 

7. It is somewhat surprising that the gmpsprc variant has a significantly lower reliability than 

the other full ma.trix preconditioner seprc on the complete test set. On the other hand the 

reliability of both variants is equivalent on the problem subset. 

For the complete set, the Gill-l'vlurray-Ponceleon-Saunders technique seems to generate 

more arithmetic errors and to run out of memory more often than the Schnabel-Eskow 

method. 

On closer analysis, the occurrence of overflow with the Gill-Murray-Ponceleon-Saunders 

modified factorization seems to be due to numerical difficulties for some singular or nearly 

singular ma.trices. The observed problems are probably caused by the low value of the 

, threshold under which eigenvalues are perturbed to ensure positive definiteness of the pre

conditioning ma.trix. According to [30], this threshold is set to the machine precision. A 

posteriori experiments with the threshold raised to (machine precision)314 (as is used in 

the Schnabel-Eskow modification) however indicates that the overflow problems can be 

avoided. These observations are coherent with the conclusions of Schlick in [51], where she 
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observes that enforcing a small modification J!;(k,j) in (.5.5) might not be beneficial for fast 

convergence. 

The difference in memory requirements for the two methods is due to a possibly larger fill-in 

in the Gill-Murra.y-Ponceleon-Saunders technique caused by changes in the pivoting order 

to preserve stability. As the Schnabel-Eskow modified factorization maintains positive 

definiteness of the matrix during the factorization, no such changes are necessary. This 

observation is supported by the results for the direct analogs of these methods, namely 

semltf (corresponding to seprc) and mltf (using MA27 as gmpsprc). 

The slightly higher number of memory requirement failures for mltf compared with gmpsprc 

is explained by the fact that the first strategy uses additional storage in order to retrieve 

directions of negative curvature from the matrix factors when suitable (see [9] for further 

details). 

8. We also note the substantial gain in robustness obtained by using the full matrix factor

iza.tions as preconditioners. The variants seprc and gmpsprc are indeed significantly more 

reliable than their direct counterparts semltf and mltf. 

9. The accBQP variant, being more computationally intensive, runs out of time most often. If 

we assume that some of the truncated computations would effectively terminate successfully, 

given additional time, this variant probably ranks as the most reliable, but at the expense 

of substantial additional effort. 

10. The approximate calculation of the Generalized Cauchy point (the appGCP variant) ap

pears to decrease the reliability compared with the default choice of an exact computation, 

although not dramatically. This is explained by the less conservative nature of this first 

strategy which tends to allow larger steps. These steps might then lead the iterates along 

different paths to the solution, sometimes across regions where the problem function eval

uations cause numerical overflow, as is show by the larger number of error returns for the 

appGCP variant. 

11. There does not seem to be a. real robustness advantage in using an incomplete factorization 

preconditioner ( munksg) over a banded one for the problems of our test set. One must how

ever notice that discretized continuous problems do not constitute a majority of the tested 

cases. As incomplete factorizations have earned their good reputation on such problems, 

one could probably expect a better performance of the munksg variant if the proportion of 

discretized problems increased. 

12. The use of the £2-norm in the trust region definition marginally deteriorates the robustness 

of the minimization, as can be checked by comparing the results obtained by the default 

and 12norm variants. This could well be due to the fact that more work is invested in the 

Generalized Cauchy Point calculation for the default variant, as explained in Section 5.4.2. 
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13. Using finite difference approximations for the first derivatives of the problem's function 

somewhat reduces the reliability of the package, but fdg still managed to solve 83% of the 

problems, a quite acceptable score. 

We conclude our reliability analysis by noting that 919 of the 943 problems were solved by at 

least one variant, while 441 were solved by all of them. This indicates an excellent reliability of 

the complete package (97 .5%) on our large test problem collection, but also the relative lack of 

robustness for certain algorithmic variants. This last observation is strengthened by examining 

the problem subset, where only 12 problems were successfully solved by all variants. 

