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NUMERICAL GRADIENT ALGORITHMS FOR EIGENVALUE AND

SINGULAR VALUE CALCULATIONS*

J.B. MOOREt , R.E. MAHONYt , AND U. HELMKE$

Abstract. Recent work has shown that the algebraic question of determining the eigenvalues,

or singular values, of a matrix can be answered by solving certain continuous-time gradient flows on

matrix manifolds, To obtain computational methods based on this theory, it is reasonable to develop

algorithms that iteratively approximate the continuous-time flows. In this paper the authors propose

two algorithms, based on a double Lie-bracket equation recently studied by Brockett, that appear

to be suitable for implementation in parallel processing environments. The algorithms presented

achieve, respectively, the eigenvalue decomposition of a symmetric matrix and the singular value

decomposition of an arbitrary matrix. The algorithms have the same equilibria as the continuous-

time flows on wh~ch they are based and inherit the exponential convergence of the continuous-time

solutions.

Key words. eigenvalue decomposition, singular value decomposition, numerical gradient algo-

rithm

AMS subject classifications. 15A18, 65F1O

1. Introduction. A traditional algebraic approach to determining the eigen-

value and eigenvector structure of an arbitrary matrix is the QR-algorithm. In the

early 1980s it was observed that the QR-algorithm is closely related to a continuous-

time differential equation that has become known through study of the Toda lattice.

Symes [13] and Deift, Nanda, and Tomei [6] showed that for tridiagonal real sym-

metric matrices, the QR-algorithm is a discrete-time sampling of the solution to a

continuous-time differential equation. This result was generalised to full complex ma-

trices by Chu [3], and Watkins and Elsner [14] provided further insight in the late

1980s.

Brockett [2] studied dynamic matrix flows generated by the double Lie-bracket

equation

if= [H, [H, N]]> H(o)= Ho

for constant symmetric matrices N and Ho, and where we use the Lie-bracket notation

[X, Y] = XY – YX. We call this differential equation the double-bracket equation,

and we call solutions of this equation double-bracket flows. Similar matrix differential

equations in the area of Physics were known and studied prior to the references given

above. An example, is the Landau–Lifschitz–Gilbert equation of micromagnetics

drn
–*(fix R-wlzx(fix77)) [ril’=1,

-Z–”

as a + w and -y/a + k, a constant. In this equation m, ~ E R3 and the cross-

product is equivalent to a Lie-bracket operation. The relevance of such equations
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to traditional linear algebra problems, however, has only recently been studied and

discretisations of such flows have not been investigated.

The double-bracket equation is not known to be a continuous-time version of any

previously existing linear algebra algorithm; however, it exhibits exponential conver-

gence to an equilibrium point on the manifold of self-equivalent symmetric matrices

[2], [5], [9]. Brockett [2] was able to show that this flow could be used to diagonalise

real symmetric matrices, and thus, to find their eigenvalues, sort lists, and even to

solve linear programming problems. Part of the flexibility and theoretical appeal of

the double-bracket equation follows from its dependence on the arbitrary matrix pa-

rameter N, which can be varied to cent rol the transient behaviour of the differential

equation.

In independent work by Driessel [7], Chu and Driessel [5], Smith [12] and Helmke

and Ivfoore [8], a similar gradient flow approach is developed for the task of comput-

ing the singular values of a general nonsymmetric, nonsquare matrix. The differential

equation obtained in these approaches is almost identical to the double-bracket equa-

tion. In [8], it is shown that these flows can also be derived as special cases of the

double-bracket equation for a nonsymmetric matrix, suitably augmented to be sym-

metric.

With the theoretical aspects of these differential equations becoming known, and

with applications in the area of balanced realizations [10], [11] aiong with the more

traditional matrix eigenvalue problems, there remains the question of efficiently com-

puting their solutions. No explicit solutions to the differential equations have been

obtained and a direct numerical estimate of their integral solutions seems unlikely to

be an efficient computational algorithm. Iterative algorithms that approximate the

cent inuous-t ime flows, however, seem more likely to yield useful numerical methods.

Furthermore, discretisations of such isospectral matrix flows are of general theoretical

interest in the field of numerical linear algebra. For example, the algorithms proposed

in this paper involve adjustable parameters, such as step-size selection schemes and

a matrix parameter N, which are not present in traditional algorithms such as the

QR-algorithm or the Jacobi method.

In this paper, we propose a new algorithm termed the Lie-bracket algorithm, for

computing the eigenvalues of an arbitrary symmetric matrix

For suitably small ak, termed time-steps, the algorithm is an approximation of the

solution to the continuous time double-bracket equation. Thus, the algorithm rep-

resents an approach to developing new recursive algorithms based on approximating

suitable continuous-time flows. We show that for suitable choices of time-steps, the

Lie-bracket algorithm inherits the same equilibria as the double-bracket flow. Further-

more, exponential convergence of the algorithm is shown. This paper presents only

theoretical results on the Lie-bracket algorithm and does not attempt to compare its

performance to that of existing methods for calculating the eigenvalues of a matrix.

Continuous-time gradient flows that compute the singular values of arbitrary

nonsymmet ric mat rices, such as those covered in [5], [8], [9], [12], have a similar

form to the double-bracket equation on which the Lie-bracket algorithm was based.

We use this similarity to generate a new scheme for computing the singular values

of a general matrix termed the singular value algorithm. The natural equivalence

between the Lie-bracket algorithm and the singular value algorithm is demonstrated

and exponential convergence results follow almost directly.
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Associated with the main algorithms presented for the computation of the eigen-

values or singular values of matrices are algorithms that compute the full eigenspace

decompositions of given matrices. These algorithms are closely related to the Lie-

bracket algorithm and also display exponential convergence.

The paper is divided into eight sections including the Introduction and an Ap-

pendix. In ~2 of this paper, we consider the Lie-bracket algorithm and prove a propo-

sition that ensures the algorithm converges to a fixed point. Section 3 deals with

choosing step-size selection schemes and proposes two valid deterministic functions

for defining the time-steps. Considering the particular step-size selection schemes

presented in 53 we return to the question of stability in 54 and show that the Lie-

bracket algorithm has a unique exponentially attractive fixed point, though several of

the technical proofs are deferred to the Appendix. This completes the discussion for

the symmetric case and $5 considers the nonsymmetric case and the singular value

decomposition. Section 6 presents associated algorithms that compute the eigenspace

decompositions of given initial conditions. A number of computational issues are

briefly mentioned in $7, while 58 provides a conclusion.

2. The Lie-bracket algorithm. In this section, we begin by introducing the

least squares potential that underpins the recent gradient flow results and then we

describe the double Lie-bracket equation first derived by Brockett [2]. The Lie-bracket

recursion is introduced and conditions are given that guarantee convergence of the

algorithm.

