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A numerical formulation is presented for the dynamic analysis of spiral-grooved gas

ltzhak Green lubricated mechanical face seals with a flexibly mounted stator. Axial and angular modes

of motion are considered. Both finite volume and finite element methods are employed for

George W. Woodruff the spatial discretization of the unsteady, compressible form of the Reynolds equation.

School of Mechanical Engineering, Self-adapting unwinding schemes are employed in both methods, making them suitable for
Georgia Institute of Technology, situations when the compressibility number is high. Both the lubrication analysis and the
Atlanta, GA 30332-0405 kinetic analysis are arranged into a single state space form, which makes coupling the

two analyses straightforward. The resulting set of equations is solved using a linear
multistep ordinary differential equation solver. Examples of the transient response to
static stator misalignment and rotor runout are given. Although a properly designed

spiral grooved face seal provides good dynamic performance, it is shown that unaccept-
ably large face separation can occur when large angle spiral grooves are employed
together with a sealing dam[DOI: 10.1115/1.1308015

Introduction mial, used to approximate the shape of the local pressure profile.

. Recent developmenf&3-16 have clearly established the useful-

A considerable body of work has been published concerni L . '
the dynamics of mechanical face sddls3]. Most of these works ?%ss of the upwinding algorithm as a technique to overcome such

I . . S nctional limitation in gas film analysis. Here, upwinding will be
dealt with incompressible fluids. However, compressibility .ané;aended to the numerical simulation of face seal dynamics.
pressure nonlinearity m.ake a gas seal (_:iynamlc ?”a'ys's SI9Mrhe second step in a full dynamic simulation is coupling the
cantly different from a liquid seal analysis. In particular, closegi

¢ . for the stiff qd . I netic and lubrication equations for the seal and then simulta-
orm expressions for the stifiness and damping are generally oty g}y solving them with a time integration procedure. Shapiro

avallat_)le for gas seals. Instead,_ these properties must be fo Colshef10] and Leefd8] present full numerical simulations
numerically [4,5], and they are time and frequency dependents gas |ubricated face seals. However, their algorithms for cou-
The analysis by Miller and Greef6] shows that the gas film pjing the lubrication and kinetic solutions consist of solving the
forces and moments can be obtained by convolution of the linegigividual components separately as if the problem were quasi-
ized gas film properties with the kinematical variables, which imstatic and then considering the coupling that exists across their
plies that the forces and moments depend not only on the instghterface. Coupling accomplished in this way is a piecewise pro-
taneous kinematical state but also upon the history of motion. Thigdure instead of a simultaneous solution, and it usually requires a
results in coupling of the lubrication analysis with the dynamics Qfme consuming iteration procedure for the lubrication analysis.
the face seal. For this reason, a full numerical simulation is the A technique is presented here for systematically coupling the
sole method available for predicting the complete nonlinear dysbrication and kinetic equations so that they are solved simulta-
namic behavior of gas face seals. neously. It also provides a direct way of dealing with the local

Because of the low gas viscosity, gas seal faces often contaipansior{time-dependent pressurerm in the lubrication equa-
some lifting mechanism(e.g., Raleigh steps, waves, spiration. The technique can be used with finite difference, finite ele-
groove$ to ensure noncontacting operation. Such mechanismgent, or finite volume discretizations of the lubrication regime.
produce relatively large hydrodynamic pressures, and the resultiDgly the latter two are discussed here because they can easily deal
force and moments, when combined with dynamic effects, cawith the film thickness discontinuities that are present with spiral
sometimes cause instability. Therefore, it is important to study tiggooved face geometries. The coupled equations are framed in a
interaction of the gas film and the dynamics of seals. In the pastate space form that is convenient for solution by linear multistep
this procedure was broken into two separate steps: solution of th@merical ordinary differential equation solvers. The technique is
lubrication equation, and then forward time integration of the kidsed to find the seal response to rotor runout and static stator
netic equation. In this work, the combined effects of the gas filmisalignment.
and the seal dynamics are studied by a procedure that solves the
lubrication and kinetic equations simultaneously. Three main nu- . . .
merical techniques are typically used for solving the lubricatiorimultaneous Numerical Solution of the Equations of
equation. These are the finite difference metfip@], finite vol- Motion and Lubrication
ume method9-11], and finite element methdd 1-14. All three Figure 1 is a schematic drawing of a mechanical seal in a flex-
methods often have difficulty with gas lubrication problems whegyy mounted stator configuration. The principal elements include
the compressibility number is high and the mesh density is inale rigidly mounted rotor, the flexibly mounted stator, the second-
equate. The common fundamental limitation of these methodsgg; o_ring that allows flexibility in the stator mounting, and an
the simplistic algebraic function, typically a low-order polynowlastic spring or metal bellows that provides a closing force on the
stator.

