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. ABSTRACT

&~

A completely humericalvﬁethod has been developed
for the calculation of Hartree-Fock-Slater wave functions in
diatomic systems. The ‘method is numericai in the sénse‘thaé
no LCAO basis sets are employed. All molecular functions are
represénted by cubic spline interpolants on a two-dimensional
"discréte mesh in prolate spheroidal coordinates. The method
is mathematically simple, ;ﬁd nume;ical.accurécy is, very
easilyvcbntrélled by adjustiné the number of mesh poin£s.
Furthermore, it is easily appliéd'to other local exchange-
correlation theories beyond the,Har@ree—Fock—Slater approxim-
-ation. ' ' * ~
5 sz’Nz,'CO, o, and
F, have been carried out in order to compare dissociation en-

o ‘ Caléqlations on the molecules B
ergies, bond lengths, vibrational frequencies and guadrupole .
(or dipole) moments with recently reported LCAO resﬁlts, and
with experiment. These calculations indicate that the present
numerical method works very niéely for the molecules considered,

v

and also that the Hartree-Fock-Slater theb;y describes molecular

¢

systems reharkably well.
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CHAPTER 1
INTRODUCTION

d “
&

1.1 . Survey

+

In a classic paper, Slater (1951) analysed the physical
implications of the Hartree-Fock equation in order to simplify

the troublesome non—locai Hartree-Fock exchange potential. As

-

a result of this study, he'proposed.that the Hartree=Fock ex-

~ change potenﬁial'be approiihéted-by a local potential of the

form

K ’ - VX = - Const X pl/3 . (1.1)

A

"This theory is known as the Hartree-Fock-Slater or Xo (see

Section 2.3)- approximation.

. . Although Fhe exchange péteﬁtiai (L.1) enjoyed conside-
rablé pOpulafity'in\solidJState calculations, its application
to molecular prbblems was not seriously_cohsidered until gome
~ two decades, later. This dela¥ was due to the successful imple-.
mentation innatomic and moleéular systemg of the analitic Har-
tree—fock‘method of Roothaan (1951) which dominated gquantum \
chemical calculations thereafter. |

Slatér (1965), however, suggested Fhat the exchange

potential (1.1) and the so-called "muﬁfin-tin“‘%pproximation

(Slater 1937) used in solid-state' theory might be usefudlly
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7

combined in order to simplify Ha?trée—Fock calculaéions for lar-
ger molecular systems. In respéhse'to this suggestion, JohnSOn/
© (1966), modifying the KKR computational scheme of Korrinéa
(i947) and Kohn and Rostoke; (1954) for solid-state systems, de-
lveloped the so-called "Scattered—Wave"cn:“Multi§1e1Scattering"
scheme for molecular calculations. The theoretical and compu-
tational details of this SW-Xo method are nicely rgviewed-by
. Slater (1972) and Jéhpsén (1973) respectively.

The SW-Xa method.indeed proved to be very computational-
ly efficient, and a considerable number of.calcuiations on a
large variety of systems soon appeared. A good review of these
early applications of the‘method is given by Jéhnson (1575).
. Although the éWJXa.scheme was devised particularly for
laréer molecular sfstemé, it has also been applied to very
simple molecules for' testing purposes. ‘In addition to the re--

>

fe;gncés cited by.Johnson (1975), we note, for example, the

2 2
krantz .and Konowalow (1979). These tests indicate that the

<.
recent calculations on the diatomics N2, O, and F_, by Rosen-

original SW-Xo muffin-tin model provides reasonable one-electron
properties such as transition or ionization energies (Johnson

1975, pg. 44), but that it gives rather poor molecular binding

¢
o

enexgy curves. In the case of N

L=

o+ for example, Rosenkrantz

and Konowalow (1979) obtain only 27% of the experimental ground

state dissociation energy, and overestimate the bond length

by a factor of 1..78. »

-



The classic example of the shortcomings of the stan-

dard muffin-tin model is the C. molecule, which is actually

2
unbound in -the SW-Xa calcultations. Non-muffin-tin corrections,
however, were investi;ated by Danese and Connoily'(l974),
Danese (1974) and Danese (1977) using a perturbative approach
which produced rgmarkgbly improved binding energy curves'

This perturbative procedure, however, is inconvenient for lar-
ger éystems and much siméler improvements to the muffin-tin
scheme were therefore‘séuéht.

‘ A straightforward extension of the muffin-tin model
to the case of overlapping spheres was suggested by Rosch,

1 Klemperer and Johnson (1973)'and by Hermén, Williams and

27 F2 and CO

by Salahub, Messmer and Johnson (1976). These groups obtained

Johnson (1974) ,and was applied to the diatomicé;N
signif?cant improvements over the standaré touching sphere re-
sults, but some uncertainﬁy femains over the choice of apj
prépfiate sphere radii.

Also, the scéttered—wave or multiple-scat£ering forma-
'lism has been generalized by Williaqs (1974) to the case of
érbitrarY'cellular pértitiOninés‘of méleéular sp?ce, with the
inc;;sioh'of:non—spheriqal c;mponents, but calcqlations with
the theory would appear to involve severe cqmplications. Simp-
ler -cellular methodg\have been proposed by Costas and Garritz
(1979)}'Brescansin,'Leité and Ferreira (1979) and Kgller (1975)

a

among others. ' -

An interesting variation of the standard muffin-tin
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method was lntroduced by Anderson and Woolley (1973) and was
then tested on an extensive serles of first row diatomic mo-
lecules by Gunnarsson, Harrls, and Jones (1977). This Linear
Combination of Muffin—Tin\Qrbitals (LCMTO) method gave vast-

ly improved molecular dissociation energies and bond lengths

. while retaining the basic simplicity of the muffin-tin model.

Meaﬁwhile, LCAO (Linear Combination of AﬁomiQ‘ngiggls)
methods for the solutipn of the Hartr;e—Foék—Slater equation
were .also developed in which muffin-tin or other cellular con;
structions were discarded altogether. 1In the so~called Dis-
créte Variational Method (DVM) of Ellis and Painter (1970),
molecular orbitals and densities are expanded in a Slater type-

—basis set and. the resulting molecular integrals are evaluated
numerically usiﬁg a randomly generated set of integration
points aﬁd associéted weighfs. Tpe method was refined and
applied to various moleculér systems 'in a series of papers by
Baerends, Ellis and Ros (1973), Baetendé and Ros (1973 and
1975), Heijser, van Kessel and Ba;rengs (1976) -and Baerengs
aﬁd Ros (;978). In the last of these papers, the results of
test calculationé on a series of first row diatomic molecules
we;é presented which showed excellent agreement with experiment,
in éharp contrast with the early muffin-tin célculatipns.

In addition, a GTO-LCAO-Xa method . empléying Gauséian
type basis sets was developed by Sambe and ‘Felton (1975) and

| further refined by Dunlap, Connolly and Sabin (1959). This me-

thod was also tested on a series of first row diatomic mole-
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cules,‘ghd again the results showgd'exbellent agreement with
experiment, but-differed somewhat from the results of Baerends

and Ros (1978). :

- N - 1

‘%

This great variety of cdmputétional ﬁethods (and there
are many morg which have not been diséussed here) has, unfor-‘
tgnately, yielded an equally great Variety of results for the
dissociation energies, bond lengths, vibrational frequéncies
and dipole moments of first %0& diatomic systems. At the pre-
’seﬂf“tiﬁé, theréfore,‘it is very difficult to assess the Har-
treewFock-Slatef theorygin thé'presence of the overwhelming '

% -
numerical error of the existing Xo calculations.

l.2 The Present Work

*

The LCMTO, DVM and GTO-Xo ca}qu?ations of’buﬂnarsson,
Harris andJones (i§77),f8aer?nas and Ros (1978} and Dunlap,
Connolly and Sabin cg979f respectively, are probably Eﬁe most
édcurate Hartree:Fock;Siéter célqulations to date;: Eveg so,
the results of these studies show éignifiéan; disé;épancies,
despite the‘tfemendous improveﬁeﬁt over ;he early muffin;ﬁin
results (see Tables é;g-to 6.6 in Section 6.3).

. In the present work;nﬁberef;re,~&»complete1y.;numerif

cal" method for the calculation of diatomic molecular wavé

functions has been developed in o:ﬁer to\provide a reliable

assessment of the Hartree—Fock-Slatér theoxry. The met&od in- - -

. volves\theﬁcomputation pf.molecular'functions at a very large
number (i.e. several hundred) of discreté "mesh" 'points in

coordinate space.. . : -

-



We shal)l make no.-muffin-tin, cellular, or finite LCAO
basis set approximations of 539 kind. In principle, there-
fore, the numerical error in these caléulatioﬁs can be virtual-
ly ?liminated by using a sufficiently large number of mesh
‘points, and this has indeed been accomplished within reaso-
nable tolerances in tﬁe present work (see Section 6.2).

Accurate numerical solutions of the Hartree-Fock-Sla-
ter equation have, of course, long been available for atomic
sysﬁemg in the form of disc?ete calculations on a radial mesh.
Such calculations culminated in the classic work of Herman
and Skillman (1963).°

in diatomic systems, however, numerical calculations s
are somewhat more difficult due to the two-dimensionality of
the problem, and therefore very feQ attehpts at such aalcula-
tions appear in the‘literéture. Gunnarsson and Johansson
(1976)’used a straightforward numerical approach to test.va-
rious density functional theories on the simple molecules hz,

H;, He2 and He;+. They did not, héwgve;, apply their method

to more complicated systems.

A remarkably accurate ;semi—huméfical" method, how-
ever, has been developed by McCuilough Jr. (1974 and 1975)
and Christiansen and McCullough Jr. k;97f) fo? diatomic Har- /
tree~Fock caléﬁlations, but this app:Qach ﬁas‘not been applféé
to Harﬁ;ee—Fobk—Slater 5r oﬁhe?ﬂdensity functional theories.

C Therefore, we have.developed in the present“ﬁBrk an

accurate, completely numerical code for the implementation of

!

[



Hartree-Fock-~Slater or any ¢other denéity functional‘theory to
diatomic molecules comprised of arbitrary first row atoms.

The‘outline of this thesis is as follows: 1In Chapter
2 a very brief theoretical discussion of the Hartree-Fock-
Slater approximation is given. This discussion i1s not inten-
ded to be exhaustiQé (as the major emphasis of this work is
numerical), but it should provide a simple understanding of
the theory for the reader who may not be familiar with it.

In Chapter 3 théAprolate spheroidal coordinate system
for diatomic molecules is introduced and then modified for
numerical convenience. We then establish the basic numérical
framequk for our calculations by defining the discrete mesh
uée@.ig'this work and the corresponding discrete differentia-
tion and integrétion procedures.. This framework is applied in
Chapter 4 to the discrete solution of the Hartree-Fock-Slater
'equation for the molecular orbitals. '

In Chapter 5 a éomewhat different method for solution
of the Poisson4equation is presented which has certain advan-
taées in this case over the coordinate space approach o@ Chap-
ter 4.

Finally, in Chapter 6, the results of extensive calcu-
lationé on the first row moleculés B C

CO, 0, and F

2t Car Ny» 2 2
are presented and compared with experiment and also with the
results of Gunnarsson, Harris and Jones (1977), Baerends and

Ros (1978) and Dunlap, Connolly and Sabin (1979), We assess



these results and the Hartree-Fock-Slater theory in the con-
cluding section of the chapter.
Before we proceed, however, note that all subsequent

expressions, unless otherwise specified, are written in ato-

- *

mic units such that A = e = me = 1.
&y
/ \
\_/"/
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CHAPTER 2

THE HARTREE-FOCK-SLATER APPROXIMATION
X,

2.1 Hartree-Fock Exchange Energqgy

In the Hartree~-Fock approximation, the wave function
for a system of N electrons is represented by an antisym-
metrized product of N orthonotrmal one-electron orbitals wi.

