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Introduction

Salt rocks are being considered as potential recipients for geologic disposal of

nuclear waste because of their favourable hydraulic and mechanical properties.

In essence, processes controlling the behaviour of salt rocks are similar to those

occurring in other media, except that they take place at unusually fast rates.

The high solubility of salt in water is one of the causes of these high rates. In

fact, creep deformation of wet salts takes place much faster than under dry

conditions. T his can be explained by means of a mechanism of creep

deformation based on salt dissolution, molecular diffusion and precipitation at

the pore scale caused by stress concentration[1,2].

The high hygroscopic character of salt facilitates condensation of water in

the mineral surface which in turn causes dissolution. These phase change

processes are associated with release or uptake of energy. Another phenomenon

that can occur in saline materials is the migration of brine inclusions through

the crystalline structure[3,4]. T hese inclusions may disappear in g rain

boundaries or come into existence in contacts where brine films are entrapped.

Therefore, porosity may undergo changes caused not only by deformation but

also due to dissolution/precipitation or, perhaps with a lesser influence, by brine

inclusions production/annihilation.

T he complex behaviour of saline media requires new theoretical and

numerical developments. The study of the basic mechanisms has revealed that

coupling between thermal, hydraulic and mechanical problems may be required

in some cases. We have developed[5] the governing equations for non-

isothermal multiphase flow of brine and gas in deformable saline media. These

include mass balance equations for the species in the system (salt, water and
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air), energy balance equation and stress equilibrium equation. Equilibrium

restrictions complete the theoretical formulation.

T his paper presents a numerical formulation required for solving this

complex problem in a practical way. An example of its application is also

included.

Problem

A  porous medium composed of salt grains, brine and air will be studied.

Crushed fills, manufactured bricks or the host rock are all media that

correspond to this composition. Thermal, hydraulic and mechanical aspects

should be considered, including coupling between them in all possible

directions. As illustrated in Figure 1, the problem is formulated in a multiphase

and multispecies approach. The three phases are:

(1) solid phase (s): composed of crystalline salt with brine inclusions;

(2) liquid phase (l): saturated dissolution of salt in water; air dissolved is

also considered; and

(3) gas phase (g): mixture of dry air and water vapour.

The three species are:

(1) salt (h): sodium chloride, as solid or dissolved in the liquid phase;

(2) water (w): as liquid in brine or evaporated in the gaseous phase; and

(3) air (a): dry air, as gas or dissolved in the liquid phase.

The following relevant assumptions and aspects are taken into account in the

formulation of the problem. 

Figure 1.
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• Uniform salt composition. Solubility controlled dissolution /precipitation

is the only chemical process taken into account.

• Fluid inclusions are filled with saturated brine, gas is not allowed in the

inclusions.

• Dry air is considered a single species and is the main component of the

gaseous phase. Henry’s law is used to express equilibrium of dissolved

air.

• Thermal equilibrium between phases is assumed. This means that the

three phases are at the same temperature.

• Vapour concentration is in equilibrium with the liquid phase, the

psychrometric law expresses its concentration. Correction for the

influence of dissolved salt is included because Raoult’s law is not correct

for brines.

• State variables (also called unknowns in the text) are: solid velocity, u
.

(three spatial directions); liquid pressure, P
l
; gas pressure, P

g
; and

temperature, T . Though less relevant, mass fraction of water in the solid

phase ωw
s

is used when inclusions are considered.

• Balance of momentum for the medium as a whole is reduced to the

equation of stress equilibrium together with a mechanical constitutive

model to relate stresses with strains. Strains are defined in terms of

displacements.

• Small strains and small strain rates are assumed for solid deformation.

A dvective terms due to solid displacement are neglected after the

formulation is transformed in terms of material derivatives (in fact,

material derivatives are approximated as eulerian time derivatives). In

this way, volumetric strain is considered.

• Balance of momentum for dissolved species and for fluid phases are

reduced to constitutive equations (Fick’s law and Darcy’s law).

• Physical parameters in constitutive laws are a function of salt

concentration, among other variables. For example: concentration of

vapour under planar surface (in psychrometric law), surface tension (in

retention curve), dynamic viscosity (in Darcy’s law), are strongly

dependent on salt concentration.

Governing equations

The governing equations for non-isothermal multiphase flow of brine and gas

through porous deformable saline media are presented by Olivella et al.[5,6]. A

detailed derivation is given there, and only a brief description is included in this

paper.

The equations that govern this problem can be categorized into four main

groups. These are: balance equations, constitutive equations, equilibrium

relationships and definition constraints. Equations for mass balance were
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established following the compositional approach. That is, mass balance is

performed for water, air and salt species instead of using solid, liquid and gas

phases. An equation for balance of energy is established for the medium as a

whole. The equation of momentum balance for the porous medium is reduced to

that of stress equilibrium.

Among the constitutive aspects, we have devoted more attention to the study

of the mechanical behaviour of porous salt aggregates because it is a poorly

known field. A  model which includes creep behaviour has been

developed[1,7,8]. This was obtained by building on the theoretical ideas and

experimental work carried out by Spiers et al.[2].

