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Abstract: Fracture of prestressed concrete beams is studied with a novel and robust three-dimensional meshfree method. The meshfree

method describes the crack as a set of cohesive crack segments and avoids the representation of the crack surface. It is ideally suited for

a large number of cracks. The crack is modeled by splitting particles into two particles on opposite sides of the crack segment and the

shape functions of neighboring particles are modified in a way the discontinuous displacement field is captured appropriately. A simple,

robust and efficient way to determine, on which side adjacent particles of the corresponding crack segment lies, is proposed. We will show

that the method does not show any “mesh” orientation bias and captures complicated failure patterns of experimental data well.
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1. Introduction

The simulation of large sets of evolving cracks in concrete

structure still poses substantial difficulties on numerical methods.

Modelling of discrete cracks is essential for reliability and safety

analysis of reinforced concrete structures. Crack models in numer-

ical methods can be classified into two categories:

● Methods that enforce crack path continuity and

● Methods that do not enforce crack path continuity
The first category can be classified into two sub-categories, i.e.

methods that can handle embedded cracks and methods that can-

not have embedded cracks. Inter-element separation methods (Xu

and Needleman;
29,30

 Camacho and Ortiz;
10

 Ortiz et al.;
20

 Zhou

and Molinari)
31

 belong to the latter group. In inter-element separa-

tion models, cracks are only allowed to develop along existing

inter-element edges. This endows the method with comparative

simplicity, but can result in an overestimate of the fracture energy

when the actual crack paths are not coincident with element edges.

The results severely depend on the shape and mesh orientation of

the mesh. This mesh dependence can only be alleviated by exces-

sive remeshing that is computationally expensive. Methods that

are capable to embed the discontinuity, i.e. the crack, in the ele-

ment are embedded elements (Belytschko et al.;
3
 Oliver;

16
 Oliver

et al.;
17,18

 Armero and Garikipati)
1
 and the extended finite element

method (XFEM) (Belytschko and Black;
2
 Moes et al.;

15
 Belyt-

schko et al.;
7
 Bordas et al.).

32-35
 In embedded elements, the crack

can propagate only one element at a time and the cracks open

piecewise constant. In the extended finite element method, the

crack can open linearly (in case of linear shape functions) and non-

linear (in case of higher order shape functions). Both methods

require crack path continuity. The crack is usually described by

level sets though this is not mandatory. When many cracks and

when bifurcating and joining cracks occur, methods that enforce

crack path continuity become cumbersome. Tracing the crack is

one of the most difficult tasks in these methods, especially in 3D.

The situation in meshfree methods is similar. Most meshfree

methods consider the crack as continuous surface, Krysl and

Belytschko;
13

 Belytschko et al.;
8
 Belytschko and Lu;

5
 Belytschko

et al.;
6
 Belytschko and Tabbara.

9
 Hence, the difficulties in mesh-

free methods are similar as compared to XFEM though no special

treatment for ”branched elements” have to be considered due to

the “meshfree” character of the discretization. 

Recently, methods have been proposed that do not enforce crack

path continuity but that are capable of capturing the jump in the

displacement field typical for strong discontinuity approaches,

Remmers et al.;
28

 Rabczuk and Belytschko.
23

 Though these meth-

ods are less accurate than methods that enforce crack path continu-

ity, they are easier to implement and usually better suited for problems

with excessive cracking since they do not require algorithms to

track the crack paths. There is also no need of representing the crack

as continuous surface. This paper is motivated by the cracking

particle method
23

 where the crack was modelled by a discontinu-

ous enrichment that can be arbitrary aligned in the body at each

particle (or node). The model of a continuous crack then consists

of a set of contiguous cracked particles. In,
26

 it was shown that a

discontinuous enrichment of cracked particles is not sufficient and

particles in the blending domain were excluded in the approxima-

tion of the discontinuous displacement field. Within this paper, we

follow the idea of modelling the crack as set of cracked particles.

However, in contrast to the cracking particle method, we don’t

introduce additional unknowns in the variational formulation to

capture the displacement discontinuity. Instead, the particles, where

cracking is detected, are split into two particles lying on opposite

sides of the crack. To capture the jump in the displacement field,

the shape functions of the cracked particles are cut across the crack
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boundary similar to the visibility method, Belytschko et al.; 
8,6

Organ et al.
19

 Also the shape functions adjacent to the cracked par-

ticles are cut based on a simple condition that requires only the

normal to the crack segment. The major advantage of the pro-

posed method compared to the approach in Rabczuk and

Belytschko
23

 is that no additional unknowns need to be intro-

duced. The method will be applied to prestressed concrete beams

where a large number of cracks occurs.