ContriDUéed by thefTribologytDtivisio?ﬂ?f ZETLAE“;'EgﬁENTSﬁCI'ETYCOFfME- In the seal model shown in Fig. 2, the following reference
G ool el 1 L 8 o rames,are define, and thy are consisn:wih (hose ghen by

1999; revised manuscript received May 2, 2000. Paper No. 2000-TRIB-5. Associé@€en and Etsiofil7]. The inertial framexXYZis fixed in space at
Editor: D. P. Fleming. some arbitrary position in between the stator and rotor, witlZthe
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secondary seal The rotor rotates with the shaft at an angular veloeityA coor-
dinate systemy,y,z , is attached to the rotor. Misalignment, or
runout, between the rotor and shaft is measured blgetweenz,
and Z. In a similar manner to the stator, the axis is always
perpendicular taZ, and they, axis always points to the rotor
position of minimum separation from th€Y plane. Thex, axis
precesses at an angig from the stationaryX axis.

v
housing —_| % rolar _ ¢
\ // The clearance separating the center points of the stator and
N /
7

Spiral Groove
Spring stator

rotor at equilibrium isC,. This clearance is very small, so the
angular tiltsys and y, are very small and can be treated as tilt

shaft vectors. Therefore, the magnitude of the relative misalignment
N o % between the stator and rotgt, is given as
(O]
'}’reI:|75_ 7r|: \/7§+ 7r2_27r75005{1r//_ ot) €H)]
Fig. 1 Schematic of noncontacting mechanical face seal Spiral groove patterns machined into the stator face are used to

enhance the gas film load carrying capacity and stiffness proper-
ties above those of plain face seals. The spiral groove geometry is
shown in Fig. 2. There ar; grooves at a depth of,. The land
axis coinciding with the direction of shaft rotation. The statowidth to groove width ratio, measured I}/ and the equation for
position is uniquely defined by two tiltss andyy, about theX the groove curvature are defined as
andY axes, respectively, and the axial displacement from equilib-
rium Z. The stator tilts are also described by a moving reference Wy
frame, XgysZs. In this system, theys plane always lies coinci- B= Wyt w,’
dent with the stator face plane, but it is free to rotate alzgsp
that thexs axis is always perpendicular 8, and theys axis where « is the spiral angle andv=90° corresponds to radial
always points to the stator position of greatest separation from t@oves.
XY plane. Precession of axtg aboutZ is measured with the angle  The structure of the paper is as follows. Details of the seal
¢ from theX axis. The angular tilt of the.y.z, coordinate system dynamic analysis and the lubrication analysis will be given sepa-
is defined by the nutation angtg, betweenz, andZ. The stator rately. The governing equations for each analysis are rendered in
tilt ys and the precession angle can be related toyy and yy  state space form. Next, the individual models are combined into

r=ref@e  0<a<180°

using the following relationships: one state model. This form of the problem is readily solvable by
y standard, linear multistep numerical ordinary differential equation
_ Y i
Y= \Yit+ e, y=tan ‘— solvers. Then, results for the seal motion are shown for represen-
X tative cases.
Z
.
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Fig. 2 Seal model with schematic of spiral groove geometry
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Face Seal Kinetics. The equations of motion for the flexibly My =Ksy ¥si (5)
mounted stator are given in the inertlYZsystem by Green and

Etsion[17], whereks, is the stiffness of the flexible support.
The total applied forces and moments on the stator can then be
written as

| yx=M :
Ix= X Fy=—Feqt Fg—keZ—dgsZ

My =Myeqt Mys—k —dg, Y+ My 6
=My @) X Xeq Xg~ KsyYx ™ Usy¥x Xi (6)

My=M YeqT M Yo~ ksy')’Y_ dsy:yY
m7—F For numerical solution purposes, H®) is recast into state space
—rz

form, giving
a . . ] 1 . ) 7
Here, m is the stator mass, andis its transverse moment of E{lelyxﬁxi)’ww} = EFZ,Z,TMxﬁxll—MwW

inertia, wherel =m- rgyr. The three equations are coupled by the @)
gas film effects through the applied generalized forbkg, My,
andF;. where the force and moments on the right hand side are given in

