
gas
odes
ed for
ation.
ble for
d the
g the
near
e to
ned
cept-
oyed
Brad A. Miller
e-mail: millerba@umr.edu

Itzhak Green

George W. Woodruff
School of Mechanical Engineering,

Georgia Institute of Technology,
Atlanta, GA 30332-0405

Numerical Formulation for the
Dynamic Analysis of
Spiral-Grooved Gas Face Seals
A numerical formulation is presented for the dynamic analysis of spiral-grooved
lubricated mechanical face seals with a flexibly mounted stator. Axial and angular m
of motion are considered. Both finite volume and finite element methods are employ
the spatial discretization of the unsteady, compressible form of the Reynolds equ
Self-adapting unwinding schemes are employed in both methods, making them suita
situations when the compressibility number is high. Both the lubrication analysis an
kinetic analysis are arranged into a single state space form, which makes couplin
two analyses straightforward. The resulting set of equations is solved using a li
multistep ordinary differential equation solver. Examples of the transient respons
static stator misalignment and rotor runout are given. Although a properly desig
spiral grooved face seal provides good dynamic performance, it is shown that unac
ably large face separation can occur when large angle spiral grooves are empl
together with a sealing dam.@DOI: 10.1115/1.1308015#
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Introduction
A considerable body of work has been published concern

the dynamics of mechanical face seals@1–3#. Most of these works
dealt with incompressible fluids. However, compressibility a
pressure nonlinearity make a gas seal dynamic analysis sig
cantly different from a liquid seal analysis. In particular, clos
form expressions for the stiffness and damping are generally
available for gas seals. Instead, these properties must be f
numerically @4,5#, and they are time and frequency depende
The analysis by Miller and Green@6# shows that the gas film
forces and moments can be obtained by convolution of the lin
ized gas film properties with the kinematical variables, which i
plies that the forces and moments depend not only on the ins
taneous kinematical state but also upon the history of motion. T
results in coupling of the lubrication analysis with the dynamics
the face seal. For this reason, a full numerical simulation is
sole method available for predicting the complete nonlinear
namic behavior of gas face seals.

Because of the low gas viscosity, gas seal faces often con
some lifting mechanism~e.g., Raleigh steps, waves, spir
grooves! to ensure noncontacting operation. Such mechani
produce relatively large hydrodynamic pressures, and the resu
force and moments, when combined with dynamic effects,
sometimes cause instability. Therefore, it is important to study
interaction of the gas film and the dynamics of seals. In the p
this procedure was broken into two separate steps: solution o
lubrication equation, and then forward time integration of the
netic equation. In this work, the combined effects of the gas fi
and the seal dynamics are studied by a procedure that solve
lubrication and kinetic equations simultaneously. Three main
merical techniques are typically used for solving the lubricat
equation. These are the finite difference method@7,8#, finite vol-
ume method@9–11#, and finite element method@11–14#. All three
methods often have difficulty with gas lubrication problems wh
the compressibility number is high and the mesh density is in
equate. The common fundamental limitation of these method
the simplistic algebraic function, typically a low-order polyn
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mial, used to approximate the shape of the local pressure pro
Recent developments@13–16# have clearly established the usefu
ness of the upwinding algorithm as a technique to overcome s
functional limitation in gas film analysis. Here, upwinding will b
extended to the numerical simulation of face seal dynamics.

The second step in a full dynamic simulation is coupling t
kinetic and lubrication equations for the seal and then simu
neously solving them with a time integration procedure. Shap
and Colsher@10# and Leefe@8# present full numerical simulations
of gas lubricated face seals. However, their algorithms for c
pling the lubrication and kinetic solutions consist of solving t
individual components separately as if the problem were qu
static and then considering the coupling that exists across t
interface. Coupling accomplished in this way is a piecewise p
cedure instead of a simultaneous solution, and it usually requir
time consuming iteration procedure for the lubrication analysi

A technique is presented here for systematically coupling
lubrication and kinetic equations so that they are solved simu
neously. It also provides a direct way of dealing with the loc
expansion~time-dependent pressure! term in the lubrication equa-
tion. The technique can be used with finite difference, finite e
ment, or finite volume discretizations of the lubrication regim
Only the latter two are discussed here because they can easily
with the film thickness discontinuities that are present with sp
grooved face geometries. The coupled equations are framed
state space form that is convenient for solution by linear multis
numerical ordinary differential equation solvers. The technique
used to find the seal response to rotor runout and static s
misalignment.