Let N and H be real symmetric matrices and consider the potential function

(1)

@(H) := Ijll- Nl\2

= lpI112+ IIN112- 2tr(N~)

where the norm used is the Frobenius norm 11X112:= tr(XTX) = ~ z~j, with Zij the

elements of X. Note that @(H) measures the least squares difference between the

elements of H and the elements of N. Let kf(Ho) be the set of orthogonally similar

matrices, generated by some symmetric initial condition Ho = H; c I?nxn. Then

(2) M(H~) = {WHJ7 I u E o(n)},

where O(n) denotes the group of all n x n real orthogonal matrices. It is shown

in [9, p. 48] that Af(Ho) is a smooth compact Riemannian manifold with explicit

forms given for its tangent space and Rlemannian metric. Furthermore, in [1], [5] the

gradient of +(H), with the respect to the normal Riemannian metric on Al(Ho) [9,

p. 50], is shown to be V@(H) = – [H, [H, N]]. Consider the gradient flow given by

the solution of

(3)
H = –v’@(H)

= [H, [H, N]], with H(0)= Ho,

which we call the double-bracket jlow [2], [5]. Thus, the double-bracket flow is a

gradient flow that acts to decrease or minimise the least squares potential @ on the

manifold M (Ho). Note that from (1), this is equivalent to increasing or maximizing

tr(NH). We refer to the matrix Ho as the initial condition and the matrix N as the

target matrix.

The Lie-bTacket algorithm proposed in this paper is

(4) Hk+~ = e
–Cx~[&~]Hke@k,~]
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for arbitrary symmetric n x n matrices Ho and N and some suitably small scalars

a~ termed time-steps. To motivate the Lie-bracket algorithm, consider the curve

lf~+l(t) = e-ti~k’~lk?~et[~ ”~l. Thus, Hk+l(o) = Hk and Hk+l = ffk+l(~k), the

(k+ l)th iteration of (4). Observe that

~(e-’[H’~]~ke~[H~,~])= [~k,[~k,N]],
t=o

and thus, e–t IHk‘N]Hket ‘Hk‘N] is a first approximateion of the double-bracket flow at

Hk C A4(HO). It follows that for small ~/c, the solution to (3) evaluated at time t= (%

with H(0) = Hk is approximately Hk+l = Hk+l (~k).

It is easily seen from above that stationary points of (3) are fixed points of (4).

In general, (4) may have more fixed points than just the stationary points of (3),

however, Proposition 2.1 shows that this is not the case for a suitable choice of time-

step ~k. We use the term equilibrium point to mean a fixed point of the algorithm

that is also a stationary point of (3).

To implement (4) it is necessary to specify the time-steps ok. We do this by

considering functions ct~ : AI(HO) - R+ and setting ok := crjv(Hk). We refer to the

function ffN as the step-size selection scheme. We require that the step-size selection

scheme satisfies the following condition.

CONDITION 2.1, Let ~N : M(HO) ~ R+ be a step-size selection scheme for the

Lie-bracket algorithm on M(HO). Then ~jv is well defined and continuous on all of

M(Ho), except possibly those points H G M(Ho) where HN = NH. Furthermore,

there exist real numbers B, -y >0, such that B > CYN(H) 2 ~ for all H G M(HO)

where ~N is well defined.

Remark 2.1. We find that the variable step-size selection scheme proposed in this

paper, which provides the best simulation results, is discontinuous at all the points

H G M(HO), such that [H, N] = O.

Remark 2.2. Note that the definition of a step-size selection scheme depends

implicitly on the matrix parameter N. Indeed, ~N can be thought of as a function in

two matrix variables N and H.

CONDITION 2.2. Let N be a diagonal nzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx n matrix with distinct diagonal entries

/.l,l>/Q?>. ..> #n.

Remark 2.3. This condition on N, along with Condition 2.1 on the step-size

selection scheme, is chosen to ensure that the Lie-bracket algorithm converges to a

diagonal matrix from which the eigenvalues of Ho can be directly determined.

Let A1>A2 >... > & be the eigenvalues of Ho with associated algebraic

multiplicities nl, . . . . nr satisfying ~~=1 ni = n. Note that as Ho is symmetric, the

eigenvalues of Ho are all real. Thus, the diagonalisation of Ho is

where Ini is the ni x ni identity matrix. For generic initial conditions and a target

matrix N that satisfies Condition 2.2, the continuous-time equation (3) converges

exponentially fast to A [2], [9]. Thus, the eigenvalues of Ho are the diagonal entries

of the limiting value of the infinite time solution to (3). The Lie-bracket algorithm

behaves similarly to (3) for small ~k and, given a suitable step-size selection scheme,

should converge to the same equilibrium as the cent inuous-time equation.
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PROPOSITION 2.1. Let HO and N be n x n real symmetric matrices where N

satisfies Condition 2.2. Let V(H) be given by (1) and let ON : M(HO) + R+ be a step-

size selection scheme that satisfies Condition 2.1. For H~ G M (Ho),zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAle t c% = ~N (H,+)

and define

(6) ~ ?)(Hk,(l~) := @(H~+I) – ?/!(Hk),

where Hk+l is given by (4). Suppose

(7) ~?/J(Hk,a~) <0 when [Hk, N] + O.

Then (a) The iterative equation (4) defines an isospectral (eigenvalue preserving) re-

cursion on the manifold M(HO).

(b) The fixed points of (4) are characterised by matrices H 6 M(HO) satisfying

(8) [H, N]= O.

(c) Every solution Hk, fork = 1,2,..., of (4), converges as k + cm, to some

Hm G M(HO) where [Hm, N] = O.

Proof To prove part (a), note that the Lie-bracket [H, N]T = – [H, N] is skew-

symmetric. As the exponential of a skew-symmetric matrix is orthogonal, (4) is an

orthogonal conjugation of Hk and hence is isospectral.

For part (b) note that if [Hk, N] = O, then by direct substitution into (4) we see

Hk+~ = Hk and thus, Hk+~ = Hk for 1 Z 1, and Hk is a fixed point of (4). Conversely

if [Hk, N] # O, then from (7), ~@(Hk, ~k) # O, and thus Hk+l # Hk. By inspection,

points satisfying (8) are stationary points of (3), and indeed are known to be the only

stationary points of (3) [9, pg. 50]. Thus, the fixed points of (4) are equilibrium

points in the sense that they are all stationary points of (3). To prove part (c) we

need the following lemma.

LEMMA 2.2. Let N satisfy Condition 2.2 and CYNsatisfy Condition 2.1 such

that the Lie-bracket algorithm satisfies (7). The Lie-bracket algorithm (4) has exactly

n!/ ~~=1 (nil) distinct equilibrium points in M(Ho). These equilibrium points are

characterised by the matrices XTAZ7 where ~ is an n x n permutation matrix, a

rearrangement of the rows of the identity matrix, and A is given by (5).

Proo\ Note that part (b) of Proposition 2.1 characterises equilibrium points of

(4) as H 6 M(HO) such that [H, N] = O. Evaluating this condition componentwise

for H = {hij } gives

hzj(pj – /.42)= o,

and hence by Condition 2.2, hij = O for i # j. Using the fact that (4) is isospectral, it

follows that equilibrium points are diagonal matrices that have the same eigenvalues

as Ho. Such matrices are distinct and can be written in the form nTA~ for ~ an n x n

permutation matrix. A simple counting argument yields the number of matrices that

satisfy this condition to be n!/ ~~=1 (ni !). II

Consider for a fixed initial condition Ho, the sequence Hk generated by the Lie-

bracket algorithm. Observe that condition (7) implies that @(Hk) is strictly monotonic

decreasing for all k where [Hk, N] #=O. Also, since @ is a continuous function on the

compact set M(HO ), then@ is bounded from below and + (Hk ) will converge to some

nonnegative value @m. As @(Hk) - @m then A@(Hk, ak) + O.

