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Numerical �nite element formulation of the Schapery
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SUMMARY

This study presents a numerical integration method for the non-linear viscoelastic behaviour of isotropic
materials and structures. The Schapery’s three-dimensional (3D) non-linear viscoelastic material model
is integrated within a displacement-based �nite element (FE) environment. The deviatoric and volumet-
ric responses are decoupled and the strain vector is decomposed into instantaneous and hereditary parts.
The hereditary strains are updated at the end of each time increment using a recursive formulation.
The constitutive equations are expressed in an incremental form for each time step, assuming a con-
stant incremental strain rate. A new iterative procedure with predictor–corrector type steps is combined
with the recursive integration method. A general polynomial form for the parameters of the non-linear
Schapery model is proposed. The consistent algorithmic tangent sti�ness matrix is realized and used
to enhance convergence and help achieve a correct convergent state. Veri�cations of the proposed nu-
merical formulation are performed and compared with a previous work using experimental data for a
glassy amorphous polymer PMMA. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: viscoelastic; non-linear; Schapery; �nite element; recursive; iterative

INTRODUCTION

Polymeric materials are widely used in many structural applications due to their �exible de-
sign and low weight. The behaviour of polymeric materials is usually time-dependent under
combination of mechanical loading, temperature and moisture environment and damage evo-
lution due to the above. Non-linear viscoelastic constitutive models have been proposed to
model the complex non-linear mechanical behaviour of polymers.
The response of a linear viscoelastic material subject to complex loading history can be

obtained from the solution of either an integral or a di�erential constitutive form. The Boltz-
mann convolution integral is usually used to represent the superposition principle that de�nes
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the linear viscoelastic behaviour. Two common methods are often used to represent the uni-
axial transient part of a viscoelastic response. Findley et al. [1] used a power law function
to express the transient strain or time-dependent modulus of a material under constant stress.
Non-linear and temperature e�ects can be modelled by having the power-law coe�cients as
functions of stress and temperature. A Prony exponential series is another mathematical form
that is also used to represent the transient compliance or modulus of linear viscoelastic mate-
rials. The Prony series can be linked to the solution of a mechanical analogy of springs and
dashpots (Kelvin and Maxwell arrangements) used to represent the instantaneous and transient
responses of the material. The Prony series form is computationally convenient when used in
recursive integration methods.
Schapery [2] used thermodynamics of irreversible processes to develop a single-integral con-

stitutive model for non-linear viscoelastic materials. The non-linear viscoelastic parameters or
functions can be determined from creep and recovery tests. Schapery’s non-linear viscoelastic
model has been extensively applied for isotropic and anisotropic materials. Numerical inte-
gration methods for non-linear viscoelastic constitutive models, within a �nite element (FE)
formulation, have been explored for both isotropic and anisotropic materials. Henriksen [3]
used Schapery’s non-linear constitutive model and developed a recursive numerical integration
algorithm. A Prony exponential series is required to express the transient compliance in order
to allow for a recursive form of the hereditary integral. The computer storage requirement for
using this method is proportional to the number of terms in the Prony series, at each integra-
tion point. The non-linear viscoelastic behaviour considered was mainly due to higher stress
magnitudes. FE analysis was performed for FM-73 adhesive systems under creep and recov-
ery tests. Their results compared very well with the experimental data performed by Perez
and Weitsman [4]. Roy and Reddy [5] used a similar integration approach to Henriksen’s
and formulated a numerical integration method for the Schapery non-linear viscoelastic model
coupled with moisture sorption and used for 2D FE modelling of adhesively bonded joints.
The non-linear viscoelastic parameters depend on stress and temperature. A coupled non-linear
Fickean di�usion model is also used where its di�usion coe�cient is a function of temper-
ature, dilatational strain and stress, and moisture concentration. Lai and Bakker [6] modi�ed
Henriksen recursive algorithm in order to include non-linear e�ects due to temperature and
physical aging that accounted for by using reduced time functions. Isotropic material was
considered which allowed decoupling the deviatoric and volumetric parts. The constitutive
formulation was used to model experimental tests with PMMA polymer. Taouti and Ceder-
baum [7] presented a numerical scheme to obtain the non-linear stress relaxation response
from the non-linear creep response in the form of discrete experimental data. An exponential
(Prony) series was used for the transient creep compliance. Their method transformed the non-
linear convolution integral into a system of �rst-order di�erential equations. Non-linear stress
relaxation was predicted by solving these equations. Taouti and Cederbaum [8] extended this
numerical procedure for the non-linear viscoelastic characterization and analysis of orthotropic
laminated plates. Finally, Simo and Hughes [9] reviewed many topics on computational inelas-
ticity including viscoelasticity. Irreversible thermodynamics with internal state variables was
used to derive a general class of strain-based non-linear viscoelastic models. Attention was
also given to integrating linear viscoelastic models within a non-linear geometric formulation.
Li [10] developed a FE procedure to analyse non-linear viscoelastic response for anisotropic