Simultaneous Numerical Solution of the Equations of
Motion and Lubrication

Figure 1 is a schematic drawing of a mechanical seal in a fl
ibly mounted stator configuration. The principal elements inclu
the rigidly mounted rotor, the flexibly mounted stator, the seco
ary O-ring that allows flexibility in the stator mounting, and a
elastic spring or metal bellows that provides a closing force on
stator.

In the seal model shown in Fig. 2, the following referen
frames are defined, and they are consistent with those given
Green and Etsion@17#. The inertial frameXYZ is fixed in space at
some arbitrary position in between the stator and rotor, with thZ

,
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axis coinciding with the direction of shaft rotation. The stat
position is uniquely defined by two tilts,gX andgY , about theX
andY axes, respectively, and the axial displacement from equ
rium Z. The stator tilts are also described by a moving refere
frame,xsyszs . In this system, thexsys plane always lies coinci-
dent with the stator face plane, but it is free to rotate aboutzs so
that the xs axis is always perpendicular toZ, and theys axis
always points to the stator position of greatest separation from
XYplane. Precession of axisxs aboutZ is measured with the angl
c from theX axis. The angular tilt of thexsyszs coordinate system
is defined by the nutation anglegs betweenzs andZ. The stator
tilt gs and the precession anglec can be related togX and gY
using the following relationships:

gs5AgX
21gY

2; c5tan21
gY

gX

Fig. 1 Schematic of noncontacting mechanical face seal
396 Õ Vol. 123, APRIL 2001
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The rotor rotates with the shaft at an angular velocityv. A coor-
dinate system,xryrzr , is attached to the rotor. Misalignment, o
runout, between the rotor and shaft is measured byg r betweenzr
and Z. In a similar manner to the stator, thexr axis is always
perpendicular toZ, and theyr axis always points to the roto
position of minimum separation from theXY plane. Thexr axis
precesses at an anglevt from the stationaryX axis.

The clearance separating the center points of the stator
rotor at equilibrium isC0 . This clearance is very small, so th
angular tiltsgs and g r are very small and can be treated as
vectors. Therefore, the magnitude of the relative misalignm
between the stator and rotorg rel is given as

g rel5ugW s2gW r u5Ags
21g r

222g rgs cos~c2vt ! (1)

Spiral groove patterns machined into the stator face are use
enhance the gas film load carrying capacity and stiffness pro
ties above those of plain face seals. The spiral groove geomet
shown in Fig. 2. There areNg grooves at a depth ofdg . The land
width to groove width ratio, measured byb, and the equation for
the groove curvature are defined as

b5
wg

wg1wl
; r 5r ie

u tana, 0,a,180°

where a is the spiral angle anda590° corresponds to radia
grooves.

The structure of the paper is as follows. Details of the s
dynamic analysis and the lubrication analysis will be given se
rately. The governing equations for each analysis are rendere
state space form. Next, the individual models are combined
one state model. This form of the problem is readily solvable
standard, linear multistep numerical ordinary differential equat
solvers. Then, results for the seal motion are shown for repre
tative cases.
Fig. 2 Seal model with schematic of spiral groove geometry
Transactions of the ASME
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Face Seal Kinetics. The equations of motion for the flexibly
mounted stator are given in the inertialXYZsystem by Green and
Etsion @17#,

I g̈X5MX

I g̈Y5MY (2)

mZ̈5FZ

Here, m is the stator mass, andI is its transverse moment o
inertia, whereI 5m•r gyr

2 . The three equations are coupled by t
gas film effects through the applied generalized forces,MX , MY ,
andFZ .

The applied forces and moments come from the support s
ness and the gas film pressure. The flexible support, which
cludes the secondary seal O-ring and the elastic spring or m
bellows, is assumed to have a total axial stiffness and dampin
ksZ and dsZ , respectively. These also give angular stiffne
and damping about any tilt axis according to the followi
relationship@17#:

ksg5
1

2
ksZ•r s

2; dsg5
1

2
dsZ•r s

2 (3)

The flexible support is assumed to be located atr s5r o and has
uniform circumferential properties and time-independent stiffn
and damping.

The gas film force and moments,Fg , MXg , and MYg , are
calculated by integrating the gas pressure over the approp
stator surface area. As discussed earlier, the gas pressure is d
dent on the film thickness. Equations for the film thickness and
time derivative are given below:

h~r ,u!5$CO1Z1rgX sin~u!2rgY cos~u!1^dg&%s

2$g r r sin~u2vt !% r (4)

ḣ~r ,u!5$Ż1r ġX sin~u!2r ġY cos~u!%s1$vg r r cos~u2vt !% r

The terms inside the$ % r correspond to the rotor measured from
datum located at the rotor center. Likewise, the terms inside
$ %s correspond to the stator. The^dg& term is only added inside a
groove and creates discontinuity inh but not in]h/]t.