If a single such product, or "Slater determinant", is used

to calculate the expectation value of the Hamiltonian

P R SN £ 3 SRR 1 y
H=1 139 *Vexel *3 L 3 (2.1)
i i3 "ij
‘then the resulting enexgy E is given by the expression
_1 24 ‘
E = 3 i [Vwi} av + Vextpdv
{2.2)
- N
1| p(yo(2) .
3 iy dvydv, + E_

*

where Ve is the "external" potential arising from the atomic

xt

nuclei, p is‘the total electron density

-

(2.3)
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energy. The exchange energy is the object of the present chap-

- ¢

"ter, and is given by the well knowh expression

1
r

* *
. (2) Y, . \ . .
s 12 Wl(l)wj( )Wj(l)wl(Z)dvldv2 | (2.4)

5

Details of the derivation are omitted here, since the Hartree-
Fock approximation is thoroughly treated in many standard text-

books (see, for example, Tinkham 1964, ch. 6).

L)

In equation (2.4) it is understood that the integration
operators and the orbitals wi include spin coordinates. There-
+ fore, it is clear by inspection that the exchange energy

consists of two distinct terms, one for each component of spin:
E_ = E + E . . ( 2.5)

' Each term is given by expressian (2.4) with the dduble summa-
tion restricted fo.spin-up and spin-down orbitals respectively.

7
We shall now examine the spin-up exchange energy Ex+ in some

detail, ‘where, of course, the.spin~down term is given by com-

-

pletely‘analogous formulae.

Notice, first of all, that the exéhénge energy may be

.-

written in the somewhat simpler form

L

: 1
E = - =
2 12

) , :
<t ot (1,2)] dv,dv, (2.6)
.0

where
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pt(1,2)

]

*
Iy, (L, (2) (2.7)
it :

The function p1(l,2)'is called the spin-up one-body density
matrix for a Slater determinant. Such density matrices have

several useful properties, among which we note that

pt(1,1) = pt (1) ' (2.8)
) .
ot (2,1) = pt(1,2) . " (2:9)
and
p4(1,2)p4(2,3)dv, = pt(1,3) (2.10)

where the idempotency (2.10) follows from the orthogonality

5

of the orbitals wi. -Other.interesting properties also exist

buﬁ shall not concern us here. We will, however, make good use
of (2.8-10) shortly.
First, however, the integrand of expreésion (2.6) may

be multiplied and divided by pt(l) to obtain

-1 pt (1)
Egr = -3 r, px*(l,Z)dvldv

X (2.11)

where

2
oy (1,2) = 12221 ]T (2.12)

pt (1) N

t

This particular format permits an interésting physical inter-

i
'

pretation (Slater 1951) : . c
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Expression (2.11l) represents the interaction ‘energy

between the spin-up charge density pt and an exchange density

p defined Sy (2.12). The general characteristics of this

x4t -

exchange deﬁsity are determined by the density matrix pro-
perties (2.8-10). Using (2.8), the behaviour at r,=r; is

given by

om(l,l) = pt (1) . (2.13)

Then, using (2.9) and (2.10) the intggral of the exchange

density is easily seen to be

- pr(l,2)dy2 =1 . - (2.14)

Therefore, the exchénge charge density contains exactly one
electr0n,‘the significance of which will be.evident momenta-
rily. . ‘ \

' If ekpression (2.11) is substitutéd into expression

(2.2) for the total energy E, then we obtain

12

= X 2
E = 2 ? lvwil dv + Vextpdy -
1 pt (1) _
+ 5 2 [p(2) pm(l.,Z)]dvldv2 ¢2.15)
1f] e+(1) _ ' '
; * 5 o [p(2)-p, (1,2)]dv dv, .
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Each of the last two terms represents the interaction energy
between.the spin—up’(or down) charge deﬂ;ity and the total
charge density minus a so-called "Fermi hole" created by the
exchange term. According to equation (2.14) this Fermi hole
contains exactly one electéon, and consequently each electron
.in the system-actually interacts with a charge density con-—
taining only (N-i) electrons. This is physically consistent
,yith the fact tﬁet a particle cannot interact with itself, and,

therefere, the role of the Hartree-Fock exchangé energy is,

in pert, to cancel the electron self-interaction energy.

»

2.2 Exchange Energy Approximations

The physical interpretation of the Hartree-Fock ex-
change energy outlined in the previous section may be used to
derive very simple but useful exchange energy approximations.
We begin by defining the exchange .potential U as ehe coulomb‘

-

potential arising from the Fermi hole den51ty:

f(1,2),

+ x ' '
U (L) = -~ —_— dv, . (2.;6)
4 rl2 2

In terms of this definition the exchange energy (2.1l1l) is given

by

=1 . '

We shall concentrate our efforts in this section on finding an

approximate.expressien for the exchange potential U

O

x+°



Notice,- first of all, that calculation pf.the exchange
potehtial (2.16) does not require a detailed knowledge of the
angular dependence of the exchange density. Since the coulomb

interaction is spherically symmetric, only the spherical aver-

age of px+(l,2) about the point r, is required. We may, there-

1
fore, restrict ourselves to spherically symmetric models of the
exchange density without loss of generality.

These models must, of course, satisfy the general con-
ditions (2.13) and (2.14) of the previous section. It follows
from (2.13) that the value of the exchange density at the benfre'
of our spherical—hodel must be p4(l), and it féllows from (2.14)
that its integrated value must be unity.

As a first approximation, Slater (1951) models the ex-

change density with a uniform sphere of constant density pt and

radius R. Applying the normalization constraint, we obtain

5 /3 ' . A
R = (—_W) . - . (2.18)

3

which provides a rough estimate for the size of the Fermi hole.
The resulting exchange potential for this model is easily found
to be

1/3

= - 3
Uy = = 3.90 (5 o) . (2.19)

Although obviously crude, this model probably reflects the gross
behaviour of the exchange potential fairly well.
A more realistic approximation might involve the use of

a“Gaussian model having the form
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a52

px+(s) = pfe- K2.20)

where the parameter "a" is determined by the normalization con-
dition. We choose a Gaussian rather than an exponential model

in order to avoid the introduction of a cusp at the origin
After some straightforward algebra, the following exchange pot-

ential is obtained:

1/3

= - 3
U, = - 3.22 (57 et) | (2.21)

which has the same form as the previous approximation (2.19)
with a slightly different coefficient.
In fact, on purely dimensional grounds, Slater (1974,

pg. 34) stresses that any such one-parameter model for the

spherically averaged exchange density will yield a potential

1/3

which is proportional to p . Therefore, we conclude that

the Hartree-Fock exchange potential can be approximated by an

expression of the form

?

- - 1/3
U = Cxp+

<4 (2.22)

where, for historical reasons discussed in the next section,

- .

the constant Cx is conventionally written in the form

c, = % o (3-) X : (2.23)

For the uniform sphere and Gaussian models which we have con-

» sidered, the values of the pafameter o are 0.87 and 0.72 res-

©
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pectively. Obviously, it is necessary \to determine anm"optiﬁum"

value for o in some reasonable manner, Hut we shall postpone

il
the discussion of this problem until the\next secttion.

Recall that the Hartree-Fock exchlange energy is given
by expression (2.17). Substituting the approximate exchange .

/

potential (2.22) into this expression, wé obtain
. / - »
E,=-%C pf‘fﬁ@v L (2.24)
" which is certainly very much simpler than the ‘original expres-
sion (2.4). )
The approximation (2.24) is the desired result of the
present section, but its usefulness can only be assessed by
experience‘with calculations on "real“‘atomic and‘ﬁolebular'

?
systems.

2.3 The Xa Method

The exéhange energy approximation (2.24) and its spin-
down counterpart, when substituted into expression (2.2) for:

the total energy, give

> -

- _ l. 2
B=3I o 1%av + | v pdv
‘ + _1._ p(l)p(2) dv.dv (2.25)
. 2 r 172
. 12 .
-3¢, | 03 ey o -
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where the constant C_ is given by equation (2.23) of the pre-
vious section.
We now assume that the orbitals ¢,  may be de%ermined
i

by the usual variational procedure applied, in this case, to

the approximate, enérgy (2.25). Minimizing (2.25) with respectl
to the orbitals wi produces ap equation for the orbitals con-
taining an exchange potentiai Vx'arising from the last term.
This potential Vx should not be confused with the potential Ux
of the previous section, as they have entirely different mea-
nings.

Since the spin-up and the sbin-down electron densities
are generally not equal, phe exchange potent%al Vx is, in fact,
. spin dependent. For simplicity, however, It is preferable to
work with spin restricted orbitals, and we therefore introduce

a non-spin-polarized approximation for the energy (2.25) bf

replacing pt and p¥ with p/2. We obtain

™

E (non-spin-polarized)

1 2. -
T2 i (Vb 17av + |V pdv
i 1 r (1)p(2) !
p p e
+z o dv av, | g (2.26)

[ v
‘- C (p/2)4/3dv . :
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o3 coufse, this expfession'is equél to the energy (2.25) in

cases where the electrons are, in fact, completely spin paired.
Equating the 'variation of expression (2.26) with res-

pect to variations in t?e,orbital wk to zero, we obtain the

r

following equation for the spin restricted orbitals of the

e

system :
-1 vzw + (Vv +V /i;‘)w = £ Y (2.27)
2 k ext ‘el 'x' 'k k"k :
where Vel is the coulomb potential arising from the total elec-

tron density:

-

| p(2)
Vo (1) = dv , (2.28)

and the exéhapge potential Vx is given by

t

_ ;L3

v, = S3a(gre) . . (2.29)
4

Equation (2.27) must, of couxge., be solved in an iterative and

self-consistent manner, since the electron density itself ap-

1
Note ~that, although the orbitals are assumed to be

pears in the potentials v,y and V_.

spin restricted in this wak, the total energy E is calculated

-

lusing the broperly spin-polarized expfession (2.25).
~

Equation (2.27) and the local exchange potenﬁial (2;22)'
were suggested by Slater in 1951 in order to simplify Hartree- .
‘'Fock calculations for solid-state systems. Therefore, the

. present theoxy is often referred to as the Hartree-Fock-Slater

u\‘
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approximation. Slater's original approach is somewhat different
from that which we have taken here, and the interested reader
is advised to consult Slater's 1951 paper for further details.

However, Gaspar (1954) and then Kohn and Sham (1965)
argued that Slater's exchange potential was too large, and that
a coefficient having two thirds of Siater's value was more ap-
propriate. Thie uncertainty has prompted workers in the field
to define the coefficient in terms of an adjustable parameter
called "a" (see expression 12.23)5 such that a=1 and a=2/3
correspond to the Slater and the Gaspar-Kohn-Sham potentials
respectively. The term "Xo" is commonly applied'to this para-
meterlzed version of the- Hajtree-Fock Slater theory

Several studies have been undertaken to determlne the
optimum value for « empiiically, the best known of these being
a study of atomic_systems by\Scbwarz (1972), 'He solyed the
Xa equation (2.27) for a large number of atoms and determined
the optimum o for each atem by ch0051ng the value which gave
an Xo total energy (2.25) equal to the Hartree Fock energy.

The resulting emplrlcal o's Iie between 0 7 and 0.8, depending

-

on the atom.

Theoretlcal studies have also been made in order to
account for the emplrlcal results. We note,_for examplev the
work of Goplnathan Whltehead and BogdanOVlC (1976) and Gasquez

and Keller (1977). B

* ——

-

v o For molecular systems, however, the choice of « iefsome~
wh?faless clear. In the diatomic calculations of Gunnarsson,

oxj ”
.
,
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Harris ahd Jones (1977), Baeands and Ros (1978) and Dunlap,
Connolly and Sabin (1979) a "uniform o" approximation with
a=0.7 was used.' For compatibility with the work of these
éroups, therefore, the same approximation has been applied to
the present calculations.

Although many interesting aspects of the theory have
not been considered here, we shall now conclude this brief
discussion of the Hartree—fock-Slater approximation and refer

the reader to an excellent review by Slater (1974) for further

detéils.
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CHAPTER 3

THE COORDINATE SYSTEM

3.1 Prolate Spheroidal Coordinates

In this chapter, a convenient and efficient coordin-
ate system is constructed to serve as a framework for numer-

ical #glculations on diatomic systems.
v

———"" Of the several standard two-centre orthogonal coord-

inate systems avéilable, the prolate spheroidal coordinates
(see, for example,ﬁArfken 1970, pg. 103) are the most suitable
starting poi%t for our purposes., The orthogonal surfaces of
this system consist of confocal ellipsoids énd hyperboloids

of revolution. Assuming that the focal points are located at .