Balance equations

T he compositional approach is adopted to establish the mass balance

equations. Volumetric mass of a species in a phase (e.g. salt in liquid phase θh
l
)

is the product of the mass fraction of that species ωh
l
) and the bulk density of the

phase (ρ
l
), i.e. θ h

l
=  ωh

l
ρ

l
. The total mass flux of a species in a phase (e.g. flux

of salt present in liquid phase jh
l
) is, in general, the sum of three terms:

• the non-advective flux: ih
l
, i.e. diffusive/dispersive;

• the advective flux caused by fluid motion: θ h
l

q
l
, where q

l
is the Darcy’s

flux; and

• the advective flux caused by solid motion: φ S
l
θ h

l
u
.

where u
.
is the vector

of solid velocities, S
l
is the volumetric fraction of pores occupied by the

liquid phase and φ is porosity.

The sum of the non-advective and fluid motion advective fluxes is separated

from the total flux in order to simplify algebraic equations. This flux is relative

to the solid phase and is denoted by j' h
l
. It corresponds to the total flux minus

the advective part caused by solid motion. W hen solid deformation is

negligible, then j' = j. The relative contribution of each flux term to the total

flux is not always the same. For instance, diffusion will become more important

if advection is small.

Mass balance of salt

Mass balance of salt present in the medium is written as:

(1)

where θ h
s and θ h

l
are the mass of salt per unit volume of solid and liquid phase,

jh
s

and jh
l

are the salt fluxes of salt as present in the solid and liquid phases,

respectively, and f h is an external supply of salt. From this equation, an

expression for porosity variation was obtained as:
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(2)

where j' h
s
and j' h

i
are fluxes with respect to the solid (note that the advective part

associated with solid motion has been separated). The material derivative with

respect to the solid has been used and its definition is:

(3)

Equation (2) expresses the variation of porosity caused by processes considered

in the salt mass balance. Porosity changes are due to volumetric deformation,

dissolution/precipitation and inclusion production/annihilation. The reader

may notice that equation (2) reduces to the balance of solid phase if dissolution

and inclusions are not permitted, i.e. D
s
φ /Dt =  (1–φ) ∇ .u

.
, which expresses the

variation of porosity caused only by volumetric deformation.

Mass balance of water

Water is present in all three phases. T he total mass balance of water is

expressed as:

(4)

where fw is an external supply of water. An internal production term is not

included because the total mass balance inside the medium is performed. The

use of the material derivative (equation 3) leads to:

(5)

The final objective is to find the unknowns from the governing equations.

Therefore, the dependent variables will have to be related to the unknowns in

some way. For example, degree of saturation will be computed using a retention

curve which should express it in terms of temperature, liquid pressure and gas

pressure.
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Porosity appears in equation (5) not only as a coefficient, but also in a term

involving its variation caused by different processes. It is also hidden in

variables that depend on porosity (e.g. intrinsic permeability). The way of

expressing the derivative term as a function of the state variables is via the salt

mass balance equation (equation 2). This allows the influence of porosity

variation to be taken into account correctly in the balance equation for water.

It has to be noted that in equation (5) the material derivatives can be

approximated as eulerian if the assumption of small strain rate is performed

while the volumetric change (porosity derivative and volumetric strain) ∇ . u
.

is

not neglected. T his is the classical way of obtaining the coupled flow-

deformation equations.

Mass balance of air

Once the other mass balance equations have been written it is straightforward

to obtain the mass balance of air taking into account that air is the main

component of the gas phase and that it may be also present as dissolved air in

the liquid phase. It is an equation similar to that of water balance, with the

exception that air is not allowed in the solid phase (i.e. θ a
s

=  0). This assumption

has been adopted because it is rare to find gas in the fluid inclusions[3].

Mass balance of water in inclusions

The terms concerning the solid phase in the mass balance of the total water are

used to obtain this equation. Since this equation balances a fraction of the water

present in the medium, the phase change term is explicit. This specific problem

has been studied by Ratigan[9]. The approach presented by this author was

adopted for the terms related to inclusion migration.

Momentum balance for the medium

The momentum balance reduces to the equilibrium of stresses if the inertial

terms are neglected:

(6)

where σ is the stress tensor and b is the vector of body forces. Details of the

mechanical constitutive model can be found in[1,6,7].

Internal energy balance for the medium

The equation for internal energy balance for the porous medium is established,

taking into account the internal energy in each phase: (E
s
, E

l
, E

g
):

(7)
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where i
c

is energy flux due to conduction through the porous medium, the other

fluxes (j
Es

, j
El

, j
Eg

) are advective fluxes of energy caused by mass motions and

f E is an internal/external energy supply. In this case this term accounts, for

instance, for energy dissipation due to medium deformation which is not

explicit because it is negligible in most cases.

The use of the material derivative (equation 3) allows an equation formally

similar to equation (5) to be obtained. The reason for the similarity is that both

water and internal energy are considered present in the three phases. For space

reasons further developments are not included and may be found in[5,6].

Constitutive equations and equilibrium restrictions

Associated with this formulation there is a set of necessary constitutive and

equilibrium laws. Table I is a summary of the constitutive laws and equilibrium

restrictions that should be incorporated in the general formulation. T he

dependent variables that are computed using each of the laws are also included.

As stated above the governing equations for non-isothermal multiphase flow of

brine and gas through porous deformable saline media have been established

by Olivella et al.[5]. A detailed derivation is presented there.