For an arbitrary positive number q define the open set De c M(HO), consisting

of all points of M(HO), within an c neighbourhood of some equilibrium point of (4).



886 J. B. MOORE, R. E. MAHONEY, AND U. HELMKE

The set M (Ho) – D, is a closed, compact subset of M (27.) on which the matrix

function H + [H, N] does not vanish. As a consequence, the difference function (6)

is cent inuous and strictly negative on M(HO) – DC, and thus can be over bounded

by some strictly negative number & <0. hloreover, as A@(Ifk, ak) ~ O, then there

exists a K = K(61) such that for all k > ~ then O 2 ~@(Hk, ~k) >61. This ensures

that Hk 6 D, for all k > K. In other words, Hk is converging to some subset of

possible equilibrium points.

Imposing the upper bound B on the step-size selection scheme a~, Condition

2.2, it follows that CI~(Hk)[H~, N] ~ O as k ~ co. Thus, e@N(H’JIH”~l - 1, the

identity matrix, and hence, e-aNfHkJ~Hk’~lHkemNIHkJIH”Nl-+ Hk as k * co. As a

consequence [1~~+1 – f?,k[I ~ Ofor k ~ m and this combined with the distinct nature

of the fixed points, Lemma 2.2, and the partial convergence already shown, completes

the proof. Cl

Remark 2.4. In Condition 2.2 it was required that N have distinct diagonal

entries. If this condition is not satisfied, the equilibrium condition [H, N] = O may

no longer force H to be diagonal, and thus, though the algorithm will converge, it is

unlikely to converge to a diagonal matrix.

3. Step-size selection. The Lie-bracket algorithm (4) requires a suitable step-

size selection scheme before it can be implemented. To generate such a scheme, we

use the potential (1) as a measure of the convergence of (4) at each iteration. Thus,

we aim to choose each time-step to maximise the absolute change in potential IA @l

of (6), such that A@ < 0. Optimal time-steps can be determined at each step of the

iteration by completing a line search to maximise the absolute change in potential as

the time-step is increased. Such an approach, however, involves high computational

overheads and we aim rather to obtain a step-size selection scheme in the form of a

scalar equation depending on known values.

Using the Taylor expansion, we express ~@(Hk, T) for a general time-step r, as a

linear term plus a higher order error term. By estimating the error term we obtain a

mathematically simple function A@u (Hk, T), which is an upper bound to A@(H~, ~)

for all T. Then, choosing a suitable time-step ~k based on minimising A@u, we

guarantee that the aCtUal change in pOtentia~, ~@(Hk, ok) 5 ~$u (Hk, ok) < 0,

satisfies (7). Due to the simple nature of the function A+u, there is an explicit form

for the time-step ~k depending only on Hk and N. We begin by deriving an expression

for the error term.

LEhlMA 3.1. For the kth step of the recursion (4) the change in potential

~@(Hk, T) of (6), for a time-step 7 2s

(9) ~$!J(Hk, ‘r) = ‘2Tll[Hk, N]]12 - 2T2tr(N~~(~))

with

(lo) J7?,(T) := 1(1 - s) H:+l(sT)ds,
o

where H;+ ~(T) is the second derivative of Hk+ 1(r) with respect to T.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Proof Let Hk+ 1(~) be the (k+ l)th recursive estimate for an arbitrary time-step

T. Thus Hk+l (T) = e-r{~~ ‘~lHker{H~ ‘~1. It is easy to verify that the first and second

time derivatives of Hk+l are exactly
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Applying Taylor’s theorem, then

~k+I(’T) = ~k+~(()) + T&k+I(0) + 72
[

‘(1 - s) H[+1(s7)ds,

/4. \ o

887

(11)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= Hk + ~[Hk, [Hk, N]] + T27?2(T).

Consider the change in the potential +(H) between

b@(Hk, T) = @(Hk+l(T))– @(Hk)

– –2tr(iV(Hk+l(~) – Hk))—
/*n\

the points H~ and Hk+l (~),

(l,L)

= –2tr(N(7[Hk, [Hk, N]] + T2’??z(T)))

= –2T1/[Hk, N]l12 – 2T%r(N7?2(T)). D

Note that for r = O, then ~~(Hk, O) = O and also that

-&(Hk) ~) = -2\l[H~, N]\]2.
17=0

Thus, for sufficiently small ~ the error term ~2tr(N%i12(~) ) becomes negligible

A@(H~, T) is strictly negative. Let aOPt>0 be the first time for which

$~@(Hk, T) = o,
T=cx.pt

then ~q5(Hk, aopt) < A@(Hk, T) < 0 for all strictly positive T < O. Pt. It is

and

not

possible, howeve~, to estimate czOPtdirectly from (12) due to the transcendental nature

of the error term 722(T). By considering two separate estimates of the error term, we

obtain two step-size selection schemes Ok S c%pt. The first and constant step-size

selection scheme follows from a loose bound of the error, whereas the second variable

step-size selection scheme follows from a more sophisticated argument and results in

faster convergence of (4).

LEMMA 3.2 (Constant step-size selection scheme).

(13)
1

afi=411Hol\.[lNl[

satisfies Condition 2.1. Furthermore, the Lie-bracket

step-size selection scheme afi, satisfies (7).

The constant time-step

algorithm, equipped with the

(14)

Prooj Recall that for the Frobenius norm ltr(XY) I ~ 11X1I . ]IYI1. Then

~@(Hk, T) < –fhll[Hk,~]112 + h21tr(~7?2(T))l

< ‘2T/l[Hk,~]112+zT21/~11 “ 11~2(T)11

< –zTll[Hk,~]112 +2?_211Nll -zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J
1

(1 - S)ll[[Hk+l(ST), [H~, Jv]], [Hk,~]]{@

< –2T]l[Hk,N]\l;+4~21/N/l ~llHo[l . ll[H~,N]112

=: ~@~(Hk,T).

Thus A@u (Hk, r) is an upper bound for ~~(Hk, T) and has the property that for

sufficiently small T, it is strictly negative; see Fig. 1. Due to the quadratic form of



888 J. B. MOORE, R. E. MAHONEY, AND U. HELMKE

h~a)

I

/ / /,

/ / /,

/ ,‘ AqfJH,a)> A@,a) ,‘ , ~
,

/ /
, /

FIG. 1. The upper bound on A+(Hk, a) viz Adu (Hk, a)

A~u(Hk, T) in r, it is immediately clear that a: = afi(H~) = I/(411HollllNll) of (13)

is the minimum of (14). Cl

A direct norm bound of the integral error term is not likely to be a tight estimate

of the error and the function Llvu is a fairly crude bound for A~. The following

more sophisticated estimate results in a step-size selection scheme that causes the

Lie-bracket algorithm to converge an order of magnitude faster.

LEMMA 3.3 (An improved bound for A+(Hk, ~) ). Note the difference junction

A$(Hk, T) can be over bounded by

(15)
+ llHOll ~lt[N, [H~!Nllll (eZ7iI[~~1rVll_ 1 -2711 [Hk,N]ll)

l][Hk,N]ll

Proof Consider the Taylor series expansion of the matrix exponential

~A
=I+A+;A2+; A3+ . . . .