7.2 Number of minor iterations 

We now start comparing the algorithmic variants for efficiency. To be fair, only two sets of runs 

can be compared for each variants: the runs that successfully produce a well specified critical 

points and the unsuccessful ones. We therefore remove from our comparison all runs for which 

the variant under consideration converged to a. point whose associated optimal value does not 

correspond (within 0.001% ) to the best critical value found for the problem. In total, 434 

problems from the complete set and 8 from the subset were successfully solved (according to this 

criterion) by all methods. We shall confine our attention to these problems. Figure 6 indicates 

how many problems per variant were discarded . 

Figure 6: Number of runs to alternative critical points per variant 

The figure reveals that convergence to an alternative critical point is obtained most often for 

the diagonal variant, although not very significantly. 
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We now turn our attention to the number of minor iterations required by the variants to 

find the solution. We recall that the problems objective function and constraints (if any) are 

evaluated exactly once per such iteration. Hence the number of minor iterations is equal to the 

numbers of functions evaluations. 

Figure 7 shows the average number of iterations required for solution. Figure 8 presents an 

overall view of the relative ranking of the variants based on the number of iterations. To construct 

this figure, we considered all problems that were successfully solved by at least one variant. All 

21 variants were ranked (where best means ranked number 1) for each of these 826 problems. We 

then counted the number of times that a given variant had a given rank. We finally clustered 

the obtained rankings in classes (ranks 1 to 3, 4 to 6, ... ) which could be effectively displayed 

in a bar chart . For instance, the darker area in the bar corresponding to the seprc variant 

indicates that this variant is amongst the three best for 527 problems, an excellent performance. 

The interpretation of the total height of the bar is slightly different from the reliability scores 

presented in Table 3: successful runs producing a critical point with an optimal value different 

from the best one found (see Figure 6) are not accounted for. 

Figure 9 presents the corresponding rankings for the selected subset of tes t problems. 

We now draw some conclusions from these figures. 

1. We immediately note the good results obtained by the semltf variant for the complete 

problem set. Although less reliable than its preconditioning counterpart seprc, it seems 

to require fewer iterations to converge when it does so, but the difference is admittedly 

marginal. 

2. The full matrix preconditioner variants seprc and gmpsprc also show superior efficiency. 

3. An excellent result is also observed for the accBQP variant. This is not a surprise. Indeed 

this variant puts more work in an iteration and one therefore expects that less of these more 

costly iterations are needed. This trend is however less marked on the larger problems of 

the subset. 

4. The default variant appears to be reasonably efficient in terms of minor iterations, although 

not amongst the best. It is however remarkable that it is the variant whose behaviour is 

least often amongst the worst ranking, as is shown by the size of the class corresponding to 

the lowest rankings (in Figure 8). This last characteristic is displayed by the seprc variant 

on the subset. 

5. The diagonal variant again shows poor behaviour. We noted above that it is comparatively 

unreliable, but it also seems to be quite inefficient even when it manages to converge to the 

problem's'solution. The same comment applies, to a lesser ext~nt, to the dfp variant on the 

complete set. 

6. The 12norm variant has a relatively poor ranking. A possible reason for this behaviour is 

the fact that minor iterations are stopped earlier (see Section 5.4.2) than for other variants. 
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Figure 7: Average number of iterations for 434 problems solved by all variants 

Figure 8: Ranking per iterations for 826 problems solved by at least one variant 
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Figure 9: Ranking per iterations for 40 problems of the subset solved by at least one variant 
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7.3 Number of cg-iterations 

After the number of minor iterations, we now examine the total number of conjugate gradient 

iterations per minor iteration required to solve the test problems by each variant using an iter

ative linear solver. What is really compared in this section is the overall effect of the various 

preconditioners and, to some extent, the conditioning of the Hessian matrices generated by the 

different variants. 