We have focused on a meshfree method since it has certain

advantages over finite elements in the context of fracture of rein-

forced concrete structures. First, a large number of cracks can be

better dealt with methods that do not enforce crack path continuity

and meshfree methods are better suited for this type of methods.

Second, meshfree methods do not show a mesh orientation bias

due to the isotropic (spherical) domain of influence. Third, h-adap-

tivity (useful for computational efficiency and increase of accu-

racy around the crack tip) can be incorporated easier in a meshfree

method due to the absence of a mesh. Finally, the higher order

continuity of meshfree methods give more accurate results in the

stress and strain field that is needed to determine the direction of

crack growth.

The article is arranged as follows: The governing equations are

given in the next section. Then, we explain the new cracking con-

cept and a simple procedure to determine on which side a particle

is lying with respect to several crack segments. The discrete equa-

tions, the constitutive models and the cracking criterion are dis-

cussed afterwards. Finally, we apply the method to prestressed

reinforced concrete beams under four-point-bending and show

good agreement between experimental and numerical results.

2.1 Governing equations
The governing equation is the equation of equilibrium given by

\  (1)

where P is the nominal stress tensor, b are the body forces, X are

the material coordinates,   is the gradient operator with respect

to the material coordinates and Γc is the crack surface. The bound-

ary conditions are

(2)

where  and  are the prescribed displacements and tractions,

respectively, tc are the cohesive forces across the crack and n is the

outward normal to the domain.

2.2 Displacement field approximation and element-

free galerkin (EFG) method
The approximation of the displacement field in a Lagrangian

description using the EFG method is given by

(3)

where a are the unknowns and p is a polynomial basis that we

have chosen as p(X) = [1  X  Y]. Minimizing the discrete weighted

L2 error norm

(4)

with respect to a leads to the approximation

(5)

where ΦI(X) is the shape function of particle I, S is the set of

neighbour particles for X,  uI is the value at the particle at position

XI, w(X− XI, h) is a window or kernel function and h is the inter-

polation radius of the window function. In the EFG method (see

e.g. Belytschko and Lu;
5
 Belytschko et al.;

4
 Belytschko and

Tabbara
9
), the shape functions can be derived from the minimiza-

tion procedure as follows:

(6)

Equations (5) and (6) are the EFG displacement approximation

for a continuous displacement field. Now, let us consider a dis-

placement field in the presence of a crack. The crack introduces a

jump in the displacement field. This requires the modification of

equations (5) and (6) in the vicinity of the crack. The basic idea is

the same as in Rabczuk and Belytschko
23

 where the crack is mod-

eled by a set of cracked particles as shown in Figure 1, simplified

for the two-dimensional case. However, in contrast to,
23

 the dis-

placement discontinuity is not introduced by additional unknowns

in the variational formulation. Instead, a cracked particle is split

into two particles lying on opposite sides of the crack segment as

shown in Fig. 2. The discrete crack segments are restricted to lie

between the two cracked particles. Crack opening is assumed to

be piece-wise constant. Since the crack geometry is described by

the set of cracked particles, we do not have to provide a represen-

tation for the geometry of the crack that entails additional com-

plexity. At crack initiation, both particles will be placed at the

same location but they separate during the course of the simula-

tion. The crack segment is assumed to cross the entire domain of

influence of the associated split cracked particle. For neighboring

particles, the shape function is cut similar as in the visibility

method, Belytschko et al.;
6
 Organ et al.

19
 Since the crack is not

described continuously, the visibility criterion has to be modified.

Here, we take advantage of the signed distance function with

respect to the corresponding crack segment. More details are out-

lined below.

As previously mentioned, it becomes also necessary to “cut” the

shape functions of particles adjacent to the cracked particles in order

to approximate the jump in the displacement field. The approxi-

mation of the displacement field accounting for the jump in the

displacement field can then be expressed as

∇ P b–⋅ 0  X Ω∈∀= Γc

∇

u X( ) u X( ) on Γu=

n P X( )⋅  t X( ) on Γt=

n P  –⋅ n P+⋅ tc on Γt= =

u  t

u X( ) p
T

X( )a X( )=

J w X Y1 h,–( ) pI

T
X( )a X( ) uI–( )2

I S∈

 

∑=

u
h

X( ) ΦI X( )uI

I S∈

 

∑=

ΦI X( ) p
T

X( ) A
1–

X( ) B X( )⋅ ⋅=

A X( ) pJ X( )pJ

T
X( )w X XJ h,–( )

J S∈

 

∑=

B X( ) pJ X( ) w X XJ h,–( )
J S∈

 

∑=
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(7)

where H( fI(X)) is the Heaviside function that is one on one side of

the crack and zero on the other side of the crack and fI(X) is the

signed distance function with respect to the corresponding cracked

particle given by

(8)

where n is the normal to the crack that is obtained from the crack-

ing criterion discussed later. For a better illustration, consider Fig.