It is easily verified that

1 A A B]]+ ;[A, [A, [A, B]]]+-eABe–A=B+[A, B]+Z[ ,[ , .

(16)
‘1

=
x ~a&AB.
a=o

Here ad~B = adA (a&A-lB), ad~l? = B, where adA : R“x” 4 R“x” is the linear

map X * AX – XA. Substituting –~[H~, N] and Hk for A and 1? in (16) and

comparing with (11 ), gives

Considering ltr(N’R2 (~))~ and using the readily established identity tr(Nad~AB) =



tr((ad~N)B) gives

l~2tr(N72-~(r))l =

——

—
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‘1

X7 (
., tr ad~[~,,~l (N) H,)

j=’ .

&tw1(N)ll ~ IIHoII

~j(QllTIH~,N]ll)’-’ ll~~~IH,,~I(N)ll ~IIHoII

IIHoII ~lldi~.,~l(N)ll m I

2Tll[Hk,N]\l
~z(2Tll[H,,N]11)~

l\Holl~IIIN, [H~>AW (e2W-WVII _ ~ - QTll[Hk,N]II)

211[Hk,N]ll

889

Thus combining this with the first line of (14) gives (15). o

The variable step-size selection scheme is derived from this estimate of the error

term in the same manner the constant step-size selection scheme was derived in Lemma

3.2.

LEMMA 3.4 (Variable step-size selection scheme). The step-size selection scheme

afi : M(H)) + R+

(17)
IIIH, NI112

ai(H) = 211[H:N]II10g( )IIHOIII1[N,[H,N]]II‘1 ‘

where all norms are Frobenius norms, satisfies Condition 2.1. Furthermore, the Lie-

bracket algorithm, equipped with the step-size selection scheme crfi, satisjies (7).

Prooj We first show that cYfi satisfies the requirements of Condition 2.1. As the

Frobenius norm is a continuous function, then afi is well defined and continuous at all

points H G M(HO) such that [H, N] # O. Note that when [H, N] = O, then afi is not

well defined. To show that there exists a positive constant ~, such that afi (H) > -y,

consider the following lower bound,

(18)

1 ( ll[Hk,N]t/
‘~ ‘=211[Hk,N](l10g 211[HOIIIINII+ 1)

1

(

ll[~k,N]112

s 2/l[H~,N]l/ 10g 211[H011IINII ll[Hk,N]ll + 1)

1

(

ll[fL, Nl112

s 211[Hk,N]ll 10g )ll[HOll [l[N,[Hk,N]][l ‘1 ‘

which is just afi. Using L’H6pital’s rule it can be seen that the limit of afi at an

equilibrium point, H G III(HO) such that [H, N] = O, is 1/(41IHOII . IINII). Including

these points in the definition of afi, gives that ah is a continuous, strictly positive,

well-defined function for all H @ M(HO). Thus, as M(HO) is compact, there exists a

real number ~ > 0 such that

ctfi>a;>~>o
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on JW(~o) – {llm I [~m, ~] = O}.

To show that there exists a real number B >0, such that ofi (H) < B, H 6

LI(HO),zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAset [H, IV] = X = {zij}. For N given by Condition 2.2, then IIIN,xlll =
Xi=j(w- %)2+ where~~z= oas[~>~1isskew-symmetric”observethat

llxll/ll[N,x]ll= Ei=j ‘fj

Zt=j(Pi - Pj)2x?j

< ITlaX(p2 – /Jj)–2 =: ~

i= j

for all choices of X = –XT. It follows that

+1
)

since log(x + 1) < z for z >0.

Finally, for a matrix Hk c M(HO), [Hk, N] # O, the time-step crfi (Hk) = a; >0

minimises (15), and from Lemma 3.3 it follows that O ~ ~@fi(H~, T) ~ ~@(Hk, ~).

Thus, the Lie-bracket algorithm, equipped with the step-size selection scheme afi,

satisfies (7) and the proof is complete. c1

4. Stability analysis. In this section we study the stability of equilibria of the

Lie-bracket algorithm (4). It is shown that for generic initial conditions and any

step-size selection scheme that satisfies Condition 2.1 and (7), the solution Hk of

the Lie-bracket algorithm converges to the unique equilibrium point A given by (5).

Furthermore, we derive local exponential bounds on the rate of convergence. To

improve the readability of the paper the proofs of a number of the more technical

results have been deferred to an appendix. We begin by showing that A is the unique

locally asymptotically stable equilibrium point of (4).

LEhiMA 4.1. Let N satisfy Condition (2.2) and @N be some selection scheme that

satisfies Condition 2.1 and (7). The Lie-bracket algorithm (4) has a unique locally

asymptotically stable equilib~”um point A given by (5). All other equilibrium points of

(4) are unstable.

Proof It is known that A is the unique local and global minimum of the potential

function @ on Ikf(~o) [9]. By assumptions on N and ~N, ~(~~) is monotonically

decreasing. Thus the domain of attraction of A contains an open neighbourhood of

A, and hence, A is a locally asymptotically stable equilibrium point of (4).

All other equilibrium points H ~ are either saddle points or maxima of @ [9].

Thus for any neighbourhood D of some equilibrium point Hm # A, there exists

some Ho G D such that *(HO) < @(Hm ). It follows that the solution to the Lie-

bracket algorithm, with initial condition Ho, will not converge to Hm and thus Hm is

unstable. n

Lemma 4.1 is sufficient to conclude that for generic initial conditions the Lie-

bracket algorithm will converge to the unique matrix A. It is difficult to characterise

the set of initial conditions for which the algorithm converges to some unstable equi-

librium point Hm # A. For the continuous-time double-bracket flow, however, it is
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known that the unstable basins of attraction of such points are of zero measure in

M(HO) [9].

LEMMA 4.2. Let N satisfy Condition 2.2. Let d c R+ be a constant such that

O < d < 1/21[Hol 12IINI12 and consider the constant step-size selection scheme, ok :

M(HO) ~ R+,

afi(H) = d.

The Lie-bracket algon”thm (4) equipped with the step-size selection scheme Q$ has a

unique locally exponentially asymptotically stable equilibrium point A given by (5J.

Proof. Since Q$ is a constant function, the time-step a: = Q$ (Hk ) = d is

constant. Thus, the map

Hk-e -d[H@’]Hked[Hk>N]

is a differentiable map on all M(HO), and we may consider the linearisation of this map

at the equilibrium point A given by (5). The linearisation of this recursion expressed

in terms of ~k & TAM(HI)) (the tangent space of the equilibrium point A) is

(19) =k+l = =k —d[(~kN — NE~)A —A(5kN —Nsk)],

Thus for the elements of ~k, we have

(20) (’&)k+l = [1 -d(~i - ~j)(w ‘~j)](<tj)k for i,~ = 1,...n

The tangent space T*M(HO) at A consists of those matrices ~ = [A, 0] where Q E

Skew(n), the class of skew-symmetric matrices [9, p. 53]. Thus, the matrices E are

parameterised by their components <,j, where i < j, and Ai # Aj. This is a linearly

independent parameterisation of TAM (Ho ) and the eigenvalues of the linearisation

(19) can be read directly from (20) as 1 – d(~m(i) – Arfj))(pi – pj), for i < .j and

Ai # Aj. Since & 2 Aj when i > j, then if d < l/211Ho11211Nllzit follows that

for all i < j with Ai # Aj. Classical stability theory gives that A is a locally exponen-

tially asymptotically stable equilibrium point of the recursion (4) with an exponential

rate of convergence of maxi<j,~z=~, {d(& – ~j) (ii – Pj )}. n

Remark 4.1. As IIN]IzIIHOI]2 < 211NIIIIHOII,the constant step-size selection

scheme cr~ is an example of such a selection scheme where c = 1/(41 IHOI\, IlNI l).