solid materials subjected to mechanical and hygrothermal loads. A recursive algorithm is used
to evaluate the hereditary integral. The time increment is assumed small and the stress varies
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linearly over this short time period. The non-linear viscoelastic parameters are function of
the current stresses. Therefore, the sti�ness and compliance matrices depend on the current
stress states. The hereditary stresses can be obtained from material properties, time incre-
ment, strains and stresses of the previous step. Poon and Ahmad [11] proposed an integration
scheme for Schapery’s integral expressed with strain-based non-linear functions and applied
independently for each of the anisotropic moduli. This explicit constitutive form can be more
suited for displacement-based FE environment because does not require a correction scheme.
However, it is not clear how this model can be calibrated from experimental data for a general
anisotropic behaviour. Yi et al. [12–14] developed a FE integration procedure to analyse non-
linear viscoelastic response in laminated composites subjected to mechanical and hygrothermal
loading. A lamina was modelled under generalized plane strain. A virtual work with small
strain theory is used to derive the equilibrium equations. A recursive viscoelastic exponential
series is generated from the time-domain integration of the virtual work with the non-linear
constitutive model. The terms of the integration can be expressed as residual nodal vectors
that are stored only for the previous increment. Di�erent non-linear viscoelastic problems in
laminated composites were solved using this FE method, such as interlaminar stress, bending
and twisting of laminated composites.
This study deals with the numerical formulation of the Schapery type non-linear viscoelastic

constitutive models. The formulation is carried out such that a constant incremental strain rate
is assumed during each increment. This is suitable for displacement-based FE environment.
A two-step numerical algorithm is proposed where recursive integration is carried out and
followed by a predictor–corrector stress update to minimize a strain residual. A simple con-
sistent tangent sti�ness matrix is realized from the correction algorithm. The linearized stress
update part of this study employs the numerical formulation previously derived by Taylor [15],
Henriksen [3], and Lai and Bakker [6]. Finally, numerical recursive integration examples are
given using the experimental data from Lai and Bakker [6] in order to examine the proposed
numerical formulations.

NUMERICAL INTEGRATION ALGORITHM

A multiaxial non-linear viscoelastic constitutive model for isotropic materials is numerically
derived using the Schapery [2] single integral constitutive model. The proposed numerical
integration is suitable for a displacement based FE material-modelling environment. A recur-
rence numerical algorithm for linear viscoelastic integral has been proposed by Taylor et al.
[15]. The convolution integral is divided into recursive parts. This allows the incremental
formulation and integration for the current stress state from the history variables stored at
the previous time step, and the current time and strain increments. The recursive approach
tremendously minimizes the storage required to perform the constitutive integration. Henriksen
[3], and Lai and Bakker [6] used a similar recursive algorithm for the non-linear constitutive
integral. However, using the recurrence integration for the non-linear viscoelastic integrals
requires additional assumptions on the non-linear functions and their variation over time in-
crements. These are explicitly stated later in this section. In a general FE analysis, some
of these assumptions may not be valid, especially when the non-linear viscoelastic integral
is expressed in terms of stress-based variables. Therefore, an iterative scheme is required in
order to minimize the error of the recurrence integration.
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The current constitutive modelling approach modi�es that of Lai and Bakker [6]. Additional
non-linear and iterative formulation is needed to complete the integration of the non-linear
viscoelastic model of Schapery. Furthermore, a consistent algorithmic tangent sti�ness matrix
is developed to enhance equilibrium and to help avoid misleading convergent states. A sug-
gested general polynomial form for the non-linear parameters is proposed. Iterative correction
algorithm is implemented and executed simultaneously at the constitutive level.