The applied forces and moments come from the support stiffg. (6). As will be shown later, Eq(7) is in a form that allows for
ness and the gas film pressure. The flexible support, which itraightforward coupling with the lubrication equations.
cludes the secondary seal O-ring and the elastic spring or met ubrication Analysis. The gas flow is assumed to be isother-
bellows, is assumed to have a total axial stiffness and damping o ysIS. g

- : : al, isoviscous, laminar, inertialess, and ideal; therefore, it is gov-
ksz and dg,, respectively. These also give angular stiffness & ’ - ) ’ ey
and damping about any tilt axis according to the foIIowingerned by the compressible form of the Reynolds equatigug:

relationship[17]: o s . a(ph)
V-[Qpph*Vp—6pwrphi,y]=12u —— ®)

1 2 The following boundary conditions apply:
dsz T ®3)

Syzz

kSy:§ ksz 12 d

p(r=ri)=pi; Pr=ro)=po

The Reynolds equation includes rarefaction effects by incorporat-

ing a flow,factor'Qp, which moderates the Poiseuille flow term.
e termQ, is a function of the inverse Knudsen number,

=ph/[w(RT)*¥?], and it is calculated in the following manner

The flexible support is assumed to be locatedatr, and has
uniform circumferential properties and time-independent stiffne
and damping.

The gas film force and momentg,, Myq, and Myg, are
calculated by integrating the gas pressure over the appropriate”

stator surface area. As discussed earlier, the gas pressure is depen- Q
dent on the film thickness. Equations for the film thickness and its Qp:_”, Qcon=D,/6
time derivative are given below: Qcon

Qp=D,/6+1.0162+1.0653D,—2.1354D3 (5<Dy)
h(r,0)={Co+Z+ryxsin(6)—ryycog ) +(5g)}s

—{wr sin(6—wt)},

Q,=0.1385D ,+ 1.25087 0.15653D ,— 0.00969D>
(4) (0.15<D,<5)

Qp=—2.2291D,+2.10673+0.01653D ,— 0.00006942),2J

h(r,0)={Z+ryy sin(6) —ryy cog )} + r cog 6— wt
(r,0) { Yx Sin(6) Yy COY )}s {w7r g w)}r (0.01$Dp<0.15)
o A finite element and finite volume method are used to discretize
The terms inside th¢}, correspond to the rotor measured from ghe Reynolds equation in the lubrication region. Both of these
datum located at the rotor center. Likewise, the terms inside thesthods are capable of handling complex geometries, such as
{ }s correspond to the stator. TKé,) term is only added inside a giscontinuities in film thickness, which arise when grooves are

groove and creates discontinuity finbut not in gh/t. present. These numerical techniques are described below.
A set of static closing forces and momenks,,, M.y, and

Myeq, are applied to the stator to establish its equilibrium posi- Finite Element Method (FEM). The finite element analysis of
tion. At equilibrium, these forces and moments oppose those frdhe unsteady Reynolds equation presented here is similar to the
the gas film pressure in the sealing area and represent the tstapdy-state procedure outlined in Bonneau efX]. Using a
forces and moments due to static deflection in the support af@lerkin technique, an integral equation is made by multiplying
external balance pressure on the back side of the stator. Heric, (8) by a weight functionW™, and then integrating the product
Feq: Mxeq: @andMy,q are set equal to initial computed values obver the lubrication domair():
the gas film force and moments at the equilibrium state. (o)

The applied forces and moments on the stator include the ef- Tl - 3G > _
fects resulting from static stator misalignmepy, which is arbi- L)W [V-[Qpph Vp—6uorphiy]=12u ot =0
trarily assumed to be about tieaxis. Using the model introduced 9)
by Green and Etsiofl7], this misalignment is accounted for by
adding a constant momeMy;, which would be needed to pro- Integration of Eq.(9) by parts leads to a weak form of the finite
duce such a tilt. The magnitude of this moment is given by  element formulation.
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ap(r,0) > ~ap(r,0) >
or _; Ni,l’(rva)pil EY) _;- Niyg(l’,ﬂ)pi

(12)

The , or , indices correspond té/dr or d/d6, respectively. The
shape functions are given in the Appendix.