The theoretical work briefly presented above has been used as a basis for the

development of a computer program called CODE_BRIGHT, which stands for

COupled DEformation, BRIne, Gas and Heat Transport problems.

Numerical approach used in the program CODE_BRIGHT

T he resulting system of PDEs (partial differential equations) is solved

numerically. The numerical approach can be viewed as divided into two parts:

Equation Variable name Variable

Constitutive equations

Darcy’s law Liquid and gas advective flux q
l
, q

g

Fick’s law Vapour and salt non-advective flux iw
g
, ih

l

Inclusion migration law Brine inclusions non-advective flux iw
s

Fourier’s law Conductive heat flux i
c

Retention curve Liquid phase degree of saturation S
l

Mechanical constitutive model Stress tensor σ
Phase density Liquid density ρ

l

Gases law Gas density ρ
g

Equilibrium restrictions

Solubility Salt dissolved mass fraction ωh
l

Henry’s law Air dissolved mass fraction ωa
l

Psychrometric law Vapour mass fraction ωw
g

Table I.

Constitutive equations 

and equilibrium 

restrictions
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spatial and temporal discretizations. The finite element method is used for the

spatial discretization while finite differences are used for the temporal

discretization. The discretization in time is linear and the implicit scheme uses

two intermediate points, tk+ ε and tk+ θ between the initial tk and final tk+ 1 times.

Finally, since the problem presented here is non-linear, the Newton-Raphson

method was adopted to find an iterative scheme.

Once the salt balance is substituted in the other balance equations,

computation of porosity at an intermediate point is not necessary because its

variation is expected to occur at slow rates. For this reason, porosity is

integrated explicitly, that is, the values at tk are used. Since the variation of

porosity is expressed by the salt mass balance equation, this assumption leads

also to some advantages for the iterative scheme.

A fter the spatial discretization of the partial differential equations, the

residuals that are obtained can be written (for one finite element) as:

(8a)

where r are the residuals, d
.

are the storage or accumulation terms, a are the

conductance terms, and b are the sink/source terms and boundary conditions.

After time discretization and using a more compact form:

(8b)

where k is the time step index, X =  ((u
x
, u

y
, u

z
, P

l
, P

g
, T , ωw

s
)
1
, …, (u

x
, u

y
, u

z
, P

l
,

P
g
, T , ωw

s
)
n
) is the vector of unknowns (i.e. a maximum of seven degrees of

freedom per node), and A represents the conductance matrix. A  detailed

description of this residual (equation 8) is included in the Appendix.

The Newton-Raphson scheme of solution for this non-linear system of AEs

is:

(9)

where l indicates iteration.

In the following subsections we will explain in detail how each term is

handled in the program CODE_BRIGHT.



Coupled

analysis of

saline media

95

General aspects

In the present approach, we use the standard Galerkin method but we introduce

some variations in order to facilitate computations. General aspects related to

numerical solution of hydrogeological problems can be found in[10].

As shown in the previous section, in the mass and energy balance equations

the following terms may be distinguished:

• Storage terms. These terms represent the variation of mass or energy

content and therefore, they are calculated by means of variables such as

degree of saturation, density, porosity, mass fraction and specific energy.

• Advective fluxes. The advective fluxes caused by motion of fluids are

computed using Darcy’s law and, except for the coefficients, they are

explicit in terms of pressure gradients.

• Non-advective fluxes. These terms, computed through Fick’s law, are

proportional to gradients of mass fractions which do not belong to the

set of unknowns. Fourier’s law is used for the conductive heat flux and it

expresses proportionality to temperature gradients.

• Volumetric strain terms. In fact, these terms are also storage terms. They

are proportional to ∇ . u
.

which is equivalent to the volumetric strain

rate.

• Sink/source terms.

In saline materials, non-linear creep behaviour takes place. This implies that the

mechanical  problem becomes non-linear. Coupling with hydraulic and thermal

problems occurs in different  ways (for instance, thermal expansion and

thermal dependence of creep parameters). Another difficulty concerning the

mechanical problem is related to the behaviour of nearly-incompressible

materials. In this regard, element locking appears when analysing creep

deformation of rock salts. This difficulty has received the attention of several

researchers. A general discussion can be found in[11] while techniques for non-

linear problems can be found in[12].

Solution of the salt balance equation to obtain porosity evolution requires a

specific algorithm if porosity is considered a function of time and space but

with constant values over each finite element.

In order to explain the treatment of the different terms and equations the

following notation is introduced:

• node i: node in a finite element mesh.

• e
1
, e

2
, …, e

m
: elements that contain node i, i.e. a cell centred in node i is

composed by a fraction of these elements. m is variable from node to

node and it is not related to the number of nodes per element (see Figure 2).

• nem
: number of nodes in element e

m
. For example, nem

=  3 for triangles,

nem
=  4 for quadrilaterals, nem

=  4 for tetrahedrons, etc.
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• (.)k: the quantity is computed at time k of the temporal discretization. The

same for k +  1, k +  ε or k + θ.

• (.)e
m

: the quantity is computed in element e
m

. This means at the centre of

the element or, in other words, using the average of nodal unknowns.

• (.)
i
: the quantity is computed in node i as a function of the unknowns in

that node.