Uniaxial formulation

The Schapery uniaxial integral form for the current strain can be expressed by

�t ≡ �(t)= g�t

0 D0�t + g�t

1

∫ t

0
�D( t− �) d(g

�t

2 ��)
d�

d� (1)

where  is the reduced-time (e�ective time) given by

 t ≡  (t)=
∫ t

0

d�
a��

� aTT
(2)

The upper right superscript of a given term is used to denote an explicit variable. The non-
linear material properties: g0; g1; g2, and a� are also referred to herein as non-linear stress-
functions because they depend only on stress variables, e.g. octahedral shear stress. These
functions are always positive and equal to one for relatively small values of stress magni-
tudes (Boltzmann integral in linear viscoelasticity). The parameter a� acts as a time-scaling
factor. The function aT is a temperature dependent that is used to de�ne a time scale shift
factor for thermorheologically simple materials. The stress functions can also be temperature
dependent, which makes Equation (1) represent the viscoelastic behaviour of a thermorheo-
logically complex material. In addition to stress and temperature e�ects, moisture and physical
aging e�ects can be included by adding their own time-scaling functions in Equation (2). The
non-linear e�ects considered in this study are only due to stress.
The parameter g0 is the non-linear instantaneous elastic compliance and measures the reduc-

tion or increase in sti�ness. The transient creep parameter g1 measures the non-linearity e�ect
in the transient compliance. The parameter g2 accounts for the load rate e�ect on the creep
response. D0 is the instantaneous uniaxial elastic compliance and �D is uniaxial transient
compliance. The uniaxial transient compliance can be expressed using a Prony series as

�D t
=

N∑
n=1

Dn(1− exp[−�n t]) (3)

where N is the number of terms, Dn is the nth coe�cient of the Prony series, and �n is the
nth reciprocal of retardation time. Substituting Equation (3) into Equation (1) yields:

�t = gt
0D0�

t + gt
1g

t
2

N∑
n=1

Dn − gt
1

N∑
n=1

Dnqt
n (4)

where

qt
n=

∫ t

0
exp[−�n( t −  �)]

d(g�
2�

�)
d�

d� (5)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 59:25–45



SCHAPERY NON-LINEAR VISCOELASTIC MATERIAL MODEL 29

A recursive integration form can be obtained from Equation (5) by dividing the integration
into two parts. The �rst part includes the integral with limits (0; t−�t), i.e. up to the previous
time step. The limits of the second part are taken as (t −�t; t), where t is the current time.
Therefore,

qt
n=

∫ t−�t

0
exp[−�n( t −  �)]

d(g�
2�

�)
d�

d�+
∫ t

t−�t
exp[−�n( t −  �)]

d(g�
2�

�)
d�

d� (6)

A reduced time increment is de�ned by

� t ≡  t −  t−�t (7)

The �rst term of integral in Equation (6) can be expressed by the integral at (t −�t) and
the current reduced time:∫ t−�t

0
exp[−�n( t −  �)]

d(g�
2�

�)
d�

d�= exp[−�n� t]qt−�t
n (8)

The second integral of Equation (6) is carried out by parts while assuming that the term
(g�
2�

�) is linear over the current time step increment (�t). In addition, it is assumed that the
shift parameter as is not directly a function of time. Therefore, the second integral can be
reduced to∫ t

t−�t
exp[−�n( t −  �)]

d(g�
2�

�)
d�

d�=
1− exp[−�n� t]

�n� t (gt
2�

t − gt−�t
2 �t−�t) (9)

The qt−�t
n expression in Equation (8) is the hereditary integral for every term in the Prony

series at the end of the previous time (t −�t). These can be considered as history variables
that need to be updated and stored at the end of each time increment. Substitute Equations
(8) and (9) into Equation (6), the hereditary integral can be written at the end of current
time (t) as

qt
n= exp[−�n� t]qt−�t

n + (gt
2�

t − gt−�t
2 �t−�t)

1− exp[−�n� t]
�n� t (10)

The current total strain is obtained by rearranging and substituting Equation (10) into
Equation (4):

�t =
[
gt
0D0 + gt

1g
t
2

N∑
n=1

Dn − gt
1g

t
2

N∑
n=1

Dn
1− exp[−�n� t]

�n� t

]
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− gt
1
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n=1

Dn

[
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�n� t

]

≡ �Dt�t − ft (11)

Substituting Equation (10) into the second term in Equation (11), allows term ft to be
rewritten as

ft = gt
1

N∑
n=1

Dn

[
qt
n − gt

2�
t 1− exp[−�n� t]

�n� t

]
(12)
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The above equation allows for the incremental strain–stress calculation for a time increment
�t, which is then added to the total stress or strain from the previous time step (t−�t). The
incremental form of Equation (12) is expressed as

ft − ft−�t = gt
1

N∑
n=1
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]
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1
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]