Figure 10 shows the average number of cg-iterations per minor iteration and per problem 

variable, the average being taken on the 441 problems in the complete set that were successfully 

solved by all methods. This measure indicates how many cg-iterations were performed on average, 

compared to the problem size. Since conjugate gradients are expected to terminate in at most 

n cg-iterations on a system of size n, the reported measure are all between zero and one. We 

note that the measure is approximate for two reasons. Firstly, the number of free variables at 

any given iterations can be lower than the number of problem variables. Secondly, the conjugate 

gradient iterations may have to be restarted when bounds are encountered. We however believe 

the comparison amongst variants to be instructive. Figure 11 presents the same measure taken 

on the 8 problems of the subset that were successfully solved by all variants. 

1. As anticipated, the full-matrix preconditioners are the clear winners in terms of number of 

cg-iterations. This behaviour is even more marked on the problem subset. 

2. Another expected conclusion is that the quality of the preconditioner seems to increase 

with the semibandwidth, when a band preconditioner is used. This is clearly apparent 

when examining the results for the complete set for noprc, band(O), band(1), default (which 

is equivalent to band(5)), band(10) and expband. For the larger problems of the subset, one 

can however observe a superior behaviour of the small bandwith variants, but this might 

be due to the structure of the 8 considered problems. 

3. The diagonal preconditioning uses less cg-iterations per minor steps than noprc, as shown 

by the figure, but this is partly caused by the very large number of these minor iterations, 

where only a few cg steps are necessary. Indeed the absolute number of cg-iterations for 

this variant exceeds that of noprc. 

4. The incomplete factorization preconditioner munksg shows superior behaviour. Indeed its 

performance is comparable to that of the full-matrix variants. 

5. Solving the BQP accurately of course requires more cg-iterations, and we observe this effect 

when comparing the default and accBQ P. 

6. Why the variant appGCP requires more cg-iterations than the default is not clear. One 

possible explanation would be that the average model reduction a.chieved at the GCP is 

smaller when the approximate strategy is used to compute this point than with the exact 

technique, subsequently requiring additional work for the model minimization in the next 

stage. 

38 



7. The scaled variant scaling is somewhat less efficient than the default unsealed variant on 

the complete problem set, which is again an indication that scaling should not be applied 

blindly to every problem. Its performance is however improved on the larger problems of 

the subset. 

8. The quasi-Newton approximations to the second derivatives does not seem to generate 

matrices that are, on average, worse conditioned than their analytic values, as is shown by 

the comparable level for the default, bfgs, dfp, psb and srl variants. The fact that gradients 

are estimated by differences in fdg does not seem to impact the conditioning of the Hessian 

either, as can be seen by comparing this variant with srl. 

9. The reported measures are typically smaller for the subset than for the complete problem 

set. This is anticipated as conjugate gradient solvers often require a number of iterations 

that is more dependent on conditioning and eigenvalue distribution than on system size. 

Increasing size therefore produce lower measures if one assume that the larger problems 

have an eigenva.lue structure tha.t is, on average, not worse than that of smaller ones. 

0.3 

Figure 10: Average number of cg-iterations per minor iteration for 434 problems solved by all 

variants 
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Figure 11: Average number of cg-iterations per minor iteration for 8 problems solved by all 

variants 
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7.4 Computational effort 

We next compare our 21 algorithmic variants on the basis of their requirements in cpu-time. 

Figure 12 shows the average cpu- time (in seconds) required for solution, the average being 

taken on the 434 problems in the complete set that were successfully solved by all methods. 

Figure 13 presents a. overa.ll view of the relative ranking of the variants based on cpu-time. This 

figure was constructed in the same way as Figure 8. Figure 14 presents the corresponding ranking 

results for the selected subset of test problems. 

Some interesting conclusions can be drawn from these figures. 

1. The incomplete factorization preconditioner munksg appears to provide the best average 

performance in terms of computational effort. However, its ranking relative to the other 

variants is good but not amongst the best. This means that it is mostly efficient on some 

of the harder or larger problems. This observation is reinforced by the detail of the results 

obtained for this variant on the problems of the selected subset: markedly leading on average 

but best on few problems. 