Remark 4.2. Let ON : AI(HO) + R+ be a step-size selection scheme that satisfies

Condition 2.1 and (7) and is also continuous on all M(HO). Let A be the locally

asymptotically stable equilibrium point given by (5). Set am = ~N (A) and observe

that the linearisation of the Lie-bracket algorithm will be of the form (19) with d

replaced by am. Recall that the a~, scheme defined in (18) is continuous with limit

cz~ (Hm) = 1/(41 I.HOII . IINII). Thus, A is an exponentially asymptotically stable

equilibrium point for the Lie-bracket recursion equipped with the stepsize selection

scheme a~.

To show that the Lie-bracket algorithm is exponentially stable at A for the a;

step-size selection scheme is technically difficult due to the discontinuous nature of Q;

at equilibrium points. The proof of the following proposition is given in the Appendix.

PROPOSITION4.3. Let N satisfy assumption (2.2) and afi be the step-size selec-

tion scheme given by Lemma 3.4. The iterative algorithm (4), has a unique exponen-

tially attractive equilibrium point A given by (5).
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FIG.2.A plot of the diagonal elements hii of each itemtion Hk of the Lie- bmcket algorithm

run on a 7 x 7 initial condition Ho with eigenvalues (1, . . . . 7). The target matrix N was chosen to

bediag(l,...,7).

FIG.3. The potential ?+(Hk) = l/Hk – NI [2 for the Lie-bmcket recursion.

To give an indication of the behaviour of the Lie-bracket algorithm, two plots

of a simulation have been included as Figs. 2 and 3. The simulation was run on a

random 7 x 7 symmetric initial value matrix with eigenvalues 1, ..., 7. The target

matrix N is chosen as diag( 1,. ... 7) and as a consequence the minimum potential is

@~ = 0. Fi~re 2 is a plot ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe diagonal entries of the recursive estimate Hk. The
off-diagonal entries converge to zero as the diagonal entries converge to the eigenvalues

of Hk. Figure 3 is a plot of the potential IlHk – N[ [2 verses the iteration k. This

plot clearly shows the monotonic decreasing nature of the potential at each step of

the algorithm.

We summarise the results of ~$2-4 in Theorem 4.4.

THEOREM 4.4. Let Ho = H: be a real symmetric n x n matrix with eigenvalues

A~>-..>An. Let N G R“xn satisfy Condition 2.2 and let (2N be either the con-

stant step-size selection (13) or the variable step-size selection (17). The Lie-bracket
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recursion

893

Hk+l = e–CYk [tfk, ~] Hke~k[~k,N] ,

a~ = qv(Hk),

with initial condition Ho, has the following properties:

(i) The recursion is isospectral.

(ii) l“ Hk is a solution of the Lie-bracket algorithm, then ~(Hk) = l[Hk - NI[2

is strictly monotonically decreasing for every k G N, where [Hk, N] # O.

(iii) Fixed points of the recursive equation are characterised by matrices H G

M(HO) such that

[H, N]= O.

(iv) Fixed points of the recursion are exactly the stationary points of the double-

bracket equation. These points are termed equilibrium points.

(v) Let Hk, k=l,2,..., be a solution to the Lie-bracket algorithm, then Hk

converges to a matrix H@ G M(HO), [Hm, N] = O, an equilibrium point of the recur-

sion.

(vi) All equilibrium points of the Lie-bracket algorithm are strictly unstable except

A = diag(~l,.. ., An), which is locally exponentially asymptotically stable.

5. Singular value computations. In this section we consider discretisations

of continuous-time flows to compute the singular values of an arbitrary matrix.

A singular value decomposition of a matrix Ho ~ Rmx”, m > n is a matrix

decomposition

(21) Ho = VTZU,

where V c O(m), U E O(n) and

(22) z=

‘(m-n))(n

Here al >02>...>0, z O are the distinct singular values of Ho occurring with

multiplicities nl, . . . . n~, such that ~~=1 ni = n. By convention the singular values

of a matrix are chosen to be nonnegative. It should be noted that although such a

decomposition always exists and X is unique, there is no unique choice of orthogonal

matrices V and U. The approach we take is to define an algorithm that converges

to X and thus computes the singular values of Ho without directly generating the

orthogonal decomposition.

Let S(HO) be the set of all orthogonally equivalent matrices to Ho,

(23) S(Ifo) = {VTHOU E Rmxn ] V G O(m), U E O(n)}.

It is shown in [9, p. 89] that S(HO) is a smooth compact Riemannian manifold with

explicit forms given for its tangent space and Riemannian metric. Following [4], [5],

[8], [9], and [12] we consider the task of calculating the singular values of a matrix HO

by minimizing the least squares cost function @ : S(HO) - R+, @(H) = IIH – NI 12.

It is shown in [8] and [9] that ~ achieves a unique local and global minimum at the
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point X s S(HO). hloreover, in [8], [9], and [12] the explicit form for the gradient V@

is calculated. The gradient flow is

(24)
Z = –V*(H)

= Ii{H,N}– {H*,W}H,

with H(0) = Ho the initial condition. Here we have used a generalisation of the

Lie-bracket {X, Y} := XTY – YTX = –{X, Y}T.

To accomplish the task of computing the singular values of a matrix we require

N to satisfy the following.

CONDITION 5.1. Let N be an m x n matriz

!1
PI ““” o

N=:’~,
“.

o ... 1%
O(m–n)xn

where pl>p2 >... > pn >0 are stm”ctlypositive, distinct real numbers.

For generic initial conditions and a target matrix N that satisfies Condition 5.1,

it is known that (24) converges exponentially fast to Z c S(HO ) [8], [12]. A recursive

version of this flow follows from an analogous argument to that used in the derivation

of the Lie-bracket algorithm. For Ho and N constant m x n matrices, the singular

value algorithm proposed is

(25) Hk+l = e
–m&{H~,NT}Hke~~{HL,N).

The singular value algorithm and the Lie-bracket algorithm are closely linked as

is shown in the following lemma.

LEMMA 5.1. Let Ho, N be m x n matrices. For any H ~ i$mxn define a map

H H E s R(m+”jx(m+”), where

(26) ( H

)
fi = ;mTxm o .

nxn

For any sequence of real numbers ~k, k = 1,....m the iterations

(27) Hk+l = e -a~{H~,NT}HkeQk{Hk,N)

with initial condition Ho and

with initial condition fio are equivalent.