=
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{
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n
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1
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(13)

The current incremental strain is obtained by

��t = �t − �t−�t =( �Dt�t − �Dt−�t�t−�t)− (ft − ft−�t)
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Multiaxial formulation

The previous numerical formulation for uniaxial viscoelastic behaviour is now used and gener-
alized to derive multiaxial (3D) constitutive relations for isotropic materials. To that end, the
deviatoric and volumetric strain–stress relations are decoupled. Stress components are chosen
as the independent state variables. The formulation is carried out assuming the total strains
are known for each time increment and the incremental strain rate is constant. This is consis-
tent with many non-linear constitutive models implemented within a displacement-based �nite
element.
The Schapery integral constitutive model is applied twice for the deviatoric and volumetric

strains as:

etij =
1
2
gt
0 J0S

t
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1
2
gt
1
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Where eij, �kk , and Sij are used to denote the deviatoric strains, volumetic strain, and the
deviatoric stress, respectively. The non-linear parameters are assumed to be general polynomial
functions of the e�ective octahedral shear stress. In this study, these functions are taken as

g0 = 1 +
ng0∑
i=1

�i

〈
��
�o

− 1
〉i

; g1 = 1 +
ng1∑
i=1

�i

〈
��
�o

− 1
〉i

g2 = 1 +
ng2∑
i=1

�i

〈
��
�o

− 1
〉i

; a�=1 +
na�∑
i=1

	i

〈
��
�o

− 1
〉i

 t =
t
a�

(17)

where

〈 x〉=
{
x; x¿0

0; x60
(18)

The coe�cients (�i; �i; �i; 	i) can be calibrated from creep and recovery tests. The term �o is
the e�ective stress limit that determines the end of the linear viscoelastic range. J0 and B0
are instantaneous elastic shear and bulk compliances, respectively. The terms �J and �B are
the transient shear and bulk compliances, respectively. It should be noted that the non-linear
parameters can also depend on the mean stress. This has not been considered in this study;
however, the present formulation can be easily generalized to include this functionality. Next,
we further assume that the matrix Poisson ratio, 
, is time independent. This allows expressing
the two integrals in Equations (15) and (16) as a function of one hereditary integral:

�tij = etij +
1
3
�tkk	ij

= (1 + 
)D0gt
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t
ij + (1 + 
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1

∫ t

0
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�
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t
kk)

d�
d�
]

(19)

Comparing the terms in Equations (15) and (16) with those in Equation (19) yield:

J0 = 2(1 + 
)D0 B0 = 3(1− 2
)D0
� J ( )=2(1 + 
)�D( ) �B( )=3(1− 2
)�D( )

(20)

Next, the previous numerical result from the uniaxial integration in Equation (11) is used
to provide recursive integration for Equations (15) and (16), respectively:
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1
2

[
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t
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− 1
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]
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kk − V t
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The terms qt−�t
ij; n and qt−�t

kk; n are the shear and volumetric hereditary integrals for every term in
the Prony series, expressed at the end of previous time increment (t −�t).
Equations (21) and (22) are used with some algebraic manipulations to derive expressions

for the incremental deviatoric and volumetric strains. The results are written as

�etij = etij − et−�t
ij

= �J tSt
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��tkk = �tkk − �t−�t
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= �Bt�t
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kk − 1
3
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Bn(gt
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3
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)
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(
1− exp[−�n� t]

�n� t
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(24)

The above equations can be used to determine the unknown stress increment for a given
strain increment and the previous history state, qt−�t

ij; n and qt−�t
kk; n ; n=1::N . The problem is that

the non-linear stress functions are not known at the current time (t). Therefore, an iterative
method is needed in order to �nd the correct stress states. To that end, Equations (23) and
(24) are further linearized using the following approximations:

gt
� = gt−�t

� ; �=0; 1; 2

� t =� t−�t
(25)
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This allows generating expressions for the approximate or trial incremental stresses:

�St; tr
ij =

1
�J t; tr

[
�etij +

1
2
gt; tr
1

N∑
n=1

Jn(exp[−�n� t]− 1)qt−�t
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]
(26)
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1
3
gt; tr
1

N∑
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Bn(exp[−�n� t]− 1)qt−�t
kk; n

]
(27)