(0,0,~-a) and (0,0,a), the transformation equations are

X = a sinhe sinezcos¢ (3.1a)
y = a si elsinszsin¢ (3.1b) -
"z = a coshelcose2 : (3.1c)

where coordinates € and €, label the ellipsoidal and hyper-

2
boloidal surfaces respectively, and ¢ is the azimuth angle:.
A representative sketch of this coordinate system is given in

.

Figure 3.1..

——

21
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Figure 3.1

Prolate Spheroidal Coordinates N and €ye
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The domains of these coordinates are y
0 < el < o (3.2a)
0 e, , (3.2b)

and, of course,

¢ < 2n . (3.2¢)

o
IA

In the case of an axially symmetric system, the ¢
dependence of our molecular orbitals éan be handled analyt-
ically, and therefore the problem is simply two—dimensional;

Let the focal points (0,0,-a) and (0,0,a) be deﬂbxed
centre 1 and centre 2 respectively. %hen the distance from
-centre 1 toa givep point (x,y,z)'is denoted Iqv ahd the dis-
taﬁcg from centre 2 1is denoted r,. In terms of the prolate

spheroidal coordinates, these distances are given by

2t
Il

a(coshel+cosez) (3. 3a)

w
il

» = a(coshe -cose,) . - (3.3b)

These expressions immediately reveal an inte;esting
property of the prolate spheroidal system,'namely that éxp-,
qnential functions of r, or r, transfqrm into Gaussiaq func-
tions of € and €, near the nuclei. 1In the (el,ez) cobrd}n—

ate system there are no nuclear cusps.

Finally, for future.reference, the scale factors and
the volume element for this coordinate system are given below;l;

(see Arfken 1970, ch. 2, for a discussion of,;he scale facﬁors‘
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hi of a curvilinear coordinate system.)

- n = 1/2
hl = h2 = (rlr2) , (3.4a)
h¢ = a51nh6151n52 (314b)
and
dv = arlrzslnhels1n€2dsl§£2d¢ . (3.5)

3.2 Transformation from (8182) to (Xlle

It is desirable for numerical purposeé to transform
from the coordinates €y and €5 to a new set of coordinates which
we shall call xq and Xy In this way the distribution of €1
and €, coqordinate surfaceg in real space can be optimized té
improve numerical accuracy. . Furthermore, the semi-infinite : -
domain of the €y coordinate can be transformed into a finitél
domain. |

We~begin by seeking a transformation of the form el(xl)

which has the folloWing properties:

0 2% 21 (3.6)
and '
e, (0) = o" (3.7a)
e () = e . (3.7b)
12 1m *
él(l)-= © ) a ‘ (3.7¢)

where €1m labels the ellipsoid corresponding to the midpoint
of the X1 domaiC;/ In addition, we reéuire that‘el be an odd:

-

-
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function of Xy in order to facilitate the application of boun-

dary conditions at %, = 0, as discussed in the next section.

1
A syitable transformation is given by
|

-1 > 1 l+xl
el = cltanh (xl) = fcl zn(l_xl) (3.8a)
where
2€lm '
<, “1m 3 - (3.8b)

Of course, the choice (3.8) is not unique, but investigation
of its asymptotic behaviour indicates that this transformation
is appropriate for our problem. We discuss this matter 'in
Appendix A.

The purpose of parameter €. , defined by eguation

1lm
(3.7b), is to scale the distribution of the ellipsoidal surf-
aces to an appropriate atomic size. If we let rm~denote the

"size" of the atoms comprising the molecule, then ¢ is def-

lm
ined in the present work as the ellipsoid with semi-major

axis (a+rm). This definition gives

r

= -1 m, .
T cosh “(1 + g—) . (3.9)

Furthermore, for the two-shell atoms considered in this work,
the atomic "size" r is defined as the radius corresponding to
the minimum of the charge distribution rzp(r) between the
shells. Then, in the case of a heteronuclear molecule, we
define rmﬁgs the geometric mean of the constituent atomic val-

ues.
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Through the transformation e (xl), therefore, the

1

seni-infinite domain of ¢, has been mapped onto the finite

1

domain of =x and the distribution of ellipsoids in real

ll
space has been optimized through the parameter €1me

. Although the second coordinate €. already spans a

2

finite domain, it is desirable to introduce a second transfor=

mation ez(x ) in order to adjust the real space distribution

2
of the hyperbolic surfaces as well. A suitable transformation .

for this purpose is given by

e
(52’= X, + c251n2x2 (3.10a)
where 0 < X, ST h (3.10b)
‘and - % < c; < % P (3.10¢)

For negative values of c¢ the transformation (3.10) increases

2I
the/concentration of hyperboloids near the foti, and converse-

ly, for positive values of c, the concentration of hyperboioids

2

near the foci is reduced. Therefore, debending on the degree
of concentration of the molecular density near the nuclei, pro-
per adjustment of this parameter can improve numerical accuracy
somewhat.

Since the domain of possible values for c, is restric-

2

ted by (3.10c), its optimum value has been determined in the

present work by trial calculations using very coarse meshes.

’

These trials indicate that the value ¢,

= -0.25 is appropriate
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- for the first row molecules considered in this work.

In principle, of course, the precise values of the con-
lmi and c, are irrelevant if a sufficiently
large number of mesh points is used, but proper choice of these

stants cl (or ¢

constants often allows a significant reduction in the number.
of mesh points required to achieve a given computational accu-
racy.

In summary, then, the original prolate spheroidal co-

ordinates ¢,¢., have now been replaced by coordinates x and

1%2 1%2”
our problem is therefore defined on a finite rectangle in

X, X,-space. This rectangle is illustrated in Figure 3.2, where

we also give the physical significance of its boundaries. In

the following section we shall discuss’ the boundary conditions

applicable to molecular functions on the perimeter. of this reg-
‘ <

ion.

[y

3.3 Boundary Conditions

< It is clear from the original transformation equations

(3.1) that the coordinate values €, =0, €, = 0 and €, = 1

correspond to the nuglear axis of the, system. In this section

i

we examine what happens when the values of the coordinates €

_and €, are extended beyond these boundaries.

2 -
First of all, equations (3.1) imply that any given

point (x,y,z) is transformed into the point (-x,-y,z) under
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a sign change in either €] Or €,. A similar transformation

is also affected by a change in the value of ¢ from (7m-§)

2

to (n+d) for some arbitrary 6.

Therefore, when the values of the coordinates el and 62

are extended across the boundaries El = 0, 82 = 0 and 62 =1,

this corresponds to a perpendicular crossing of the axig in
real space. ’

Notice, furthermore, that the coordinate transformations
él(xl) and ez(xz) of the previous section are designed to pre-

serve these properties. A sign change in Xy or x or, a

2’

change in the value of x_. from (n1-6) to (n+6) all result in

2
the transformation of an arbitrary point (x,y,z) into the point

(-x,-y,z). Consequently, the boundary conditions applicable

to a given molecqlar function at X = o, X, = 0 and X, = m

<
are related to its axial symmetry.

For clarity, these boundary conditions will now be pre-
cisely stated for fupctions of 0 and 7™ symmetry, which are
the only symmetries of concern to us in the present work} with

X, constant, a o{(nm) function must be even\(odd) about the point

2
X = 0, and similarly, with xl constant, a o(n) function must

be even (odd) about the points X, ='0 and X, = 7m. 1In addition,

it is also imteresting to note that all molecular functions are
actually periodic in X, {for X4 constant) with a period of 2n[

“~although this information is not utilized in the present calcu-

)
lations.

Ny
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3.2

Figure

The Xy x2 Coordinate System.
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We have not, as yet, mentioned the boundary at x, = 1,

1
which corresponds to the ellipsoid at infinity. In the pre-

sent work, we simply econstrain-all functions and their normal
first derivative to vanish along this boundary.

Before concluding this section, the homonuclear mole-
Y

cule deserves special consideration. In this case, of course,

only half of the normal range of the x, coordinate is neéded‘

2

(i.e. 0 < Xy < n/2) and at the boundary x, = m/2 a given func-

2

tion must be either even or odd (for x, constant) depending on

1
the reflection symmetry of the state in question. At all other

boundaries the previous conditions are obviously unchanged.

3.4 Discretization

Our problem is defined in the rectangle
0<x <1 (3.11a)

0 < x, < (3.11b)

2
with boundary conditions as discussed,ig the previéus section.
Lét us now discretize the problem by constructing a uniform

two-dimensional mesh on this rectangle containing, say, N xN,
points. Since the coordinate system is orthogonal, this mesh
is simply a product of two independent_one—dimensional meshes
for each of the 3 and'x2 components.- |

As discussed in Section 4.2, all functions dealt with

Ay

. 4 - - ) H
in this work (i.e. 0 functions. included) actually vanish on the

bouridaries of the rectangle (3.11), and therefore no mesh points
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are required on the perimeter. The x, mesh, therefore, con-

1
tains Nl points excluding Xy = 0 and X) = 1, and the X, mesh
contains N2 points excluding X, = 0 and X, = T. The coordin-

ates of the mesh point designated ij are simply

x; = ih / X, = jh

1 5 (3.12)

2
where

hl = l/(Nl+l) P h2 = ﬂ/(N2+l) . (3.13)

In the subsequent work, we adopt the convention that indices
i and j refer to the Xy and the Qz meshes respectively.

In the case of a homonuclear molecule, of course, only
half of the normal x2 mesh is required. Notice, however, that
two different kinds of half-meshes exist, depending on whethér
the original full mesh contains an eVven or ‘an odd number of
points. It can be shown that the former case is preferable,
and in Figure 3.3 this half-mesh is illustrated, along with the

full meshes for both the x, and the x. coordinates.

1 2

Having described the structure of the x, and the x

1 2
meshes, we now proceed to a discussion of discrete analogs for
differentiation and integration operators.

Corresponding to partial differentiation operators,
we shall define two matrices on the mesh which generate approx-

imate partial derivatives of an arbitrary. function F at any

given mesh point ij.
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Figure 3.3

Form of the x., and the x., Meshes,
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For partial differentiation with respect to Xy we
define the NlXNl matrix d(l) such that
N
oF N ,
. e = 7 dji Fisoo (3.14)
1{ij k=1 J

and simjlarly, for partial differentiation with respect to Xy

(2)

we define the NZXN2 matrix d such that
.
aE | R g@p
sz i k=1 jk ik . (3.15)

These matrices incorporate the appropriate boundary .conditions
- of the previous section, and therefore a distinct matrix is
required for each distinct set of boundary conditions (i.e. for
each symmetry class).

D

T T T e In the present wark, ~and d(z) have been calcul-

ated using cubic spline analysis, but any desired numerical

technique can be used. The cubic spline derivation is outlined

e in Appendix B. >
) It'is also possible, in pri\ ; to define matrices

which generate higher order derivatives, but the variational

formalism of the next chapter requires first order derivatives

5

only.

"The cubic spline analysis of Aépendix\B also produces

iy

a set of integration weights for each q@Aﬂﬁf&l and X, meshes.

.

~
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(1) (2)

These weights, designated W and wj ' are‘deﬁined by
v
[ )
Plxax, = 2 willp, (3.16a)
J 1
r (2)
sJJ F(xz)dx2 = ; wj Fj . o (3.16b)

Two-dimensional integrations are performed by combining these

expressions in the usual manner:

: . _ (1), (2) S
F(::Cllxz)dxldx2 fg Wy wj Fij . (3.17)

This eguation gives approximate integrals in x -space, but

1%2
let us proceed further and derive a simple integration formula

for volume integrations in "real" space. T

/

<

Consider -the volume integration over all space of an
arbitrary axially symmetric functien F. In order to eliminate

a factor (2-a) from all subsequent expressions, it is conve-

_-nient toqredéfine the integration weights wil) and w§2) as

13

follows:

1/2 (1)
Wi (3.18)

e (ZHaYl/zwgz) )
o f{ J
Then, using-eipressién (3.5) fé%ffge vo%gme'element in prolate

»

.wil) + (27a)

e

’

L]
S
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spheroidal coordinates and equation (3.17) for integrations in

X,%X,-space, we obtain the following expression for the volume

integral of the function F:

Fdv = ¥ w,.F,. | (3.19%a)

where the volume integration weights wij are given by

de. dg
_ (1) (2) . . )
i W wj (rlrzslnh6151n€2 azz a;;)ij . (3.19b)

W

This discrete integration formula -will be used on many occasions -

throughout the remainder of this woerk.