Proof Consider the iterative solution to (28) and evaluate the multiplication in

the block form of (26). This gives two equivalent iterative solutions, one the transpose

of the other, both of which are equivalent to the iterative solution to (27). Cl

Remark 5.1. Note that fio and R are symmetric (m+ n) x (m+ n) matrices and

that, as a result, the iteration (28) is just the Lie-bracket algorithm.

Remark 5.2. The equivalence given by Lemma 5.1 is complete in every way. In

particular, H@ is an equilibrium point of (27) if and only if Hm is an equilibrium

point of (28). Similarly, Hk * Hm if and only if fih -+ ~w as k ~ ~.
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This leads us directly to consider step-size selection schemes for the singular value

algorithm induced by selection schem~ that we have already considered for the Lie-

bracket algorithm. Indeed if afi : itf(HO) ~ R+ is a step-size selection scheme for (4)

on &f(Ho), and Hk E S(HO), then we can define a time-step CYkfor the singular value

algorithm by

Thus, if (28) equipped with a step-size selection scheme afi satisfies Condition 2.1

and (7), then from Lemma 5.1, (27) will satisfy similar conditions. For simplicity,

we deal only with the step-size selection schemes induced by the constant step-size

selection (13) and the variable step-size selection (17). Thus we may state the main

convergence theorem for the singular value algorithm.

THEOREM 5.2. Let HOLN be m x n matrices where m 2 n and N satisfies

Condition 5.1. Let a~ : M(HO) ~ R+ be eithe~ the constant step-size selection (13),

or the variable step-size selection (17). The singular value algorithm

with initial condition Ho, has the following properties:

(i) The singular value algorithm is a self-equivalent (singular value preserving)

recursion on the manifold S(HO).

(ii) If Hk is a solution of the singular value aigorithm, then q!J(Hk) = llH~ -

NI 12 is strictly monotonically decreasing for evey k ~ N, where {Hk, N} # O and

{H:, NT} #O.

(iii) Fixed points of the recursive equation are characterised by matrices H G

S(HO) such that

(30) {Hk,N} = O and {H~, NT}= O.

Fixed points of the recursion are exactly the stationay points of the singular value

gradient flow (24) and are termed equilibrium points.

(iv) Let Hk, k=l,2,..., be a solution to the singular value algorithm, then Hk

converges to a matrix Hm G S(HO), an equilibrium point of the recursion.

(v) All equilibrium points of the Lie-bracket algorithm are strictly unstable except

Z given by (22), which is locally exponentially asymptotically stable.

ProoJ To prove part (i), note that the generalised Lie-bracket {X, Y} = – {X, Y}T

is skew-symmetric and thus (25) is an orthogonal conjugation and preserves the singu-

lar values of ~k. Also note that the potential ?$(Hk) = ~@( flk). hforeover, Lemma 5.1

shows that the sequence Hk is a solution to the Lie-bracket algorithm and thus from

Proposition 2.1, ~~(~k) must be monotonically decreasing for all k G N such that

[~k, R] #O, which is equivalent to (30). This proves part (ii) and part (iii) follows by

noting that if {H:, NT} = O and {~k, N} = O, then ~k+l = Hk for 1 = 1,2, . . . . and

Hk is a fixed point of (25). hloreover, since @(Hk) is strictly monotonic decreasing for

all {Hk, N} # O and {H~, NT} # O, then these points can be the only fixed points.

It is known that these are the only stationary points of (24) [8], [9], [12].

To prove (iv), we need the following characterisation of equilibria of the singular

value algorithm.



896 J. B. MOORE, R. E. MAHONEY, AND U. HELMKE

LEMMA 5.3. Let N satisfy Condition 5.1 and a~ be either the constant step-size

selection (13) or the variable step-size selection (17). The singular value algorithm

(25) equipped with time-steps crk = Ofi(fik) has exactly 2nn!/ ~~=l(ni!) distinct equi-

librium points in S(HO). Furthermore, these equilibrium points are characterised by

the matrices

(
~T

Onx(m-n)

)

x%,
qTn–n)xn qm-n)x(m-n)

‘wheTer is an n x n permutation matrkc and S = diag(+l, . . . . +1) a sign matrix.

Proof Equilibrium points of (25) are characterised by the two conditions (30).

For H = (hi~), {H, N} = O is equivalent to

~jhji–pihij=O fori=l, . . ..n. j=l,. ... n.

Similarly, the condition {HT, NT} = O is equivalent to

~jhij–~ihji=o fori=l, . . ..n. j=l,. ... n,

hij~j=O fori=n+l,..., m, j=l, . . ..n.

By manipulating the relationships, and using the distinct, positive nature of the Pi,

it is easily shown that h~j = O for i # j. Using the fact that (25) is self equivalent,

the only possible matrices of this form that have the same singular values as Ho are

characterised as above. A simple counting argument shows that the number of distinct

equilibrium points is 2nn!/ ~~=1 (n, !). 0

The proof of Theorem 5.2 part (iv) is now directly analogous to the proof of Propo-

sition 2.1 part (c). It remains only to prove Theorem 5.2 part (v), which involves the

stability analysis of the equilibrium points characterised by (30). It is not possible to

directly apply the results obtained in fj4 to the Lie-bracket recursion ~k, since the N

does not satisfy Condition 2.2. However, for the constant step-size selection scheme

induced by (13), and using analogous arguments to those used in Lemmas 4.1 and

4.2, it follows that Z is the unique locally exponentially attractive equilibrium point

of the singular value algorithm. Thus, for the constant step-size selection scheme, ~ is

the ~nique exponentially attractive equilibrium point of the Lie-bracket alg~rithm on

M(HO), and now the argument from Proposition 4.3 applies directly and Z is expo-

nentially attractive for the variable step-size selection scheme (17). This completes the

proof. Cl

Remark 5.3. Theorem 5.2 holds true for any time-steps a~ = a~(~k) induced

by a step-size selection scheme, a~, that satisfies Condition 2.1, such that Theorem

4.4 holds.

Remark 5.4. It is possible that for nongenetic initial conditions, the singular value

algorithm may converge to a diagonal matrix with the singular values ordered in a

different manner to Z. However, all simulations run have converged exponentially fast

to the unique matrix Z, and thus it is likely that the attractive basins of the unstable

equilibrium points have zero measure. Note that for the continuous-time flows, it is

known that the attractive basins of the unstable equilibrium points have zero measure

in S(HO) [9].

6. Associated orthogonal algorithms. In the previous sections we have pro-

posed the Lie-bracket and the singular value algorithms that calculate the eigenvalues

and singular values, respectively, of given initial conditions. Associated with these re-

cursions are orthogonal recursions that compute the eigenvectors or singular vectors
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of given initial conditions and provide a full spectral decomposition. To simplify the

subsequent analysis we impose a genericity condition on the initial condition Ho.

CONDITION 6.1. 1’ Ho = H$ G R“x’ ts a real symmetric matrix then assume

that Ho has distinct eigenvalues Al > . . . > &. If Ho e JRmx”, where m ? n, then

assume that Ho has distinct singular values U1 > . . . > LTn> 0.