2 (right side). The red particles are cracked and are split into two

new nodes at crack initiation. Note that at crack initiation, both

particles coincide. Figure 2 shows exemplarily the representation

of a crack for a two dimensional crack branching. Particle 1 lies in

front of the “crack tip” and is outside of the domain of influence of

all cracked particles and hence not influenced. For the green parti-

cle, the particles included in its domain of influence-shown by the

green circle- is shown in blue colour. All other particles are lying

on the opposite side with respect to the corresponding cracked par-

ticles and hence H=0. The “visibility check” of  “uncracked”

particles is done with respect to each (corresponding) crack seg-

ment in order to assemble the connectivities. Note that the only

requirement is the initial position vector of the crack segment and

the normal of the crack segment.

2.3 Weak form and discretization
The weak form of the equilibrium including a cohesive crack is

given by: Find   such that 

(9)

where δ denotes the variation and where the trial functions u and

the test functions δu lie in the following approximation spaces

(10)

with  and  where  is

the crack surface. The [[ ]]-brackets in equation (9) denote the

jump operator (in the displacement field). Substituting the approx-

imation for the trial and test functions (the test functions have the

same structure as the trial functions) into the variational formula-

tion, equation (9), and performing a linearization, we obtain the

final system of equations:

(11)

Where K is the tangential stiffness matrix of the system, ∆u is the

increment of the displacement vector and f
ext

, f
int

and f
coh

are the

external force vector, the internal force vector and the cohesive

force vector, respectively. We deal with non-linearities with the

Newton-Raphson technique. 

2.4 Cracking criterion and cohesive/constitutive

model
Before cracking, we employed a continuum model outlined in

[23]. A crack is initiated when the material loses stability. It can be

shown that loss of material stability occurs when the minimum

eigenvalue of the acoustic tensor Q is smaller than zero: min

eig(Q) < 0 with

 

(12)

with  where C
t
 is the consistent material tangen-

u
h

X( ) ΦI X( )H fI X( )( )uI

I S∈

 

∑=

fI X( ) n X XI–( )⋅=

u V∈ δ u∀ V0∈

∇ δ u⊗( )T:P Ω δu b⋅ Ω δu  t⋅ Γ δ u[ ][ ] tc⋅ Γd

Γ
c

 

∫–d

r
t

 

∫–d

Ω

 

∫–d

Ω

∫ 0=

V u u H
1
\Γc udiscontinuous on Γc u = u on Γu, ,∈{ }=

V δu δu H
1
\Γc δudiscontinuous on Γc δu = 0 on Γu, ,∈{ }=

Γ Γc Y Γt Y Γu= Γc Y Γt Y Γu 0= Γc

K u∆ f
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f
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– f
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–=
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Fig. 1 Schematic on the right shows a crack model for the crack on the left.

Fig. 2 Schematic on the right shows a crack model for the crack on the left.



156│International Journal of Concrete Structures and Materials (Vol.2 No.2, December 2008)

tial stiffness matrix, σ is the Cauchy stress tensor and δ is the Kro-

necker-delta. When the material loses material stability, n com-

pletely determines the orientation of the crack, i.e. n becomes the

normal to the crack. The eigenvector h to the corresponding eigen-

value of Q at cracking determines the direction of the localization.

For a pure mode I-crack n will be perpendicular to h while for

pure mode II-crack n is parallel to h. For mixed mode failure, the

direction of h with respect to n will be somehow between the two

extreme cases. Note that the bifurcation analysis gives generally

several possible crack orientations. A criterion that reliably gave

the correct orientation is to project the displacement gradient in

localization direction and maximizing the following condition:

where l are the minima obtained from the material stability analysis.

A cohesive model is applied at the crack boundaries to account

for the dissipated energy during crack opening. The cohesive law

is of the form:

where the subscript n indicates the normal component and the

jump in the displacement field is given by

with

More details on the cohesive law can be found in [22].