—

\



% ’ CHAPTER 4
DISCRETE SOLUTION OF THE
HARTREE-FOCK-SLATER EQUATION
'

»

4.1 , The Variational Formulation

i

Recall that the Hartree-Fock-Slater (or Xu) orbitals

satisfy an equation of the form

12 o :
A T & e (4.1

where the self-consistent potentiél V is given by

\Y =Vext+vel+vx (4.2).

(see equations (2.27-29)). It is possible to replace this
equation by an equivalent matrix problem by directly substitu-
tiné for the differential operators in (4.1) the discrete dif-
ferentiatiomnffatrices described in Section 3.4. The resulting
problem, however, is non-symmetric and therefore this direct
approach is not recommended.

it is‘Qell known, howevgr, that equation (4.1) can be

recast as a variational problem in which we seek the extrema

of the functional

F = % [ Ilezdv + J (V-e)lwlzdv . (4.3)

36
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We can treat this,variational problém by replacing the functio-
nal F with a discrete approximation using the numerical machi-
nery of Section 3.4. Then, equa;ing to zero the variation in

F with respect to the value of |y at each of the mesh points,

we ultimately generate an equivalent matrix problen which is,
in this case, symmetric. This symmetry follows from the symme-
tric positive definite form of the kinetic energy integral

used in expression (4.3).

Notice, also, that the variational formulation does
not require the evaluation of any derivatives higher than first
order, which is numerically very convenient.

Therefore, the discrete variational approach outlined
above has been used in the present work:for calculating méle—
cular orbitals. In the sections that follow, we describe the
application of this method first of all to orbitals of ¢ sym-—

metry, and then to orbitals of 7 symmetry.

4.2 o Orbitals

For notational convenience in this and the following

section, let us define the integrals T and IV as follows:

T

|9y | %dv (4.4)
2 : ’
I = | (v-€)|y|“adv . (4.5)

v

In'terms of these definitions, of course, the functional F
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is simply

«F=%T+I . X (4.6)

In this section, simple discrete approximations for the inte-
grals T and IV will be discussed for orbitals of ¢ symmetrx.
Notice, first of all, that o orbitais have“non-zero
value along the internuclear axis, but that the prolate sphe-
roidal voluﬁe element (3.5) Qanishes there. Unfortunately,
this implies that tﬁe variational formalism of the previous
section cannot directly provide ¢ orbital values along the

axis. Therefore, we define a new function

p o= (sinhelsinez)w (4.7)
which is the simplest conceivable modification of ¢y that vani-
shes on the axis. This function vanishes'asymptotically as
well, if the behaviour of wfigﬂé;ponential;

Regarding Sections—§;§ and 3.4 of the previous chap-
ter, we note that the function p has zero value along the en-
tire perimeter of the rec}angie (3.11); and that it has 7 axial
symmetry. ‘

’ Let us return now to a discussion of the integral T,
expression (4.4). Using the prq}ate spheroidal scale factors

(3.4) the integrand of T may be written as

2 2
2 _ 1 0 3
7el” = 5 [(J—El) + (3—6‘1’? ] (4.8)
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/
¢

which 1s conveniently separated into two terms:

T = T,+T . (4.9)

172
where
( 3 2 dav
T, = (ggL) — (4.10a)
1 152
J
r 2
T, = <§§L) AN (4.10b)
J 2 152

The treatments of these two terms are very similar, and we

therefore need consider only Tl in detail.

In terms of the function y defined by (4.7), we have

N T L -
1 1 rlr2s1nh 5151n 82

which, after changing the variable of differentiation e, to

1
Xy and then gpplying the discrete integration formula (3.19)

becomes
wfl)w§2) de de dx coshe
Tl = I si;he gine (dxl)(dxz)(del ;2‘ sinhe “)2 - (412
ij 1 2 1 2 1 °71 1 ij

-

This expression can be simplified considerably, as we now pro-

L3

ceed to do.

(1)

. a
gl nd

We begin with the definition of new weights w

L (2)

oy given, by



, (1)
. de
(1) _ Vi 1
U5i T sinhel (dxl) (4.13a)
(2)
NC (ig—z-) (4.13b)
cj . sine2 dx2 ’

where the index ¢ is used in order to distinguish these from

analogous weights defined for m orbitals in the next section.

(1)

Theén, we introduce the NlXNl matrix D0 defined by
the following equation:
e I
IS TG I C J -

In terms of the differentiation matrix d(l) of Section 3.4

this definition gives

dax ‘ coshe

(1 _ %1 1 |

oii' = G 94iv - Smmmel) Sigr # (4.15)
71 i 11

Substituting the definitions (4.13) and (4.14) into

(4.12), we obtain the simplified expression

. 2
(1) (2) (1)
T, = 2 w 0w Z°(2 D 7 u ) (4.16)
1 i3 01 o) k oik " kj
which can be rewritten as
.= 5 o P (20 ©(4.17)

. . . oMy sHo L .
i5k8 ol 03. gik“oif "kj" ]

This expression ‘can be further simplified by perfor-

.

ming the summation over index i, which results in the definition

Y

s >
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of a symmetric leNl matrix Aél) given by

all)

(1) (1) (1)
akz D D

= i “si PoikPois (4.18)

in terms of which the integral Tl may be written in the follo-

wing final form:

(2) . (1 )
T, = L w A u .
1 5K4 oj okt ki %3

(4.19)

This result is a very convenient discrete approximation for
the original expression (4.10a).
Completely analogous results exist for the second inte-

gral T2, expression (4.10b), and these are summarized below:

- (1), (2)
T, = I w i AgoHiH, (4.20)
ik®
where wél) is given by (4.l1l3a), and the N2><N2 matrix Aéz)
. is defined by

(2) - (2)~(2) (2)

Boks § “s3 PojkPoin (4.21)
with w( ) given by (4.13b), and the N2><N2 matrix Déz),related
to d(z) of Section 3.4 by

dx coss
p{2), = (2 al?) - =2 S50 - (4.22)

Notice that the matrix Aéz), similarly to A(l), is symmetric.
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Having considered the kinetic energy integral T, we
now turn to a discussion of the integral IV given by expression
(4.5). Recalling definition (4.7) of the function u and then
applying the disciete integration formula (3.19), we immediate-
ly write
I = I w,.(V-e)u’, (4.23)
ij ij

v .
1]

where the weights wij are defined by

w, = ] . (4°24)

1] sinhzelsinze2

Expression (4.23) is the discrete‘analog of the original inte-
gral (4.5).

Let us now calculate the variations of expressions
(4.19), (4.20) and (4.23) for Tl’ T2 and IV fespectively with
respect to a variation in the value of p at the mesh poing

"IJ. Using the obvious relation

TR ) :
_ll = -
a“IJ SiIGjJ (4.25)

the following results are easily obtained:

T
1 _ (2) (1)
= 2 L AU, (4.26a)
a“IJ oJ i oIi " 1iJ
aT
2 _", (1) (2)
3“IJ 2wOI z quAon (4.26Db)
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3I
_-___V =

(4.27)
aUIJ .

ZwiJ(V}J~E)“IJ .
Then, equating the variation of the functional F, expression
(4.6), to zero using the above results, we finally obtain the
following set of equétions (one for each mesh point 1J) for

the discrete values of u:

(2) (1)

W w
oJ (1) oI (2)
3 ? Asritig v 3 ? H158630 * YrgVigM1o
= EwIJ“IJ . (4.28)

\'d

fhe set of equations (4.28) constitutes an equivaleﬁt
matrix representation of the original differential Hartree-
Fock-Slater equation (4:1).N Before discussing the method of
solution, however, we must also consider orbitals of 7 symme-
tfy for which a similar set of equations is derived in the

following section.

4.3 1w Orbitals

An orbital of 7 symmetry can be written in the form

-

+3 .
v = pe *? (4.29)
where W is a two-dimensional function of € and e, which
vanishes along the internuclear axis. Therefore, the transfor-

mation (4.7) is not required in this case.



As in the previous section, we shall here discuss
discrete approximations for the integrals T and Iv defined by
expressions (4.4) and (4.5) respectively. Beginning with the

integral T, we use the scale factors (3.4) to obtain

2 2
2
|y [© = rlf [(;21) + i?) ]
172 1 2
2 4
u
+ >3 — . (4.30)
a“sinh ElSln 92

g

Therefore, the integral 7T for 7 orbitals is composed of three

terms,
) T = T_.L+T2-f-T3 (4.31)
where
[ 50?2 4
u v
T, = (=) (4.32a)
. 1 361 rlr2
J
[ .2 g
. u v
T, = (=) - (4.32b)
2, | 382 ryr,
and )
1 Uzdv
3= 2| = 2 (4.33)
a sinh 8151n 82 )

The treatment of the terms Tl and T2 closely parallels the dis-

cussion of the previous seétion, but differences arise due to
the absence of transformation (4.7) in this case. Omitting
details then, the new results are summarized in the following

paragraph. |
(1)

Again, we begin by defining new weights‘wni and w 2)

(
Ty

given, in this case, by
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de
(l) ( ) 1
Wy W Sthsl(a§I)’_ (4.34a)
de
(2) _ o (2) . 2
. nj = wj 51n£2(a§;) . (4.34b)
Then, we define the NlXNl matrix Dé%) and the N2><N2 matrix
D;Z) as follows:
dx
ptb) o Ly g . (4.35a)
mil de,’ . 11
1
dx
(2) _ 2 (2) ‘
133 = (de )deJ (4.35b)

where d(l) and d(z) are the differentiation matrices of Sec-

tion 3.4. From these are constructed the symmetric NlXNl and
N2><N2 matrices A(l) and- A( ) given by
(l) - (1) (1) (1)
ﬂkz = i wﬂl DﬂlkDﬂ12 (4.36a)
(2) ( )~ (2) S (2)
Alxe ,§ 3 DnjanjZ (4.36Db)
§ . —,
in terms of which thefintegrals ?, and T, are finally written
as -
(%) (l)
T = Z A (4.37a)
1// L7 “ri BrkefkiMes .
= (l) (2)
Ty = I opi BrceMixMig - (4.37b)
ik%

i

These expressions have the same form as (4.19) and (4.20) of

the previous section.
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3
given by expression (4.33) Applying the discrete integration

Q_Let us now consider the third kinetic energy term T

formula (3.19) and recalling the definition (4.24) of the

weights wij in the previous section, we easily obtain

1 5w u2
3 a2 i3 13713

(4.38)

And finally, for the integral IV defined by expression
(4.5), the discrete integration formula (3.19) immediately

gives

' 2 )
I = I w,.(V=g)u.. . (4.39)
v i ij ij -

Since the expressions for T T, and Iv of the present

1’ 72
section have forms similar to those of the previous section,
we may re-apply the equations (4.26) and (4.27) in oxrder to

calculate variations with respect to the value of y at the
mesh point IJ. Using, in addition, the obvious result
W

» 3T3 _

W. - (4.40)
au;J a2 IJ71J

and eqﬁating to zero the variation of the functional F, expres-

sion (4.6), we obtain the following set of equations (one for

each mesh point IJ) for the discrete values of u{

AL
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(2) (1)
w W
nJ 5 A(l) + Tl

(2) . %13
2 rIi%iJ 2

L W, A TL R =
. I3 wjd 2a2 1J

+ w__V

15 13%13 T "V1g¥1g (4.41)

These equations for discrete ©m orbitals have the same form
" as equations (4.28) for o orbitals, with the exception of an

extra term arising from the integral T We shall discuss

5
their solution in the following Section.