The terms �J t; tr and �Bt; tr have the same form as in Equations (21) and (22), respectively,
but with the non-linear parameters (g0; g1; g2, and a�) are functions of the trial e�ective
stress. Equations (26) and (27) are identical to the linearized relations developed by Lai and
Bakker [6].
In this study an iterative scheme is developed in order to arrive at the correct stress state for

a given strain increment. Otherwise, the strain and time increments may have to be very small
in order to maintain accurate stress updates and minimize the errors due to the approximations
in Equation (25). An iterative scheme is developed by de�ning strain residuals. These residual
equations can be de�ned by using either the incremental strains, Equations (23) and (24), or
the total strains, Equations (21) and (22), respectively. The equations are combined to form
the residual strain errors in the form:
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A Jacobian matrix is formed by taking the derivative of the residual tensor with respect to
the incremental stress as

@Rt
ij

@�t
kl
= �J t	ik	jl +

1
3
( �Bt − �J t)	ij	kl
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Linearization of the residual allows forming a system of linear equation that can be solved
for an updated trial stress that is used iteratively until a satis�ed level of residual norm can
be tolerated. Once convergence is achieved, the hereditary integrals in each prony series are
calculated and stored in order to be used in the next time integration step. These are:
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Next, we can de�ne a consistent tangent compliance by taking the partial derivative of the
incremental strain with respect to the incremental stress at the end of the current time step.
Using Equation (29), one can realize the consistent tangent compliance matrix, Ṡ

t
ijkl, at the

converged state, as

Ṡ
t
ijkl ≡

@��tij
@��t

kl
=

@Rt
ij

@��t
kl
; ‖Rt

ij‖→ 0 (32)
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Table I. Elastic compliance and Prony series coe�-
cients for the PMMA polymer.

n �n (s−1) Dn × 10−6 (MPa−1)
1 1 23.6358
2 10−1 5.6602
3 10−2 14.8405
4 10−3 18.8848
5 10−4 28.5848
6 10−5 40.0569
7 10−6 60.4235
8 10−7 79.6477
9 10−8 162.1790

D0 270:9× 10−6 (MPa−1)

NUMERICAL IMPLEMENTATION AND VERIFICATION

The proposed numerical constitutive model is implemented within a displacement-based FE
code. The material subroutine (UMAT) of the ABAQUS FE code [16] is used for this purpose.
The 3D-viscoelastic response is generated at each material point (Gaussian integration points).
Calibration and veri�cation of the proposed numerical model are performed with test results on
glassy amorphous polymer material (PMMA) reported by Lai and Bakker [6]. The calibrated
elastic compliance and Prony parameters are given in Table I. The polynomial stress-dependent
non-linear functions in the Schapery equation are determined from the experimental test, as
shown in Figure 1. Fourth-order polynomials, Equation (17) are su�cient in calibrating the
non-linear stress-dependent parameters. The e�ective stress (�o) that determines the limit of
the linear response is 20MPa. The polynomial coe�cients are calibrated from the experimental
data where the range of the e�ective stress is 0–40 MPa. The accuracy of these polynomial
functions is within this range; beyond this stress level the polynomial functions may not
represent the actual behaviour of the material. The calibrated polynomial coe�cients for the
four non-linear parameters are shown in Figure 1.
In order to simulate a stress step function in a creep test, a parametric study is carried

to examine the e�ect of using di�erent initial time increments on the instantaneous material
response with varying stress levels. This is important in order to determine the range of initial
time increment that can be used to simulate a Heaviside step function. Total strain values
are reported for di�erent time-increment sizes and compared with the analytical solution for
several load levels (10–40 MPa), as shown in Figure 2. The initial time increment size can
a�ect the accuracy of the results and a large time increment may lead to a diverged solution.
The divergence from the elastic response occurs either with increasing applied stress levels or
with large initial time increments. As a result, it is concluded that an initial time increment
can be chosen in the range: 10−5 –10−2 s in order to represent an instantaneous response for
this material.
A second parametric study is performed to examine the constitutive-level strain residuals

generated during the iterations of a given time increment. Figures 3 and 4 show the strain
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Figure 1. Non-linear stress-dependent parameters in the Schapery’s equations for PMMA polymer.