• (.)i,e
m

: the quantity is computed in node i but with the material

properties corresponding to element e
m

.

• Vem
: volume of element e

m
.

• ξi: shape function for node i.

Treatment of storage terms

In this subsection we refer to terms not related to volumetric strain or porosity

variation which are included in subsequent subsections.

The storage or accumulation terms are computed in a mass conservative

approach[13-15]. T he conservative approach dicretizes directly the

accumulation terms while the capacitative approach uses the chain rule to

transform time derivatives in terms of the unknowns. Milly[15] proposes

modifications of the the capacitative approach in order to conserve mass. It

seems reasonable that the mass conservative approach should give a more

accurate solution than the capacitative approach.

Mass conservation in time is achieved if the time derivatives are directly

approximated by a finite difference in time. Finite element method for the space

discretization conserves mass. This latter affirmation is easily proven by

adding up all nodal equations. Flow terms cancel out (due to the definition of the

shape functions) and the resulting equation represents mass accumulation in

the entire domain. Milly[15] concludes that if mass conservation takes place,

only the distribution of moisture in the medium is affected by the discretization

Figure 2.

Representation of a cell

in a finite element mesh

e2

e1

em

i
Cell associated to node i

j
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(spatial and temporal) and iteration. In other words, the mass balance is

guaranteed independently of discretization and iteration.

On the other hand, Celia et al.[14] demonstrate that if the Picard iterative

scheme is used the same computational effort is necessary for the conservative

and the capacitative approaches. This statement cannot be made if the Newton-

Raphson method is used because in such case the conservative approach is

much more economical per iteration. Celia et al.[14] also point out that

conservation of mass is insufficient to guarantee good numerical solutions and

oscillations can also appear.

Several types of formulation have been compared by Galarza et al.[16] for the

unsaturated flow problem considering seven cases of study. The comparison

in terms of pressures indicate a consistently better performance of

the capacitative approach for some cases, and similar accuracy in other cases.

T his is in agreement with the idea that although mass is conserved, the

distribution of water in the medium may be not as good as with another

scheme.

In spite of the latter findings, we have opted for the mass conservative

approach because the capacitative method requires computing derivatives of

the accumulation time derivatives with respect to unknowns. If the chain rule is

used to split the accumulation time derivatives in terms of the unknowns

(temperature, liquid pressure and gas pressure), the use of the Newton-Raphson

method leads to second derivatives (also crossed, for example with respect to

temperature and pressure) of the non-linear terms. This results in a very

uneconomical scheme.

Since the differences in accuracy are not very strong, the use of a much more

economical but slightly less accurate scheme can produce a more powerful

approach because a more refined mesh can improve the solution.

A typical storage term is (from equation 5) the variation of water in the gas

phase:

(10)

where the material derivative with respect to the solid is approximated as an

eulerian derivative because of the small strain rate assumption. The weighted

residual method is applied to the governing equations and, for node i, (10) is

transformed into:

(11)

where ξi is the shape function for node i.
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At this point of the development we assume that porosity is defined element-

wise. An elementwise variable[17] is space-constant over every element, but

different from element to element. We will use φk
em

for porosity in element e
m

at

time k. Similarly, a cell-wise variable[17] is space constant over the cell centred

in the node. It would be very easy to compute (11) if the time derivative could be

computed in a cell-wise way, because one value would be sufficient for node i

and (11) would be transformed into a very simplified form. However, the degree

of saturation is not only a function of nodal unknowns but also of material

properties such as porosity or retention parameters. The latter must be defined

element-wise (for instance, this is absolutely necessary if a low porosity rock is

in contact with a porous medium). To overcome this difficulty, the time

derivative in (11) is computed from nodal unknowns but with material

properties of every element in contact with the node. Hence m values are

necessary in node i. Obviously if part of this time derivative is not material

dependent (density and concentration are only function of temperature and

pressure) then the corresponding variables are only computed in the node. This

leads to a kind of modified cell-wise variables.

Making use of these approximations, we finally obtain, for example for any

integral in (11):

(12)

where a simple finite difference is used for the time discretization. T his

approximation allows us to make the space integration independently of the

physical variables. T herefore, computation of geometrical coefficients is

necessary only once for a given finite element mesh. The integral of the shape

function over an element is equal to V em
/nem

for the case of linear shape

functions. T hese geometrical coefficients are also called influence

coefficients[18]. Without loss of generality, they can be computed either

analytically or numerically.

Finally, it should be pointed out that this formulation gives rise to a

concentrated scheme, which means that the storage term in node i is only a

function of unknowns in node i. T his is clearly advantageous from a

computational point of view[10].

Treatment of advective terms

The weighted residual method is applied to each balance equation. Then

Green’s theorem allows one to reduce the order of the derivatives and the

divergence of flows is transformed into two terms, one of them with the

gradient of the shape function. Hence, after that, in the water balance equation

of node i we find, the following advective term:
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(13)

where the subscript j indicates summation over element nodes. P
g

is a node-

wise[17] variable, which means that it is defined by its nodal values and

interpolated on the elements using the shape functions.

Generalized Darcy’s law has been used to compute the flux of the gas phase

q
g
[19]:

(14)

where k is the tensor of intrinsic permeability, krg is the relative permeability of

the gas phase, µ
g

is the dynamic viscosity of gas and g is a vector of gravity

forces.