A set of static closing forces and moments,Feq, MXeq, and
MYeq, are applied to the stator to establish its equilibrium po
tion. At equilibrium, these forces and moments oppose those f
the gas film pressure in the sealing area and represent the
forces and moments due to static deflection in the support
external balance pressure on the back side of the stator. He
Feq, MXeq, andMYeq are set equal to initial computed values
the gas film force and moments at the equilibrium state.

The applied forces and moments on the stator include the
fects resulting from static stator misalignmentgsi , which is arbi-
trarily assumed to be about theX axis. Using the model introduce
by Green and Etsion@17#, this misalignment is accounted for b
adding a constant momentMXi , which would be needed to pro
duce such a tilt. The magnitude of this moment is given by
Journal of Tribology
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MXi5ksggsi (5)

whereksg is the stiffness of the flexible support.
The total applied forces and moments on the stator can the

written as

FZ52Feq1Fg2ksZZ2dsZŻ

MX5MXeq1MXg2ksggX2dsgġX1MXi (6)

MY5MYeq1MYg2ksggY2dsgġY

For numerical solution purposes, Eq.~2! is recast into state spac
form, giving

]

]t
$Ż,Z,ġX ,gX ,ġY ,gY%T5H 1

m
FZ ,Ż,

1

I
MX ,ġX ,

1

I
MY ,ġYJ T

(7)

where the force and moments on the right hand side are give
Eq. ~6!. As will be shown later, Eq.~7! is in a form that allows for
straightforward coupling with the lubrication equations.

Lubrication Analysis. The gas flow is assumed to be isothe
mal, isoviscous, laminar, inertialess, and ideal; therefore, it is g
erned by the compressible form of the Reynolds equation@18,19#:

¹W •@Q́pph3¹W p26mvrph iWu#512m
]~ph!

]t
(8)

The following boundary conditions apply:

p~r 5r i !5pi ; p~r 5r o!5po

The Reynolds equation includes rarefaction effects by incorpo
ing a flow factorQ́p , which moderates the Poiseuille flow term
The termQ́p is a function of the inverse Knudsen number,Dp

5ph/@m(RT)1/2#, and it is calculated in the following manne
@19#:

Q́p5
Qp

Qcon
; Qcon5Dp/6

Qp5Dp/611.016211.0653/Dp22.1354/Dp
2 ~5<Dp!

Qp50.13852Dp11.2508710.15653/Dp20.00969/Dp
2

~0.15<Dp,5!

Qp522.22919Dp12.1067310.01653/Dp20.0000694/Dp
2

~0.01<Dp,0.15!

A finite element and finite volume method are used to discre
the Reynolds equation in the lubrication region. Both of the
methods are capable of handling complex geometries, suc
discontinuities in film thickness, which arise when grooves
present. These numerical techniques are described below.

Finite Element Method (FEM). The finite element analysis o
the unsteady Reynolds equation presented here is similar to
steady-state procedure outlined in Bonneau et al.@14#. Using a
Galerkin technique, an integral equation is made by multiply
Eq. ~8! by a weight functionWT, and then integrating the produc
over the lubrication domain,V:

E
V

WTH ¹W •@Q́pph3¹W p26mvrph iWu#212m
]~ph!

]t J dV50

(9)

Integration of Eq.~9! by parts leads to a weak form of the finit
element formulation.
APRIL 2001, Vol. 123 Õ 397
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H 2¹W WT

•@Q́pph3¹W p26mvrph iWu#2WT12m
]~ph!

]t J dV

1E
G
WT@Q́pph3¹W p26mvrph iWu#•nW dG50 (10)

G represents the boundary of the domainV, i.e.,G corresponds to
r 5r i and r 5r o for this problem.

Details of the procedure for discretizing problems into fin
element equations are given by Cook et al.@20#. The lubrication
domain is divided intonp nodes andNtot elements, and Eq.~10! is
discretized and applied to each element domainVe . To avoid
having discontinuous film shapes inside an element, the elem
boundaries are chosen to coincide with groove-ridge and sea
dam boundaries. In this way, the cumbersome treatment of
film shape discontinuity can be avoided while yet retaining m
conservation across these discontinuities. This is an inheren
traction of the finite element analysis.

The last integral in Eq.~10! represents the weighted mass flo
across the element boundaries, and it can be neglected base
the following reasoning. When using classC0 ~continuous and
derivable! functions for the shape functions, mass flow is appro
mately conserved across neighboring elements. Therefore, in
interior of the domain, the flow out of one element is canceled
the flow into the neighboring element. The remaining terms in
integral represent the weighted mass flow across the boundari
the inner (r i) and outer (r o) radii. However, these terms do no
affect the solution because the pressure is prescribed along t
boundaries. For a full discussion of this topic, see Grandin@21#,
pp. 327–329.