3. Results and discussion

We consider three prestressed concrete beams without stirrup

reinforcement. Details on the experimental set-up can be found in

[36]. The first beam-beam I- has a rectangular cross section. The

test setup and the dimensions of the beam are illustrated in Fig.3.

The beam was prestressed with two tension wires (St 1470/1670)

of 7 mm diameter prior to loading. The lower reinforcement was

prestressed with a force of 26.25 kN, the upper one with a force of

11.25 kN. The beam failed in bending because of the plastic flow

of the lower reinforcement followed by a failure of the concrete

compression zone. Fig. 4 shows a cutout of the beam after the

experiment. Crack number 2 and 3 are the cracks that caused the

failure. 

The test setup for the second beam-beam II- is shown in figure

5. In contrast to the first beam, the second beam has a I-cross sec-

tion. The beam has two tension wires (St 1420/1570) of 12 mm

diameter at the lower flange that were prestressed each with a

force of 80 kN. The upper reinforcement (BSt 500) was not pre-

stressed and had a diameter of 10 mm. It was only installed due to

transportation purposes. The beam failed suddenly because of a

combined shear/pullout failure as illustrated in Fig. 6 (LHS).

Crack number 6 caused the failure.

The third beam-beam III- has also a I-shaped cross section but

the dimensions differ from beam II, see Fig. 7. The beam is pre-

stressed with two tension wires (St 1420/1570) of 12 mm diameter

g max nl u∇ hI⋅[ ]⋅( )=

  

l

tn

tmax

max un[ ][ ]
---------------------------------exp

tmax

Gf

---------- max un[ ][ ]–⎝ ⎠
⎛  un[ ][ ]=

  

  

history
history

un[ ][ ] n u[ ][ ]⋅=

u[ ][ ] u+ u  ––=

Fig. 3 Test set-up of beam I.

Fig. 5 Test set-up of beam II.

Fig. 4 Close-up around the crack that caused the failure for beam I.
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at the lower flange with a force of 68 kN and the upper reinforce-

ment (BSt 500, 10 mm) was not prestressed. The same failure

mechanism as for beam II was observed but the shear crack who

caused the failure was farther from the support. More bending

cracks appeared and the crack was flatter than in the second exper-

iment. A picture of the beam after the experiment is shown in Fig.

6 (RHS). All beams were loaded by a displacement controlled

approach. 

We have used a bond model
25

 to take into account the interac-

tion of the concrete and the reinforcement. Otherwise, the correct

failure pattern cannot be reproduced. All concrete beams were dis-

cretized with particles while beam elements were used for the

reinforcement. To solve the linearized systems of equations we

employed the parallel direct solver Spooles based on overlapping

domain decomposition. The computations were carried out on a

parallel cluster using between 10 to 20 processors. To avoid an

unrealistic symmetric crack pattern, we have varied the material

strength in the specimen, meaning we multiplied the tensile

strength with a small factor 1.2 ≥ α ≥ 0.98 obtained from a log-

normal distribution around a mean value of 1 and a standard devi-

ation of 2%. We did not test the geometric correlation but it will

influence the crack pattern; the global response (load-deflection

curve) remains almost identical. Due to the large scatter of the

crack patterns in the experiment, we find it reasonable not to study

the geometric correlation, especially due to lack of information of

the micro-structure. 

The prestressing is modelled via a temperature loading case of

the tension wires. In other words, the tension wire is shortened by

cooling down. The strains are computed by ε =αT∆T where αT is

the thermal expansion coefficient which is / C for steel

and ∆T is the temperature difference, which is negative in our

case. The contraction of the tension wire transmits the prestressing

forces in the concrete. In the experiments, the tension wires were

first prestressed, then the beams were concreted and the prestress-

ing forces were transmitted in the concrete after the desired com-

pressive strength (= 45 MPa) was obtained.

Let us now focus on beam I: We have used an unstructured par-

ticle arrangement and varied the number of particles in the compu-

tation from 14,000 to 63,000 particles. In addition, we have used

adaptivity in our computation to keep the computational cost low

(twice lower compared to the coarsest discretization). We started

the adaptive computations with approximately 8,000 particles and

allowed 3 refinement steps. The adaptive refinement procedure

and the error estimator is described in Rabczuk and Belytschko.
24

Details about the constitutive model in the bulk, the cohesive

model, the bond model and the coupling including all material

data can be found in Rabczuk and Belytschko.
25

 

Figure 8 shows the computed crack pattern at failure for beam I.