2. The results obtained by the semltf variant are very interesting. Although its ranking com

pared with the other variant is amongst the best, its average performance is the poorest. 

This is caused by the poor behaviour of the variant on a few large unconstrained problems 

where the Hessian matrix is indefinite in the early iterations. In these cases, the strategy 

to move along a direction of negative curvature, as in the iterative variants and in mltf, 

seems more appropriate than repeatedly calculating a. modified Newton direction in smaller 

and smaller subspaces (corresponding to faces of the trust region), each time recomputing a 

suitably modified factorization. It should however be noted that, despite its strong effect on 

average scores, this behaviour occurs rarely, as can be seen from the comparative ranking 

of the variant. 

3. The full matrix preconditioned variants seprc and gmpsprc appear to be quite efficient on 

average. We note the good relative ranking of gmpsprc for the problem subset, where it 

seems to be very efficient for some problems, while spending much effort in others. This 

behaviour is not surprising because the efficiency of full matrix preconditioners (and direct 

solvers) heavily depends on the amount of fill-in during the. factorization, a highly problem 

dependent feature. 

4. The global efficiency of mltf is only marginally worse than that of its iterative counterpart 

gmpsprc. As was observed in [9], the behaviour of this direct method is best on convex 

problems with relatively little fill-in. 

5. Quite interestingly, the scaling variant does not seem to be handicapped by the additional 

work required by computing and handling the variable and constraints "typical" values. It 

is indeed quite comparable to the default option. 

6. The relatively acceptable performance of the noprc variant seems to confirm the remark 

tha.t most of the test problems are reasonably well scaled. 
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7. The behaviour of banded preconditioners with varying semi bandwidth is worth a comment. 

We first note the good performance of the tridiagonal preconditioner (band(l)), both on the 

complete problem set and on the subset. The band{lO) variant uses more cpu-time as the 

advantage of improved preconditioning is offset by the higher price of the preconditioner, 

an effect already noticeable with the satisfying results obtained with the default band(5) 

variant. The good performance of the expanding band variant expband, compared with 

band(lO), seems to be due to the general sparse storage scheme used, which is preferable to 

the band storage for matrices with higher bandwidth. 

8. The more costly iterations of accBQP clearly cause the relatively large average cpu-time of 

this variant on the complete problem set. However, as the expense of cpu-time is mostly 

confined to large problems, and as there are comparatively few such problems in the com

plete test set, the method ranks reasonably highly. This observation is strengthened by 

the poor ranking of this variant for the large problems of the subset, where it never ranks 

amongst the three best. 

9. The appGCP variant is markedly less efficient than default on the complete test set, although 

its relative ranking is better. 

10. The diagonal variant pays in cpu-time the price for its many minor iterations, giving overall 

rather poor performance, both on the complete problem set and on the subset. 

11. Amongst the quasi-Newton variants, srl appears to be the most efficient, followed in order 

by bfgs, dfp and psb. 

12. The work involved in approximating the gradients by differences causes fdg to be slower 

than srl on average, but not by a large margin. But this effect is enough to cause the 

relative ranking of fdg to fall substantially behind that of srl. 
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Figure 12: Average cpu-time for 441 problems solved by all variants 

Figure 13: Ranking per cpu-time for 826 problems solved by at least one variant 
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Figure 14: Ranking per cpu-time for 40 problems ofthe subset solved by at least one variant 
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7.5 Additional comments 

We did not discuss above the relative number of unsuccessful iterations for each variant. This 

number is on average below one per problem for each variant, except for the dfp variant for 

which an avera.ge of six such iterations per problem are observed. This again confirms the poor 

performance of this last variant. It also seems to indicate that the trust region management used 

in LANCE LOT is adequate for handling a large class of nonlinear problems. 