A Lagrange quadratic element is chosen for this work.
shown in Fig. 3, this element has nine nodes, and its sides ma
curved so as to match the curvilinear shape of the spiral groo
Using the shape functionsNi , the pressure at any point in a
element or on its boundary can be found from the pressures a
nodes,$p1 ,p2 , . . . ,p9%

T:

p~r ,u!5(
i 51

9

Ni~r ,u!pi (11)

Likewise, the pressure gradients are approximated over the
ment using the shape functions.

Fig. 3 Finite element discretization showing Lagrange qua-
dratic element
398 Õ Vol. 123, APRIL 2001
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]p~r ,u!

]r
5(

i 51

9

Ni ,r~r ,u!pi ;
]p~r ,u!

]u
5(

i 51

9

Ni ,u~r ,u!pi

(12)

The ,r or ,u indices correspond to]/]r or ]/]u, respectively. The
shape functions are given in the Appendix.

According to the standard Galerkin technique, the weight fu
tionsWT are the same as the shape functions. However, when
compressibility number is large, standard Galerkin finite elem
techniques give erroneous zigzag shapes in the pressure so
unless a refined mesh is used, which greatly increase the com
tation time. To circumvent this problem, an upwinding algorith
is employed@22,14# that is self-adaptive in terms of the surfac
velocity, mesh size, viscosity, local pressure, and film thickne
The weight functions are given in the Appendix.

All FEM procedures in the literature dealing with the sta
analysis of triboelements use formulations similar to Eqs.~10!–
~12! to generate large nonlinear algebraic equations in the form
E(p)5$R%, which usually are solved using an iterative Newto
Raphson procedure. This technique is cumbersome and in
cient, especially during a transient dynamic analyses. Howeve
is possible to formulate the problem so that coupling the lubri
tion and kinetic analyses is straightforward and simultaneous
lution is possible. For this, Eq.~10! is discretized over each ele
ment and then rearranged in the following manner~note that the
last integral term is omitted!:

(
m51

Ntot

@Se#mH ]p1

]t
,
]p2

]t
, ¯ ,

]p9

]t J
m

T

5 (
m51

Ntot

$Re%m (13)

where

@Se#512mE
Ve

hWTNdVe

$Re%5E
Ve

H 2Q́pph3F]p

]r
W,r

T 1
1

r 2

]p

]u
W,u

T G
16mvphW,u

T 212mp
]h

]t
WTJ dVe (14)

@Se# is a 939 matrix, and$Re% is a 931 array. Integration over
the elemental domain is achieved using nine point Gauss qua
ture. In Eq.~13!, ( represents standard global element assem
so that the following global system of equations is developed

bSc$ ṗ%5$R% (15)

@S# has sizenp by np , $R% has sizenp by one andṗ5]p/]t. Note
that, unlike a static case, both@S# and$R% are time dependent an
element assembly must be done at every instant. In the form
Eq. ~15!, $p% is a state vector corresponding to the pressure
nodes in the lubrication domain. This formulation effectively r
places the partial derivatives in the spatial coordinates with
crete approximations by the finite element method thereby giv
a set of first-order ordinary differential equations. As will b
shown later, this form of the problem is easily coupled, via t
kinematic and kinetic constraints, to the equations of motion
that true simultaneous solution is possible.

Finite Volume Method (FVM). A lubrication analysis based
on the finite volume method is derived by integrating Eq.~8! over
the lubrication domain and then applying Green’s theorem, giv

E
G
@Q́pph3¹W p26mvrph iWu#•nW dG

5E
V
H 12mp

]h

]t
112mh

]p

]t J dV (16)
Transactions of the ASME
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where nW is an outward normal vector from the boundary. Th
equation expresses mass conservation over the lubrication re
A radial mesh ofnp nodes discretizes the seal area domain. N
that here the mesh does not coincide with the radial groove
tern. Next, this domain is divided into small finite volumesVv
with boundariesGv surrounding each node~see Fig. 4!. Integrat-
ing Eq. ~16! over one finite volume gives

$ṁrrDu%us
n1$ṁuDr %ue

w5H 12mp
]h

]t
112mh

]p

]t J
Vv

dVv

(17)

whereṁr andṁu are proportional to the radial and circumfere
tial mass flow rates, respectively, per unit width. Then, s, w, and
e variables correspond to the north, south, west, and east face
the finite volume. These faces surround a central point, nodeC,
and are chosen to be halfway between surrounding nodes,N, S, W,
andE. TheVv subscript implies averaging over the finite volum
For the right hand side, the values forp, ]h/]t and]p/]t at the
central nodeC are assumed to prevail over the entire finite vo
ume. Because of the spiral groove boundary discontinuities@see
Eq. ~4!#, averaging the film thickness is not as straightforward a
will be discussed later. At this point, it is assumed thathavg is the
average film thickness over the finite volume.