<

4.4 The Equivalent Matrix Problem

The results of the previous two sections are summarized

below:
(2) (1) ‘
w w
AT (1) AL - (2)
2 i Byritic ¥ 2 § Mr3Pas0 T CaroVio
N _
~ * h1aVravis T fhaotio (4.42)

where A is a symmetry index indicating either ¢ or 7 symmetry,

and
for o orbitals Y = Sinhesine, (4.42a)
6,15 = 0 : (4.42b)
8515 = Y19 - (4.42¢)
" and similarly, , , . .
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for m orbitals p = pe t¢ , (4.424)
w
: Y17 :
6 1= =5 (4.42e)
2a
'.\\ Q‘n’IJ = wIJ . (4.42f)

AN
e’

The set of equations (4.42) is equivalent to a matrix prob-
lem of order N = NlXNZ, and we discuss this problem in the >
present section,

Until now, the discrete mesh points described in Sec-
tion 3.4 have been labelled by the pair of subscripts i and j,

but it is alsg,possiﬁie to order these points into a singly

. )
i L
subscripted array by defining the following index k: {
. . .
' . X '\\\1
. o =(3-1)N +i . - ‘(4.43l‘\

-
Using this indexing scheme, the discrete array of yu values‘\

is considered to be one-dimensional, and by inspection we see_
~o U

that equations (4.42) are equivdlent to a generalized matrix
eigenvalue problem of the form

. ' ,
\
\

Ay = ¢By (4.44)

_wheré the NXN matrix A is symmetric, gnd‘the matrix B is dia-
" gonal. _ .

it.is clear froﬁ the. form of equations (4[;2) that the
matrix A h?é‘a-simple and well defined block structure, which,

rather than attémpting a written descriptidn, is illustrated in

\
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Figure 4.1 for the.case of a '5x6 point mesh. This particular
strhéture is, of course, a consequence of the fact that we are
working in an orthbgOnal coordinate system. Notice that the
matrix is extremely sparse (i.e. mostly zeros).

The ﬁatrix equation (4.44) is, however, complicated‘by
the appearéﬁce of the “metric" B on the right hand side. Since
the elements of B are all positive, though, equation (4.44)
is very easily transformed into standard form. We begin by de-

fining the square root matrix

R = pt/? (4.45)
and substituting this definition into (4.44), we obtain
-1 _ - . N
. R "Ap = €Rp . . (4.46)
’I{frﬁ L
If we now define the new vector

X = Ry (4.47)
,then equation (4.46) can be written in the standard form

1 1

(R "AR )x = ex (4.48)

[

lAR’l) is, of course, still symmetric.

where the matrix (R
This equation may nOW'bé solved using one of the many available
a}gorithms for symmetric eigenvalue problems.

Iﬁ the present work, it is wise to exploit the f§§;
that'matr;xﬂA i§ very sparse, and the fgét that good approxi-

mations for the orbitals of the system exist at the ‘outset of
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each self-consistent iteration. These factors are both exploi-
ted by iterative'pumerical matrix methods, and for this work
the so-called Lanczos algorithm has been chosen. Rather than

digress at this point, we discuss the Lanczos algorithm in

Appendix C. ;
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Figure

(4.44)

equation

4

Structure of the Matrix A




CHAPTER 5

THE POISSON EQUATION

5.1 Coordinate Space Representation

The self-consistent potential (4.2) contains a term
Vel which is the coulomb potential arising from the total
electron density. Although this potential is defined by
the integral (2.28), it is much more convenient to determine

Vel by solving the Poisson equation .

2 .
= - 4
% Vel me (5.1)

where p is the total electron density (2.3). As discussed
in Section 4.1 in connection with the Hart;ee—Fock—Slater
equation, the Poisson equation'(s.l) can be discretized by
direct substitution of the differentiation matrices of Sec--
- tion 3.4. Again, however, the resulting matrix problem is
‘non-symmetric, and thereforg this approach is undesifable.
Consequently, as in the previous chépter, we recast
equation (5.1) as a variational problem and this formulation
generates an equi&alent matrix equation which is symmetric and
positive definite.
The Poisson equation is equiyalent to minimization of

the functional

52
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g
1]
N

2
(VVel) dv 4m QVeldv . (5.2)

Since the. first term of this functional is similar to the
first term of functional (4.3) of the previous chapter, and
since Vel has ¢ symmetry, we may apply the results of Section

4.2 directly to the present case. Defining

K = (sinhe s:.nez)ve (5.3)

1 1

we obtain the following set of equations for the cgulomb poten-
tial:

L2 5 A ) (2)

o7 ¢ “o1ifig oI § H158633

e

(5.4)

4wwIJ(31nh6151n€20)I

J

. where the right hand side arises from the second term of the

functional (5.2).

If 4 is considered to be a one-dimensional array un-
der the indexing scheme (4.43), then the set of equations
(5.4) is equivalent to a matrix equation of the form

Ap = b ' . (5.5) ™

*

- where matrix A has the structure previously illustrated in

Figure 4.1. Furthermore, recalling definitions (4.18) and

s a2l and A(z)

(4.21) of the matrices A0 g respectively, we also

note that A is symmetric and positive definite.

[



Since the matrix A is sparse, and since a good approxi-
mation for the coulomb potential is always available in self-
consistent calculations, equation (5.5) may be solved using
any of a number of well known iterative numerical algorithms.
§§ecially designed for symmetric positive definite systems,
for example, is the method of Conjugate Gradients outlined by
Schwdrz (1973, ch. 2).

In the present work, however, the Poisson equa;ion has
been solved much more efficiently by-.employing a cubic B-

spline rather than a coordinate space representation. We

discuss this approach in the following section.

5.2 The Cubic B—Séline Representation

(1)

Suppose that we have a set of basis functions ¢i

which span x, space, and also a basis set ¢§2) which spans
x, space. Two-dimensional functions u(xlxz) can then be writ-

N\
ten as linear combinations of the form

_ (1), (2) * vy
i f} aij¢i .¢j - - (5.86)

If the first derivatives of the basis functions are denoted
o) ana 02
i

and , then we also have

ou (1), (2) :

T L%t (5.7a)

B -5 oa, ePel2)
2 iy 137i 73

(5.7b)
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If the‘xl and x. coordinates are disgfetized, we define ma-

2
. 1 2 1 2 )
trices ¢£iz’ ¢§j2, 6£i2 and eng such that, for example,
¢§i2 denotes the value of ¢il) at the mesh point i'. We
then write
- (1), (2)
Mrg = f} aij¢iI ¢ 53 (5.8)

and similar expressions for the partial derivatives (5.7).
Now let us use this representation to approximate the
functional F given by expression (5.2). We begin by defining

the integrals

_ 2
T = (Vvel) dv (5.9)
:cp = 47 oVeldv ‘ (5.10)
such that
F = 3'.. T - I . (5 ll)
2 p '

The integral T, as in Section 4.2, can be written as
the sum of two terms Tl and T2. Concentrating for the moment
on thé first of these terms, we recall expressions (4.12) and

(4.13) in ordex to write

dx coshe,
(1) (2) 1 du 2
T, = I w W ( - — u) . (5.12)
1 rs 0F Os dgl axl srnhsl rs
] s

This expression can be simplified by defining the matrix
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dx coshe

(1) 1, (1) _ 1, , (1)
Qr = ‘d-q) Oir (stame) %ir (5.13)
r lrx

which, when substituted into expression (5.12) gives

T, = I w .
1 or Yos ij ir
s i] (5.14)
Sz ooz oW @ L D), (2)(2)

rs ij i'j" or os i1j i'3'ir "i'r"Js "j's .

Then, performing the summations over indices r and s, we con-

(1) (2)

struct the symmetric positive definite matrices D and B
given by
p{Ir o g ,(Dlllgd) (5.15a)
Dijy ¢ OF ir 1 r
B(2) o5 ,(2),(2),(2)
Jj - . OS ¢JS ¢)Jls> (5-15b)

in terms of which the integral T, is written in the simple

1

form

« = (1),(2)
T.*= I o a,.a.,. . VBLY . 5.16
1 i3 ivgr 13 i'3 i3 ( )

!

of the integral (5.9) "

S

Similarly, the second term T2

can be written in the same form:

(1), (2)
T, = I T a..a.,.,B.,.\D.% 5.17
2 ij 1'5° 5 Sl R & S b B ( )

(1) (2)

'whereﬁthewmatfices B and D are defined by
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(1) _ 5 (1), (1)

(1) i
Bil' r °F ir ¢i'r (5.18a)
(2) _ (2)5(2) 5(2)
A 2 wog g 5t e (5.18b)
and the matrix 9(2) is given by
2) _ S 2y | S9%5, ()
Q's = (EE_) e's - (sina ) LEP (5.19)
] 2 s 2 s
(1) (2)

Notice again that the matrices B and D , given by (5.18),

¢

are symmetric and positive definite. ’

Combining the expressions (5.16) and (5.17) for Tl

and T2 respectively, we finally obtain the following discrete
approximation for the integral T, equation (5.9):
(1)

' [Dii'B

(2)
33"

(1)

ii!

(2)

+ B,T.D:%)
ip)

T = ¢ z a
ij i'j3!

132175 . (5.20)
The variation of this expression with respect to a variation

in the coefficient a is simply

IJ
3T (1) 4 (2) (1) ,(2)
=2 I a,.[D;,I"B. + B, 2'D.2"] X (5.21)
-aaIJ i iy 711 T3J iI 73J

where the obvious relation aaij/aaI = 6i16jJ has been used

J
to derive this result.

Let us now consider the second term Ip of the functio— -
nal P, given by expression (5.10). Applying the discrete

inﬁegration formula (3.19) and the definition (5.3) we write

:I = 471 I wrs(51nhs

sine_ p)_ qu (5.22)
P rs r 1 2

rs rs



where the weights w.g are defined by.(4.24) of the previous
chapter. Employing the basis set representation (5.8) this
becomes

(l)'

Ip =4m ¥y I a..w__{sinhe sine p) ¢(2)

j.rs 1 rs: 1r js (5.23)
rs ij

and the variation of this expression with respect to arg is

clearly
I ' ‘

Q _ 4 . .
= 4n1 3 wrs(51nh5151n€20) ¢
IJ rs

(1) (2)
Ir ¢

3 (5.24)

' Finally, equating the variation of F, expression (5.1l1),

!

to zero using (5.21) and (5.24), we obtain the following set

of equations (one for each 1IJ) for the expansion coefficients

a..s
1)
o (1) (2) (l) )
I a,.[B'2'D:% + D! ]
ij 1 JJ il
= 41 % wrs(sinhelsinezp) ¢£i)¢§§) . (5.25)

s

After solving this set of equations for the aij’ the function
values pij are obtained from (5.8) and then the coulomb poten-—
tial Velﬁfrom definition (5.3).

Incorporating the now familiar re-indexing scheme
“(4.43), the set of equations (5.25) is seen to be equivalent

to a patrix equation of the form

Ax = b (5.26)
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where x is the column vector of coefficients'ak, and the ma-
trix A is symmetric and positive definite.
The structure of A is determined by the structure of

(l), B(2), D(l) and D(z) defined by expressions

the matrices B
(5.15) and (5.18). Inlgeneral, these mat;ices are full, and
therefore the solution of (5.26) is hopelessly difficult for
a typical number of basis functions (i.e. several hundred).

In Appendix D, however, we discuss a class of basis
functions on a uniform discrete mesh known as B=-splines, which
are characterized by the fact that’they are maximally loca-

lized subject to certain continuity constraints. These func-

tions are therefore ideal for our purposes, because the basis
(1) (2)
ii! sh

case of cubic B-splines, these basis matrices are tridiagonal,

matrices ¢ and ¢ are banded. In fact, for the special
as shown in Appendix E.
If the basis matrices are tridiagonal, then the ma-

(l), B(2), D(l) and D(Q) are, from expressions (5.15)

trices B
and (5.18), quindiagdﬁal, which simplifies the matrix problem
(5.26) treméndously. By inspection of (5.25) we see that
matrix A becomes block gquindiagonal with a detailed structure
as illustrated in Figure 5.1 for the special case of a 7x8 point
mesh.

Being positive definite and banded, with a relatively

small béndwidth, our problem is now.easily solved by the

method of Cholesky Decomposition (see for example, Fox 1964,

el
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ch. 4) in which we calculate the matrix L. and its transpose
T

L” such that

A= LLT (5.27)

where L is a lower triangular band matrix with the same band-

width as A. The matrix L is stored, and then for any given
right hand side b, the linear system (5.26) can be solved in
two stages:

b ' (5.28a)

Ly

x =y (5.28b)

where y and x are computed by forward and then backward sub-
stitution respectively.

This method is extremely rapid once the Cholesky dec-
ompositioﬁ has been obtained. “Therefore, solution of the
Poisson equation demands a very small fraction of overall com-

puter time in the present work.