For a sequence of positive real numbers ak for k = 1,2,... the associated orthog-

onal Lie-bracket algorithm is

(31) ukfl = Uke ak[u:Houk, N]

> Uo e o(n),

where Ho = H; ~ Rnxn is symmetric. For an arbitrary initial condition Ho ● ll?m‘n

the associated orthogonal singular value algorithm is

Vk+l = Vkf?~k{u:@vk,NT}

(32)
> VOG O(m)

uk~~ = UkecU{vkTHOuk, N}
> .!70c o(n).

Note that in each case the exponents of the exponential terms are skew-symmetric

and thus the recursions will remain orthogonal.

Let Ho = H$ < R“x” and consider the map g : O(n) - M(HO), U * UTHOU,

which is a smooth subjection. If uk is a solution to (31) it follows that

g(U~+l) = e –@&(U&),N]g(Uk)e~~[9(~ ~),iv],

which generates the Lie-bracket algorithm (4). Thus, g maps the associated orthogo-

nal Lie-bracket algorithm with initial condition U. to the Lie-bracket algorithm with

initial condition U$HOUO on M(U$HOUO) = M(HO).

Remark 6.1. Consider the potential function 4: O(n) ~ R+, O(U) = IIUTHOU –

N] 12on the set of orthogonal n x n matrices. Using the standard induced Rlemannian

metric from Rn xn on O(n), the associated orthogonal gradient flow is [2], [3], [5], [9]

U = –V@(U) = UIUTHOU, N].

THEOREM 6.1. Let HO = H~ be a real symmetric n x n matrix that satisfies

Condition 6.1. Let N G R“xn satisfy Condition 2.2, and let QN be either the constant

step-size selection (13) or the variable step-size selection (17). The recursion

Uk+l = uk&k[u:HOuk’N],Uo 6 O(n),

a’~ = CrN(Hk)

referred to as the associated orthogonal Lie-bracket algorithm has the following prop-

erties:

(i) A solution Uk, k = 1,2,..., to the associated orthogonal Lie-bracket algo-

rithm remains orthogonal.

(ii) Let @(U) = IIUTHOU – NI 12 be a map from O(n) to the set of nonnegative

reals R+. Let Uk, k= 1,2, ..., be a solution to the associated orthogonal Lie-bracket

algorithm. Then ~(uk) is strictly monotonically decreasing for evey k 6 N where

[U~HoUk, N] #O.

(iii) Fixed points of the algorithm are characterised by matrices U ~ O(n) such

that

[UTHOU, N] = O.

There are exactly 2nn! distinct fixed points.
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(iv) Let Uk, k=l,2,..., be a solution to the associated orthogonal Lie-bracket

algorithm, then uk converges to an orthogonal matm’x UW, a fixed point of the algo-

rithm.

(v) All fized points of the associated orthogonal Lie-bracket algorithm are strictly

unstable except those 2n points UN6 O(n) such that

U~HoUw = A,

where A = diag(~l, . ., An). Such points U* are locally exponentially asymptotically

stable and Ho = U+AU: is an eigenspace decomposition of Ho.

Proof Part (i) follows directly from the orthogonal nature of ea’ i“~~ou’ ~1.

Note that in part (ii) the definition of @ can be expressed in terms of the map g(U) =

UTHOU from O(n) to fif(llo) and the Lie-bracket potential V(H) = 1Ill – NI 12of

(l), i.e.,

fj(uk)= @(g(u,)).

Observe that g(UO) = U~Ho Uo and thus g(Uk) is the solution of the Lie-bracket

algorithm with initial condition UOTHOUO.As the step-size selection scheme ON is

either (13) or (17), then g(Uk) satisfies (7). This ensures that part (ii) holds.

If uk is a fixed point of the associated orthogonal Lie-bracket algorithm with initial

condition U~HoUo, then g(Uk) is a fixed point of the Lie-bracket algorithm. Thus,

from Proposition 2.1, [g(U~), N] = [U$HOUk, N] = O. Nloreover, if [U~HOUk, N] = O

for some given k E ~, then by inspection Uk+l = uk for 1 = 1,2,..., and uk is a fixed

point of the associated orthogonal Lie-bracket algorithm. From Lemma 2.2 it follows

that if U is a fixed point of the algorithm then UTHOU = TTAn for some permutation

matrix n. By inspection any orthogonal matrix W = SUmT, where S is a sign matrix

S = diag(+l,. . . . *1), is also a fixed point of the recursion, and indeed, any two fixed

points are related in this manner. A simple counting argument shows that there are

exactly 2nn! distinct matrices of this form.

To prove (iv), note that since g(uk) is a solution to the Lie-bracket algorithm, it

converges to a limit point H@ G M(HO), [Hm, N] = O (Proposition 2.1). Thus uk

must converge to the preimage set of Hw via the map g. Condition 6.1 ensures that

a set generated by the preimage of H ~ is a finite distinct set, any two elements U~
1 _ U2 s, s = diag(~l, ..., *1). Convergenceand U~ of which are related by Uw – ~

to a particular element of this preimage follows since ~k [U$HOuk, N] ~ O as in

Proposition 2.1.

To prove part (v), observe that the dimension of O(n) is the same as the dimen-

sion of M(Ho) due to genericity Condition 6.1. Thus g is locally a diffeomorphism

on O(n) that forms an exact equivalence between the Lie-bracket algorithm and the

associated orthogonal Lie-bracket algorithm. Restricting g to a local region, the sta-

bility structure of equilibria are preserved under the map g-l. Thus, all fixed points

of the associated orthogonal Lie-bracket algorithm are locally unstable except those

that map via g to the unique locally asymptotically stable equilibrium of the Lie-

bracket recursion. Observe that due to the monotonicity of @(Uk) a locally unstable

equilibrium is also globally unstable. II

THEOREM 6.2. Let Ho G Rmx” where m ~ n satisfies Condition 6.1. Let

N c Rrnxn satisfy Condition 5.1. Let the time-step ff/cbe given by
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where cY~ is either the constant step-size selection (13) or the variable step-size selec-

tion scheme (17), on M(~o). The recursion

rejerred to as the associated orthogonal singular value algorithm, has the jollowing

properties

(i) Let (Vk, Uk) be a solution to the associated orthogonal S~ngUlarvalue algo-

m“thm, then both vk and uk remain orthogonal.

(ii) Let O(V, U) = I]VTHOU - N\]2 be a map from O(m) x O(n) to the set of

nonnegative reals R+, then ~(vk, Uk) is strictly monotonically decreasing foT every

k G N where {VkTHOUk,N} ~ O and {tJ~H$Vk, NT} # O.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMoreoveT, fixed points of

the algorithm are characterised by matrix pairs (V, U) e O(m) x o(n) such that

{VTHOU, N} = O and {UTH~V, NT}= O.

(iii) Let (Vk, uk), k = 1,2,..., be a solution to the associated orthogonal singular-

value algorithm, then (V,, Uk) converges to a pair of orthogonal matrices (V~, U~ ),

a fixed point of the algorithm.

(iv) All fixed points of the associated orthogonal singular value algorithm are

stn”ctly unstable except those points (V*, U*) ~ O(m) x O(n) such that

V*THIJJ*= z,

where E = diag(al, . . . . am) e Rmxn. Each such point (V*, U*) is locally exponentially

asymptotically stable and Ho = V*TZU. is a singular value decomposition of Ho.