According to the standard Galerkin technique, the weight func-
tionsWT are the same as the shape functions. However, when the
compressibility number is large, standard Galerkin finite element

- techniques give erroneous zigzag shapes in the pressure solution

6 unless a refined mesh is used, which greatly increase the compu-

3 tation time. To circumvent this problem, an upwinding algorithm
2 is employed[22,14] that is self-adaptive in terms of the surface
Element domain velocity, mesh size, viscosity, local pressure, and film thickness.
and boundary showing The weight functions are given in the Appendix.
[ node placement All FEM procedures in the literature dealing with the static
T

Lubrication domain
and boundary

analysis of triboelements use formulations similar to HG€)—

(12) to generate large nonlinear algebraic equations in the form of
E(p)={R}, which usually are solved using an iterative Newton-
Fig. 3 Finite element discretization showing Lagrange qua- F\’_aphson pr_ocedure_. This technlque IS (_:umbersome and |neff_|-
dratic element cient, especially during a transient dynamic analyses. However, it
is possible to formulate the problem so that coupling the lubrica-
tion and kinetic analyses is straightforward and simultaneous so-
lution is possible. For this, Eq10) is discretized over each ele-
ment and then rearranged in the following manfreste that the

f [ —ﬁWT-[Qpph3§p—6ﬂwrphT9]—WT12p ﬂ(;)th) do last integral term is omitted
Q

Niot apy Ip, 9P T Nt
. . - —_— =, = R 13
+ f WTQ,ph*Vp—6uwrphi,]-Aidl'=0 (10) mzzl [S"]m[ at " ot at ]m mE:l{ efm  (13)
r
where
I' represents the boundary of the dom&ini.e.,I" corresponds to
r=r; andr=r, for this problem. [Se]=12,uf hWTNdQ,
Details of the procedure for discretizing problems into finite Qe

element equations are given by Cook et[aD]. The lubrication
domain is divided inta, nodes andN,,; elements, and Eq10) is (R} = —Q ph? ‘7_|DWTJr i a_pWT
discretized and applied to each element dom@in To avoid e P ar T r2ge 0
having discontinuous film shapes inside an element, the element ¢
boundaries are chosen to coincide with groove-ridge and sealing - oh
dam boundaries. In this way, the cumbersome treatment of the +6pwphW y—12up W d€e (14)

film shape discontinuity can be avoided while yet retaining mass
conservation across these discontinuities. This is an inherent [&] is a 9X9 matrix, and{R} is a 9< 1 array. Integration over
traction of the finite element analysis. the elemental domain is achieved using nine point Gauss quadra-
The last integral in Eq(10) represents the weighted mass flowture. In Eq.(13), = represents standard global element assembly,
across the element boundaries, and it can be neglected basedthat the following global system of equations is developed:
the following reasoning. When using cla€s (continuous and )
derivablé functions for the shape functions, mass flow is approxi- [SKp}={R} (15)
mately conserved across neighboring elements. Therefore, in . . _
interior of the domain, the flow out of one element is canceled t;%:{]isnﬁ;(zgg ;)t)gtr:g ,C;Fsi}ehﬁzg]z?n%k{)g{}o;ee %%Cgaggé’:]tdeﬁ?t:nd
the flow into the neighboring element. The remaining terms in tr'éee ’ent assembly must'be done at every instant. In the form of
integral represent the weighted”mass flow across the boundarieé&gzls), (o} is a state vector corresponding to the pressure at
e e (), uter () e Mo, these tems o "tugtes i the ubricaton domain. T formtion efectvely .
boundaries. For a full discussion of this topic, see Grafgij hﬁlﬁ%es the p.artlall derlvatlvesilr) the spatial coordinates Wlth. Q|s-
327_32'9 ' ' crete approximations by_ the flnl_te element method thereby_glvmg
ppA L ’ dratic el is ch for thi K A2 set of first-order ordinary differential equations. As will be
agrange quadratic element Is chosen for this work. own later, this form of the problem is easily coupled, via the

shown in Fig. 3, this element has nine nodes, and its sides may ke, 1, vic and kinetic constraints, to the equations of motion so
curved so as to match the curvilinear shape of the spiral grooves. e simultaneous solution is possible

Using the shape functionl;, the pressure at any point in an
element or on its boundary can be found from the pressures at theinite Volume Method (FVM). A lubrication analysis based
nodes;{p;,Pz, ... .Po}": on the finite volume method is derived by integrating EBj.over
the lubrication domain and then applying Green’s theorem, giving
9

|0(r,0):2l Ni(r,0)p; (11) I[Qpph3§p—6ywrphr9]'ﬁdF
i= r
. ) . . odh ap
Likewise, the pressure gradients are approximated over the ele- = 12up — +12uh — dQ (16)
ment using the shape functions. Q ot ot
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«— across thev face of the finite volume. Firstn, ,, is assumed to be
a function only of the pressure at nodésand W and the local
-« compressibility number at the facd,,,,. Then, under the sec-
ondary assumption thdd,,, andF,,, are constant in the small
region surrounding facev, the following one-dimensional Rey-
nolds equation is valid for the local domain between nddesd
W

p(0=0c)=pc
p(0=0w)=Ppw

d ((D(v",w (?p (19)

% r %—ngwp) =0 @ B.C.