5.3 Asymptotic Behaviour

For reasons discussed in Section 4.2, we have dealt in

§

this chapter with the function

-

U = (sinhe s;nez)vel (5729)

1

rather than with Vel itself. Asymptotically, however, we notice

that the coulomb potential be behaves like

1

. -l ) A 14
Vo v I (5.30)

and we also deduce from equation (3.3) that the factor sinhe,

<
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behaves like

(sinhel) voro. ) (5.31)

Therefore, it is obvious that the function u does not vanish

asymptotically, but rather approaches

U v const X sing (5.32)

2 »
This asymptotic limit introduces complications at the boundary

.

Consequently, it is preferable to work with the equa-

%

2 - _ _ ' ¢
v (Vel~V0) = —4n(p po) (5.33)

where o is some "reference" density with theé' same total cﬁarge
as p, and V0 fg its coulomb potential. In the present work,
for example, po is a sum.éf spherical atomic densities for
which V0 can be calculated analytically.

Since the density difference (p-po) has zero total

charge, the asymptotic behaviour of (VelJVO) is given by

2

(Vo=Vg) v r - * (5.34)

"and therefore the function u does, in this case, vanish
' “asymptotically and simple zero boundary conditions may be

applied at x, = 1. Of course, equation (5.33) is solved in.

1

exactly the same manner as the original equation (5.1), and we

need not modify the diécussipn of the previous section in any

¥

way.

"y
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Figure 5.1

, equation (5.26)

. Structure of the Matrix A
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CHAPTER 6

CALCULATIONS .

-~

6.1 Outline of the Calculations

The first row homonuclear diatomics B2’ C2, Nz, O2
and F2 as well as the he£e;onuclear molecule CO have been
chosen as tests of the numerical method outlined in the pre-
vious chapters and of the Hartree-Fock-Slater theory, For
each of these molecules the ground state dissociation energy,
bond length, vibrational frequency and quadrupole moment (or

dipole moment) have been calculated.

The ground state configurations of these molecules

g\..\gre given below:

! B, 102102202202 172 »3z-
g "u g“"u" g

C2 lcélciZoéZoﬁlﬁi lz;

N, '-1'03103;20520‘213031n3 1:;

.co 16226230%40%11%502 1p*

0, 1o§10i20§2oi3o§1wﬁ1n§ 3):;J

F, 1031012120320121303&311’:3 _ 1}:;

Wé'reiterate that the orbitals used in this work are spin re-

N
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stricted, but that the Xo total energy is calculated in the

properly spin polatrized form (2.25). This applies, of course,
to the open shell ground states of the molecules 2, and O2
) =\
2 3 4 3 2

“and also to the “P, “P, °S, “P and “P groundﬁsﬁété%;of the
atoms B, C, N, O and F respectively, used in the caI&ulation
of dissociation energies. Note that all of the open shell
states considered here are representable by a single Slater
determinan@, and therefore the simple theory of Chapter 2 is
applicable (see, however, Ziegler, Rauk and Baerends (1977)
for a simple extension of the\gﬁeory to certain multideter-
minantal situations). |

Trial calculations on the molecules N, and CO indi-
cate that the densities of the atomic ls core orb;tals can
be frozen without significantly affecting orbital energies,
dissociation energies or molecular charge densities, and there-
fore the core orbitals have in fact been frozen in the sub-
sequent calculations. Frozen cores are trivially incorpora-
ted into the present numerical scheme by explicitly orthogo—
nalizing valence orbitals with respect to the core orbitals
as part of the Lanczos reorthogonalization procedure of Ap-
pendix C. L

Self-consistency has been achieved in the present cal-
culations by mixing the "old" and the "new" potentials of a

given cycle in the ratio

=2 S
=5V, gt 3V _ (6.

Vnext‘cycle; la
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-

to generate the self-consistent potential for the next cycle.
This prescription leads to stable convergence in roughly ten
iterations. The potential for the first cycle, of course, is

generated from the sum of the constituent atomic densities.

6.2 Mesh Tests

To begin with,kcalculations have heen performed at the
experimental equilibriu; internuclear separations in order to
investigate the sensitivity of our results to the number of
mesh poinfs used. These ;alculatiOns are a strihgent test
of the numerical accuracy of the present method.

In Table 6.1, ground state dissociation energies for
our six test moleculeg are presented as a function of the
number of mesh points used in their calculation. For each mole-
cule, we begin with a 98 point mesh (i.e. 7x14 points), and
thereafter the calculation is succesSively'repeated using
roughly twice the previous number of points‘until convergencé
in the bond energy (to the nearest 0.1 eV) is achieved. 'This
convergence is, in fact, successfully obtained in all cases
with 800 mesh points or less.

These dissociation energies have been calculated from

.the expression

D = (6.2)

e = | EAB"EA"Esl

where the atomic energies E, and EB are cémputed by exactly

A

the same numerical ‘code and on the same discrete mesh as the

-

\

)
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corresponding molecular calculation for E This is done, of

AB
course, by assigning zero charge to one of the nuclei in the
molecular program. ‘In this way, thanks to erroxr cancellation
in the difference (6.2), very accurate dissociation energies
are obtained even on the coarser meshes despite somewhat lar-
ger errors in the absolute energies themselves.

Furthermore, the errors in the absolute energies can
be estimated by comparing the atomic energies derived from
the present code with accurate atdmic results. For this pur-
pose an atomic code which utilizes the extended basis sets
of Clementi and Roetti (1974) has been written to'provide ac—
curate atomic Xo energies. The comparisons indicépe that the
absolute error in the total energy on a 98 point mesh is’
typically in the order of electron volts, whereas the error
Aon the 800 point mesh is less than 0.1 eV.

Aé a result of these atomic studies and the studies
of Table 6.1, we feel that the dissociation energies reported
here are accurate to 0.1 ev.:

The molécular charge d?ﬁ?;ties have also been investi-
gated as a function of mesh siéé/éy calculating gquadrupole
moments for tﬁe homonuclear molecules,‘and the dipole moment
"of CO. These moments are presented in Table 6.2, and héve
been calculated, of course, using the discrete integratiog
forﬁula (3.19). We note that they disélay satisfactory consis-

'tency despite an eightfold overall increase in the number of

mesh points. , B ) -
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These calcplations show that the present numerical me-
thod performs extremely well for the first row molecules con-
sidered here. 1In the following section, we shall compare our
results with experiment and'also with some recent calculations

in the li;erature. .

Lo sl



Table 6.1

Dissociation Energies D_ (eV)

“

*
Number of Mesh Points

7x14 | 10%20 | 15x30 | 20x40
B, 4.2 3.8 3.8
c, 7.0 6.3 6.2 6.2
e
N, 9.9 9.7 9.6 9.6
co 12.4 12.1 12.1
0, 7.5 7.2 7.1 7.1
F, 4.3 3.7 3.3 3.3
Note: Only half of the indicated number

of mesh points are actually needed
for the homonuclear calculations,
but the full number is required for
the corresponding atomic calcula-

tions of equation (6.2).

68
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Table 6.2

26.

Quadrupole Moments Q (10~ esu cmz)

Q= % I 0(322-r2) dv

Number of Mesh Points

7x7 10x10 | 15x15 | 20x20
B, 0.98 | 1.17 |' 1.15 .
c, 2.88 3.12 3.15 | 3.24
N, | -1.84 ~1.59 | -1.53 | -1.55
0, -0.61 | -0.53 | -0.53 | -0.48
F, 0.95 0.94 0.93 0.93

g

18

Dipole Moment of CO (10 % esu cm)

N, <N, | u(cto7)

1 2
- 7x14 -0.25
10x20 ~0.26

15x30 -0.24

“
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6.3 Results

As mentioned in Section é;g, the diatomic Xa calcula-
tions of Gunnarsson, Harris and Jones (1977), ﬁaerends and
Ros (l978)iénd Dunlap, Copnolly and Sabin (1979) were performed
using the uniform value & = 0.7. Since these calculations
are probably the most accurate Xo calculations to date, the
same approximation has been applied to the present work in
ordef that direct comparisons between their results and the
present results can be made. For convenierice we shall refer
to these groups as GHJ, BR and DCS respectively in the remain-
der of this section. N

In Table g;g[ we compare the ground state dissociation
energies .of the present work with experiment, with the results
of GHJ, BR and DCS, and with the results of HartreejFock cal-
culations.

Notice, ‘first of all, that the agreement with experi-
ment is remarkably good for such a simplé theory, with the
largest absolute discrepanCy’Eeing 1.9 eV for the O2 molecule.
In every case the Xo aiSSOciatiOn energy shows improvement
over the Hartree-Fock vglue, which is weil known to underbind
molecular ,systems. The Xo approxiﬁation; on the other @and,
gives slightly overbound molecules in many cases, which is per-
mitted by the fact that the Xo theory is not a "proper"'many—
body variational theory (i.e. the,to?al energy is égg the ex-
pectation valﬁe of the many-body Hamiltonian (2.1) fQ£~an ex-

plicit many—body wave function).

[d .
2.



71

Even more interesting, however, is the excellent agree-
ment (with the possible exception of N2) between the preseﬁt
results and those of DCS./ The previous dissociation energies
of GHJ, BR and DCS show(significant discrepancies, and there-
fore this agreement is 'ry gratifying.

We have also calc;lated the spgctroscopig constants r,
and Wy i the equilibrium internuclear sepa;ation and the vi-
brational frequency. These have been determined by fitting a
cubic polynomial in inverse powe;s of the internuclear separa-
‘;ion to seven'points in the vicinity of r, separated by 0.1
bohr. At each of these paints the energy difference (6.2) has
been computed in order to eliminate small variations in the
numerical error of our calculation as a function of the inter-
nuclear separation.x

The above -fitting function apd distribution of points
have been chosen to correspond with the work of DCS., who point
"out that the.vibrational frequéncy W is.rather sensitive to
the éxact choice of these factors. Vibrational frequencies
from other sources, however, should be éomparable within about
50 cm T. | ' . ' |

In Table 6.4 we compare the equilibrium internuclear

separations r, with experimenf, with the results of GHJ, BR
and DCS, and with Hartree-Fock results; and in Table 6.5 we
compare vibrat;onal frequencies Wy

'Qonsidering, first of allf the bond lengths I e We

1

mnotice that the agreement with experiment is again remarkably
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good, with the largest discrepancy being 0.07 bohr for the F2
molecule. Furthermore, the agreement between the present
results and the DCS results is again excellent, with the lar-
gest discrepancy in this case being only4 0.02 bohr.

These general comments apply to the vibrational fre-

guencies w, as well. With the exception of the F
1

5 molecule,

the calculated frequencies lie within 40 cm ~ of the experi-
mental values, and similar agreement is also found with the
results of DCS. As noted in connection with dissociation
energies, the present Hartree-Fock-Slater results are general-
ly preferable to those of the Hartree-Fock theoryk'

In Table 6.6 we pr?sent the calculated dipole moment
of the CO molecule and its derivative at the experimental equi-
librium internuclear separation along with the usual compari-
sons. The resylts of the present work agree very well with
both the DCS and the BR calculations,'aqd we note that the
theoretical Xodipole moment, though it has the correct sign,
has twice the experimental magnitude. This is not a serious
discrepancy, however, since the dipole moment function of CO
passes through zero very close to're (Chakerian Jr. 1976) and
therefore has a relatively small mégnitudé theré. The calcu-

»” ! . N
lated first-derivative, on the other hand, agrees very well

- *
}

with the experimental value. - ' )
Finally, let us consider the quadrupole moments of

the homonuclear molecules N2 and 02, the only céses (of those

'
I
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studied here) for which reliable experimental data are avail-
able. 1In Table 6.7 we compare the quadrupocle moments of this
work with experiment and with the results of Hértree—Fock cal-
culations (quadrupole moments were not reported by GHJ, BR 'or
DCS). We observe that both the present results and the Hartree-

Fock results show fairly good agreement with experiment.



Table 6.3

Dissociation Energies De (eV)

Expt PW DCS BR GHJ HF
B2 3.0 3.8 3.9 . 0.9
C2 6.3 6.2 6.0 0.8
N2 9.9 9.6 9.2 8.4 5.6 5.2
Cco 11.2 12.1 12.0 11.5 8.3 7.8
o, 5.2 7.1 7.0 6.6 1.3
F2 1.7 3.3 3.2 2.9 0.3 -1.4
Expt: Experiment, Huber (1972)
PW  : Present quk
DCS : Dunlap, Conno and Sabin (1979)
BR : Baerends and Ros (1978)
GHJ : Gunnarsson, Harris and Jones (1977)
HF : Hartree-Fack, .