Proof. The proof of this theorem is analogous to the proof of Theorem 6.1. Cl

7. Computat ionzd considerations. There are several issues involved in the

implementation of the Lie-bracket algorithm as a numerical tool that have not been

dealt with in the body of this paper. Design and implementation of efficient code

has not been considered and would depend heavily on the nature of the hardware on

which such a recursion would be run. As each iteration requires the calculation of

a time-step, an exponential and a k + 1 estimate, it is likely that it would be best

to consider applications in parallel processing environments. Certainly in a standard

computational environment the exponential calculation would limit the possible areas

of useful application of the algorithms proposed.

It is also possible to consider approximations of the Lie-bracket algorithm that

have good computational properties. For example, consider a (1,1) Pad6 approxima-

tion to the matrix exponential

Such an approach has the advantage that, as [Hk, N] is skew-symmetric, the Pade

approximation will be orthogonal and will preserve the isospectral nature of the Lie-

bracket algorithm. Similarly, an (n, n) Pad6 approximation of the exponential for

any n will also be orthogonal. There are difficulties involved in obtaining direct

step-size selection schemes based on the Pad@ approximate Lie-bracket algorithms.

To guarantee that the potential ~ is monotonic decreasing for such schemes, direct
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estimates of time-step must be chosen prohibitively small. A good heuristic choice

of a step-size selection scheme, however, can be made based on the selection schemes

given in this paper and simulations indicate that such an approach is viable.

Another approach is to take just the linear term from the Taylor expansion of

~k+l(~k),

as an algorithm on ll%nxn. An algorithm such as this is similar in form to approx-

imating the curves generated by the Lie-bracket algorithm by straight lines. The

approximation will not retain the isospectral nature of the Lie-bracket recursion; how-

ever, it is computationally cheap. Furthermore, when the curvature of the manifold

Ill (IYo) is small, then it can be imagined that the linear algorithm would be a good

approximation to the Lie-bracket algorithm.

8. Conclusion. In this paper we have proposed two algorithms which, along

with their associated orthogonal algorithms, calculate respectively, the eigenvalue de-

composition of a symmetric matrix and the singular value decomposition of a general

matrix. Moreover, we have presented two suitable step-size selection schemes which

ensure that, for generic initial conditions, the algorithms proposed will converge ex-

ponentially fast to an asymptotically attractive fixed point.

In future work we hope to improve the theoretical understanding of the step-size

selection schemes necessary for the Lie-bracket algorithm as well as to investigate a

number of related applications of the double-bracket flow and its discretisation.

9. Appendix. The following discussion is a proof of Proposition 4.3.

Proof By Lemma 4.1, A is the unique locally asymptotically stable equilibrium

point and it remains to show that A is exponentially attractive. Note that direct

linearisation techniques do not apply as the recursion will not necessarily be differ-

entiable at the equilibrium A. To proceed we set c = 1/(4/] Ho I] . IIN]]), the constant

time-step, and show that the Lie-bracket algorithm converges faster using the variable

step-size selection scheme than it does with the constant time-step c. The proof is

divided into a number of lemmas.

LEMMA 9.1. Let O < /3 < min(l, c), where c = l/(411Holl - IINII). Then there

exists a real number & such that for Hk c M(Ho) and II[Hk, N] II <61, then

(33) 0> &b(~&,.@ ~ -3@ll[Hk,N]112.

Proo~ Consider the error term ~2tT(N%?2(~)) defined in Lemma 3.1 and recall

the estimation argument for Lemma 3.3. Employing a similar argument for ~ = ~

gives

Thus, combining this with (9) it follows that

It is well known that

2(ey–1–y)~y2 fory~O+,
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where “J’ indicates that two functions are asymptotically equal. This is equivalent to

saying that for any e >0, there exists 6(6) >0, such that for all y, where 6(c) > y >0,

then 1 – e < 2(e~ – 1 – y)/y2 < 1 + c. Thus, choosing c = ~, it follows that for

d(~) > y > 0 then 2(eY – 1 – y) < 2y2. Recall that we are restricting B < 1,

and thus, there exists some real number 81 > 0 such that if II[Hk, N] II < 61, then

2/311[ilk, N]l] < b(~), and hence 2(e2~lllHk~lll – 1 – 2~)][Hk,N]]l) < 4~211[H~,N]]]2.

Substituting this into (34) gives

(35) A+(Hk, p) > –2@ll[Hk, N]l12 –4&llH~11 ~Ijfvll . ll[H~,N]]12.

By additionally requiring that ~ < c = 1/(41 Ill. II . IIN] 1) the lemma is proved. Cl

LEMMA 9.2. Let C& be the step-size selection scheme given by Lemma 3.4, and

let T 6 R+, such that Qfi(Hk) > ~ >0 for all [Hk, N] # O. Define ~ := min{-y, c}

and choose ~ G 1%+such that

0< B<min{l, c,~(~-211H~ll .llNll~2)}

Then the~e exists a real number 62>0 such that for any Hk G M(HO) with] I[Hk, N] II <

62

(36) ‘3~\l[Hk,N]112 > A@;(H~, &).

1%-oo~ Recall that a; was chosen as the first critical point of the function

fl@fi (Hk, 7). Thus Q~fi(Hk, r) is monotonic decreasing on the interval (O, a;).

The lower bound ~ < -y, for crfi, must be less than a;, and thus A@~(H~, ~) >

A?!$ (Hk, CY~).Substituting v into the definition of @.v~ gives

&/$(Hk,~) = –2~ll[Hk, ~]112

+ IIHoII. l[[~,[HbNllll (e2WfdW -1 ‘2~l][&,i@ >
ll[Hk,N]]l

< –2~{l[Hk,N]l\2

+2]lfIoll ~IINII (e2711[Hk’N]lt-1 -2~ll[Hk,N][l) .

As shown in Lemma 9.1, there exists 82>0, such that for any Hk c Al(Ho), where

ll[H~,Nll <62, then g (e2711[Hk>N~11– 1zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘g?’ll[~k,~]ll) < 4-y211[H~,N]112.Using this
with the above inequality gives

Note that since ~

negative. Now as

< c, then the right-hand side of the last inequality is strictly

0<~< ; (q-211Holl . llNll~2),

then –3~ll[Hk,N]112 > 211[Hk,N]112 (211HOII. llNll~2 – ~) andthe result follows. Cl

The proof of Proposition 4.3 now follows by choosing

{

1,

(37) ,6= min c,

~ (~- 211HOII. llNll=y2) ,
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where ~ = min(-y, c). Thus, from Lemmas 9.1 and 9.2, choose 61 and 62 such that the

results hold and set 6 = ~ min {61,62}. Hence, combining the inequalities (33) and

(36) gives

for all Hk G J{(HO) with ll[Hk,N]ll<6.

Let D6 be some open set around A such that II[Hk, N] II <6. Note that @ < c,

and thus from Lemma 4.2 the Lie-bracket algorithm equipped with afi = ~ as a

step-size selection scheme is exponentially stable. Finally, note that within Ds, and

due to (38), ~(Hk+l (a;)) will always decrease faster than @(Hk+l (@ ), regardless of

Hk. Since A is exponentially attractive for the Lie-bracket algorithm equipped with

the selection scheme afi, it follows that A must also be exponentially attractive for

the same recursion equipped with the selection scheme afi. II
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