For node i the volume v over which the integrals in (13) have to be performed

is composed by the elements e
1
, e

2
, … , e

m
. In this way, the advective terms

(equation 13) represent the lateral mass fluxes to cell associated to node i from

contiguous cells. The pressure term is considered first. The contribution of

element e
m

to the total lateral flux towards node i is approximated as:

(15)

where three different intermediate points may be used, one for the pressure

(k +  θ), another for the intrinsic permeability (k) and yet another for the

remaining coefficients (k +  ε) including the relative permeability. The intrinsic

permeability remains in the integral because it is a tensorial quantity, but if its

product with the shape function gradients is split, then its coefficients can be

taken off from the integral. It should be noticed that intrinsic permeability is

handled explicitly (i.e. evaluated at time k) because it is a function of porosity

structure, which we assume to vary slowly. Since all physical variables can

appear outside the integral because they are considered element-wise, the

integrals of products of shape function gradients are also considered influence

coefficients[18]. They have to be computed for each element, but only once for a

given mesh.
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A similar approximation is used for the gravity term in (13). Evaluation of

density element-wise is convenient in order to balance correctly pressure

gradients with gravity forces at element level.

Treatment of non-advective terms (diffusive/dispersive)

In the balance equation of node i we find, typically, the following diffusive term:

(16)

where the subscript j indicates summation over the nodes. ωw
g

is considered a

node-wise variable. Fick’s law has been used to compute the diffusive flux:

(17)

where τ is a tortuosity parameter, Dw
g is the molecular diffusion coefficient

which is a function of temperature and gas pressure and I is the identity matrix.

The contribution of element e
m

to the total lateral diffusive flux towards node

i is approximated as:

(18)

where various time intermediate points have been used similarly to what was

explained for the advective terms.

The treatment of these diffusive terms also takes advantage of the fact that

the Newton-Raphson method is used to establish the iterative scheme. When

this method is used, it is not necessary to apply the chain rule to have the

gradients of (ωw
g
) in terms of the unknowns. In fact, in the classical approach of

multiphase problems[20], the diffusive fluxes (equation 17) are split in terms of

gradients of temperature and pressure, and then the numerical scheme is

sought. We directly interpolate mass fractions (e.g. ωw
g) and compute gradients.

In this way the Newton-Raphson solution requires only first derivatives of mass

fractions (ωw
g
). Second derivatives are required if Newton-Raphson is used in the

classical approach.

The dispersive term is treated in a similar way as the diffusive. In this case

dispersivities are element-wise dependent variables. In principle, the liquid and

gas fluxes, used to compute the dispersion tensor, are also computed element-

wise and at the intermediate time k +  ε.

Treatment of volumetric strain terms

If the equation of balance of salt (equation (2)) is substituted in all other balance

equations, the variations of porosity are not explicit in them. In this way

porosity only appears as parameter or coefficient and terms of volumetric strain
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remain in the balance equations. In equation for node i these terms are of the

type:

(19)

where α
l
is a coefficient defined in terms of θw

l, Sl
, etc., u

.
is the vector of solid

velocities, mt =  (1, 1, 1, 0, 0, 0) is an auxiliary vector and Β is the matrix used in

the finite element approach for the mechanical problem (see section 4.7). The

coefficients of Β are gradients of shape functions[11]. In equation 19, u
.

is

transformed from a continuous vectorial function to a nodal discrete vectorial

function, although the same symbol is kept (i.e. u
x

=  ξ
j
u

xj
, u

y
=  ξ

j
u

yj
, …, where

j indicates summation).

Following the same methodology as for the other terms we have

approximated the integral given above. The contribution of element e
m

to cell i

is:

(20)

where j indicates summation over element nodes, u is the vector of nodal

displacements and Β
j
is the j-submatrix of Β.

Treatment of porosity variations

It has been mentioned that the variations of porosity are obtained from the

equation of salt balance (equation 2). Variation of porosity is mainly caused by

volumetric deformation, dissolution/precipitation and inclusion production/

annihilation. This equation is not used to solve an independent variable. It is an

auxiliary equation applied in two ways: the first one is the substitution of

porosity variations in the other balance equations eliminating in this manner

the time derivative of porosity; and the second is the computation of porosity

changes.

It must be noticed that in mechanics of porous materials, porosity changes

usually are computed in every element independently of the neighbouring

elements. The reason is that volumetric strain can be computed at any point of

the element once the displacements of the nodes are known. Here, because other

processes are considered, this simple method cannot be used. It is not

straightforward to decide how to compute porosity changes when mass fluxes

of dissolved solid take place. Equation (2) is written as:

(21)
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where the material derivatives are approximated as eulerian, owing to the

assumption of small strain rate. All terms in the right side of equation (2) have

been included in b.