Cade and Wahl (1974) (BZ,CZ,NZ,OZ,FZ)

Cade and Huo (1975) CO

-

N

Clementi and Roetti (1974) (atoms).

=y

[ o4



Expt

3.00

2.35

2.07

2.13

2.28

-2.68

Table 6.4

Bond Lengths r, (bohr)
PwW DCS BR
3.04 3.04

2.36 2.35

2-976 /2‘.078 2.13
2.12 2.13 2.15
2.26 2.28 | 2.3%6
2.61 2.61 2.67

2.

GHJ

16

.22

.91

HF

Expt:

DCS :
BR :
GHJ :
HF

AExperiment, Huber (1972)..
‘Present Work

Dunlap, Connolly and Sabin (1979)

Baerends and Ros (1978)

Gunnarsson, Harris and Jones (1977)

Hartree-Fock, as given by DCS.




Table 6.5

Hartree-Fock, as given by DCS.

e

Vibrational Frequencies w_ (cm-l)
. Expt PW ‘DCS BR GHJ HF
\

B, ‘| 1051 | 1020 || 1050
C, |, 1855 | 1870 1920 1970

Lo .

N, | 2358 | 2380 || 2370-| 2360 | 2060 | 2730
qb 2170 | 2170 2160 | 2300 | 2000 |[-2430
.

_ 92 1580 | 1620 |{ ‘1610 | 1570 | 2000
F, 892 | 1060 || 1090 | 1070 | 840 | 1260-
‘Expt: Experlment, Huber (1972)

.PW : Present Work
DCS : Dunlap, Connolly apd Sabin (1979)

;BR ¢ Baerends and Ros (1978).

GHJ : Gunndrsson, Harris and Jones (1977)

HF




. Table 6.6

-

Dipole Moment Function of

Cco

Expt PWe DES BR GHJ HF
uo -0.12 1 -0.25 ~0.24 | -0.25 -0.03 +0.27
My 1.66 1.73 1.65 ] 1.66 1.72 2.71

W, = Dipole Moment (debye) (cto7)’

My = Dipole Moment Derivative (debye/bohr)

} - ‘ « 0

Expt : Experiment, Chakerian Jr. (1976)
PW : Present Work
DCS ‘- : Dunlap, Connolly and Sabin (1979);
BR :' Baerends and Ros (1978)
GHJ : Gunnarsson, Harris and Jones (1977)
HF H

Hartree~Fock, as given by DCS.

{




Quadrupole Moments Q (10

Table 6.7

~26 esu cmz)

Q= % p(322—r2) dv

. Expt’ PW HF
-1.4 | -1.54 | -1.36

-0.4 -0.51 -0.59

Expt:

Experiment, '
Buckingham, Disch and Dunmur (1968)

Present Work- -
Hartree~Fock,

Cade et al, reported by Stogryn
and Stogryn (1966). '
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6.4 Conglusions

5,

J&he numerical method developed in this work has been
shown in Section 6.2 to perform extremely well for the first
row molécules considered here,’and we have established an er-
ror limit of 0.1 eV on the energies reported in Table 6.3. We
feel, therefore, that the pfesent results accurately represent
the Hartree-Fock-Slater theory. (

Based on the comparisons of Section 6.3, we conclude
that the Hartree—Fock—Slqter‘theory, though very simple, des-
cribes molecular systems remarkably well. it’certainlf per-
forms as well as.(or even better than) Ehe Hartree~Fock approxi-
mation, although tﬁe latter offers the,advantage~of'being a
propex "ab initio" £heory.

The exchange parameter o« has been somewhat‘arbitrafily
chosen in these calculations, but reasonable adﬁustmehts of
its value are not expected to affect thg present results sub-
stantially. In the casé of 'the N, mdlecule, fo% example,
Dunlap, Connolly and Sabin (1979) reporﬁ that a change'in the
value of a from 0.7 to the Schwarz (1972) value-of,Q.752

~

has the following consequences:

AD = 0.17 eV
e ¥
) Are = ~(3,03 bohr ’
M = 70 em L, -
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Clearly, the Hartree-Fock-Slater theory deserves fur-
ther study and refinement, and the numerical method developed
in this work may play an important role in these future stud-
ies. B |

Since the ‘present numerical method is completeély free
of any model dependent error, the results of this work can also
be used to assess the existing muffin-tin, ceilular or LCAO
computational schemes. In this regard, we note that .the GTO-
LCAO~-Xo method of Dunlap, Connolly and Sebin (1979) produces
'results'in excellent agreement yith the presen; work, which con-
firms that the "Xo limit" has indeed been reached, at least for
first row Eystems.‘ | , |

| Furthermore, the DVM-LCAO results of Baerends and RoS

(1978) are e&idently mere accurahe than the LéMTO results of
Gunharsson, Harris.and Jones (1977),'but~they nevertheless show
significant discrepancies. in comparison with the present work.
Direct comparisons with other non-muffin-tin calcuiat;ons (see
Section 1.1) will hot be mede here since they generally employ
velues for the exchange paremeter o différent from the value h
@ = 0.7 used ih these calculations.

Uhfortunately, the present numericai techniéue cannot
be dlrectlz extended to)polyatomlc systems, although many of the
baszc.ldeas of this werk would certalnly be useful in such an

endeavour.“The dlfflculty lies in the construction of completely

orthogona three—dlmenSLOnal coordinate systems for multl -centre



81

2

geometries. I£ is this orthogonality which gives the present
formalism its great simplicity, and gives the resulting matrix
eigenvalue problem for the molecular orbitalé the sparse block
structure of Figure 4.1. Construction of such coordinate sys-
tems, however, is rather difficult for non-diatomic (or at

least non-axially symmetric) molecules.

In the meantime, however, accurate numerical tests of
Hartree-Fock-Slater and other density functional theories are

now possible on the simplest of molecular systems: the diatomic

i3
§

molecule.

- »



APPENDIX A

ASYMPTOTIC BEHAVIOUR OF THE TRANSFORMATION El(xl)

In Section 3.2 the coordinate transformation el(xl)

Fl

is defined in order to map the semi-infinite domain of ¢

1
] >
into the finite domain of the variable xl. It was stated
that a suitable transformation for this purpose is given by
.0/ N '
€ =cfnﬂfl&). \ X
1 1, 1 //
c 1+x o
1 1 R .
== zn(l_xl) , | (A.la)
where ‘;
0<x. <1... (A.1b)
i - 71 - .

\ / ;e
When making transformations of\th%é kind, there is

!

danger that certain volume integrals may/bedome divergent, '

and therefore we shall investigate the asymptotic behaviour

of expression (A.l) to ensure that all /relevant intégrals re-
r‘\

‘main non-singular under this particu:?r transformation. For

new variable

' convenience, we begin by defining th

-

/

z= 1k, . (a.2)

, such that z=20 corfesponds to the/asymptotic region. Then,
from expressibn (A.1) we obtain 'the following asymptotic be-

* haviour for €, as 2 approaches zerp:

~

e

82

/



83
P VI —L,Qn z . (A.3)

This behaviour is expressed in terms of the distance r using
equation’ (3.3):
€ ~c./2
rve 1 vz 1 . (A.4)

In the asymptotic limit, therefore, r and z are simply in-
verse powers of each other.

Now let us consider the large r behaviour of the vo-
lume integral of some arbitrary function F. The integrand

asymptotically approaches
2 - “
Fdv ~ F(r)r~dr (A.5)

where angular factors have been neglected. Recalling the in-

tegrals which are treated in this work, we find that two clas-

F

ses of behaviour for F(r) exist. First of all, we have a large
number of integrals which contain orbitals or densities in their

integrands, and in these cases we have

Fdv » e_ardr : . : (A.6)

which, using (A.4), can_be written as

(1+2/¢c.) _
Fdv ~v r 1 e *Taz .. (3.7)

+

This -expression is, of course, well-behaved at r + = for all

v/

positive values of c, ‘and . , s

1 .
V In connection with the Poisson equation, however, we
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encounter the integral (5.9) with the integrand F = (Vvel)z.

Recalling the asymptotic behaviour (5.34) of the coulomb po-

tential, we obtain in this case
-4
Fdv ~ ¥ “dr . (A.8)

Again using (A.4), this expression is rewritten as

(3cl/2—l) (
Fdv v 2 dz . (A.9)

This time, however, we notice that (A.9) diverges at z=0

unless

c. > 2/3 ' (A.10)

1

which, using 13.8b) and (3.9), implies that

by \ . .
?? > cosh(&%z -1
: (A.11)

> 0.068

Fortunately, this condition is easily satisfied for typical

molecular intexrnuclear distances, and we need concern ourselves
\ N

f;with'(A.ll) only when the 'internuclear separation becomes very
large. . .
J The transformation (A.l), -therefore, may be safely

‘employed in the present work.

N



APPENDIX B

CALCULATION OF THE DISCRETE DIFFERENTIATION
MATRICES AND INTEGRATION WEIGHTS

In Section 3.4 we describe discrete differentiation
(2) (L) (2)

matrices d(l) and d and integration weights w and w

for the Xy and X, meshes, and in this appendix the calcula-

tion of these objects will be outlined. For convenience in

the following work, ghe mesh superscript is neglected since

formulae for gifher the x, or the X, meshes have identical form.
Giver an arbitrary function F on a discrete one-dimen—

sional mesh, the differentiation maérix d and the integrétion

weights w are defined as follows:

i

dF

- = 7 d..F, (B.la)
dx,i 3 13 3

F(x)dx = i wiFi . (B.1lb)

These expressions may be written in much more compact form by

. defining the column vectors_F, F' and w in the obvious manner.

In terms of these vectors, qguations (B.1) may be.written aé

F' = gF 4 \ (B.2a)
and ' ’

F(x)dx = W F T ' (B.2b)

85 .
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where d is the differentiaﬁion matrix of (B.la) and the super- °
. script T denotes matrix transposition. We shall use this
vector-matrix notation throughout the remainder of this sec-
tion.

In the present work the matrix d and the vector w are
calculated using spline analysis, and the particular method
employed here is based on the B-spline theory‘outlinéd, for
example, by Prenter (1975, ch. 4). The general theory of B-
splines is discussed bfiefly in Appendix D, and for the moment,
we need only know that nth order B—splines are 9§§£é functions

R
for the space of all possible nth order spline functions on a

’
|

uniform mesh.
Then, using third order {cubic) B-splines in Appendix
E, we construct a set of basis functions ¢, and their corres-

ponding derivative functions ei for each of the Xy and the X,

meshes, as well as matrices ¢.. and 6.. such that, for example,
i i3 e

3
1 'V'q . . ) ! »
¢ij denotes the value of ¢i at the mesh point j. These matri-

ces.are tridiagonal, and in addition, the matrix ¢ is symmetric.

We also define the column vector s, such that

\

s. = ¢i(x)dx . | ’ (B.3)

Using the preceding definitions, we write the following
expressions for the function-F,'its dérivative, and its inte-

gral in terms of the basis set expansion coefficients "a":

'

; / '
.. Fl=ga - C T (B.4)
N S

\ B i
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and

" F' = 08"a . (B.5a)

F(x)dx = s'a . | (B.5b)

Although these equations give the-derivative and integral of

; we desire expres-

P in terms of the expansion coefficients "a
sions for these quantities in terms of the vector F itself. ‘

This is, in fact, easily accomplished by inverting

equation (B.4):

a=¢ °F | ' (B.6)
and then Substitqpinq this expression into (B.5)_  to obtain

' F' =, 009 1 - ‘ (B.7a)

I F(x)}dx = sTo~1r . (B.7b)

These equations have the desired'ﬁorm (B.2), aﬁd by inspectiop

we immediatgly write

J/

° d=108T (B.83)

we = sTeTt | (B.8b) "
which give ﬁhe differentiation. matrix and the integration
weights. in simple terms of the cubic spliné basis matrices of

-

Appendix E. S 3 ‘ )
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As mentioned in Secthn 3. 4, this particular deriv-

ation of the matrices d(l),aﬁﬁ d(z) and the weights w(l)

y -
(2) is not an essent;&l,xngredxent of the present method.