It is convenient to define the parameters,F56mVhD l , F

5Q́pph3D l , andD5F/db, whereF is a convection parameter
F is a diffusion parameter, andD is the diffusion conductance
@23#. In these terms,V is the surface velocity, andD l anddb are
characteristic lengths perpendicular and parallel, respectively
the flow direction. In lubrication analysis, the ratioF/D represents
the local compressibility number,L5(6mVdb)/(Q́pph2) ~in heat
transfer terminology, this ratio is referred to as the Peclet nu
ber!. The convection, diffusion, and local compressibility term
are modified to account for the local flow in either principal d
rection using the following definitions:Vu5vr , D l 5Dr and
dbu5rdu in theu direction, andVr50, D l 5rDu anddbr5dr in
the r direction. With these definitions, the local compressibili
numbers in each principal direction are

Lu5
6mvr 2du

Q́pph2 ; L r50 (18)

To clarify the procedure for discretizing Eq.~17!, an example is
given here for the term,ṁu,w , which corresponds to the mass flo

Fig. 4 Finite volume discretization in polar coordinates, r
and u
Journal of Tribology
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across thew face of the finite volume. First,ṁu,w is assumed to be
a function only of the pressure at nodesC and W and the local
compressibility number at the face,Lu,w . Then, under the sec
ondary assumption thatDu,w and Fu,w are constant in the smal
region surrounding facew, the following one-dimensional Rey
nolds equation is valid for the local domain between nodesC and
W:

]

]u S Fu,w

r

]p

]u
2Fu,wpD50 @ B.C.

p~u5uC!5pC

p~u5uW!5pW
(19)

The solution of this equation yields the pressure, from whichṁu,w
can be derived as

ṁu,w5Fu,wS pC1
pC2pW

eLu,w21D (20)

Note thatDu,w , Fu,w , andLu,w must still be approximated at th
face w. A linear profile is assumed forp, so thatpw51/2(pW

1pC). Now pw is used to computeQ́pw , and it is assumed tha
hw is known. Also, r w is the radius at either nodeC or W.
Therefore,

Du,w5
Q́u,wpwhw

3 Dr

r wduw
; Fu,w56mvr whwDr ; Lu,w5

Fu,w

Du,w
(21)

Similar expressions can be written for the flow across each fi
volume face. These terms will be functions of the pressure
nodesN, S, E, W, andC and the convection and diffusion terms
each face.

Finally, these approximations are substituted into Eq.~17!, and
the resulting equation can be rearranged into the following fo

S 12mhavg

]pC

]t DDVv52aNpN2aSpS2aWpW2aEpE1aCpC

2S 12mpC

]hC

]t DDVv (22)

where

aW5Du,wA~ uLu,wu!1@@2Fu,w,0##; aN5Dr ,n

aE5Du,eA~ uLu,eu!1@@Fu,e,0##; aS5Dr ,s (23)

aC5aN1aS1aW1aE1Fw2Fe

Here, DVv is the area of the finite volume, andDVv
5r CDrDu. The function@@A, B## is defined to be the greater ofA
and B, and A(uLu)5uLu/(exp(uLu)21). Note that Fr ,n5Fr ,s
5L r ,n5L r ,s50 andA(u0u)51, so thataN andaS can be simpli-
fied as in Eq.~23!. In this work, a power-law approximation
A(uLu)5@@0,(120.1uLu)5##, is used for the mass flow since
requires less computing time than the exponential term. O
approximations can also be employed, including full upwindi
and central difference schemes@23#.