T he methodology proposed here is based on concepts similar to those

presented above. Some terms that appear in equation (2) are lateral mass fluxes

and it is necessary to recover the cell concept. In order to do that, the weighted

residual method is also applied. The equation for node i is:

(22)

where b
i
is the right hand side of equation for node i. This term includes several

types of terms and once the problem is solved all them are known in this

integrated form. However, this equation is nodal while porosity was defined as

an element-wise variable. Hence the left hand side is decomposed into:

(23)

i.e. the contribution of the elements to cell i. The following step is the extraction

of the physical parameters from the integrals and the approximation of the time

derivatives:

(24)

Finally, porosity variations have to be obtained at the elements while the

equations are nodal. Obviously different strategies can be used to do that. One

would be to decompose b
i
in some fractions and to assign them to the elements

that constitute cell i. This has to be carried out for all cells and, therefore the

element receives contribution from the cells associated to its nodes. Research is

in progress in this topic of porosity variation caused by dissolution/

precipitation phenomena[21].

Treatment of mechanical equilibrium equations

The weighted residual method is applied to the stress equilibrium equation (6)

followed by the Green’s theorem. This leads to the equation[11]:

(25)

where r (σ k+ 1) represents the residual corresponding to the mechanical problem

and σ k+ 1 is the stress vector. Matrix B (composed by gradients of shape

functions) is defined in such a way that stress is a vector and not a tensor. The

body force terms and the boundary traction terms are represented together by

f k+ 1. 
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The constitutive model relates stresses with strains, with fluid pressures and

with temperatures at a point in the medium. If elasticity, creep deformation and

initial strain terms are included, the total strain rate is decomposed in the

following way:

(26)

De is the elasticity matrix, g is a non-linear creep function (expressions for this

function have been developed in[1,7]), a
l
, a

g
, β are coefficients for volumetric

elastic dilation and the dot indicates time derivative. σ' is the net stress defined

as σ' =  σ +  mP
g
. On the other hand, strain will be written in terms of

displacements because ε =  Bu where u is the vector of nodal displacements.

The last equation (26) must satisfy at every point in the medium. Space and

time discretization lead to:

(27)

where h represents the residual of stresses at every point. If stress could be

obtained in an explicit way from (27), it would be simply substituted in (25).

However, the creep terms are non-linear and a substitution of the differential or

incremental forms is necessary. This is achieved by differentiation of (25) and

(27), and subsequent substitution of (27) in (25). The contribution of element e
m

to node i is, for the stiffness matrix, of the type:

(28a)

(28b)

where j indicates summation, l is the iteration index, and D* is a matrix that

modifies the elastic one. The product of this matrix and the elastic one can be

interpreted as a tangent matrix.

Another example is the coupling terms between mechanical and flow is

equations, for instance, the coupling with temperature: 
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(29)

For the mechanical problem, the approximations that should be made are

different from the ones used for flow problems. According to the numerical

approximations proposed for the flow problems (hydraulic and thermal), we

would tend to use element-wise matrices. However, the mechanical problem has

some peculiarities which do not allow this kind of simplified treatment.

First, linear triangular elements (the simplest element in two-dimensional

analyses), which have been proven to be very adequate for flow problems,

should be avoided for mechanical problems. This is because if the medium is

nearly incompressible (creep of rock salt takes place with very small volumetric

deformation), locking takes place (not all displacements are permitted due to

element restrictions). Second, linear quadrilateral elements with element-wise

variables (this is equivalent to one integration point) lead to hour-glassing

(uncontrolled displacement modes appear). In order to overcome these

difficulties, the selective integration (B-bar) method is used. It consists of using

a modified form of B which implies that the volumetric part of deformation and

the deviatoric part are integrated with different order of numerical

integration[12]. For linear quadrilateral elements, four integration points are

used to integrate the deviatoric part while one is used for volumetric strain

terms. Although this approximation is different from what is proposed for the

flow problem, element-wise variables or parameters are maintained (porosity,

saturation, etc.). Stress is not element-wise and it must be computed at the

integration points.

Boundary conditions

Application of Green’s theorem to the divergence term (both in the balance or

equilibrium of stresses equations) produces terms which represent fluxes or

stresses across or on the boundaries. These terms are substituted by nodal flow

rates or forces in the discretized form of the equations.

For the mechanical problem, the classical approach is followed to impose

external forces. Imposing displacement is made by means of a Cauchy type

boundary condition, i.e. a force computed as the stiffness of a spring times the

displacement increment.

The boundary conditions for balance equations are incorporated by means

the simple addition of nodal flow rates. For instance the mass flow rate of water

as a component of gas phase (i.e. vapour) is:

(30)

where the superscript ( )° stands for prescribed values.

This general form of boundary condition, includes three terms. The first is

the mass inflow or outflow that takes place when a flow rate of gas ( jo
g) is

prescribed. The second term is the mass inflow or outflow that takes place when
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gas phase pressure (Po
g) is prescribed at a node. The coefficient γ

g
is a leakage

coefficient, i.e. a parameter that allows a boundary condition of the Cauchy

type. The third term is the mass inflow or outflow that takes place when vapour

mass fraction is prescribed at a node. This term naturally comes from the non-

advective flux (Fick’s law).

Mass fraction and density prescribed values are only required when inflow

takes place. For outflow the values in the medium are considered. In this latter

case, the third term is zero because the vapour concentration outside the

medium should be equal to the concentration inside.