&
Any other deSLred°5%merlcal technique can be used to compute

and

them (i.e. flnlter 1fferences, higher order splines, trigon-
ometric interpolation, etc.). The formallsm of Chapter 4 and
Section 5.1 is quite independent of ehe precise choice of this
numerical input, provided that the definitions. (B.1l) @Qe eatt
isfied. | '
We have chosen to work with cubic B-splines in these

calculations because of their great efficiency in solving the

Poisson equation by the method of Section 5.2.



APPENDIX C

THE LANCZ0S ALGORITHM

In Chapter 4, the determination of the molecular orbi-

" .tals was reduced to a symmetric matrix eigenvalue problem of

the form
AX—= XA {C.1) -

where the columns of matrix X are the eigenvectors of A, and

-

"X is a d&?gonal matrix contaiming the corresponding eigenva-

lues. As'discussed in Section 4.4, the coefficient matrix A
is very sparse, and furthermore, excellent approximations for
the eigenvectors exist at the outset of each self-consistent

iteration.. = Therefore, iteretive numerical methbds for the

solutlon of elgenvalue problems are ldeal for our purposes, and

in this tvork the so- called Lanczos method has been used (Lanc-
zos 1950). A nice discussion of the method is glven by Fox

(1964, pgs. 252,270). L T

Essentlally, the Lanczos algorlthm 1terat1vely gene—

Ky

rates a similarity transformation from matrix A to a tridia-

gonal matrix C, where
1 : v ¢
3 > ’ . &

<. ar=yc , . (C.2)

and'C is assumed to be symmetric, having the form ' . L

89



' “ B
By tay By
c = B, oy B, (€.3)
By Oy
etc. . -

e

Since A and C are both symmetric, the columns Oﬁ%i:f trans-
formation matrix Y, denoted y , are orthonormal. ‘

Using (C.3), the rth column of the matrix eqpation

{C.2) can be written as ‘ .
Ayr = 8ryr—l + aryr +.Br+lyr+l (C.4)
or, rearranging slightly,
8r+lyr+l = Ayr - OLryr - 8ryr-—l : (C.3)

This equation gives the column y in terms of the two pre-

r+1l

vious columns Y, and Ypoo1° Since y ts orthogonal to Yr

r+l

we obtain ’
= T :

a. = yrAyr ' (C.6)

which follows from (C.5) if we multiply by y? and use the fact

that Y, is orthogonal to Yoy The value of Br+l

ermined by properly normalizing column Ypg1® Beginning with

Yo T 0, therefore, and a starting vector Yy equation (C.5)

is then det-

iteratively generates the columns of the transformation matrix.

”

'As discussed by Paige (1972), this procedure works if .

certain precautions are taken, but in general the columns of ¥

s
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Sfou
eventually:lose their Qrthogonalit§ due to roundoff error in
the subtraction (C.5). Therefore, in the present work, the
. ~

columns Y, have been explicitly reorthogonalized in a manner
described by Whitehead et al (1977, sec. 2):

First of all, we calculate

: v _ ’
7 Ypep1 T AV, 0¥, - BLY (C.7)
: ) .
where o is given by (C.6) and Br comes from the previous iter—‘
1]
ation. Then, we éexplicitly orthogonaliz@f§r+l with respect to

all previous columns using

r+lyr+l = yr+l N

\ s

1 . ﬁ

_ .7
s T Yg¥r41 o ) o (C.9)

r
B I ey - (C.8) 6

1 s s

where

Then, flnally,'8r+l-1s chose? such that the new column yr+l
is normalized, and the procedure is repeated by retdfning to
(C.7).

When the tridiagonal matrix C has been produced, the

much simpler problem
Cz = ZXx . ' (C.10)

may be 'solved using well known and efficient numerical algo-

rithms for tridiagoﬁal eigenvalue problems (such as routines

&

RATOR and TINVIT from the EISPACK library of Smith et al 1974).
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4
-

Then, multiplying equétion (C.10) byAthe matrix Y an? ueing

(C.2) to obtain p
. . R(YZ) = (Y2)) (C.11)

wWe observe that the-eigenvectors of the original problem (C.1l)
are related to the eigenvectors of the tridiagonal problem

. (C.10) by

*

X = Y2 . (C.12)

Therefoke, the.Lanczos algorithm conveniently reduces the
<! o
initial eigenvalue problem to a much’ more simple tridiagonal

form.

. For an arbltrary choice of startlng /vector ¥y the
Lanczos procedure w1th reorthogonallzatlon is actually less
eff1c1ent than’ other well known- trldlagonallzatlon methods
.gich as Householder or Givens. If the vector yl is properly‘

chagen, however,_ then the’ Lanczos algorithm may, in fact, be

*

'truncated after .surprisingly few iterations, and herein lies

-

" the real.power of the method. )

In order to understand this, suppose that,yl is'a
linear combination ©of the m lowest e;genstates of matrix A,

where m is small compared to the order of the matrix. The

-

/«»

(}anczos algorlthm in this case would tegglnate after m itera-

tlons, having generated the m—d1mens19nal subspace of the m
A
lowest eigenvectors, If, however,~yl is a linear‘combination

of approximate eigenvectors, then the Lanczos procedure never

terminates but it, nevertheless producg$ rapidly convergent



résults for the lowest m eigénstates. ;

In a self—cdnsistent calculation then, if Yy is_the
_sumjof the orbitals from thé previous self-consistent cycie,
this convergence is very-fast,;espec;ally as self-consistency
is achieved. This.remarkable propefty 65 the'Lanézos method
is nicely illustrated by Hood5h0§ andiegéle (197Z) for nu-~

mgrigal Hartree-Fock calculations on axially syrmetric nucléi.

4 .

. -

"The Lanczos algorithm is therefor%/{gémendously'ef—
ficient for the calculation of molecular orbitals in the pre-—.
sent work, and- very large numbers of mesh points (up to a

thousand or so) can be hgndled:

Y

!



APPENDIX D

B-SPLINES : T

~
)

In Ehis appendix we shall véfy Eriefly outiiﬁe the
general theory of nth order spline functions. A much more
,thorouéh'discussion is given:in‘the-book by Prenter kl975).
Let us begin by defining éxactly what is meant byo"\;
the term "spline function", &ssume; first of all, that we are
given a discrete one-dimensional mesh not necessarily uniform,
‘oh éome finite domain of the Variable‘x. An nth order spline
function is a function, well—behavea-in eacﬁ mgsh interval,
which, at the mesh points; hés contiﬁuqu; value and continuous

1

) derivatives up to and including order (nﬁlf but not neéessa—
rily beyond. ' In other words, a spline function is a pieée—
wise continuoué function with\“smoothng;s" coﬁbtraipts on
the lower order deriVatLve$ appliéd at the mesh péipts. In
the case of a@ nth order Eolxnomiéi spline, thé)gﬁhction ;s
represented in each interval*byla polynomial\gf order n.
.Froﬁ-the‘above definition, it is glear-that a linear
combiqatién of spline functions is.also a spline fynctiomn, .
fﬁf%hd therefore it is possible to define basis splineé’f6¥
" the ‘space of nth order spline functions on a givéﬁ mesﬁ. rOne )
‘such class of baéis splihes are the so—cgliéd ngplinés,.which.
é¥; charact&?ieed by the fact that they aré\ﬁaximally "loca- \; o

-

lized"'oﬁ the mesh.

F

94 .
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Let us con51der the general properties of an»nth order
‘polynomial B—spllne on a unlform mesh with interval h. Assume,
first of all, that the B;spline is non-zero over % inﬁervals,
and vanishes everywhere else. Since it is represented by an
nth order polynohial in each interval, we have a.total of
2(n+l) undetermined coefficients altogether. The continuity -
conditions at each mesh point, however, impose a total of. n(2+1)
constraints. Therefore, the constraints beiﬁg hoﬁogeneous, it
is cleéar that the number of undetermined coéfficieﬂts should

exceed the number of constraints by exactly one, if a unique

'solution (within a normalization constant) is'desired. Con-

sequently, we see that an nth order polynomial B-spline is
uniquely‘defined over & = n+l intervals and vanishes elsewhere.
The preceding argumeht shows that a polynomial B-spline

of order n spans (n+l) intervals}\from mesh point x_, say, to

0
the 'mesh point X 41 It can be shown that the B-spline on this

interval is explicitly given by the following expression:

tw“,
L

n? k

(1% ) (xmx (0.1)

"B(x) =
. 0 +

(=]

-~

where ( k ) is the usual blnomlal coefficient, and the func=

N -

tion (x=x ) is defined by

t

@

(x—xk)n r X > X
= 3 - ' . (D.2)
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“and is itself an nth order spliné function. It is not difficulf
to.verify that expression (D.l) does, indeed, ﬁave ali of the
reqpisiﬁe properties of an nth order B-spline.

We are particularly interested in the values of B(x),

its derivatives, and its integral at the mesh points x_. Using

(D.1) we .compile the following results:

. (p-1)
CoBk) = 1 (=L e-)” (D.3)
PP x=0
m (p=1) -
( %) Blx) = —n - r (- )k(nil) (p-x)%™  (p.a)
. (n-m) 1R k=0
xp ’ ‘
‘ . (p=1)
_ h . k ,n+l n+l -
B(%)dx f‘TH:IT kio (-1 ( k ) (p-k) . (D.5)
%0 ’\ J

Notice that the normalization has been chosen, in such a way that
B(xl) = B(xn) ='l. .
A complete basis set for the expansion of an arbitrary

nth order spline function on a_ uniform mesh is constructed by
[ Ls . “ R

associating one such B-spline with each mesh point, and we .

'shall construct such bases using cublc B-splines in Appendlx E.

-~ . p] Y
’ v



" APPENDIX E =

. THE CUBIC B-SPLINE BASIS

o
General formulae were given in the'previous apbendix
for the nth order B-spline on a uniform\pesh, and we shall now
. . wl
specialize these formulae to the case of cubic splines which
. [
are used in the present work.
The cubic B-splines extend over four intérvals, and
" we denote the B-spline centred on the ith‘mesh‘poinﬁ as Bi(x).-
Using, expressions (D.3}, (D.4) and (D’5) of the previous ap-—
péndix, we qompleie the following table: - .
Table E.1 ' . S
p = i-2. | i1 4 i+l g2
Bl(xp) = 0 1 4 1 0
d_ B (x ) = ’ 0 3/h 0‘ -3/h | . FO‘
dx "i'7p oo
. xp -
I B, (x)dx = 0 | /4 3h 23h/4 | . 6h |
Xgg - L R e e L

The cubic B-spline ﬁikx) is illustrated on the following

page in Figure E.l. . - o 4 ot *
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¥

Sketch of the Cubic B-Spline Bi(x) .

o

~
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In order. tp“incogébrate the boundary conditions of

Section 3.3,.we form linear .combinations of these cubic B*

' ’ .- -'(‘ . o . !
splines to construct the basis functions ¢, of Appendix B and
Section 5.2. We givé“theée(lineér compirn(ations below, and

-

L=

refex, thel reader to Sections 3,3 and 3.

-

r a review of the

meshes and bounaary conditions:

» (Note that, /throughout this work,

k thre funceion u defined by (4.7),

X, Mesh: . .(4.29) and (5.3) has.1_symmetry.)

¢ =B "B, . TV o . .

¢i = Bl for i = 2'to‘fN~l) ‘ }N = Nl)
U |

oy = By * Byi2 " 3 Byay

52'Mesh (Heteronuclear Molecules):

by =B T By , .

¢i = Bi ‘ for i = 2 to (N-1) (N = Nz)

Oy T By ~ Bys2

-

§2~Mesh (Homonuclear Molecules) : ‘ -

1

P17 BT P . .

63 = Bl fqr‘l = 2 to (N-2), (N =N,)

¢, =B, .-+ B ‘(where the * sign depends *
N-1 N-1° TN+2Z . on the reflection symmetry .
¢N_= BN t BN+l IR TN - of the state in question.)

™~

These expressions for the Basis~functiohs 9,0 along '
with Table E:l,'areeused to calculate the matrices ¢ij and 615
" and the-vector.si of Appendix B and Section 5.2. Their cal-

. e R \.‘__‘,/\’ '
.culation is straightforward and is therefore not reproduced



o

7 : .

~

here.” We hote, however, that thHe matrices ¢ and 6 -are both

tridiagohal, and this simplifies the solution of the Poisson
oY " !

equation in Section 5.2 tremendously.
y , 2:-2 ;

{

x4
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