Besides its algorithmic choices, LANCELOT allows the user to select a number of non algo

rithmic options, such as element and group derivative checking, level of printout and frequency 

at which intermediate data is saved for a possible subsequent restart. None of these options has 

a significant impact on the overall execution time of the package. The only observable increase 

in cpu-time occurs when a very detailed printout is required at every iteration of a large scale 

problem. As one would expect, this effect is slightly more marked for constrained cases, where 

the details of the ma.jor iterations have to be printed as well. 

We finally indicate some weak points of LANCELOT (Release A) that we have observed in 

examining the detailed runs, but that cannot be inferred directly from the summaries presented 

above. 

1. vVhen the number of inequality constraints is large compared with the number of variables, 

the package currently adds slack variables to transform all inequalities into equalities, which 

results in a substantial increase in the effective problem size. Although convergence is 

usually obtained, the computational effort can be relatively large compared with method 

that use inequality constraints as such (see [1.5], for instance). The authors are well aware 

of this aspect of their implementation, and have recently given in [14] a method to overcome 

this difficulty. 

2. No special provision is made in the present code for linear network constraints, or even for 

linear constraints. Again , LANCELOT seems to be robust in that convergence is obtained 

for problems with this kind of structure, but special purpose algorithms are often much 

more efficient. 

3. The ability of the generali zed Ca.uchy point to determine the correct active set is disap

pointing in practice. In many examples, the correct active set is actually found in the 

conjugate gradient or direct matrix improvement beyond the GCP, at considerable cost. 

Although the GCP asymptotically identifies the correct active set as predicted by the the

ory (see [10], for instance), this is often at the end of a long calculation. A stategy treating 

the bounds through barrier functions (as proposed in [15]) would therefore appear to be a 

useful alternative. 

8 Conclusions 

We first described the algorithms contained in Release A of the LANCELOT package for large

scale nonlinea.r optimization in detail. We also analyzed the user selectable variants at this level. 
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We finally presented and discussed the results of extensive numerical tests with these variants. 

The main conclusions of these tests, as far as the package is concerned, are as follows. 

1. The package is capable of solving a wide class of nonlinear optimization problems, including 

many large-scale examples. 

2. The package is especially efficient for unconstrained and bound constrained problems and for 

generally constrained problems for which the number of constraints does not substantially 

exceeds the problem dimension. 

3. The default algorithmic choice in the package appears to be reliable and acceptably efficient. 

4. Some algorithmic choices (£2 trust region, diagonal rescaling, and DFP quasi-Newton up

dating) seem of limited utility and could probably be removed from future releases of the 

package. 

5. Some other choices (automatic scaling, accurate solution of the inner BQP) should not be 

used automatically, but may provide excellent behaviour on some harder problems. 

Beyond the tests of the LANCELOT package, our tests also reveal the following points of more 

general interest. 

1. The difficulty of solving a problem is more often linked to its degree of nonlinearity than 

to its size. 

2. The use of direct factorization appears to be most robust when used as preconditioners for 

a conjugate gradient linear solver. 

3. The use of exact second derivatives is recommended whenever available. However, the parti

tioned Symmetric Rank One technique, as embedded in the package, gives very satisfactory 

reliability and efficiency when this is not the case. 
... 

4. When analytical derivatives are not available, finite difference approximations to the gradi

ents coupled with SR1 quasi-Newton Hessian updating is a.n acceptably robust and efficient 

technique, even for large problems . 

. 5. The use of full factorizations appears to be efficient and reliable for the class of problems 

analyzed in this paper. It is however expected that this technique would show stronger 

limitations if even larger problems were considered. In contrast, banded preconditioners, 

already satisfactory in the present study, would probably extend well to larger problems. 

Of course, only continued experience with LANCELOT will really show its strengths and 

weaknesses. The authors very much hope to be informed by the users of the package of the 

(undoubtly many) aspects where improvements are possible. Progress is expected to come both 

from the point of view of the implemented algorithms (see [15] and [19] for possible directions) 

and from that of the implementation details themselves. At this stage, the results discussed above 

certainly offer the hope that the software will prove useful in the increasingly important arena of 

large-scale nonlinear optimization. 
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