The solution of this equation yields the pressure, from wiiigh,
can be derived as

-

. Pc— Pw
My w= Fa,w( Pc+ m) (20)
Q, Note thatDy,,, F4., andAg,, must still be approximated at the
. N [] Land face w. A linear profile is assumed fop, so thatp,,=1/2(py
G Finite Volume e +pc). Now p, is used to comput®,,,, and it is assumed that
r Groove/Ridge Boundary V¢ h,, is known. Also,r,, is the radius at either nod€ or W.
v Therefore,
Fig. 4 Finite volume discretization in polar coordinates, r 4
and 6 Qa,wpwh\?vAr . . Fe,w
Dg’w=w, F,,'W=6,u,wrWhWAr, AQ'W:D_,g,W
(21)

wheren is an outward normal vector from the boundary. Thigimilar expressions can be written for the flow across each finite
equation expresses mass conservation over the lubrication regigflume face. These terms will be functions of the pressure at
A radial mesh ofn, nodes dlscre'.[lze.s the. seal area.domaln. NolfydesN, S, E, W, andC and the convection and diffusion terms at
that here the mesh does not coincide with the radial groove pglsch face.

tern. Next, this domain is divided into small finite volum&s Finally, these approximations are substituted into @g), and

with boundaried”, surrounding each nodeee Fig. 4 Integrat- e resulting equation can be rearranged into the following form:
ing Eq. (16) over one finite volume gives

JPpc
{mrrA9}|2+{m9Ar}|\g: 12Mp%+12/14h (;_?] dQU (12Mha\/97> AQU__aNpN_aSpS_aWpW_aEpE+anC
Q

(17) - 12Mpcﬂ) AQ, (22)
wherem, andm, are proportional to the radial and circumferen- at
tial mass flow rates, respectively, per unit width. Thes, w, and where
e variables correspond to the north, south, west, and east faces oF
the finite volume. These faces surround a central point, rihde aw=DywAUA s W) +F[[~FpuOll; ay=D;n
and are chosen to be halfway between surrounding ndj& W, ' ' ' '
andE. The(}, subscript implies averaging over the finite volume. ag=D,A(|Aye) H[[Fpe0ll; as=D,s (23)
For the right hand side, the values forgh/dt anddp/at at the ’ ' ' '
central nodeC are assumed to prevail over the entire finite vol- ac=aytastaytag+F,—Fe

ume. Because of the spiral groove boundary discontinujities
Eq. (4)], averaging the film thickness is not as straightforward arfdere, AQ, is the area of the finite volume, and(l,
will be discussed later. At this point, it is assumed thgyis the =rcArA6. The function[[A, B]] is defined to be the greater Af
average film thickness over the finite volume. and B, and A(JA[)=|Al/(exp(A))—~1). Note thatF, ,=F,

It is convenient to define the parameteFs=6uVhAl, ® =A;,=A,s=0 andA(|0])=1, so thatay andas can be simpli-
=Qpph3AI, andD =®/sb, whereF is a convection parameter, fied as in EQ.(23). In t?ls Work, a power-law approximation,
@ is a diffusion parameter, an is the diffusion conductance A(A=[[0,(1=0.1/A[)*1], is used for the mass flow since it
[23]. In these termsy is the surface velocity, andl and b are €quires Ie_ss computing time than the _expor_lentlal term. O_ther
characteristic lengths perpendicular and parallel, respectively, @gProximations can also be employed, including full upwinding
the flow direction. In lubrication analysis, the rafiéD represents and central difference schem3].

o 4 : Since the finite volume method is derived in polar coordinates
the local compressibility numbeh = (6 .V b)/ h?) (in heat . : ) . S
transfer termiFr)mIogy tr)1/is ratioe?s r«(ef:rred zo(gsppzhe) F(>eclet nu _purely radial mesh of nodes is used to discretize the lubrication

ben. The convection, diffusion, and local compressibility term omain. As a result, the curvilinear film thickness discontinuities

are modified to account for the local flow in ei?her rinc)i/ al gicut across the finite volumes at different locations. To accommo-

rection using the following definitionsy,= wr AI—pAr rfnd date these discontinuities, the technique introduced by Kogure
[ ’ -

sb,=r 56 in the ¢ direction, andV, =0, Al =r A 6 and db, = &t in et al.[24] is implemented. In Fig. 4y is defined to be the length

the r direction. With these definitions, the local compressibilit f a finite volume face that is in a groove divided by its overall
numbers in each principal direction are ength (grooverland). Four valuesy,, is, i, andye, corre-
sponding to the four faces are computed for each finite volume.