Since the finite volume method is derived in polar coordinat
a purely radial mesh of nodes is used to discretize the lubrica
domain. As a result, the curvilinear film thickness discontinuit
cut across the finite volumes at different locations. To accomm
date these discontinuities, the technique introduced by Kog
et al. @24# is implemented. In Fig. 4,c is defined to be the length
of a finite volume face that is in a groove divided by its over
length (groove1land). Four values,cn , cs , cw , andce , corre-
sponding to the four faces are computed for each finite volu
With spiral grooves, the film thickness discontinuity is constan
dg . Therefore, the mass flow into the control volume through
side can be split and computed separately based on the dis
values of the film thicknesses in the land and groove at that fa
Then the total mass flow through a face is computed by adding
APRIL 2001, Vol. 123 Õ 399
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groove and land mass flows averaged by the appropriate we
factor, c and (12c), respectively. Using this modification, Eq
~22! can be rearranged into the following form:

]pC

]t
5

1

12mhavgDVv
H 2aN8 pN2aS8pS2aW8 pW2aE8pE1aC8 pC

2S 12mpC

]hC

]t DDVvJ (24)

In this equation,a85cagroove1(12c)aland. The values ofaland
and agroove are computed from Eq.~23! above using the land
height and groove height, respectively. The value ofhavg is also
based onc:

havg5
1

4
SchCugroove1S 12

1

4
Sc DhCu land (25)

Here,Sc5cn1cs1cw1ce , andhCugroove is the film thickness
at nodeC as if it were located in a groove.hCu land is defined
similarly.

After writing Eq. ~24! for each node in the lubrication domain
the following system of equations is developed:

$ ṗ%5$R% (26)

Like before,$p% is a state vector corresponding to the pressure
nodes in the lubrication domain, and$R% is a vector containing the
right hand side of Eq.~24! computed at each node.

Subsystem Coupling and Time Integration. In state space
form, the lubrication and kinetic analyses are coupled and so
simultaneously in the following manner. First, a new set
generalized coordinatesw is established. The firstnp of
these coordinates are reserved for the pressure at each no
the finite element or finite volume mesh, and the last six co
spond to the kinetic state variables. Finally, a global state ve
is made with a total of np16 elements, so that$w%
5$p1 , . . . ,pnp ,Ż,Z,ġX ,gX ,ġY ,gY%. Note that the degrees o
freedom,Z, gX , andgY , are common to the lubrication and k
netics problems alike. They couple the problems through the
thickness and squeeze terms~see Eq.~4!!. At every instant the gas
film force and moments are found by integrating the pressure o
the seal face area@17#.

Using Eqs.~7!, ~15!, and~26!, the coupled problem is now cas
into one of these two forms:

FEM: IMPLICIT FORM @A~ t,w!#$ẇ%5$R~ t,w!%

FVM: EXPLICIT FORM $ẇ%5$R~ t,w!% (27)

These problems are then solved by linear multistep numerica
dinary differential equation solvers. These solvers employ
Adams-Moulton and Gear backward differentiation formu
methods@25#.

Results—Response to Rotor Runout and Static Stator
Misalignment

A few representative results will be presented here to disp
the capability of the new technique. These cases point out s
advantages and disadvantages of the different formulations.

The following discussion gives the procedure for computing
seal response to rotor runout and static stator misalignment.t
50, the rotor tilt axis is assumed to be coaligned with theX axis.
The initial conditions for the stator are then chosen so that i
perfectly aligned with the rotor and tracking its motion. This co
dition requires thatgX5g r , gY5ġX5Z5Ż50 andġY5vg r at
t50. The state of perfect alignment (g rel50) is chosen because
represents the ideal situation for the seal with respect to leak
and performance. With the initial kinematic condition establish
the next step is to compute the initial pressure profile.
400 Õ Vol. 123, APRIL 2001
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To calculate the steady-state pressure profile, the pressu
allowed to diffuse from an initial linear profile to the steady-sta
condition. This requires numerically solving Eq.~27! forward in
time until the amplitude of the maximum element in$ ṗ% is less
than some small value (;1025), which indicates that the stead
state is reached. Note that the seal geometry is fixed so tha
kinetic equations in Eq.~27! are trivial. The steady-state profile
from both the FEM and FVM techniques compare well with r
sults computed using a conventional finite difference method
troduced by James and Potter@7#, only the latter method require
an extremely fine mesh. Computation of the steady-state pres
profile in general produces the total static closing forces and
ments,Feq, MXeq, and MYeq. However, in the state of perfec
alignment,MXeq andMYeq are zero.

Once the steady-state pressure profile is achieved, the syste
set into motion, where Eq.~27! is integrated forward in time to
yield the desired stator transient motion. Figures 5 and 6 showg rel
in response to rotor runout and static stator misalignment for
seals: one with a sealing dam (r j50.0516 m) and one without. To
emphasize the effects from the gas film and the support stiffn
and damping, each seal is simulated with and without the supp
The results from the FEM and FVM techniques are practica
indistinguishable.