residuals during the iteration process for creep analyses under two applied stresses of 35 and
40MPa, respectively. It is seen from the initial residuals that using a linearized stress-update
alone usually leads to a large residual strain, an error of more than 5% in our case. The
proposed iterative procedure is needed in order to minimize this error. Similar convergence
behaviour is shown in Figure 4 for the analysis with applied stress of 40 MPa. Convergence
problems occurred during or at the beginning of the cases where applied stresses are equal or
exceed the 40MPa. This is because the non-linear functions were calibrated up to the 40MPa
stress magnitude, as shown in Figure 1. Convergence is also not guaranteed beyond this stress
level because some of the non-linear functions have rapidly changing values and approach
asymptotic levels. This will slow convergence and often lead to divergence.
The experimental data from Lai and Bakker [6] are now used to verify the proposed

numerical modelling algorithm. A series of tensile creep test for 30min followed by recovery
test for 2 h were conducted under several stress level (15–35 MPa) at room temperature. It
was shown that the linear response occurs below 20MPa. Predicted creep and recovery curves
are shown in Figures 5 and 6, respectively. The numerical results, solid lines, match very well
the test results, dashed lines. Figure 7 illustrates the same results as those in Figure 5 with
added results from creep simulations using recursive-only model. This is done to compare
the proposed recursive-iterative model with the results using a predictor-only scheme at the
material level. Both cases include the same correction scheme at the element level. It is
interesting to note that the ‘global’ iterative residual correction is not su�cient to reduce
the error at the element level with increasing applied stress. Another numerical prediction of
uniaxial response is also performed. Two-step creep loading for PMMA polymer is shown in
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Figure 8. The prediction from the proposed numerical method is in good agreement with the
experimental data.
The application of the proposed numerical algorithm for multiaxial response is presented

using a FE model of a notched plate specimen under plane stress condition. The con�gura-
tion of the rectangular plate follows the one of Lai and Bakker [6] with the dimensions of
800 mm× 400 mm and a hole radius of 20 mm. Owing to the double symmetric condition,
only a quarter of the plate is modelled. A 20-node brick element with reduced integration is
used for the analyses. One element is used through the thickness of 1 mm.
Two analyses were performed for the notched plate. The �rst analysis is a stress relaxation

type where the plate is subjected to a uniform remote strain of 0:36% for duration of 106 s.
Figure 9 shows the contours of strain error and number of iterations to convergence at various
time steps (10−5, 20, 1020, and 106 s). Initial residual strain at di�erent times can have
a magnitude of 0:15% or more. This is caused by the linearized approximation. As time
increases, the accumulation of error at the converged stress states also increases. However,
the iterative algorithm accomplishes the correct stress state and reduces the magnitude of strain
error below 0:1% within 8 or less iterations. The stress relaxation response at three di�erent
locations is shown in Figure 10. At the edge of the hole, the stress magnitude is 37MPa and
a high non-linear response is shown. While at the distance away from the edge, the stresses
are in the linear viscoelastic range. Therefore, the residual strains and number of iterations
are less than those at the other locations, as seen in Figure 9. Figure 11 shows the spatial
distribution of the axial-stress relaxation along the symmetry line, for short, intermediate, and
long times.
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Figure 9. Contours of residual strain and number of iteration for notched
plate FE model under stress relaxation.

The second FE analysis is a creep type where the notched plate is subjected to a uniform
remote stress of 13:5MPa for duration of 106 s. The stress distributions along the mid-section
of the plate, at times 10−5, 1020, and 106 s, are shown in Figure 12. It is shown that the stress
distribution changes with time when the large non-linearity occurs. While in the relatively
low non-linear or linear visoelastic range, the stress distribution does not change with time.
The contours of strain error and number of iterations at various times (10−5, 20, 1020, and
106 s) are shown in Figure 13. The linearized approximation causes large residual strain, as
indicated by the large initial residual strain (0:15% or more). The iterative procedure reduces
the magnitude of strain error until it reaches a norm value below the 0:1% level. The creep
strain response at three di�erent locations is shown in Figure 14. The maximum strain occurs
at the hole edge. Figure 15 shows the spatial distribution of the axial creep strain along the
symmetry line, for short, intermediate, and long times.

CONCLUSIONS

A computational method is developed for the numerical integration of the Schapery-type
non-linear viscoelastic material models with stress-based state variables. Previously developed
recursive integration along with an iterative scheme to satisfy the constitutive residuals are
shown as e�ective in modelling the viscoelastic behaviour of isotropic materials. The algorithm
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tangent sti�ness is easily identi�ed. Numerical examples are presented and compared with
the experimental data of Lai and Bakker [6]. The constitutive model is implemented in a
displacement-based FE code and results from numerical simulations are reported.
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