6uwr2so With spiral grooves, the film thickness discontinuity is constant at
o ;o A=0 (18)  &,. Therefore, the mass flow into the control volume through a
pP side can be split and computed separately based on the discrete

To clarify the procedure for discretizing E@.7), an example is values of the film thicknesses in the land and groove at that face.
given here for the termm, ,,, Which corresponds to the mass flowThen the total mass flow through a face is computed by adding the
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groove and land mass flows averaged by the appropriate weighTo calculate the steady-state pressure profile, the pressure is
factor, ¢ and (1— ), respectively. Using this modification, Eq.allowed to diffuse from an initial linear profile to the steady-state

(22) can be rearranged into the following form: condition. This requires numerically solving EQ7) forward in
pc 1 time until the amplitude of t?e maximum element{ip} is less
e T ! alpu—alDe—aliDw—alpe-+al than some small value~10">), which indicates that the steady
a 12:“hangQu( NPT AsPs™ AwPw ™ acPe T dche state is reached. Note that the seal geometry is fixed so that the
ohe kinetic equations in Eq(27) are trivial. The steady-state profiles
—| 12upc——|AQ, (24) from both the FEM and FVM techniques compare well with re-
at sults computed using a conventional finite difference method in-

In this equationa’ = Yagovet (1~ #)@jang. The values ofg troduced by James and Potié, only the latter method requires

and ageoe are computed from Eq(23) above using the land an extremely fine mesh. Computation of the steady-state pressure

height and groove height, respectively. The valuehg, is also profile in general produces the total static closing forces and mo-

based ony: ments,Feg, Mxeq, andMyeq. However, in the state of perfect

alignment,Myeq andMyeq are zero.

1- Ezl/f hel (25) Once the steady-state pressure profile is achieved, the system is
4 Cliand set into motion, where Eq27) is integrated forward in time to

yield the desired stator transient motion. Figures 5 and 6 shgw

in response to rotor runout and static stator misalignment for two

seals: one with a sealing dam; € 0.0516 m) and one without. To

emphasize the effects from the gas film and the support stiffness

and damping, each seal is simulated with and without the support.

The results from the FEM and FVM techniques are practically

{p}={R} (26) indistinguishable.

. . . For the seal without the sealing dafffig. 6), the relative filt

Like before {p} is a state vector corresponding to the pressure Slétween the stator and rotor is approximately the same magnitude

rode i h rcaion domain, ot avector conaring e ey 00 TN PN e e
' stiffness and damping. When the support effects are not included,
Subsystem Coupling and Time Integration. In state space the oscillations in the relative tilt eventually vanish so that a
form, the lubrication and kinetic analyses are coupled and solvetgady state of perfect synchronous tracking emerges. This occurs
simultaneously in the following manner. First, a new set dfecause, according to E¢5), the moment from the static stator
generalized coordinatesy is established. The firsin, of misalignment vanishes when the support stiffness is set to zero.
these coordinates are reserved for the pressure at each nodBunheven with the support effects, the relative tilt magnitude is
the finite element or finite volume mesh, and the last six correglatively small so that the stator effectively tracks the rotor.
spond to the kinetic state variables. Finally, a global state vectdfhen the support effects are included in the seal with a sealing
is made with a total ofny,+6 elements, so that{¢} dam(solid line in Fig. 5, the relative tilt amplitude is smaller in
={P1. .- Pnp-Z.Z,¥x. ¥x: ¥y yv}. Note that the degrees of comparison with either of the seals with no sealing dam. How-
freedom,Z, vy, andyy, are common to the lubrication and ki-ever, when the support stiffness and damping vanish in the seal
netics problems alike. They couple the problems through the filwith a sealing dantFig. 5), the relative tilt unexpectedly increases
thickness and squeeze terfsse Eq(4)). At every instant the gas significantly to a large and unacceptable amplitude. Note that for
film force and moments are found by integrating the pressure oubis problem, a quasistatic analysis that predicts rotordynamic co-

1
havg: 4 3 lr//hC| grooveT

Here,> = i+ hs+ b+ b, and hc|gmo\,e is the film thickness
at nodeC as if it were located in a groovéhg| g is defined
similarly.