The calculation reproduces the crack pattern well. Figure 9 shows

the stresses for the tension wires at prestressing and a short time

before the structure fails for the lower and upper wire, respec-

tively. The prestressing obtained from the experiment is shown in

figure 9 as well. At the beginning of the simulation (prestressing),

a uniform distribution can be recognized. After 300 mm from the

left support the stresses are completely transmitted in the steel.

During loading, the stresses in the reinforcement increase, espe-

cially at locations where the concrete cracks and the reinforcement

has to carry the load alone. Adjacent to the crack, the steel stresses

in the reinforcement decrease.

The load displacement curve is shown in Fig. 10 for different

computations. No mesh dependence occurs and the computational

results agree with the experiment very well. A sudden drop in the

load displacement curve at failure can be observed in the experi-

ment and in the numerical simulation. The latter is caused due to a

strain based failure criterion of the steel. Also the onset of the first

cracking, when the stiffness of the structure is reduced due to the

cracks, is detected by the simulation very well; it is the point

where the load deflection curve starts to flatten. As can be seen,

whenever a new crack is initiated a slight “jump” in the load

deflection curve occurs caused by the decrease of the structural

1 10
5–⋅

Fig. 6 Close-up around the crack that caused the failure for: LHS- beam II, RHS- beam III.

Fig. 7 Test set-up of beam III.
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stiffness.

For beam II, we also studied different discretizations, starting

from 32,000 particles up to 120,000 particles. The adaptive com-

putation was performed with an initial number of particles of

13,000 particles and we allowed 2 refinement steps. Figure 11

shows the computed cracks at different load steps exemplarily for

the coarsest particle discretization (32,000 particles). The shear

crack in the experiment is closer to the support than in the compu-

tation probably due to some imperfections. However, the compu-

tation can predict the overall behaviour well, compare with Fig.12.

The computed and experimental load mid-displacement curves for

beam II are illustrated in Fig. 13 for different ‘mesh’ refinements

and for the adaptive computation. The crack initiation is predicted

by the simulation quite exact. Also the combined shear/anchorage

failure is predicted well by the simulation. This is indicated by a

sudden drop in the load deflection curve finally caused by the pull-

out of the lower tension wires, i.e. the bond length is shortened

such that failure occurs. At first a shear crack is initiated at the

transition between the lower flange and the web of the beam. This

crack propagates towards the upper flange and simultaneously

across the transition between the lower flange and the web in the

direction of the closest support. The crack propagates further

across the lower reinforcement and reduces the bond length at the

end of the beam. A crack perpendicular to the crack that propa-

gates at the transition of the web and the web separates two large

Fig. 8 Crack pattern of beam I: (a),(b) numerical simulation

and (c) experiment.

Fig. 9 Prestressing of the wires in (a),(b) the simulation and

(c) the experiment; the experiment corresponds to the

load case prestressing in the simulation.

Fig. 10 Load deflection curve of beam I.

Fig. 11 Crack pattern of beam II obtained in the numerical

simulation.

Fig. 12 Crack pattern of beam II in the experiment.
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fragments from the beam. The sudden combined shear/anchorage

failure is accompanied by a sudden drop in the load deflection

curve, Fig. 13, and by a drop in the bond curve due to the reduc-

tion of the bond length, Fig. 14. As might be obvious, the failure

occurred suddenly and the entire concrete breaks around the rein-

forcement. At that point the computation stopped to converge. We

would like to mention that in an earlier paper,
21

 we were not able

to capture the appropriate failure mechanism probably due to the

two dimensional discretization.

The crack pattern for beam III at different load steps is illus-

trated in Fig. 15; Fig 15(c) shows the beam at failure. In contrast to

beam II, more cracks occur and there are two shear cracks close to

the support. This behaviour is captured by the simulation very

well, compare with Fig. 16. Otherwise, the same observations as

for beam II apply. The computed load deflection curve for beam

III is shown in  Fig. 17.

4. Conclusions

A new method for treating crack growth by particle methods

has been proposed. In this method, the crack is treated as a set of

cracked particles. Cohesive crack segments are located at the posi-

tion of the cracked particles and the particle is split into two parti-

cles. The jump in the displacement field is obtained by the

visibility method. Therefore, we proposed a simple and robust

method to detect the connectivity of particles. The connectivity was

removed across the crack surface. The major advantage of our

method is that does not need a representation of the crack surface

and hence, there is no need for algorithms that trace the crack paths. 

The method is applied to prestressed concrete structures with

multiple crack initiations and propagations. The numerical results

were compared to experimental data and show excellent agree-

ment. We were able to capture crack patterns, load deflection

curves and different failure modes correctly.
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