For the seal without the sealing dam~Fig. 6!, the relative tilt
between the stator and rotor is approximately the same magni
as the rotor runout for both situations, with and without supp
stiffness and damping. When the support effects are not inclu
the oscillations in the relative tilt eventually vanish so that
steady state of perfect synchronous tracking emerges. This oc
because, according to Eq.~5!, the moment from the static stato
misalignment vanishes when the support stiffness is set to z
But even with the support effects, the relative tilt magnitude
relatively small so that the stator effectively tracks the rot
When the support effects are included in the seal with a sea
dam ~solid line in Fig. 5!, the relative tilt amplitude is smaller in
comparison with either of the seals with no sealing dam. Ho
ever, when the support stiffness and damping vanish in the
with a sealing dam~Fig. 5!, the relative tilt unexpectedly increase
significantly to a large and unacceptable amplitude. Note that
this problem, a quasistatic analysis that predicts rotordynamic
efficients only~i.e., stiffness and damping of the gas film@5#!, is
incapable of predicting the large excursion from the design
equilibrium point to the new equilibrium steady-state motion.

These few examples demonstrate the significant effect that
seal dam can have on the overall dynamic performance and
bility of gas face seals. The large spiral groove angle,a
5160 deg, was chosen here because it is close to the value
optimizes the load bearing capacity@4#. However, as seen in Fig
5, the seal parameters that optimize performance indicators,
as load bearing capacity, may not give seals that are accep
when the dynamics are considered. This fact illustrates the im
tance of full numerical modeling and dynamic simulation in t
design of these seals.

With the increasing complexity of problems being modeled,
size and speed of numerical simulation codes are of signific
importance. In general, fewer nodes are usually needed fo
FEM analysis compared to an FVM analysis to achieve the sa
relative accuracy. Consequently, the memory requirements for
FVM are often vastly larger than for the FEM, which could b
inhibiting in some cases. For the results presented in Figs. 5 an
1728 nodes were used in the FEM analysis and 8280 were
for the FVM analysis. The large number of nodes is required
FVM because the gas pressure must be solved over the full
cumference of the seal. Typically, numerical solution of the i
plicit form of equations~as for FEM! is slower than for the ex-
plicit form, even when fewer nodes are used. Several fac
contribute to this behavior. First, in this FEM formulation th
global matrix@S# in Eq. ~15! is nonsymmetric and requires mor
computing time and size than if the matrix were symmetric. T
Transactions of the ASME
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Fig. 5 Transient seal response „with sealing dam … to rotor runout and static stator mis-
alignment
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loss of symmetry results because an upwinding scheme is
ployed and, therefore, the weight functionsWT are themselves
functions of the pressure and film thickness. However, if the
winding scheme were not used, more elements would be ne
to sufficiently minimize the oscillations in the pressure solutio
that can occur. Overall, these two factors offset each other,
the loss of symmetry has a small effect on the computing time
more significant factor is that the element equations in Eqs.~13!–
~15! must be reassembled at every instant, which significa
degrades the computational speed. On average, solutions
gy
em-

p-
ded
ns
and
. A

tly
sing

FEM required approximately 38 h of computing time for ea
case on a PC with a 550 MHz Pentium III processor, while
FVM took only about 16 h. Because of the large time requir
experimentation with the mesh size has been limited. More ju
cious choices regarding discretization may reduce the compu
effort for either method or make them more comparable.

The objective of this work is to present straightforward a
effective formulations for simulating the dynamics of gas fa
seals based on the finite element and finite volume techniq
However, it is not the goal to advocate one of these methods o
Fig. 6 Transient seal response „without sealing dam … to rotor runout and static stator
misalignment
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the other. Before deciding on which method to use, several fac
~e.g., computing time, complexity of programming! must be
weighed. While both of the methods have distinct positive a
negative aspects, neither seems to have an obvious advanta
every possible application when all the influencing factors
considered. For the application studied here, the FVM techni
seemed to be superior since it required less computing time.

Conclusions
Two analysis techniques, a finite element method~FEM! and a

finite volume method~FVM!, have been presented for studyin
the dynamics of gas lubricated, spiral grooved mechanical f
seals. Each analysis technique has been developed in state
form, which allows for a systematic coupling with the dynam
equations of motion for the first time. The resulting sets of eq
tions are cast into either an implicit form or an explicit form, a
they are solved using efficient numerical ordinary different
equation solvers. Examples are given where the techniques
used to simulate the transient motion of a mechanical seal, inc
ing rotor runout and static stator misalignment effects. Trans
dynamic solutions from both the FEM and FVM analyses ag
well. For this application, the FVM required approximately ha
the computing time of the FEM.