After writing Eq. (24) for each node in the lubrication domain,
the following system of equations is developed:

the seal face arefd7]. efficients only(i.e., stiffness and damping of the gas fi[8l), is
Using Eqgs(7), (15), and(26), the coupled problem is now castincapable of predicting the large excursion from the designed
into one of these two forms: equilibrium point to the new equilibrium steady-state motion.

. These few examples demonstrate the significant effect that the
FEM: IMPLICIT FORM  [A(t,¢) [{¢}={R(t,¢)} seal dam can have on the overall dynamic performance and sta-
FVM: EXPLICIT FORM {{}={R(t,¢)} 27) bility of gas face seals. The large _spiral groove anghe,
=160 deg, was chosen here because it is close to the value that
These problems are then solved by linear multistep numerical @jptimizes the load bearing capacfg]. However, as seen in Fig.
dinary differential equation solvers. These solvers employ the the seal parameters that optimize performance indicators, such
Adams-Moulton and Gear backward differentiation formulas |oad bearing capacity, may not give seals that are acceptable
methods[25]. when the dynamics are considered. This fact illustrates the impor-
tance of full numerical modeling and dynamic simulation in the
design of these seals.
Results—Response to Rotor Runout and Static Stator . With the increasing complexity of problems being modeled, the
o size and speed of numerical simulation codes are of significant
Misalignment importance. In general, fewer nodes are usually needed for an
A few representative results will be presented here to displ®EM analysis compared to an FVM analysis to achieve the same
the capability of the new technique. These cases point out sonedative accuracy. Consequently, the memory requirements for the
advantages and disadvantages of the different formulations. FVM are often vastly larger than for the FEM, which could be
The following discussion gives the procedure for computing thehibiting in some cases. For the results presented in Figs. 5 and 6,
seal response to rotor runout and static stator misalignmerit. AL728 nodes were used in the FEM analysis and 8280 were used
=0, the rotor tilt axis is assumed to be coaligned with ¥haxis. for the FVM analysis. The large number of nodes is required for
The initial conditions for the stator are then chosen so that it BVM because the gas pressure must be solved over the full cir-
perfectly aligned with the rotor and tracking its motion. This coneumference of the seal. Typically, numerical solution of the im-
dition requires thatyx=1,, yv=yx=2=2=0 andyy=w7y, at plicit form of equations(as for FEM is slower than for the ex-
t=0. The state of perfect alignmeny,(,=0) is chosen because it plicit form, even when fewer nodes are used. Several factors
represents the ideal situation for the seal with respect to leakagmtribute to this behavior. First, in this FEM formulation the
and performance. With the initial kinematic condition established)obal matrix[S] in Eq. (15) is nonsymmetric and requires more
the next step is to compute the initial pressure profile. computing time and size than if the matrix were symmetric. The
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Fig. 5 Transient seal response
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loss of symmetry results because an upwinding scheme is efi=M required approximately 38 h of computing time for each
ployed and, therefore, the weight functiod¢’ are themselves case on a PC with a 550 MHz Pentium Ill processor, while the
functions of the pressure and film thickness. However, if the upVM took only about 16 h. Because of the large time required,
winding scheme were not used, more elements would be needegherimentation with the mesh size has been limited. More judi-
to sufficiently minimize the oscillations in the pressure solutionsious choices regarding discretization may reduce the computing
that can occur. Overall, these two factors offset each other, agffiort for either method or make them more comparable.

the loss of symmetry has a small effect on the computing time. A The objective of this work is to present straightforward and

more significant factor is that the element equations in Et®—

effective formulations for simulating the dynamics of gas face

(15 must be reassembled at every instant, which significantbeals based on the finite element and finite volume techniques.
degrades the computational speed. On average, solutions ugitogvever, it is not the goal to advocate one of these methods over
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Fig. 6 Transient seal response
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the other. Before deciding on which method to use, several factors vx,yy = Stator tilts abouX andY axes
(e.g., computing time, complexity of programmjngnust be v, = Rotor runout
weighed. While both of the methods have distinct positive and vel = Relative tilt amplitude between rotor and
negative aspects, neither seems to have an obvious advantage for stator
every possible application when all the influencing factors are vsi = Static stator misalignment amplitude
considered. For the application studied here, the FVM technique 6y = Groove depth
seemed to be superior since it required less computing time. Al,é6b = Characteristic lengths perpendicular and
parallel to flow direction
Conclusions AQ, = Area of finite volume
Two analysis techniques, a finite element metkleEM) and a A gozfzr/e}ss@y)t}/ Ir(;légf)eer,vg&lg/b(anr h?)
finite volume methodFVM), have been presented for studying B GM o/ (Pa o (o pP
the dynamics of gas lubricated, spiral grooved mechanical face ('g - as viscosily ;3
seals. Each analysis technique has been developed in state space = Diffusion parameterQ ph°Al
form, which allows for a systematic coupling with the dynamic i, 1—¢ = Ratios of finite volume face in a groove
equations of motion for the first time. The resulting sets of equa- region and in a land region
tions are cast into either an implicit form or an explicit form, and @ = Rotor rotational speed
they are solved using efficient numerical ordinary differential
equation solvers. Examples are given where the techniques are
used to simulate the transient motion of a mechanical seal, inclqg- pendix
ing rotor runout and static stator misalignment effects. TransienP