For the energy balance equation, the boundary condition has the general

form:

(31)

The first term is a prescribed energy inflow or outflow. The second term is a

Cauchy boundary condition which may be used to prescribe temperature. The

other terms are energy fluxes induced by the boundary conditions for mass, i.e.

essentially are composed by the product of the specific internal energy of the

species and the mass flow that takes place. T he last term is due to the

substitution of equation (2) in the energy balance equation. The value of the

internal energy in these terms is a constant value for inflow and the value

computed in the medium for outflow.

Verification/validation of CODE_BRIGHT

Applications performed

The program has been verified and validated in a number of cases. Several

analyses have been carried out up to the present. For space reasons, it is not

possible to include all them. These can be summarized as:

• Heat or water flow in an infinite medium from a source at constant rate.

Comparison with an analytical solution.

• Gas flow from a borehole. Comparison with experimental results and

numerical solution obtained with another program.

• Creep of a thick walled spherical region at non-uniform temperature.

Comparison with analytical and numerical solutions.

• Two-phase flow of water and oil. Buckley-Leverett analytical solution.

• Steady state heat flow from buried pipelines. Comparison with analytical

solution.

• Thermal-convection in a saturated medium. Comparison with analytical

solutions.

Other applications that have been performed are more qualitative because no

analytical solution is available for complex coupled and non-linear cases. Hence,
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in such cases, only validation is possible when experimental results are

available.

Of course the process of verification and validation is never fully completed.

In order to illustrate the good performance of the program, one of the above

mentioned analyses is shown in this section. Other verification exercises can be

found in Olivella[6]

Example of application: HYDROCOIN-project benchmark

Some computations of the Case 4, Level 1 from the International HYDROCOIN

project[22] have been performed with the program CODE_BRIGHT as part of

the verification process. The problem to be simulated is the thermal convection

of a liquid through a porous saturated medium. Flow is induced by heat which

is generated inside a spherical region with radius ro =  250m. Under certain

assumptions which are described in the HYDROCOIN reports[22], the

equations of water mass and energy balance reduce to the form:

(32)

(33)

where f represents the source/sink term which is equal to W
o
exp(–λ't)/(4/3πr 3

o
)

inside the sphere of radius r
o

and zero outside. The main assumption which has

to be made to obtain these equations is that the water flow transient terms

related to compressibility effects are neglected because they occur at short time

scales compared to the time evolution of temperature. The parameters that have

been used in the computations are those reported in the project (Table II).

Figure 3 shows the finite element grid (249 nodes) used in computations with

CODE_BRIGHT. The size of the simulated region is 1,500-radius × 3,000-height.

Axisymmetry is along the vertical axis. The boundaries are far enough to avoid

their influence in the computations.

The boundary conditions are of prescribed temperature and pressure at the

bottom, right and top boundaries (Figure 3). Initial pressure distribution is

affected by gravity, so the condition is in fact one of constant piezometric head.

Inside the spherical region of radius equal to 250m, an internal source of heat

equal to j
o

× exp(–λ't) J s–1 m–3 is imposed. An implicit scheme is used for the

time discretization with θ =  ε =  0.5. The time step was automatically computed

with an initial value of 10–5 year and increasing with a factor of 1.4. The

symbols in Figures 4 and 5 indicate the time discretization used.

Figures 4 and 5 show temperatures and liquid pressures (excess pressure

from hydrostatic conditions) computed at the selected points. T hey are

compared with the analytical solution which has been obtained from tables in

the project reports. Although the grid used here is relatively coarse compared to
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Figure 3.

Finite element grid (249

nodes) used in the

thermal convection

problem. Axisymmetry

is around the vertical (z)

axis (left vertical

boundary). The co-

ordinate origin (x =  0, 

z =  0) is at the centre of

the sphere. Sphere

radius is r
o

=  250 m.

Total simulated region

is (m) 1,500-radius ×
3,000-height

Parameter Value Units

Radius of the sphere r
o

=  250 m

Initial power output W
o

=  107 Js–1

j
o

=  0.152789 Js–1 m–3

Decay constant λ ' =  7.3215 × 10–10 s–1

Thermal conductivity of rock λ =  2.51 Wm–1 K–1

Density of rock ρ
s

=  2,600 kg m–3

Specific heat of rock c
s

=  879 J kg–1 K–1

Intrinsic permeability of rock k =  1.0 × 10–16 m2

Reference density of water ρ
lo

=  992.2 kg m–3

Expansion coefficient of water β =  3.85 × 10–4 K–1

Viscosity of water µ =  6.529 × 10–10 MPa s

Porosity* φ =  1.0 × 10–10 –

Compressibility of water** 1 × 10–14 MPa–1

Notes:

**a low value is used in order to avoid transient terms in the flow equation. Porosity does not

appear in the equations of this problem

**a low value is used in order to avoid transient terms in the flow equation

Table II.

Parameters used in

the analysis
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Figure 4.

Time evolution of

temperature at selected

points. Computed

(symbols) and analytical

(dashed lines) results
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Figure 5.

Time evolution of liquid

pressure at selected

points. Computed

(symbols) and analytical

(dashed lines) results
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those used in the project (all grids used in the intercomparison exercise had

more than 300 nodes), the results indicate a good performance of the model.