Nomenclature

C0 5 Design clearance between rotor and stato
at equilibrium

D 5 Diffusion conductance,F/db
Dp 5 Inverse Knudsen number,ph/@m(RT)1/2#

F 5 Convection parameter, 6mVhD l
FZ 5 Axial force acting on stator

Fg ,MXg ,MYg 5 Force and Moments from gas film
Feq,MXeq,M yeq 5 Equilibrium Force and Moments

h 5 Film thickness
havg 5 Average film thickness over a finite volum

lWu 5 Unit vector inu direction
ksg ,dsg 5 Support angular stiffness and damping
ksZ ,dsZ 5 Support axial stiffness and damping

l i j 5 Distance between nodesi and j
m, I 5 Stator mass and moment of inertia

MX ,MY 5 Applied moments on stator aboutX andY
axes

MXi 5 Constant moment produced by static stato
misalignment

ṁr ,ṁu 5 Proportional mass flow rates inr andu di-
rections

nW 5 Outward normal vector from a boundary
p 5 Gas pressure

pa 5 Ambient pressure
pi ,po 5 Pressure at inner and outer radial bound-

aries
r, u 5 Radial and circumferential coordinates

r i ,r o ,r j 5 Inner, outer and sealing dam radii
R 5 Universal gas constant
t 5 Time

T 5 Temperature
Q́p 5 Poiseuille flow term factor,Qcon/Qp

Qcon 5 Flow factor for continuum flow approxima-
tion

Qp 5 Flow factor for rarefaction modified flow
V 5 Surface velocity

Vi j 5 Average surface velocity along a line from
nodei to nodej

wg ,wl 5 Width of groove and land regions
Z 5 Axial displacement of stator from equilib-

rium clearance
a 5 Spiral groove angle
b 5 Groove width ratio,wg /(wg1wl)
402 Õ Vol. 123, APRIL 2001
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gX ,gY 5 Stator tilts aboutX andY axes
g r 5 Rotor runout

g rel 5 Relative tilt amplitude between rotor and
stator

gsi 5 Static stator misalignment amplitude
dg 5 Groove depth

D l ,db 5 Characteristic lengths perpendicular and
parallel to flow direction

DVv 5 Area of finite volume
L 5 Compressibility number; global-

6mvr o
2/(paC0

2); local-6mVdb/(Qp8ph2)
m 5 Gas viscosity
F 5 Diffusion parameter,Qp8ph3D l

c, 12c 5 Ratios of finite volume face in a groove
region and in a land region

v 5 Rotor rotational speed

Appendix
The shape and weight functions for the Lagrange quadratic

ement in Fig. 3 are given below in the elemental coordinate s
tem, ~j,h!. First, the following functions are defined:

L1~n!5
1
2n~n21!; L2~n!5~12n2!

L3~n!5
1
2n~n11!; U~n!5

5
8n~n11!~n21!

where n is a dummy argument. The corresponding shape fu
tions are@22#:

N1~j!5L1~j!L1~h!; N2~j!5L3~j!L1~h!

N3~j!5L3~j!L3~h!; N4~j!5L1~j!L3~h!

N5~j!5L2~j!L1~h!; N6~j!5L3~j!L2~h!

N7~j!5L2~j!L3~h!; N8~j!5L1~j!L2~h!

N9~j!5L2~j!L2~h!

The weight functions are

W1~j!5~L1~j!2a12U~j!!~L1~h!2a14U~h!!;

W2~j!5~L3~j!2a12U~j!!~L1~h!2a23U~h!!

W3~j!5~L3~j!2a43U~j!!~L3~h!2a23U~h!!;

W4~j!5~L1~j!2a43U~j!!~L3~h!2a14U~h!!

W5~j!5~L2~j!24b12U~j!!~L1~h!2a57U~h!!;

W6~j!5~L3~j!2a86U~j!!~L2~h!24b23U~h!!

W7~j!5~L2~j!24b43U~j!!~L3~h!2a57U~h!!;

W8~j!5~L1~j!2a86U~j!!~L2~h!24b14U~h!!

W9~j!5~L2~j!24b86U~j!!~L2~h!24b57U~h!!

The a i j andb i j parameters are defined below in terms ofg i j , an
average local compressibility number@14#:

a i j 52S tanh
g i j

2 D S 11
3b i j

g i j
1

12

g i j
2 D 2

12

g i j
2b i j

b i j 5S coth
g i j

4 D2
4

g i j
; g i j 5

Vi j l i j m

1

2
~pi1pj !F1

2
~hi1hj !G2

The ij indices correspond to the side joining nodesi and j. Vi j is
the average surface velocity along a line going fromi to j, andl i j
is the distance between the cornersi and j. Note thatg i j ap-
proaches zero in the limit asa i j and b i j approach zero. These
parameters provide a self-adapting upwinding scheme that
function of the local compressibility number.
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