dynamic solutions from both the FEM and FVM analyses agree The shape and weight functions for the Lagrange quadratic el-

well. For this application, the FVM required approximately halement in Fig. 3 are given below in the elemental coordinate sys-
the computing time of the FEM. tem, (& 7). First, the following functions are defined:

Li(v)=3p(r—1); Ly(»)=(1—v?
Nomenclature

Ly(v)=3v(v+1); U)=2v(r+1)(v—1)

C, = Design clearance between rotor and stator
at equilibrium where v is a dummy argument. The corresponding shape func-
D = Diffusion conductanced/sb tions are[22]:
D, = Inverse Knudsen numbeph/[ u(RT)¥2
L e o e et D NE=La( Ol No(§)=Ls(E)La(n)
F, = Axial force acting on stator N3(&)=L3(é)La(m); Nu(&)=L1(&)Ls(n)
Fq,Mxq,My, = Force and Moments from gas film
g:VIxg»Myg = - =
Feq:Mxeq:Myeq = Equilibrium Force and Moments Ns(§)=La(&)L1(7);  Ne(£)=Lz(&)La(n)
h = Film thickness N N7(&)=L2(8&)La(n); Ng(§)=L1(La(7)
hal’g = Av§rage fllm thlc!<ne§s over a finite volume No(£)=L,(£)Lo(7)
I, = Unit vector in @ direction . )
ks, .ds, = Support angular stiffness and damping The weight functions are
ksz,dsz = Support axial stiffness and damping Wi(8)= (La(&) — asU () (La( )~ a1l (1))
ljj = Distance between nodesandj
m, | = Stator mass and moment of inertia Wo(&)=(L3(&)—aU(€))(Li(n)—axU(n))
My ,My = Applied moments on stator abo¥tandY
Y axes Ws(8)=(La(é) — asdU () (La(m) — azsU(n));
My; = Constant moment produced by static stator WL(€)=(L — U L —a U
: misalignment 4(§) =(L1(&) —asdU(§))(La(n) — arU(n))
m, ,m, = Proportional mass flow rates mand 6 di- Wg(€)=(Lo(&)—4B1U(&))(Li(n)—asU(n));
rections
i = Outward normal vector from a boundary Wi(&) = (L3(§) — agU(£))(La(77) —4B23U( 7))
p = Gas pressure _ _ _ .
p, = Ambient pressure W7(&)=(Lo(€) =4B43U(€))(La(n)—asU(7n));
Pi.po = Pressure at inner and outer radial bound- Wg(&)=(L1(&)— agU(&))(La(n)—4B14U(7))
aries
r, & = Radial and circumferential coordinates Wo(&)=(L2(£) —4BgeU(&))(La(n)—4BsU(7))
ri.lo,r; = Inner, outer and sealing dam radii The a;; and g;; parameters are defined below in termsygf, an
F: - _Ll_Jirrlrl]veersal gas constant average local compressibility numblr4]:
T = Temperature _ Yii 3p; 12y 12
Q, = Poisedille flow term factorQ e,/ Q, aij=2{ tanh>" || 1+ ¥i +'y_i2j v Bi
Qcon = Flow factor for continuum flow approxima-
tion Yij V” | ij M
. . i=lcoth=l| — —; 4=
Qp = Flow factor for rarefaction modified flow Bij=|co 4 i U] 1 2
V = Surface velocity 5 (Pitpy)| 5 (hi+hy
Vi; = Average surface velocity along a line from
nodei to nodej Theij indices correspond to the side joining nodesdj. V;; is
wg,W; = Width of groove and land regions the average surface velocity along a line going friotm j, andl;;
= Axial displacement of stator from equilib- is the distance between the cornérandj. Note thaty;; ap-
rium clearance proaches zero in the limit as;; and §;; approach zero. These
a = Spiral groove angle parameters provide a self-adapting upwinding scheme that is a
B = Groove width ratiowg/(wg+w;) function of the local compressibility number.
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