Conclusions

In this paper we present details of the numerical development of the program

CODE_BRIGHT. T his computed code has been developed to carry out

simulation of COupled DEformation, BRIne, Gas and Heat T ransport

problems, hence it is used to solve displacements, liquid pressure, gas pressure,

temperature and inclusion content. According to the options of the program the

kind of problems can range from simple uncoupled cases to more complicated

situations. Finite elements in space and finite differences in time are used for the

discretization of the system of partial differential equations. The Newton-

Raphson method is used to seek an iterative scheme for the non-linear problem.

Non-linearities appear in almost all terms. The mass and energy balance

equations lead to flow-type equations while the stress equilibrium equation

leads to equilibrium-type equation. Cell-wise, element-wise and node-wise

variables have been used in order to approximate the different terms. The

mechanical equations for incompressible materials require special numerical

integration in order to avoid locking. Finally, an example of coupling between

thermal and hydraulic problems is presented. It is part of the verification

process of CODE_BRIGHT which consists of several examples and cases that

are included in other works. Examples of application to other coupled problems

have been presented elsewhere[7,8,21].
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Appendix. Summary of equations in discrete form

The system equations to be solved are composed of the equations of:

• equilibrium of stresses (associated with displacements, u);

• mass balance of water (associated with liquid pressure, P
l
);

• mass balance of air (associated with gas pressure, P
g
);

• mass balance of energy (associated with temperature, T );
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• mass balance of water in inclusions (associated with mass fraction of water in inclusions,

ω w
s
, i.e. water in solid phase).

Any combination that includes only some of these equations can be considered. The vector of

residuals corresponding to this set of equations can be written in a simplified form (for one finite

element) as follows:

(A1)

This form shows that the residual is a sum of several terms. The first one (d
.
) is related to storage

or accumulation of mass, momentum and energy. The second term (a ) is related to fluxes, both

advective and non-advective, and can be referred as conductance or transmissivity term. Finally,

the last term (b ) includes internal sink/source terms and boundary conditions. The overdot

indicates time derivative.

The conductance terms have the following form:

The terms apg
, a

T
and aω w

s
appearing in (A1) have similar form.

The matrices that appear in equation (A3) are conductance matrices. The different terms are

related to fluxes according to:

• liquid water flux caused by liquid pressure gradients (Darcy’s law): APlPl
P

l
;

• water vapour flux caused by gas pressure gradients (Darcy’s law): APlPg
P

g
;

• water in inclusion flux caused by temperature gradients (Inclusion migration law):

APlT
T;

• water vapour flux caused by vapour content gradients (Fick’s law): APl
ωw

g
ωw

g
.;

• liquid water flux caused by liquid water concentration gradients (Fick’s law): APlωw
g
ω w

g ;

• salt flux caused by salt concentration gradients (Fick’s law): APlω
h
l
ω h

l
. (This salt flux

appears as a result of substitution of (2) in (5).)

T he matrix A Pl Pg
, for instance, is implicitly defined in equation (15) and represents the

conductance matrix for water vapour motion caused by gas pressure gradients, i.e. computed by

means of Darcy’s law for the gas phase. Also, APlω
w
g

is implicitly defined in equation (16) and

represents the water vapour motion caused by vapour mass fraction gradients, i.e. computed by

means of Fick’s law. The other matrices have similar form. It must be noticed that in (A3) the non-

advective fluxes appear as terms proportional to mass fractions (dependent variables) because

the chain rule was not used (see treatment of non-advective terms).

The storage terms have the following form:

The terms d
.

Pg
, d

.

T
and d

.
ω w

s
have similar form as d

.
Pl

.

˙ ˙ ˙ ˙ ˙

˙ ˙ ˙

d D u D P D P D T

d D u d

u uu uP uP uT

P
l

P
l u P

l
P

l

l g
= + +

= +
l g+ (A4)

(A5)

a

a A P A P A

A w A w A w

T

u

P
l

P
l
P

l l
P

l
Pg g P

l

P g

w

P w l

w

P w l

h

l g
w

l l
w

l l
h

=
= + +

+ + +

0 (A2)

(A3)ω
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In the stress equilibrium equations, these storage terms are related to the mechanical

behaviour of the medium. These are:

• Forces induced by displacements: D
uu

u
.
.

• Forces induced by liquid pressure changes: D
uPl

P
.

l
.

• Forces induced by gas pressure changes: D
uPg

P
.

g
.

• Forces induced by temperature pressure changes: D
uT

T
.

l
.

In the balance equation, the storage terms are:

• Variations of storage caused by deformation of the medium: DPluu
.
.

• Variations of storage caused by pressures or temperature changes:  d
.

PlPl
.

The form of the stiffness matrix D
uu

is shown in equation (28), and the coupling matrix D
uT

in

equation (29). This latter takes into account deformation caused by temperature variations. The

coupling terms with liquid and gas pressure, i.e. D
uPl

and D
uPg

, have similar form as D
uT

.

The matrix DPlu
, which takes into account the influence of volumetric deformation of the

medium in the balance equation for water, is shown in equation (20).

The vector d
.

PlPl
has not been split into a product of matrices and vectors because, as shown

previously, it is treated in a mass conservative way. Equation (12) shows one of the adding

counterparts of this vector d
.

PlPl
.

Finally, the terms b
u
, b

Pl
, bPg

, b
T

, bω w
s
include the boundary conditions and body force terms.

The treatment of the boundary conditions has been shown previously.


